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Abstract

This paper presents a study of small baseline stereovision. It is generally admitted that
because of the finite resolution of images, getting a good precision in depth from stereovision
demands a large angle between the views. In this paper, we show that under simple and
feasible hypotheses, small baseline stereovision can be rehabilitated and even favoured. The main
hypothesis is that the images should be band limited, in order to achieve sub-pixel precisions
in the matching process. This assumption is not satisfied for common stereo pairs. Yet, this
becomes realistic for recent spatial or aerian acquisition devices. In this context, block-matching
methods, which had become somewhat obsolete for large baseline stereovision, regain their
relevance. A multi-scale algorithm dedicated to small baseline stereovision is described along
with experiments on small angle stereo pairs at the end of the paper.

Keywords: Stereo, Discrete correlation, Shannon sampling, Digital Elevation Model (DEM), Numerical
Elevation Model (NEM).

1 Introduction

Stereopsis is the process of reconstructing depth from two images of the same scene. This relies
on the following fact: if two images of a scene are acquired ! from different angles, the depth of
the scene creates a geometric disparity between them. If the acquisition system is calibrated, the
knowledge of this disparity function e allows one to determine the digital elevation model (DEM)
of the observed scene. In this paper, we focus mainly on matching stereo pairs of satellite or aerial
images, that have been rectified to epipolar geometry (see [7]). If the altitude of the cameras is high
enough for the parallel projection model to be accurate, € and the depth function z are linked at a
first approximation by the relation z = 7., where b/h is a stereoscopic coefficient 2, only dependent
on the acquisition conditions. This coeflicient roughly represents the tangent of the angle between
the views (see Figure 1). The precision dz of the depth measurement is consequently linked to the
precision de of the disparity measurement by

dz = s (1)

1For example, in the satellite case, images are acquired by CCD retina matrices.
2This coefficient is the ratio between the baseline b (i.e. the distance between the camera centers) and the distance
h between the scene and the camera system. In reality, b/h changes slowly in space.
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Figure 1: Stereopsis principle. O1 and O3 are the centers of the cameras. The projections of the
ground points M and N in the first image are My and Ny, and My and No in the second one.
We see that the position of My in the first image is not the same as the position of My in the
second image. Let us denote with AM the shift between these positions (resp. AN for N). The
difference of shifts AM — AN 1is proportional to the disparity Ae (the proportionality coefficient is
actually the image resolution) and Ae itself is roughly proportional to the depth difference Az (the
proportionality coefficient is b/h).

It follows that for a given accuracy de of the disparity measurement, the larger the coefficient 2,
the smaller the depth error. It is commonly admitted that de does not depend on b/h, but only on
the image resolution. For this reason, high stereoscopic coefficients have always been preferred in
stereoscopy (typically, % = 1, which corresponds to an angle of approximately 53°). However, a large
coefficient also means more changes between the images (more different hidden surfaces, differences
in radiometry, larger geometrical deformations, moving objects, etc...), hence more difficulties in
the matching process. This is especially true in the case of urban images, where buildings create
a large amount of occluded areas, which change fast with the observation angle. Hence, a smaller
angle between the views should naturally yield a more accurate disparity measurement. The choice
of the coefficient b/h should result from a compromise between these effects.

The objective of this paper is a mathematical study of small baseline stereovision. The efficiency
of the human visual system clearly supports the use of small angles. Yet, this kind of stereovision
makes sense only under specific acquisition conditions and with specific matching methods. First,
the acquisition device needs to be perfectly known and calibrated. In addition, and this hypothesis
is essential, the images sampling must be controlled. Most stereo correspondence algorithms only
compute integer disparities. This may be completely adequate for a variety of applications but is
clearly insufficient for small baseline stereovision. Indeed, when both views are separated by a very
small angle, the disparities observed on the images can be quite small in comparison with the pixel
size. A matching method of pixelian precision is unable to find any interesting depth information in
such a case 3. Hence, small baseline stereovision requires matching methods specific for subpixelian
disparities. We have mentioned that the depth precision dz is linked to the disparity precision de

de

by the relation dz = 7. Matching two frames with a small b/h coefficient makes sense only if

the precision loss due to the angle is compensated by a better accuracy on €. Now, for subpixelian

3For instance, if b/h = 0.04 and if the image resolution is 50cm, the best elevation accuracy of a matching method
of pixelian precision is 0.5/0.04 = 12.5m.



precision to be achieved, the images of the pair have to be interpolated perfectly. For this reason,
they must be well sampled according to Shannon [15] theory 4. These conditions (small baseline
and well sampling) are generally not satisfied by benchmark stereo pairs. Yet, these assumptions
are becoming valid with recent satellite acquisition systems.

The strategies used over the years to resolve the matching problem between both images can
be roughly divided in local and global methods. Local approaches compute the disparity of a given
element by observing only its close neighborhood. Among these methods, area-based (also called
”block-matching”) approaches estimate the disparity at by comparing a patch around x in the
first frame with similar patches in the second frame, for a given metric or “matching cost”. The
most standard cost, the normalized cross correlation [6], is merely a scalar product between nor-
malized image patches. Block-matching methods can produce dense subpixel maps, but are hardly
reliable in non-textured regions and suffer from adhesion artifacts [5]. However, these methods
remain very popular, especially in the industrial community. In contrast, global approaches solve
optimization problems on the entire disparity map &, by making global smoothness assumptions.
They involve sophisticated energy minimization methods [1], dynamic programming [12, 4], belief
propagation [17], or graph-cuts [10]. These methods show very good performance for standard large
baseline stereovision and common stereo pairs (see [14] for an instructive and documented com-
parison of stereo algorithms). However, they remain computationally too expansive to be applied
with subpixel accuracy. In addition, graph-cuts based methods produce strong staircasing artifacts
whenever the depth is not piecewise constant, like in the case of urban areas with pitched roofs.

Our focus here is to study the feasibility of small angle stereovision. Hence, for the sake of
simplicity, we’ll concentrate on the most traditional local matching cost, namely the normalized
cross correlation. Correlation matching being both locally and analytically formulated, it allows
one to estimate at each point the matching error. Once this feasibility is demonstrated, this will
open the way to the use of more sophisticated global methods. The central result of next section
is a mathematical formulation of the correlation matching error. We show that this error can be
divided in two terms. One is due to the noise and is divided by the b/h coefficient, and the other
one is inherent to the method and independent of b/h. In other words, the first part of the error
is smaller with large stereoscopic angles, but the second part is independent of the angle. Since
small baseline generates less occlusions and much more similar images, this independence result
gives strong support to small baseline stereovision. To the best of our knowledge, this fact, obvious
in animal and human vision, was never pointed out. The comparison of these two terms indicates
that in non homogeneus, informative image regions, the noise term can be neglected before the
other even for very small baselines. Several questions linked to correlation will be addressed under
this new perspective, in particular the question of the size of the window used in block-matching
methods and the discrete formulation and interpolation of the correlation coefficient. A multi-scale
algorithm based on these results and dedicated to small baseline stereovision will be described.

4Shannon sampling theory shows that well sampled images can be completely recovered from their samples, hence
interpolated with infinite precision.



2 Analytic Study - Continuous Case

2.1 Notations, model and hypotheses

Let us denote with u and @ the images of the stereoscopic pair. One assumes without loss of
generality that the images are 27 x 27 periodic and known on [—m, 7] X [—m,7]. Ounly discrete
versions of v and 4 are available. Thus, in what follows, the images u and # are supposed to
be band limited. According to Shannon sampling theory [15], this implies that the continuous
functions u and % can be reconstructed from their samples, provided that the sampling rate is
high enough®. The images are supposed to be well sampled, on a regular 2N x 2N grid 6. Under
these hypotheses, it becomes easy to show that u (respectively @) can be written as a trigonometric

Z Z z(n:c+my) (2)

—N m=—N

polynomial

where the coefficients 4(m, n) represent the discrete Fourier transform (DFT) of the discrete version
of u (4 can be obtained by FFT). Under these simple and realistic hypotheses, the discrete images
u and % can be interpreted as continuous periodic functions. As trigonometric polynomials, they
are smooth, bounded, and so are all their derivatives.

Suppose that v and % satisfy the classical model

u(x) = Mz)u(zx + e(x)), (3)

where A\ variates slowly in space and where the disparity function e describes the geometrical
deformation between v and @. The function € is assumed to be bounded.

This model is of course false if the angle between the snapshots is too large (see Figure 2), but
is quite reasonable if b/h is small. Indeed, the model assumes that the differences between u and
% are purely geometrical, up to a multiplicative function A with slow spatial variations, and that
almost no occlusion or radiometric change occurs. Ultimately, the model is more and more accurate
when b/h becomes small. Human eyes [13] almost satisfy these hypotheses.

Normalized Cross Correlation
Consider a smooth, positive, normalized and compactly supported window function . We shall
use the following notations:

e ©;, the shifted function g, : * — @(xo — z),

o f% f= f‘/’fﬂo f(z)dz = [ ¢(xo — ) f(x)dz for every integrable function f,

®More precisely, in one dimension, the Shannon-Whittaker theorem tells us that if f is supported in [—7/A, 7 /A],
then
Z fn 5111 —nA)/A)
= tan)/A '
5This hypothesis is not satisfied in any real acquisition system, but becomes valid for instance in the case of
SPOTS5 satellites (two linear CCD arrays allow to create a quincunx grid adapted to the modulation transfer function
spectrum [3]).



i,

[T

.
—.
—— i

=
large b/h small b/h

—

Figure 2: Differences of occlusion zones in function of b/h. Occlusions in the left image of the stereo
pair are signaled by horizontal lines, occlusions in the right image of the stereo pair are signaled by
slanted lines. We observe that with a large b/h, the occlusion differences are much more critical
than with a small coefficient. This is especially true in urban zones, where the depth can change
very fast.

e [|fllp,, the weighted norm \/ [ @ao(z) f2(x)dz for every square integrable function f,

o < .,. >y, the corresponding scalar product < f,g >, = [ @uo(x)f(x)g(x)dr (the effective
way to compute correctly discrete scalar products and norms will be discussed in the last
section).

We also note 7,,u the shifted image x — wu(z + m). For each point z of 4, the normalized cross
correlation computes the disparity m(z¢) between u and 4 at x¢ by maximizing a local similarity
coefficient between the images:

m(zg) = arg max pg,(m), where (4)

B < T, U >0
Tl pa 1]l gy

This function p,, is called the correlation product at xp and ¢ is called the correlation window.
The value pg,(m) measures the similarity between the neighborhood of xy in the image @ and the
neighborhood of g 4+ m in the image u. Schwarz inequality 7 ensures that p,, is always between
—1 and 1. It is not ensured, though, that the shift m(zg) at which pg, is maximum is exactly equal
to the real disparity £(xg) at xg. The relation between the functions m and ¢ is the heart of the
next section. In the following, we set A = 1 in model (3) since its slow variations hardly alter the
correlation coefficient.

Traditionally, most authors consider a centered correlation coefficient, which means that u (resp.
@) becomes u — f%O u (resp. U — f%o @) around xg. The results of the following sections can be

Pao () (5)

easily generalized to this case, but one will see in paragraph 2.4.1 why this choice is not always
judicious.

"Schwarz inequality tells us that for any square-integrable functions f anf g, one has

< \/ [1r@pds. [ o)z,

\ [ gt




2.2 Analytic formulation of the correlation. Case without noise.

In all the following, one makes the classical assumption that the images have been rectified to
epipolar geometry: the search for corresponding points can be reduced to one dimension. Hence,
all the derivatives used (and written as 1-D derivatives) must be understood “along the direction”
of these epipolar lines.

Definition 1 The following function is called correlation density of u at zg

[ull},, v (2)— < uu’ >p, u(z)u(z)
1 - (6)
P

d“ 1z —
0 ]

The function dy, only depends on the image u, the window ¢ and the correlation point zp. We
will see why this function indicates where the correlation is sensible and can be accurate. The
next proposition formulates the relation between the measured disparity m(xg) at 2o and the real
disparity function e.

Central equation of correlation.

Proposition 1 Assume that the disparity function € and the shift m(xo) which mazimizes py,
satisfy |e(z) — m(zo)| < 1 on the support of wgz,. Then m(xg) is linked to £ by the first order
approxrimation

< d;gl(IO)u’m(xO) ><ong< d;’g(zo)u’g >§0z0 ‘ (7)

Proof : The first derivative of p,, is

< T, U > < Ty U >4, < T, Tt >,
) = ol Tl Tl ®
m=lezg Pzq m=llez, Pzq
Consequently,
Py (m) =0 & ||Tmu||§2%0 < Tt U > g, =< Tty U >, < Tl Tt >, (9)

Now, let m(zo) be the shift which maximizes ps,, then pl, (m(z)) = 0. Under the assumption that
le — m(zg)| is small enough, a first order approximation gives

(x) = u(z +e(z)) = u(z + m(xg)) +u'(x + m(zo))(e(x) — m(zo)).

Thus, the first order development of the equality p (m(zo)) = 0 gives

HTm(zo)uHizO < Tm(zo)ua?E - m(l’o) >s0z0: (10)
< Tm(zo) Us Tm(xo)ul >§%0 < T (zo) U Tm(xo)u/, € — m(JJ()) >‘P~'Co’ (11)

which can be rewritten
< day " m(30) >, < day O >, (12)

6
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We will call equation (7) the central equation of correlation. For a given image u, this
equation clarifies the relation between the disparity function ¢ and the shift m(zo) measured by
correlation at zp between w and 4 when |e(x) — m(xp)| is small enough in the neighborhood of
xo. This hypothesis means that the variations of ¢ are small on the window ¢4, and that the shift
m(xg) is a close approximation of the values of € on this window. Of course, this hypothesis is all
the more true since b/h is small.

Interpretation of Proposition 1: This equation shows that € is linked with m via a deconvo-
lution relation. If € is constant on the support of ¢y, i.e. on xo+ supp(p), the equation becomes
m(zg) = e(x), which means that the shift computed by correlation is equal to the local shift between
the views. Now, if € is not constant on the support of vg,, (7) shows that the values €(x) that
matter the most in the measurement m(zo) are taken at points = at which dyr " (z) is large.
This property can be interpreted as an adhesion phenomena, as we will see in the consequences
section. In zones where u and @ are flat (constant), the correlation density is null, which means
that no reliable relation between m and ¢ can be recovered from (7). This confirms the intuition

that correlation needs texture information in order to succeed.

Second derivative.
Equation (7) characterizes the point m(xo) at which p,, is maximum. Now, it is interesting to look
more closely at pj in the neighbourhood of m(zp) in order to get an idea of the behaviour of py,
around its maximum.

Proposition 2 (See Appendix for the proof) Under the hypotheses of Proposition 1, the first order
development of ply at m(zo) is

Tm(zq) ¥

Ploo (M(20)) = = <dag™™ ", 1 >4, (13)

As expected, this approximation satisfies p/ (m(zo)) < 0 (see footnote 7 on Schwarz inequality),
which is coherent with the fact that py,(m(xo)) is maximum. It is interesting to note that this
equation can also be approximated by

Pl (m(g)) ~ — < dis

o’

1>,, . (14)

This approximation, that we will call correlation curvature, just relies on the knowledge of 4,
independently of €. This expression gives an a priori information about the locations where the
maximum can be accurate. The larger the absolute second derivative is, the sharper the maximum
is, and the more precisely localized it can be. We will see in the next section the importance of
this quantity when noise is added to the images.

Weighted L>-distance.
Instead of maximizing the correlation coefficient, we can try to minimize the L?-distance

m — ego(m) = [u(z +m) — a(z)]e,, - (15)



This minimization can work as soon as the images radiometries are close enough, which is all the
more true since b/h is small. In this case, the analytic link between m(zg) and € becomes

2 2
< Tm(xo)u/ ,m(xo) ><P102< Tm(xo)ul ,E ><pz0 . (16)
This equation is similar to the correlation one, except that the function dj, is replaced by u’ 2/ HuH?DZO.

2.3 Case with noise

We suppose here that white Gaussian noises ® are added to the images of the pair. The noisy
images are denoted with v and #%. In order to regularize the problem, a convolution with a small
and smooth normalized function g (a prolate or a Gaussian) is applied to both images. For the
sake of simplicity, we will still denote the regularized images with u and @. The model becomes

u(x) = u(z +e(z)) + g(2), (17)
where we denote with g, the convolution g * b between a Gaussian noise b of standard deviation oy,
and the function g.

2.3.1 Central and morphological equations
Before studying the influence of noise on the correlation process, let us start with a more simple

case.

Weighted L?-distance.

Assume that we try to minimize the weighted L2-distance m — ey, (m) = |lu(z +m) — ()] gy -
As we have seen, it makes sense as soon as v and 4 are radiometrically similar enough, i.e. as soon
as b/h is small enough.

Proposition 3 Assume that v and @ satisfy relation (17), that € and the location m(xg) at which
ez, is minimal satisfy |e —m(xo)| < 1 on the support of vz, and that the noise satisfies the relation

% < 1. Then, equation (16) holds.
Proof : If m(xo) is the location at which e;, is minimal, then e, (m(zo)) =0, i.e.
< Tm(xo)u', U>p, — < Tm(xo)u', Tin(zo) W > ppy = 0- (18)
If |m(zg) — €| is small enough on the support of ¢,,, a first order expansion of 4 gives
u(x) — Tm(xo)u(w) ~ (e(x) — m(xo))Tm(xo)u’ + gp(). (19)

It follows that )
< Tm(mo)ul € > g, < Tm(mo)u’,gb >

m(zg) =~ (20)

1T w113, 1Ty 113,

8For a sake of simplicity, the formulations are continuous. In the discrete case the noise is supposed to be a
Shannon white noise (see [16]).



Schwarz inequality (footnote 7) tells us that the second term is smaller than ”7—“(9%. If this

quantity, due to the noise, is smaller than the desired precision on the measure m(x¢), equation (16)
holds.
O

The previous proof tells us that m(zp) and e are linked in first approximation by relation (20).
The computation of the value m(zo) is distorted by a noise term. Now, [|gs[|,,, can be estimated
by its expectation

2
E<Hgbuzzo>=E<L (/ g(x—t>b<t>dt) dx): [ eant@lolizoids = lglfacf. (21

Thus, {96/l g, /1 Tm(ze)¥ |4, can be approximated by o|gllz2/]/%[|4,,, which just depends on oy,
llgn|| and @. This term is an approximation of the error made in the estimation of m(zg). As a
consequence, equation (16) is seen as valid if this additive term can be neglected in comparison
with the desired precision on the measurement m(xg).

0o

Order of magnitude: if we take o, ~ 1, [|@'||,,, =~ 10 and ||g|z> ~ 0.5 (which is the case if
g is a 2-D Gaussian of standard deviation o = 0.56), then oy|g[|z2/[/%@|e,, = 0.05. In this case,
equation (20) tells us that we cannot hope a better precision on m(zg) than 0.05 pixels. We can
also remark that the lower the slope of @ is, the more g has to be spread in order to neglect this
additive term. This confirms the property that the more constant the image, the more influent the
noise.

Correlation.

The generalization of the previous proposition to the correlation case is obvious if we remark that
the role played by the function |@|* is now played by the density function HfLH?DZO dy,- Let us make
things a little more precise.

Proposition 4 Assume that v and @ satisfy relation (17), that € and the location m(xg) at which
Pz s mazimal satisfy |e — m(zo)| < 1 on the support of ¢, and that

196l

HTmunO (< dzg, 1 > g

7 < 1. (22)

Then, equation (7) holds.

Proof :  See proof in appendix. O

Again, the computation of m(zg) is distorted by a noise term. In practice, the error due to the
noise in the computation of m(zg) can be approximated by
bllgll 2

[l gny /< i

xro?

N(iz)gvo-ba@a IO) = (23)

This approximation of the additive “bias” indicates where the correlation makes sense, where it
can be accurate, and allows one to decide which window size should be used at these locations.
One can recognize the correlation curvature (defined in (14)) in the denominator of this term. This
curvature plays the same role as ||@'||,,, in the L? case. For a given amount of noise, the larger the
correlation curvature in (23), the smaller the error induced by the noise bias at xg.



2.4 Consequences of the central equation.
2.4.1 Matching costs and reliability

The previous results point out the link between the form of the matching cost and the reliability
of the disparity measured by block-matching methods. If the matching cost is reduced to a local
weighted L?-distance, relations (16) and (20) underline the importance of the image derivatives in
the matching reliability. It confirms the idea that block-matching needs contrast in order to make
sense.

In the case of the normalized cross correlation, the image derivatives are replaced in the equa-
tions by the correlation density dZ (defined in (6)). The values of d% not only depend on @, but
also on the local geometry of the pair (u,a') in the neighborhood of the point zy: the more @ and
@' are orthogonal for the scalar product <, >, the larger dgo. This is not easy to interpret. For
that reason, the results obtained by correlation can be considered as somewhat less reliable than
those of L?-minimization. The weaker the constraint of similarity between the images is, the less
reliable the results will be when the images are only geometrically shifted. This conclusion also
applies to the question of the centering of the correlation coefficient.

2.4.2 Optimal matching window.

Assume that the noise standard deviation of the image is known (it can be deduced from the
knowledge of the acquisition system). The images being given, we want to restrict ourselves to
points xg at which (23) is small. In this prospect, the size of the correlation window ¢ can be
chosen at each point in order to minimize the term (23). At the same time, this size must be as
small as possible if we want the measurement m(zg) to be a good approximation of e(xg). If all
the windows used are of the form sy(sx) where ¢ is a given function (a Gaussian or a prolate
spheroidal function, for instance), s can be chosen at xy, when it is possible, as the smallest size s
such that

N(a, g, o, s, 7o) < @, (24)

where « is the desired precision on the measurement m(zg) and N the function defined in (23).
Points where this inequality can be achieved for a given size s are called valid points. These points
are those at which the results of the correlation can be considered as reliable. We can expect the
chosen size to be small at points of information (near edges) and larger in flat zones.

2.4.3 Adhesion effect reduction

Adhesion is a well-known artefact of block-matching methods. This artefact appears in the neigh-
bourhood of depth discontinuity, especially when this discontinuity is strengthened by a grey level
discontinuity. It results in a dilatation of the upper-grounds in the disparity map. It can be illus-
trated by the following example (see Figure 3 (a)): a textured building lies on a textured ground, in
such a way that a part of the ground is occluded by the building in the left frame. One assumes that
the grey level difference between the ground and the building is larger than the intensity variations
in the textured areas. Let Q be a point whose distance to the building is less than half of the
matching window. If we look in the right image for the best correspondent for @, a block-matching
method will probably choose P, which means that the disparity accorded to Q will be the same as
the one of the building. As a consequence, the reconstructed building will be dilated by the size of
a half window.

10
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(a) The point Q of the left image is matched with the point P of the right image. Thus, the disparity assigned
to Q is the same as the disparity of the building. As a consequence, the reconstructed building is larger than
the real one.

(b) On the left: synthetic stereo pair, the dark part of the images corresponds to the "upper-ground”. This
part is shifted to the left in the second image. As a consequence, a small central strip of the ground appears in
the second image and is occluded in the first one. Top right: disparity measured by correlation. The adhesion
around the edge is clear, the reconstructed "upper-ground” is dilated by a half-window. Bottom right: same
disparity after a barycentric correction. The gray points are those where no information remains.

Figure 3: Adhesion phenomenon.

11



Equation (7) gives a very simple analytic explanation to the adhesion artifact. Indeed, assume
T (w) U o . .
that the density function dxo( 0% at x¢ is in reality concentrated around a point z;, such that

d;‘?(m)u can be well approximated by the delta function d,,, then equation (7) yields

e(x1) =~ m(xp). (25)

This means that the shift measured by correlation at xg is in reality the disparity of the point
z1. In two dimensions, if the neighbourhood of zg is composed of flat zones on both sides of
an edge, the shift measured at zo is an average of the real disparities on the edge. This fact
has no effect if the elevation has no variations over the window ¢,,, but it obviously produces
adhesion if the grey level edge coincides with an elevation discontinuity. This confirms the previous
intuitive explanation of adhesion, and explains the dilatation of the upper-ground which can be
often observed in numerical elevation models (NEM). This drawback is inherent to any block-
matching process, but is particularly strong in the correlation case [5]: the L? similarity measure
favours naturally points at which information is located, i.e. near the edges or in textured areas.

The explanation of this phenomena allows one to propose a practical correction: instead of
assigning the measurement m(zg) to xo, it can be assigned to the point G(x¢) which is the most
likely to have the disparity m(xg). This point G(z¢) is computed as the barycenter of all the points
of the correlation window, weighted by the values of the density function,

<di, M >,

G(wo) = —- 1>
Pxq

= 26
— , (26)

xo?

where M (z) covers all the physical points of the support of ¢, and where dgo is used as an
approximation of the density d;’gw“. In the case considered previously (when the density is
concentrated at 1), it gives G(xzg) = M (z1) and the shift measured at zg is correctly attributed
to x1. This procedure, called barycentric correction, is illustrated in a very simple case in
Figures 3 (b). This correction shifts the disparities to informative points. As a consequence, some

points loose their disparity, but the disparities so assigned are much more reliable.

2.4.4 On the link between baseline and precision

Let us denote by z,¢q; the real depth function, and with z,,.qs the depth recovered by the correlation
process. We have seen that z,.., and the disparity function € are linked by the relation z,.q = b/Lh'
According to this, the equation (7) can be rewritten as

Tm(zq)¥

P (370) o m((l,’o) ~ < Zreal; dwo ><p$0 - < Zreal, dgo ><pzo (27)
meas = — - — ~
b/h <1,dgy " >, <L,di >,

It follows that in the absence of noise, the accuracy of the measured depth does not depend on the
angle between the views (hence on the b/h value). The only error encountered in this measurement
is due to the bad estimation of the disparity by the correlation process and can be written

< Zreals dgo ><,010
< 1,d} >,,,

» o

El(w(]) = Zreal(xO) - (28)

This ideal case clearly advocates for weak b/h, which reduce all the matching difficulties encountered
with high stereoscopic coefficients.
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In the real world (where images are altered with additive noise), if the angle b/h decreases too
much, the results lose precision. Indeed, in the previous relation, a term due to the noise is added,
and divided by b/h. Proposition 4 shows that this term can be approximated by

UbH9HL2

b/h (il guyr/ < L Ay >eu,

Y o

EQ(JE(), b/h) =

(29)

Two errors appear in the estimation of z,..q;: the error Fy, inherent to the block-matching process
and the error due to the noise, bounded by Fs3. Only the second one depends on the value b/h.

Proposition 5 Let xy be a point of u, and by/hy an angle which satisfies the relation Fi(xg) >>
Es(x0,bo/ho). Then, as long as b/h > by/hg, the precision of the depth measured by correlation at
xo is independent of the value of b/h.

Following this proposition, it is absurd to increase the angle b/h while Ey >> FEs. The value
of E; clearly depends of the variations of the function z,.q;. If these variations are large on the
support of ¢, E7 will predominate.

Order of magnitude: we do not have access to z,eq;, 850 the comparison between F; and Fs
is not possible in general. However, for a fixed expected accuracy on zmeqs, the evaluation of Fo
tells us where b/h should stand. If zg is such that [|@[|,, = 10 and if o3||g|[z2 =~ 0.5, we see that

Ey ~ 995 This means that for a given image resolution A (meters by pixel), the error due to the

~ Sk
noise at xg will be less than 01'79—5}3‘ meters. If the resolution of u is fifty centimeters by pixel, this

error in depth will be approximately fifty centimeters for b/h = 0.05. This b/h value is already
very small. We will see in experiments that the “acceptable” values of b/h for a given precision are
much smaller than the values generally used in aerial stereocopy (where b/h ~ 0.8).

In a way, this idea can be linked with some aspects of human vision. Indeed, the human eyes
are very close (let say approximately 7em). If we look at a scene located 70cm from our eyes, the
stereoscopic coefficient is already 0.1. If the distance increases to 7m, b/h becomes 0.01. Even if
stereopsis is not the only process used by the brain for reconstructing depth, the efficiency of the
visual system is also supporting the use of small angles ([13]).

3 Discrete formulation and experiments.

The previous analytic study tends to rehabilitate small baseline stereovision, at least theoretically.
In order to support these results, a multi-scale algorithm dedicated to small baseline stereo pairs
was developed.

This section presents the outline of this algorithm and its most significant points. The discrete
aspects of the procedure (that is to say sampling and interpolation) are described in depth because
of their decisive influence on the matching process. Experiments on simulated and real stereo pairs
follow.

3.1 Multi-Scale Algorithm

The central hypotheses of this study are that the deformation between the images of the stereo
pair is purely geometric, of the form 4(z) = u(x + £(z)) with an eventual additive noise, and that
the disparity function € has small variations on the correlation window support.
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This hypothesis on ¢ is not true in full generality. Even for small baseline stereo pairs, the
variations of € on the correlation window can still be relatively important.

In order to make this assumption valid, the correlation procedure is embedded into a discrete
scale-space framework. The scale-space theory has already been used for stereovision, for example
by Jones and Malik [9] or by Alvarez et al. [1]. The main idea here is to replace the regularization
function g by a family (gs)s, where gs(z) = 1g(z/s), and to refine through the scales the computa-
tion of the disparity function. At each scale s the images are sampled on an adapted grid I, such
that the remaining disparity function at this scale is everywhere smaller than the pixel size.

The complete algorithm can be splitted in two phases: a learning phase, devoted to the compu-
tation of window sizes at every scale and every point, and a muti-scale matching phase which uses
a sequence of given scales (sy)k=1..., and corresponding grids (I'y)x=1..n, [0 being the roughest grid
and I',, the finest one.

Learning phase

1. Compute the bound (23) for each scale s, each size of window ¢ and each point of the grid at
scale s;

2. For each point xq, use this bound to determine the minimum size of the correlation window
at zg. Compute also the validity of ¢ at each scale (clearly, the larger the scale is, the larger
the number of valid points is);

3. Compute the barycentric correction (26) at each point and each scale. This correction just
depends on the images and on the optimal window computed previously.

Multi-scale algorithm

1. Start with the roughest scale so and let g =0 and k = 0;
2. Compute the image ug(x) = u(x + e(x));

3. Use a correlation algorithm to compute the disparity map 41 between (gs, *uy) and (gs, * 1)
at each valid point of I'y. This step requires to use the images sampled on the grid Iy, ., (see
next section);

4. Correct €11 with the barycentric correction;

5. Let egy1 = Egr1+epo(Id+Eky1). The values of the function ey are not known everywhere.
Interpolate it (for instance by isotropic diffusion). At this point, uo (Id+ exy1) = ug o (Id+
Ek+1) should be closer to u than wo (Id + €) was.

6. Replace k by k+ 1 and repeat steps 2 to 6 until the finer scale is reached.

The actual algorithm works with dyadic scales. At each scale corresponds a sampling grid. If
the sampling grid of the finest scale is I', the previous scale is sampled in 2T, etc... The largest
scale, which corresponds to 2"T, is chosen such that 27! < ||¢|l < 2". This way, the real shift at
the first scale is everywhere smaller than one pixel. We assume that the correction made at each
scale is such that the shift map is always everywhere smaller than one pixel. Note that the finer
the scale is, the larger the noise is, thus the less points will be considered as valid (in proportion).
Now, all the informative points (corners, edges...) should remain valid through the scales if the
density information at these points is large enough to override the noise.
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3.2 Sampling and subpixelian disparities computation.

Sampling and interpolation are two critical points in stereovision. These aspects are often disre-
garded in spite of their decisive influence on the matching process. Subpixelian disparities can be
obtained by computing the correlation map on a grid finer than the sampling grid I" of the images.
To this purpose, many algorithms estimate the correlation map at points of I' and compute a local
continuous (parabolic for instance) fit in order to refine the disparity.

Now, as shown in [18], this direct interpolation is not adequate. The correlation coefficient is
not well sampled on this grid and interpolating it directly may result in the apparition of false
maxima.

In real acquisition systems, the continuous image before sampling is of the form h * O where O
is the landscape and h the impulse response of the camera. Let S be the compact support of h.
Then, h x O is also spectrally supported on S. Let I' be the sampling grid and let Il be the Dirac
Comb ZWEF d~. The sampled image is u = (h * O).IIp. If we suppose that S is contained in a cell
R of the dual grid, the weak form of the Shannon-Whittaker theorem [15] tells us that h % O can
be recovered from w via the interpolation formula:

h*O:u*%}"(lR), (30)

where F(1g) denotes the inverse Fourier transform of the caracteristic function of the cell R.

Numerical consequence: Let N and D be respectively the numerator and denominator of the
continuous correlation coefficient p. N(m) = (@g,@) * u(m), thus N = go/xo\ﬁil Now, if we assume
that the window ¢, has a spectral support included in the reciprocal cell R, the support of cp/xo\ﬂ
isin R+ R={x+y, (z,y) € R*}. It follows that if the numerator N is computed in the spectral
domain, its accurate computation must be done on the grid I'/2. This means that both images
must be oversampled at least by a factor 2 before computing NV in the Fourier domain. In the same
way, the spectral support of D? is included in S + S. Thus, to properly reconstruct the continuous
version of D?, its discrete version must be computed in I'/2. Finally, we can recover the continuous
versions of N and D? thanks to their values on I'/2, and the continuous correlation at z is just the

division of N(z) by /D?(z).

3.3 Results

A multi-scale algorithm, called MARC (Multiresolution algorithm for refined correlation) has been
tested on both simulated and real stereo pairs.

The first experiments are realized from a one meter sampled orthophoto of Marseille and a
precise numerical terrain model of the same area (see Figure 4) provided by the society ISTAR.
In this experiment, the Shannon principle is satisfied. Indeed, the modulation transfer function of
the orthophoto is spectrally supported on the reciprocal cell of the sampling grid. From this single
image, several stereoscopic pairs are simulated with different % values. A Gaussian white noise
of standard deviation 0 = 1 is added to the pairs (the images are 8 bits coded). The resulting
disparity computed by the multiscale algorithm for % = 0.025 is shown on Figure 4. The interest
of this academic example is the possibility to compare the method accuracy in function of the %
value.
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Figure 5 shows the altitude accuracy in function of % for three different versions of the correlation
algorithm: the standard correlation with a rectangular window (top line), the correlation with a
prolate spheroidal window (middle line) and the multiscale algorithm presented above (bottom
line). Since the multiscale algorithm computes a validity value at each point of the grid image,
the elevation mean square error is only computed on points which remain valid at the finest scale.
As expected, if b/h becomes too small (b/h < 0.01), the noise error becomes dominant and the
elevation error increases, then explodes when b/h — 0. If b/h becomes too large (b/h > 0.2),
the differences between the images become too large and the elevation precision also decreases. In
this experiment, the accuracy of the measured depth on valid points is minimal around the value
b/h =0.1.

The next experiment uses a pair of 25cm aerial images of Toulouse with a b/h factor of 0.045.
This pair presents a disadvantage: the large interval of time between the shots (more than 20
minutes) results in several changes due to motion or shadow shiftings. Besides, the ground truth
of the area is known but incomplete, several depth informations are missing, in particular the wall
surrounding the prison. For these reasons, another secondary image is simulated using the first
one and the ground truth with the same b/h ratio. The new pair is shown on the first line of
Figure 6. With such a small baseline, the images are very similar, they present disparities with
values between -2 and 2 pixels. In a way, this similarity makes the matching process easier. On the
other hand, the matching needs to be applied with subpixel accuracy, since a traditional matching
algorithm computing integer disparities would yield a depth map with only 5 levels of depth. The
second line of Figure 6 shows the ground truth and the result of the multiscale algorithm MARC
on this pair (the third line shows the corresponding 3D projections). We can observe that the
depth map computed is smoother than the ground truth. This property is the main drawback of
the previous modelization and may be the price to pay to get a good accuracy almost everywhere.
Figure 7 shows the result of the graph-cuts algorithm proposed by Kolmogorov et al. in [10] with
a smoothness parameter A = 5. In many global stereo algorithms, the data term naturally favours
piecewise constant depth maps. This property has a noticeable advantage since it permits to get
precise and sharp discontinuities. Yet, in the case of small baseline stereovision, global optimization
is faced with two shortcomings. First, in order to get relevant elevation levels, the algorithm must
be applied with sub-pixel precision, which is computationally expensive. This can eventually be
done by oversampling images before matching (in the example of Figure 7, both images have been
oversampled by a factor 2, which yields a resulting map with 7 depth levels). However, this also
increases greatly the computing time. Secondly, in the case of urban areas, which present slanted
surfaces, this kind of algorithm produces severe staircase effects. Now, global optimization yields
all the same a very good first estimation of the elevation map and its application to small baseline
stereovision should be further studied.

Figure 8 shows the results of MARC on two excerpts of a real aerial pair of images of Marseille.
The images have been taken with less than a minute of difference, with a 50c¢m resolution and a b/h
ratio of 0.04. The ground truth of the area is unknown. This case is particularly difficult. Indeed,
a 10m elevation difference (which is large, even for urban areas) corresponds in these images to a
40cm ground disparity, which is smaller than the pixel size. The results obtained on these images
are visually good, apart from a few zones of motion: several cars or buses have moved in the interval
of time and result in isolated peaks in the elevation map.
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Figure 4: First line: one meter sampling photo of Marseille and numerical terrain model of the
same area, provided by ISTAR. Several stereoscopic pairs are simulated from these two images for
different b/h ratios. Second line: Results of the multiscale algorithm on the pair simulated with
b/h = 0.025. The left image shows the size of the window used at each point. The lighter the point
18, the larger the window used by the algorithm was. The black points correspond to the zones where
the correlation process is considered as not reliable. At these points, the disparity map is completed
by isotropic diffusion. The right image shows the resulting disparity map computed by MARC.
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Figure 5: Mean square error in elevation in function of the % ratio for the experiment of Figure 4.
The top line correspond to the results of the standard correlation algorithm, the middle line to the
results obtained with a prolate spheroidal window and the bottom line to the multiscale algorithm.
We observe that the simple use of the prolate spheroidal window in the standard correlation algo-

rithm improves the results. The multiscale algorithm MARC improves the precision by a factor
2.

4 Conclusion

Stereoscopic vision relies on the fact that when a scene is observed from two different viewpoints, the
depth of a point is approximately proportional to the difference of position between its projections
in both views. The proportionality coefficient is actually the tangent of the angle between the
views, also called b/h. Usually, the b/h ratios used in stereo are equal to 1 or have this order of
magnitude. Indeed, it is always assumed that the angle between the views has to be large to yield a
good depth reconstruction. However, the difficulties of the matching process increase rapidly with
the b/h factor.

In this paper, the difference between the images of the pair was assumed to be purely geomet-
rical, up to a proportionnality coefficient variating slowly in space. This hypothesis is sound in
small baseline stereovision. An analytic study of the correlation process shows that it is possible to
predict where the matching results can be reliable and which range of b/h values can yield optimal
results. In this range, the precision obtained by correlation matching is independent of b/h. This
conclusion supports the idea that among these acceptable angles, the smallest ones, which generate
fewer occlusions and much more similar images, both from the geometrical and radiometric view-
points, are preferable. These results have given rise to a multi-scale correlation algorithm, tested
on simulated and real aerial pairs. Such pairs will be available in the next satellite generation.

Acknowledgement The multi-scale algorithm, called MARC (Multiresolution algorithm for re-
fined correlation), has been coded by Nathalie Camlong ([2]) and Vincent Muron ([11]). It is a part
of the CNES patent [8]. Many thanks to Jean-Michel Morel and Andrés Almansa for their con-
stant help, to Vincent Muron and Nathalie Camlong for the realisation of the multi-scale algorithm
MARC. This work has been partially financed by the Centre National d’Etudes Spatiales (CNES),
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Figure 6: First line: pair of 512 x 512 aerial images of Toulouse with a resolution of 25¢m. The
second image is simulated using the first one and the ground truth with a b/h ratio of 0.045. Second

line: ground truth of the pair and result of the MARC algorithm. Third line

: corresponding 3D
projections. 19



Figure 7: Left: 3D projection of the Toulouse pair ground truth ; Middle: 3D projection of the
MARC result ; Right: result of the Graph-Cuts algorithm presented by Kolmogorow et al. in [10]
with a smoothness factor A =5 (the software used here is kindly provided by V.Kolmogorov on its
web page www.adastral.ucl.ac.uk/~vladkolm/software.html).

Figure 8: First and second columns: two 1000 x 1000 excerpts of a real pair of aerial images of
Marseille with a resolution of 50cm and a b/h ratio of 0.04. Third column: the corresponding

MARC results.
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5 Appendix

Proof of Proposition 2

We have
, < T, 0 > G < Ty U >, < T s Tt >
P (m) = ~ - 3 ~
Tml g 180, [Tl ll%lles,
Thus,
o () = < Tmu”,ﬂ?@zo < T, U > 00 < TTTU,Tm’LL/ >
° 17l |l s, ITmull,, 0l e,

~ " ~ / /
< Ty U Sy < Tl TmW >, < Tl U Zgp < Tl Tpl >y

[Tmull,, 8l e, [Tmull,, 0l
< Tty U >, < Tl Ty >§$O

Tl Tl

But at m = m(xg), pj,(m) = 0, consequently

/A 2 !~ !/
< Tt U >, ([Tl + < Tt U >, < T, Tt >0,

/!
Pao(m) = -
o ITmulld, e,
2

~ " ~ /
< Ty U >, < Tty T >4, + < T, U >0, |7 u ||<ngO

ITmulld,, e,

Replacing @ by its first order approximation 7,,(;)u, it finally gives

2 2 2
< Tinao)Us Tm(zo) W >,y —Tm(o) g, 1 Tmo v I3, - [t

ol (m(0)) = < d 1 s,

HTm(ro)uH?oxo

Proof of Proposition 4
The proof is similar to the one of Proposition 3. Indeed,

Ppy(m) =0 ||7'mu|]iz0 < Tty U >, =< T, U >, < Tl Tl >0, -
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Let us define the function

HTmuHimonu/(x) — Tmu(x) < T, Tu’ >

w™(z) = - (33)

HTmquozo < Tt Tt >4, — < T, Tt/ >4

The function w™ clearly satisfies

<w™ T >4, =0, <w" Tpu’ >4, =1, and (34)
1
2
w2, = — (35)

HTmuHEDIO <dgy ™, 1 >,
Now, the equation p, (m) = 0 can be rewritten
<w™ u(z + () >p,, + < W, gp >4, = 0. (36)
The first order expansion of this equality gives
<w™, T4 (e(x) = m)Tu’ >4, + <w™, gy >4, = 0. (37)

Thus

<w™, g >0, , 38
< d;T(?ua 1 ><Pac0 i » oo ( )

The second term can be bounded from above thanks to Schwarz inequality (footnote (7)),

196l

||7'mu||%0 (< dgm 1 >0

< W™, gh >,y < (39)

)1/2'

If this quantity is small enough in comparison with the desired precision on m, equation (7) holds.
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