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Contingent payments on a public ledger: models and reductions for automated verification

We study protocols that rely on a public ledger infrastructure, concentrating on protocols for zero-knowledge contingent payment, whose security properties combine diverse notions of fairness and privacy. We argue that rigorous models are required for capturing the ledger semantics, the protocol-ledger interaction, the cryptographic primitives and, ultimately, the security properties one would like to achieve. Our focus is on a particular level of abstraction, where network messages are represented by a term algebra, protocol execution by state transition systems (e.g. multiset rewrite rules) and where the properties of interest can be analyzed with automated verification tools. We propose models for: (1) the rules guiding the ledger execution, taking the coin functionality of public ledgers such as Bitcoin as an example; (2) the security properties expected from ledger-based zero-knowledge contingent payment protocols; (3) two different security protocols that aim at achieving these properties relying on different ledger infrastructures; (4) reductions that allow simpler term algebras for homomorphic cryptographic schemes. Altogether, these models allow us to derive a first automated verification for ledger-based zero-knowledge contingent payment using the Tamarin prover. Furthermore, our models help in clarifying certain underlying assumptions, security and efficiency tradeoffs that should be taken into account when deploying protocols on the blockchain.

Introduction

The blockchain and its associated public ledger promise a practical solution to a basic need for security protocols: a system that operates as stated, providing reliable outcome to all agents. Both deployed [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF][START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF][START_REF] Goodman | Tezos -a self-amending crypto-ledger[END_REF][START_REF] Hanke | DFINITY technology overview series, consensus system[END_REF] and abstract [START_REF] Garay | The bitcoin backbone protocol: Analysis and applications[END_REF][START_REF] Pass | Analysis of the blockchain protocol in asynchronous networks[END_REF] ledgers are ordered sequences of states -state transition systems respecting operational constraints. The goal of the underlying distributed protocols is to ensure that the ledger is indeed public, unique, alive and consistent. Protocols can then be based on transaction and smart contract semantics -i.e. rules that guide the state transition system -to implement functionality that would otherwise be inefficient or require trusted parties. Take fair exchange: two parties want to swap assets according to a contract that ensures fairness : any information or value transfer is reciprocated as planned [START_REF] Torabi | Fair exchange[END_REF]. The problem can be solved with optimistic assumptions, calling a trusted third party only when needed [START_REF] Asokan | Optimistic fair exchange of digital signatures (extended abstract)[END_REF][START_REF] Cachin | Optimistic fair secure computation[END_REF][START_REF] Micali | Simple and fast optimistic protocols for fair electronic exchange[END_REF], or with digital (counter)cheques and transactions inside multi-party computations [START_REF] Lindell | Legally-enforceable fairness in secure two-party computation[END_REF][START_REF] Andrychowicz | Fair two-party computations via bitcoin deposits[END_REF][START_REF] Bentov | How to use bitcoin to design fair protocols[END_REF].

A public ledger provides an alternative solution to the problem, specified as a zeroknowledge contingent payment (ZKCP) for a seller and buyer. We suppose that the information of interest can be expressed as data (a witness) satisfying functional constraints (a desired result), e.g. a sudoku solution respects additive constraints, a prime factor decomposition satisfies multiplicative constraints, etc. ZKCP goals are: for the Seller -a delivered witness will be paid for; for the Buyer -a paid for witness will be delivered. Classically, these properties require trust and coordination with third parties. On public ledgers, reliable semantics and dedicated cryptographic protocols can minimize trust and interaction [START_REF]Bitcoin wiki: Zero Knowledge Contingent Payment[END_REF][START_REF] Banasik | Efficient zero-knowledge contingent payments in cryptocurrencies without scripts[END_REF][START_REF] Campanelli | Zeroknowledge contingent payments revisited: Attacks and payments for services[END_REF][START_REF] Goldfeder | Escrow protocols for cryptocurrencies: How to buy physical goods using bitcoin[END_REF][START_REF] Dziembowski | Fairswap: How to fairly exchange digital goods[END_REF].

Challenges. Protocol actions occur at distinct levels: from local cryptographic objects, to network transactions, to ledger confirmation. Their respective semantics is useful in protocol design, where parties can agree on desired ledger actions beforehand, yet the concurrent environment opens up new challenges:

• Multiple sessions, concurrent ledger access. Asynchronicity leads to ambiguity about what it means to be paid. For example, a seller should ensure it will not be paid the same coin for two witnesses. If multiple sessions run in parallel, some with colluding parties, protocol messages may be mixed up and exploited. Valid transaction requests do not necessarily result in confirmed ledger transactions : if the adversary obtains private keys by exploiting the protocol, a race ensues between honest and adversarial messages claiming a coin. Protocols should ensure this does not happen -this is not usually an explicit goal.

• Transaction finality. In fact, it is commonly advised to wait for transactions to be finalized on the ledger to ensure payment. Yet, we show that ZKCP protocols (have to) provide a stronger property: as early as a transaction request is being sent over the network, one should ensure that the corresponding coin cannot be spent in any other way, because specific fields from the transaction may help the adversary in revealing secrets -so we cannot afford the transaction to fail.

• Cryptographic interaction. Ledger-based protocols produce complex cryptographic objects that engage ledger transitions at the same time as private data transfer, e.g. [START_REF] Banasik | Efficient zero-knowledge contingent payments in cryptocurrencies without scripts[END_REF] relies on homomorphic encryption to produce a (secret) ECDSA signature that will perform a ledger transaction; this signature is commited in a zero-knowledge proof ensuring the corresponding ledger transition will furthermore reveal the witness. Such interaction between cryptography and the ledger extends the scope of crypto primitives to new protocols -dedicated, fine-grained security models are needed to evaluate them. • Security foundations. Compounding all of above: ledger-based protocols are network cryptographic protocols executed in an adversarial environment. There is history of attacks and foundations for such protocols -see e.g. [START_REF] Cohn-Gordon | On post-compromise security[END_REF][START_REF] Cohn-Gordon | A formal security analysis of the signal messaging protocol[END_REF][START_REF] Bhargavan | Verified models and reference implementations for the TLS 1.3 standard candidate[END_REF][START_REF] Cremers | A comprehensive symbolic analysis of TLS 1.3[END_REF][START_REF] Jacomme | An extensive formal analysis of multi-factor authentication protocols[END_REF] for recent examplesshowing the importance of rigorous security specification and automated verification. Furthermore, we need generic models that allow a clear separation between security properties, ledger infrastructure and cryptographic protocols.

Our contributions address these challenges by formal models connecting the ledger, the ledger-based protocols, the cryptographic primitives and the desired security properties in a specification that can be used as input for automated verification tools. We use the Tamarin prover [START_REF] Meier | The TAMARIN prover for the symbolic analysis of security protocols[END_REF] for verification: it provides an expressive language to specify (cryptographic) state transition systems and to restrict their traces by logical formulas.

• Public ledger. We show that the model of the blockchain as a structured computational resource has a natural formal (or symbolic) counterpart combining multiset rewriting, term algebras and first order logic [START_REF] Meier | The TAMARIN prover for the symbolic analysis of security protocols[END_REF][START_REF] Cervesato | Relating strands and multiset rewriting for security protocol analysis[END_REF][START_REF] Schmidt | Automated analysis of diffie-hellman protocols and advanced security properties[END_REF]. We identify minimal restrictions on multiset rewriting rules that make them function as a blockchain transition system, i.e. a smart contract. We also show how protocol rules can operate in order to exploit the ledger semantics. We specify the electronic coin functionality provided in e.g. Bitcoin [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF] as an example (section 3).

• ZKCP on public ledgers. We consider two ZKCP protocols [START_REF]Bitcoin wiki: Zero Knowledge Contingent Payment[END_REF][START_REF] Banasik | Efficient zero-knowledge contingent payments in cryptocurrencies without scripts[END_REF] and perform their formal verification in a unified, generic model that captures their different features (sections 4 and 5). The specification tackles a strong attacker that can run multiple sessions, corrupt parties, control the network (in particular drop, reorder, replace the messages to the ledger) and exploit the cryptographic properties of messages. The formal security properties clearly circumscribe the expected ZKCP guarantees, both in their positive and in their negative aspects: e.g. a buyer will learn the witness or otherwise it can obtain a refund; a seller will obtain payment, unless there is a delivery delay to the ledger; etc. The security properties are parametric, so that different protocols can accordingly instantiate the notions of payment, time delay, witness extraction, etc.

• Advanced cryptography. The protocol we consider in section 5 aims at a basic version of Bitcoin, with a minimal scripting language for signature verification; this calls for complex cryptography, intertwining homomorphic encryption, randomized signatures, diffie-hellman exponentiation and specialized zero-knowledge proofs. The corresponding formal specification as a message theory is out of the scope for any current automated verification tools. We provide a theoretical framework and a reduction result showing that it is sound to consider a simplified theory as input (section 6). We start from a general theory where some of the function symbols are homomorphic: from f (u, w) and v, one can derive f (u * v, w), where * is the product in an abelian group. In the reduced theory: 1) the homomorphic properties are restricted as follows: the adversary can derive f (u * v, w) from f (u, w) only if u is a product of messages created by honest parties; 2) the abelian group is degenerated: the adversary can derive the factors u 1 , . . . , u k of any product u 1 * . . . * u k , without being required to know any inverse.

Preliminaries: computation model

Term algebra [START_REF] Dershowitz | Rewrite systems[END_REF]. F denotes the set of function symbols and F (n) those of arity n. The set of terms built from F, a set of names and a set of variables is T . Tuples of terms are denoted by an overline, e.g. u = (u 1 , . . . , u n ). We let st(t) be the subterms of a term t, and top(t) be its top symbol. F is endowed with a rewrite system: a set of rewrite rules R, that we denote by l → r, modulo a set of equations E, that we denote by l ≈ r. R or E can be empty. For a term t, t↓ R is its normal form, obtained after applying all possible rewrite steps (modulo E) from R. Implicitly, terms are normalized and term equalities interpreted modulo (R, E).

Example 1. For the theory of randomized signatures, as instantiated e.g. by (EC)DSA [START_REF] Vaudenay | The security of DSA and ECDSA[END_REF], we let F sig = {sign, ver, ok, g} and R sig be the signature verification rule:ver(sign(x, y, z), x, g(y)) → ok. Here g(y) represents the public key corresponding to a secret key y, i.e. the group element that corresponds to raising a group generator g to a scalar power y. The third argument of sign takes the role of the randomness: sign(m, k, r 1 ) and sign(m, k, r 2 ) are two distinct signatures of m with key k.

The theory of an abelian group (AG), e.g. Z q , is modeled by the signature F * = { * , i} and the set of equations AG = {x * i(x) ≈ 1, x * 1 ≈ x} ∪ AC where AC = {x * y ≈ y * x, (x * y) * z ≈ x * (y * z)} models associativity and commutativity.

Multiset rewriting and state transitions [START_REF] Meier | The TAMARIN prover for the symbolic analysis of security protocols[END_REF][START_REF] Schmidt | Automated analysis of diffie-hellman protocols and advanced security properties[END_REF]. The signature is extended with fact symbols to represent adversarial knowledge, protocol state, freshness information, etc. A fact is represented by F (t 1 , . . . , t k ), where F is a fact symbol and t 1 , . . . , t k are terms. There are the following special fact symbols: K -for attacker knowledge; Fr -for fresh data; In and Out -for protocol inputs and outputs. Other symbols may be added as required by the protocol, e.g. for representing the state. These symbols can be persistent (the corresponding facts cannot disappear), or linear (the corresponding facts are consumed by rules and protocol rules can update them). Persistent fact symbols are prefixed by !, e.g. !F. A multiset can contain multiple copies of the same linear fact.

A multiset rewriting (msr) rule is defined by

[L]--[ M ] →[N ],
where L, M, N are multisets of facts called respectively premisses, actions and conclusions. We denote such a rule by [L] ⇒ [N ] when M is empty. To ease protocol specification, we extend the syntax of multiset rules with variable assignments and equality constraints, i.e. we can write rules of the form

[L]--[ Φ, M ] →[N ]
where L may contain epressions x = t to define local variables and Φ is a set of equations of the form u ≈ v. Equations are not directly supported in Tamarin, but can be easily encoded with restrictions as we show in Example 3. For two multisets of facts M 0 , M 1 and rule

P = [L]--[ Φ, M ] →[N ]
we say that M 1 can be obtained from M 0 by applying the rule P , instantiated with θ if: (1) every equality in Φθ is true; (2) every fact in Lθ is included in M 0 (counting multiplicities for linear facts); (3) M 1 is obtained from M 0 by removing linear facts included in Lθ and adding all facts from N θ.

A special set of message deduction rules defines how the attacker can derive new knowledge and make use of existing knowledge to interact with the protocol. Within this set, we distinguish network deduction rules and intruder deduction rules. Network deduction rules are fixed: they define outputs, inputs, public and fresh data.

[Out(x)] ⇒ [K(x)]; [K(x)] ⇒ [In(x)]; ⇒ [K(y)]; ⇒ [Fr(z)]; [Fr(x)] ⇒ [K(x)]
The semantics ensures that y and z above are instantiated to public, resp. fresh names.

Intruder deduction rules are of the form [K(u 1 ), . . . , K(u k )] ⇒ [K(v)] -defining operations on messages. These are typically [K(x 1 ), . . . , K(x k )] ⇒ [K(f (x 1 , . . . , x k ))] for all f ∈ F (k) . We also allow more general deduction rules, as in Example 2 and Figure 4. Such rules can wlog replace rewrite rules f (l 1 , . . . , l k ) → r for symbols f with no other occurence in the rewrite system and whose occurence in protocol rules is not under a term context. An intruder theory, that we denote by I, is thus given by a set of intruder deduction rules plus (R, E). For a set of terms {t 1 , . . . , t n , t} we let {t 1 , . . . , t n } t if K(t) can be obtained from K(t 1 ), . . . , K(t n ) using intruder deduction rules. Protocol rules model the execution of the protocol by honest parties. There are basic restrictions ensuring that protocol rules are a sound model of protocol executions [START_REF] Schmidt | Automated analysis of diffie-hellman protocols and advanced security properties[END_REF]; we will follow them implicitly in our models and examples.

Example 2. Exponentiation in a Diffie-Hellman group can be represented by the rewrite rule exp(g(x), y) → g(x * y) together with the deduction rule [K(x 1 ), K(x 2 )] ⇒ [K(exp(x 1 , x 2 ))]. Alternatively, the deduction rule [K(g(x)), K(y)] ⇒ [K(g(x * y))] allows to model the corresponding operation performed by the attacker (without requiring explicit application of exp). Similarly, a protocol rule can directly perform exponentiation without explicit use of the symbol exp, e.g. [In(g(x)), Fr(y)] ⇒ [Out(g(x * y))].

For a rule P , we let facts(P ), in(P ), out(P ), lhs(P ), rhs(P ), act(P ) be respectively the set of all facts, of input facts (e.g. In(u)), of output facts (e.g. Out(u)), of left-hand side facts (i.e. premisses), of right-hand side facts (i.e. conclusions) and of action facts. For a set of facts F, we let msg(F) be the set of messages that are arguments of facts in F. We let io(P ) = msg(in(P ) ∪ out(P )).

Traces and properties. A trace τ is a sequence of applications of n ≥ 1 msr rules, interleaving applications of protocol, intruder and network deduction rules. For every i ∈ {1, . . . , n}, we let P i be the rule applied at step i and θ i be the corresponding substitution. We define:

-facts(τ, i) = act(P i )θ i ↓ if P i is a protocol or network deduction rule; -facts(τ, i) = {K(vθ i ↓)} if P i is an intruder deduction rule with rhs(P i ) = {K(v)}
For a set of rules Q, we denote by traces(Q) the set of all valid traces that can be derived from elements in Q. Consider a set of timepoint variables, denoted by i, j, l, . . ., which will be interpreted over rational numbers. A trace atom is either ⊥, or a term equality t 1 ≈ t 2 , or a timepoint ordering i < j, or a timepoint equality i = j, or an action fact F@i for a fact F and timepoint i. A trace formula is a first-order logic formula obtained from trace atoms by applying the usual quantification and logical connectives. Given a trace τ and trace formula φ, whose variables are all bound, the satisfaction relation τ |= φ, is defined recursively as expected, in particular τ |= F @ i iff F ∈ facts(τ, i).

For a set of rules Q and trace formulas Ψ, Φ, we let

Q |= Φ iff ∀τ ∈ traces(Q). τ |= Φ and Q; Ψ |= Φ iff ∀τ ∈ traces(Q). τ |= Ψ ⇒ Φ.
For verification, (Q; Ψ ) will be a system specification and Φ a property to verify; Q defines local transition rules, while Ψ defines additional, global restrictions on the set of traces for the specified system. Example 3. Consider the binary fact symbol Eq and the formula Ψ eq : ∀x, y, i. Eq(x, y) @ i ⇒ x ≈ y.

An Eq(u, v) action in a rule allows then to test that u ≈ E v before proceeding. Take

P = [In(u), In(v), Fr(s)]--[ Eq(u, v) ] →[Out(s)]. Then K(a), K(a), Eq(a, a), K(s) is a trace of P satisfying Ψ eq , while K(a), K(f (a)), Eq(a, f (a)), K(s) does not.
Consider the unary symbol Fresh and the restriction

Ψ fresh : ∀x, i, j. Fresh(x) @ i ∧ Fresh(x) @ j ⇒ i = j.
It ensures that every occurrence of Fresh(t) is with a different t. Assume we add Fresh( u, v ) as an action in P . Then, among traces(P ), . . . Eq(a, a), . . . , Eq(a, a) does not satisfy Ψ fresh , while . . . Eq(a, a), . . . , Eq(b, b) does.

Example 4. Consider the set of rules Q keys :

-

[Fr(k)]--[!Key(k) ] →[!Pk(g(k)), !Key(k), Out(g(k))] -[!Key(x)]--[ Corrupt(g(x)) ] →[Out(x)]
It models a basic key infrastructure. The formula Φ : !Key(x) @ i ⇒ ¬∃j.K(x) @ j says that keys are secret. Then Q keys |= ∀x, i.Φ, since the second rule in Q keys allows the attacker to corrupt keys. Now consider the protocol rule

Q sign : [Fr(a), !Key(x)]--[ Honest(g(x)), Sign(x) ] →[Out(sign(a, k, ρ r ))]
the formula Φ : Sign(x) @ j ⇒ ¬∃j.K(x) @ j -saying that keys used in Q sign are secret -and the restriction: Ψ hon : ∀x, i. Honest(x) @ i ⇒ ¬∃j. Corrupt(x) @ j. Then we have Q keys , Q sign ; Ψ hon |= ∀x, i.Φ because we have added the restrictions that keys in Q sign are honest and that honest keys cannot be corrupted.

Public data. Tamarin allows the use of variables that can be instantiated only with messages of a public sort. They are denoted by $x, and can occur anywhere in a protocol msr rule. As in Example 4, we will use annotations of ρ for such data, e.g. ρ r for a public nonce, ρ sn for a serial number, etc. Protocol state. Specifications rely on sequences of protocols rules (P 0 , . . . , P k ), where each rule P i should be executed before P i+1 and can pass on, via facts, state data to P i+1 . To avoid clutter, we use a symbol state i to represent this transmission, and we allow P i+1 to reference any variables from P i that should be formally passed via state facts. We denote by state i x = u the pattern matching of state variable x by a term u.

3 Public ledgers: facts, rules, coins

Coin ledger. The protocols we consider are based on coin contracts of e.g. Bitcoin [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF]: a coin is represented by an object (sn, g(k)) on the ledger, where sn is a serial number, and g(k) is the public key of the coin owner. Serial numbers are computed as the hash of the transaction that created the coin; for simplicity, we assume they are fresh public numbers. To spend a coin, i.e. transfer it to a new owner, the ledger expects a transaction request, attested by a signature from the current owner, containing the sn of the coin to be spent, the public key g(k ) of the new owner and (implicitly) the serial number sn of the new coin. If the signature is valid, the coin (sn, g(k)) is marked as spent, and a new coin (sn , g(k )) is created for the new owner. We call basecoins these coins. We will also make use of hashcoins: hashed timelock contracts [START_REF]Bitcoin wiki: Hashed Timelock Contracts[END_REF] used to establish trust relationships outside the ledger [START_REF]Bitcoin wiki: Payment channels[END_REF][START_REF]Lightning Network[END_REF]. They perform a transaction by which one of the two parties, say A, obtains the preimage of a hash -which can e.g. be a key encrypting some data of interest -while the other party, say B, provides the hash preimage and obtains a basecoin in return. A performs a ledger transaction pledging one of A's coins into a hashcoin, providing the desired hash image and the public key of B. B can then claim the coin using a (signed) inverse of the image. A timeout mechanism ensures the coin can be returned to A if there was no action from B in due time. A hashcoin can be represented by a tuple (sn, g(k), h(x), g(k )) here g(k) represents the coin creator, who can obtain it after timeout, h(x) is the desired hash image, and g(k ) is the party that can claim sn by supplying x.

Formal model. We consider two special sets of disjoint fact symbols: one for ledger facts, denoted by F L , and one for check facts, denoted by F C . Ledger facts will be used to represent the state of the ledger. For example, they can record who is the owner of an asset, what are the elements of a given transaction, etc. Ledger facts are assumed persistent because the ledger history cannot change. Check facts, on the other hand, will be used by protocols to restrict their executions with respect to the (current or past) states of the ledger. For example, they can be used to ensure that a coin, whose existence is recorded by a ledger fact, has not yet been spent. ) @ i -a coin sn created at timepoint i belonging to the public key g(k); !HCoin(sn, g(k 1 ), g(k 2 ), h(t) ) @ i -a hashcoin sn that can be claimed for g(k 2 ) by supplying t and a signature, or for g(k 1 ) after timeout by supplying a signature; !Spend(sn, u, w, v) @ i -the transfer of a coin (sn, u) to a new owner v at timepoint i, relying on supporting data w: w is a signature when sn is a basecoin, plus possibly a hash preimage when sn is a hashcoin; !Time(sn) @ i marks the fact that the hashcoin sn was reclaimed after a timeout at timepoint i; Unspent(sn) @ i checks the ledger to ensure the coin sn is unspent at i.

The semantics of the ledger is defined by msr rules that can only be triggered by ledger facts and public inputs, and can only produce ledger facts and public outputs. Ledger restrictions ensure additional constraints for the states produced by the ledger. These rules and constraints define the ledger state transition system and make it available for external protocols, which may be executed by honest or adversarial parties. Definition 1. A msr rule P is a ledger rule if: (1) facts(P ) ⊆ in(P ) ∪ out(P ) ∪ F L ; (2) rhs(P ) ⊆ act(P ). P is ledger-respecting if (act(P ) ∪ rhs(P )) ∩ F L = ∅. A ledger restriction is a trace formula with facts in

F L ∪ F C .
Properties of ledger rules in Definition 1 ensure that: (1) the ledger transition system depends only on ledger facts and public inputs; (2) all produced ledger facts are recorded as actions in the trace. In this paper we consider public ledgers, e.g. [START_REF] Nakamoto | Bitcoin: A peer-to-peer electronic cash system[END_REF][START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF][START_REF] Goodman | Tezos -a self-amending crypto-ledger[END_REF][START_REF] Hanke | DFINITY technology overview series, consensus system[END_REF], so the ledger rules will also satisfy (3) msg(rhs(P )) ⊆ msg(out(P )). This is not an inherent restriction of the model, and partially public ledgers, e.g. [START_REF] Hearn | Corda: A distributed ledger[END_REF], may be considered in the scope of Definition 1. Bearing in mind the properties (2) and (3) of our considered ledger rules, in order to simplify the presentation of our examples in the paper, we will avoid duplication, writing

[F 0 ]--[ Φ ] →[F 1 ] instead of [F 0 ]--[ Φ, F 1 ] →[F 1 , Out(msg(F 1
))] as expected. All protocol rules will be ledgerrespecting as in Definition 1, so the only way to produce ledger facts is by passing through ledger rules; on the other hand, protocol rules can freely access ledger facts to check the state of the ledger, so we can have lhs(P ) ∩ F L = ∅.

In Fig. 1, the rule R new abstracts the coin mining process; the other rules model formally the coin transactions as described above: spending coins to coins, to hashcoins, and back to coins. The rule R h2cr produces a ledger fact !Time(x sn ) to record that the corresponding coin was reclaimed after a timeout. The rules S c2h , S h2c assume Hash and Inv to be defined by their context as a hash image of interest and a hash preimage. Ledger restrictions define additional constraints that should be satisfied by the public ledger. If facts(Φ) ⊆ F L then the restriction Φ is inherent to the semantics of the ledger, i.e. it is a check performed by the (distributed) trusted party that builds the ledger. On the other hand, if ∃F ∈ facts(Φ) ∩ F C , then Φ restricts the execution of the protocols with respect to the public ledger: a protocol rule P with a substitution θ such that Fθ ∈ act(P θ) can perform a transition at timepoint i, only if Fθ @ i is consistent with Φθ and the previous ledger facts.

L base = {R new , R c2c }; L hash = L base {R c2h , R h2c , R h2cr } Rnew : [!Pk(x pk ), In( s, xsn )] --[ ver(s, xsn, x pk ) ≈ ok ] → [!Coin(xsn, x pk )] Rc2c : [!Coin(xsn, x pk ), In(u)] --[ Φc2c(xsn, x pk , u) ] → [!Spend(xsn, x pk , v), !Coin(ysn, y pk )] R c2h : [!Coin(xsn, x pk ), In(u)] --[ Φ c2h (xsn, x pk , u) ] → [!Spend(
Example 6. The following formulas define ledger restrictions for coins on L base , L hash

Ψ 0 : ∀x, y, z, i, j. !Spend(x, y) @ i ∧ !Spend(x, z) @ j ⇒ i = j ∧ y = z Ψ 1 : ∀x, y, z, i, j. !F 1 (x, y) @ i ∧ !F 2 (x, z) @ j ⇒ i = j ∧ y = z (∀F 1 , F 2 ∈ {Coin, HCoin}) Ψ 2 : ∀x, y, i, j. Unspent(x) @ i ∧ !Spend(x, y) @ j ⇒ i < j
They ensure that -no coin can be spent twice (Ψ 0 ); -every fresh coin has a fresh serial number (Ψ 1 ); -Unspent can hold at timepoint i only if the corresponding coin has not already been spent on the ledger (Ψ 2 ). Note that Ψ 0 , Ψ 1 are inherent ledger restrictions, while Ψ 2 is a protocol ledger restriction. We let

Ψ coin = Ψ 0 ∧ Ψ 1 ∧ Ψ 2 .

Zero knowledge contingent payments

We specify in a general framework the security guarantees that parties can expect from ZKCP protocols. We allow several parameters in definitions, that can be instantiated differently by specific protocols and ledgers -we illustrate it on L base and L hash . We are interested in generic ZKCP protocols, where any functionality can be obtained by instantiating the protocol with a specific function f . Security is independent of the actual function f , so we consider a generic f in the following.

For intuition, consider first a protocol on L hash [START_REF]Bitcoin wiki: Zero Knowledge Contingent Payment[END_REF][START_REF] Campanelli | Zeroknowledge contingent payments revisited: Attacks and payments for services[END_REF]. It assumes a zero-knowledge proof system showing that a ciphertext provided by a party contains a witness for a desired result, where the symmetric encryption key is the preimage of a given hash value. We represent such a proof by zk(w, v, u) where w is the witness, v is the hash preimage used as symmetric key, and u is the secret key of the party constructing the proof (for brevity, we ommit public data that may be part of the proof). The following rewrite rules represent symmetric encryption and zk proof verification: sdec(senc(x, y), y) → x ver zk (zk(x, y, z), senc(x, y), f (x), h(y), g(z)) → ok. These define I hash , where also ∀f ∈ F (k) .

[K(x 1 ), . . . , K(x k )] ⇒ [K(f (x 1 , . . . , x k ))].
Assume a seller with private key ks wants to sell w to a buyer with public key g(kb). Seller 1: generate a fresh key k; output senc(w, k), h(k), g(ks), zk(w, k, ks); Buyer 1: receive above data from seller and, if the zk proof verifies, invoke R c2h on L hash to create a hashcoin for the given h(k) and g(ks): !HCoin(sn, g(kb), g(ks), h(k) ); Seller 2: inspect L hash to see if the above coin was created; invoke R h2c with k and ks to claim the coin; this reveals k and thus reveals the witness; Buyer 2: inspect L hash to see if R h2c was invoked for the created hashcoin; if yes, the ledger will also contain the key k that allows the decryption of the ciphertext received at step 1; if not, the rule R h2cr can be invoked after a time delay so that the coin is returned to the original owner. Timeout. The fairness properties for the ZKCP protocols will be relative to the timely execution of certain operations. More precisely, if a certain action is not performed by a party in due time, then there is another action -grounded on the semantics of the ledger as in Example 7 or on cryptographic primitives as in Example 8 -that can be performed in order to compensate for the missing action.

Example 7 (Ledger timeout). Consider the rule R h2cr from Figure 1 modeling the refund of a hashcoin after a timeout. The execution of this rule at timepoint i is accompanied on the ledger by the fact !Time(x sn ) @ i to record that this coin was spent due to a timeout. This allows to specify the possible effects of invoking R h2c on L hash : either the transaction completes as expected, or there was a timeout, i.e. R h2cr was invoked. Consider the rule S h2c from Figure 1; note the Claim action. Then L hash ensures the following property:

∀x, y, z, z 1 , z 2 , i, j. Claim(x, y) @ i ∧ !Spend(x, z 1 , z 2 , z) @ j ⇒ z = y ∨ !Time(x) @ j
where z = y happens in a normal execution, and !Time(x) @ j if the timeout occurs.

Example 8 (Cryptographic timeout [START_REF] Rivest | Time-lock puzzles and timed-release crypto[END_REF][START_REF] Boneh | Timed commitments[END_REF]). Time commitment schemes allow to produce a commitment to a message that keeps it secret for a period of time. We represent a time commitment to u by tcom(u) and consider the following rule

Q tcom : [In(tcom(x))]--[!Time(x) ] →[Out(x)].
We express that fresh committed data is either secret, or it was released after a timeout. Let P : [Fr(s)]--[ Tcom(s) ] →[Out(tcom(s))]. Then Q tcom , P |= ∀x, i, j. Tcom(x) @ i ∧ K(x) @ j ⇒ ∃k. k < j ∧ !Time(x) @ k Fig. 2. Formal ZKCP on L hash ; Seller = (S 0 , S 1 , S 2 ); Buyer = (B 0 , B 

⊆ Q (see Example 4) -function model if Q contains the rules Q func : [Fr(x w )] ⇒ [!Witn(x w ), Out(f (x w ))] ; [Fr(x w )] ⇒ [!Res(f (x w )), Out(x w )]
If all of these are satisfied we say that (Q, Ψ ) is a ZKCP-context.

The fact !Witn(x w ) from a function model is used by an honest seller to determine a witness, and the adversary (playing the role of the buyer) obtains a desired result f (x w ). The fact !Res(f (x w )) is used by an honest buyer to determine a desired result, and the adversary (playing the role of the seller) obtains the corresponding witness x w . Definition 3. A ZKCP Seller specification is given by a set of protocol rules that contains two special rules:

sell: [ . . . ]--[ Sell(t pk , t wtn ) ] →[ . . . ] claim: [ . . . ]--[ Claim(t pk , t wtn , t time , t sn ) ] →[ . . . ]
The sell rule models the start of a seller session, recording in Sell(t pk , t wtn ) the seller public key and the witness. The claim rule models the seller claiming a coin as payment, producing an action fact Claim(t pk , t wtn , t time , t sn ) where t pk , t wtn are as above, t time is timeout constrained data, and t sn the claimed coin. In our case studies, t time is either a sn as in Ex. 7 or a secret key share, cryptographically committed as in Ex. 8. See in Fig. 2 the formal Seller specification for the protocol above. Definition 4. Let (Q, Ψ ) be a ZKCP-context and S be a ZKCP Seller specification. We say that these ensure seller security if Q, S; Ψ |= Φ S , where Φ S is defined in Figure 3.

Fig. 3. Security properties for ZKCP on a ledger

Seller security: witness reveal vs payment: ΦS := Φ0 ∧ Φ1 ∧ Φ2 Φ0 : ∀x pk , xwtn, i, j. Sell(x pk , xwtn) @ i ∧ K(xwtn) @ j ⇒ ∃k, y pk , xt, x coin . Claim(y pk , xwtn, xt, x coin ) @ k Φ1 : ∀y, z, x. Claim(y, x) @ i ∧ Claim(z, x) @ j ⇒ i = j Φ2 : ∀x pk , xwtn, xt, x coin , i, j.Claim(x pk , xwtn, xt, x coin ) @ i ∧ !Spend(x coin , z, y, z pk ) @ j ⇒ z pk = x pk ∨ ∃k. k ≤ j ∧ !Time(xt) @ k Buyer security: pay gives witness or refund: Intuitively, the formula Φ S = Φ 0 ∧ Φ 1 ∧ Φ 2 from Definition 4 ensures that:

ΦB := [ ∀i, j, x pk , xres, x coin , xstate. (Φ0 ∧ Φ1) ] ∧ Φ2 Φ0(Ψ0) : Pay(x pk , xres, x coin , xstate) @ i ∧ !Spend(x coin , z, y, z pk ) @ j ⇒ z pk = x pk ∨ Ψ0(y,
• Φ 0 : if the other party learns the witness, then (one of) the seller(s) for the corresponding witness is able to claim the payment of a coin into seller's account;

• Φ 1 : the other party cannot lead the seller into accepting the same payment twice, e.g. for two different witnesses; • Φ 2 : the payment claimed by the seller will succeed as such on the ledger, unless the corresponding timeout event happened.

Note that, in Φ 0 , the key y pk into which payment is claimed is not necessarily equal to the key x pk that engaged in selling the witness: the two keys can differ when there are two sellers for the same witness; then the adversary can learn the witness in one session without paying in the second one. Φ 1 requires care to ensure session specific payments; simply checking unspent conditions on the ledger is not sufficient in case of concurrent sessions. Φ 2 is important because the coin claimed by the seller is jointly constructed with the adversary, so we need to ensure that there is no other way to spend it. The following is proved automatically with Tamarin [START_REF]Tamarin code for ZKCP protocol verification[END_REF]: Proposition 1. For Seller of Figure 2, Q keys , L hash , I hash , Q func , Seller; Ψ coins |= Φ S ZKCP Buyer. As we can see in the L hash -based protocol presented above, in order to ensure the witness delivery from a ZKCP protocol, the buyer should perform some verification actions on the data (e.g. zero-knowledge proofs) received during the protocol execution. We model these checks by a formula Ψ 1 (x, x state ), where x represents the desired result for the function of interest, and x state represents protocol data that is relevant for buyer's verification actions. Ψ 1 and x state are protocol specific and they are parameters of our definition.

In addition to data received during the protocol execution, the buyer can also rely on data that is published on the ledger, and on the associated constraints that are ensured by the ledger semantics. We model these by Ψ 0 (y, x state ) where y represents the relevant ledger data. For example, in the L hash -based protocol, the semantics of the ledger ensures that the data y associated to the transaction that spends the hashcoin must contain the preimage of a hash recorded in x state , if the coin was spent by any party other than the buyer. A part of our security definition will require that Ψ 0 in conjunction with Ψ 1 does indeed reveal the witness. A second part of the definition will require that, if the buyer performed a payment transaction, then the buyer and the ledger will reach a state where Ψ 0 and Ψ 1 hold, or otherwise the buyer can obtain a refund. Definition 5. A ZKCP Buyer specification is given by a set of protocol rules that contains the special rule pay:[ . . . ]--[ Pay(t pk , t res , t coin , u state ) ] →[ . . . ].

The pay rule models the invocation of a payment transaction for a witness, where t pk is the public key of the buyer, t res is the desired result, t coin is the target coin where the buyer makes the payment, and u state is state information that is relevant for obtaining the witness. See Fig. 2 for the Buyer specification in the protocol described above. Definition 6. Let (Q, Ψ ) be a ZKCP-context and B be a ZKCP Buyer specification. We say that these ensure buyer security if Q, B; Ψ |= Φ B , where Φ B is defined in Figure 3.

Intuitively, the formulas Φ 0 , Φ 1 , Φ 2 from Definition 6 ensures that: • Φ 0 : if the buyer has paid for a witness into a coin, then spending that coin on the ledger will either lead to a refund, i.e. z pk = x pk , or else the data y associated to the spending transaction together with buyer state data satisfy the constraint Ψ 0 ; • Φ 1 : before paying, the buyer performs checks entailing the constraint Ψ 1 for the desired result and the buyer state; • Φ 2 : Ψ 0 and Ψ 1 allow to derive a witness for the desired result, by combining transaction data y with data x state gathered from the protocol execution.

Proposition 2. For Buyer from Figure 2 andQ 

= (Q keys , L hash , I hash , Q func ), we have Q, Buyer; Ψ coins |= Φ B   
x state : (x π , x ew , x h , x pks ) Ψ 0 (y, x state ) : ∃y s , y h . y ≈ y s , y h ∧ x h ≈ h(y h ) Ψ 1 (x res , x state ) : ver zk (x π , x ew , x res , x h , x pks ) ≈ ok

We prove Φ 0 from Φ B with Tamarin [START_REF]Tamarin code for ZKCP protocol verification[END_REF]. The properties Φ 1 and Φ 2 are simple local deduction properties that can be checked by hand (if the state of the buyer would be more complex, automated tools can also be used for that). Observations: • the seller (S) and buyer (B) public keys are linked on the ledger, while this is not a necessary consequence of the security properties. S does not need to know the public key of B in advance, while B does need the public key of S.

• private ledger keys of S and B do not have to be secret for security to hold: our models allow corruption of any key by the adversary (A). For S, security follows from the fresh symmetric key created for each session and, for B, from the trusted ledger. Note, however, that these keys allow A to spend the coins of their owner, but this is independent from the ZKCP protocol. In fact, a basic property of any ledger-based protocol should be that it does not reveal secret keys, i.e. ∀x, i, j. !Key(x) @ i ∧ K(x) @ j ⇒ ∃ . < j ∧ Corrupt(g(x)) @ . We also prove this property in Tamarin for our models.

• S cannot reuse the same symmetric key and zero-knowledge proof in two different sessions, even if those sessions are for selling the same witness; • our intruder deduction rules assume a perfect zero-knowledge construction, in particular A cannot tweak the proof parameters in order to reveal the witness, as exploited by attacks of [START_REF] Campanelli | Zeroknowledge contingent payments revisited: Attacks and payments for services[END_REF]. In the next section we show that intruder deduction rules can also model finer-grained properties of cryptographic constructions if required, in particular conditions when the witness may be revealed; • security for S depends on the timely delivery of transactions to the ledger, while this is not the case for B, who could obtain both the witness and the money back if there was a time delay; • the proof x π is not necessary for extracting the witness so it can be discarded after verification by B; • our models consider a strong A and, as such, do not cover the case of weaker, multiple A's, e.g. for two different buyers that do not collude or do not control the network, but they can be extended to.

ZKCP protocol on the basecoin ledger

Managing hashcoins -e.g. applying the hashing algorithm -sets tradeoffs for the agents that maintain the ledger; they may give priority to standard coins, i.e. preferring L base over L hash . Another constraint that needs to be taken into account -by parties engaging in ZKCP -is the complexity of constructing and verifying the zero-knowledge proofs. In this section, we formalize and analyze the protocol of [START_REF] Banasik | Efficient zero-knowledge contingent payments in cryptocurrencies without scripts[END_REF], which aims to implement the ZKCP functionality on L base . Other works, e.g. [START_REF] Dziembowski | Fairswap: How to fairly exchange digital goods[END_REF], aim to minimize the zk burden by appealing to special contracts that will be executed only in case of dispute.

Cryptographic primitives. For ZKCP on L base , [START_REF] Banasik | Efficient zero-knowledge contingent payments in cryptocurrencies without scripts[END_REF] adopts timed cryptographic commitments [START_REF] Rivest | Time-lock puzzles and timed-release crypto[END_REF][START_REF] Boneh | Timed commitments[END_REF], as presented in Example 8, in order to emulate the ledger timeout. To link ledger transitions and data release, [START_REF] Banasik | Efficient zero-knowledge contingent payments in cryptocurrencies without scripts[END_REF] exploits algebraic properties of the ECDSA signature used in Bitcoin: relying on homomorphic encryption, e.g. Paillier, an encrypted signature can be constructed from an encryption of the signing key, which can be constructed by adding shares of the signing key on top of an initial encrypted share [START_REF] Paillier | Public-key cryptosystems based on composite degree residuosity classes[END_REF][START_REF] Lindell | Fast secure two-party ECDSA signing[END_REF][START_REF] Lindell | Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody[END_REF][START_REF] Gennaro | Fast multiparty threshold ECDSA with fast trustless setup[END_REF]. A Diffie-Hellman group is used to establish a shared key. A special type of zk proof is also needed: a prover can encode the witness and convince the verifier that it can be extracted as soon as some committed structured data -for ZKCP: an ECDSA signature -is revealed. We rely on I base from Figure 4 to model these crypto primitives. A term esign(m, k, r 1 , g(r 1 * r 2 ), pk(z)) represents an encrypted partial signature of a message m, with signing key k, randomness share r 1 , public randomness g(r 1 * r 2 ), and encryption public key pk(z). Combining it with the decryption key z and the complementary randomness share r 2 , one can compute sign(m, k, r 1 * r 2 ). The rules for extract and ver zk model the connection between a valid signature and witness extraction. Time commitments can be checked wrt the public part g(x) of private data x. 

(k) .[K(x 1 ), . . . , K(x k )] ⇒ [K(f (x 1 , . . . , x k ))] Hom {g,enc} : [ K(g(x)), K(y) ] ⇒ [K(g(x * y))] [ K(enc(x, z)), K(y) ] ⇒ [K(enc(x * y, z))] AG : x * i(x) = 1, x * 1 = x,
x * y = y * x, (x * y) * z = x * (y * z) R0 : homs(enc(k, y), m, r1, r) → esign(m, k, r1, r, y) dec(enc(x, pk(y)), y) → x decs(esign(m, k, r1, g(r1 * r2), pk(z)), r2, z) → sign(m, k, r1 * r2) ver(sign(x, y, z), x, g(y)) → ok open(com(x, r), r) → x extract(zk(x, y, z), z) → x vertc(tcom(x), g(x)) → ok ver zk (zk(x, f (x), sign(y, z, w)), f (x), y, g(z))) → ok Jointly signing a message. Assume two parties A 1 (holding k 1 , r 1 ) and A 2 (holding k 2 , r 2 ) want to create sign(t, k 1 * k 2 , r 1 * r 2 ) for some agreed upon t. Then, say, A 1 can generate a fresh key pair k, pk(k) and send enc(k 1 , pk(k)) to A 2 . Relying on Hom enc , A 2 can obtain enc(k 1 * k 2 , pk(k)), which with t, r 2 , g(r 1 * r 2 ) as arguments to homs gives esign(t, k 1 * k 2 , r 2 , g(r 1 * r 2 ), pk(k)). Sent back to A 1 , the joint signature is derived by applying decs to this term and r 1 , k. Note that A 1 gets the signature and can decide when to show it to A 2 . On the other hand, both parties contribute to randomness in the signature; no party can force a particular value for the randomness. Both of these features will be needed to ensure the security properties for the ZKCP protocol: 1) Based on DH key-exchange and commitments, compute a public key pk 12 = g(k 1 * k 2 ) such that the private key k 1 * k 2 is secret-shared between the seller (S), who holds k 1 , g(k 2 ), and the buyer (B), who holds k 2 , g(k 1 ). Similarly, secret-shared randomness

r 1 * r 2 is computed: #Public : pk 12 , g(r 1 * r 2 ) Seller : k 1 , r 1 Buyer : k 2 , r 2 # 2)
The key pk 12 is used for an intermediate transfer from B to S. The two agree on the transaction that transfers a coin from pk 12 to S: #Public : t = c2c, ρ 1 sn , ρ 2 sn , g(ks) #, where ρ 1 sn , ρ 2 sn are fresh public serial numbers and g(ks) is the public key of S. This transaction is not signed, so cannot yet lead to a transfer. Also, B has not yet transferred coins into pk 12 .

3) Based on crypto as shown above, S (with B's help) obtains s = sign(t, k 1 * k 2 , r 1 * r 2 ). S checks that s is valid by applying the signature verification algorithm. It then outputs the zero-knowledge proof π = zk(w, f (w), s) and a time commitment to S's share of the joint secret key: #Seller : s Public : π, tcom(k 1 )# 4) B verifies the proof and the time commitment, and transfers a coin to pk 12 , leading to an update of the ledger: #Ledger : !Coin(ρ 1 sn , pk 12 )# 5) The seller claims ρ 1 sn by invoking R c2c on the ledger, relying on the signature s obtained previously. The ledger will record a !Spend fact with the corresponding transaction data, including the signature: #Ledger : !Spend(ρ 1 sn , pk 12 , s, g(ks))# 6) The buyer obtains s from the ledger and extracts the witness from the zk proof: w = extract(π, s). If the seller aborted, no one can redeem the coin ρ 1 sn , until the time commitment reveals k 1 , so the buyer can reconstruct k 1 * k 2 and redeem the coin. The formal specification is in Fig. 5, with details of joint signing ommited. Proposition 3. For Seller and Buyer from Figure 5 andQ 

tcom from Example 8, Q, Seller; Ψ coins |= Φ S Q, Buyer; Ψ coins |= Φ B Q = (Q keys , Q tcom , L base , I base , Q func )
where x state : x π , x tcom , x 12 pk , Ψ 0 (y, x state ) : ∃z, x. x π ≈ zk(z, x, x s ) ∧ y ≈ x s ; Ψ 1 (x res , x state ) : ver zk (x π , x res , x tcom , x 12 pk ) ≈ ok

Tamarin verification: we prove Φ S and Φ 0 for Φ B automatically with Tamarin relying on the reduction that we present in the next section for termination within 1 minute. We prove two helper lemmas along the way: 1) if the adversary knows a time commitment, then it either knows the committed message at an earlier time, or the commitment is constructed by an honest party; 2) fresh randoms and keys stay secret -unless opened by a time commitment. The Tamarin code is available online [START_REF]Tamarin code for ZKCP protocol verification[END_REF].

Observations: • as for L hash , the S and B are linked on the ledger; the secret keys of any party can be corrupted, we prove however that the protocol does not itself reveal these keys; • the cryptographic constructions from [START_REF] Banasik | Efficient zero-knowledge contingent payments in cryptocurrencies without scripts[END_REF] are a particular instance of I base ; 

S3:[ state2 y k 2 = g(x k 2 ) , x 12 pk = g(x k 2 * k1), c k = tcom(k1), xπ = zk(xwtn, f (xwtn), s) ] (JointSign → t = c2c, ρ 1 sn , ρ 2 sn , g(x ks ) , s = sign(t, . . .) ) ⇒ [ Out( c k , xπ ), state3 ] S4:[ state3, !Coin(ρ 1 sn , x 12 pk ) ] --[ Unspent(ρ 1 sn ), Claim(g(x ks ), xwtn, k1, ρ 1 sn ) ] → [ Out( s, ρ 2 sn , g(x ks ) ) ] B0:[ !Res(xres), !Key(x kb ), !Pk(x pks ), !Coin(x 0 sn , g(x kb )) ] ⇒ [ state0 ] B1:[ state0, In( x ck , yr 1 ), Fr(k2), Fr(r2) ] ⇒ [Out( g(k2), g(r2) ), state1 ] B2:[ state1 x ck = com(g(x k 1 ), xr), yr 1 = g(xr 1 ) , In(xr), x 12 pk = g(x k 1 * k2), x 12 r = g(xr 1 * r2) ] (JointSign → t = c2c, ρ 1 sn , ρ
= x k 1 * k2, xs = sign( ρ 1 sn , ρ 2 sn , g(x kb ) , x 12 k , r) ] --[ xtcom ≈ tcom(x k 1 ), Unspent(ρ 1 sn ) ] → [ Out( xs, ρ 2 sn , g(x kb ) ) ]
it may admit more efficient instances, and our proofs could still be relied on for the security guarantees; • I base does not cover the full algebra of homomorphic encryption, where we have

[ K(enc(x, z)), K(enc(y, z)) ] ⇒ [K(enc(x * y, z))].
It is however sound when every ciphertext constructed by honest parties uses a fresh key, as in our case study; covering the full theory is a long-standing, still open, problem for protocol verification • the same shared key could be used for the exchange of several witnesses within the timeframe chosen for the time commitment; • contrary to L hash , the zeroknowledge proof cannot be discarded by B after verification, since it is necessary for extracting the witness; • on L hash , B sets the ledger timeout and S can accept to proceed; on L base it is the other way around with respect to crypto timeout.

Homomorphism and abelian group reduction

We take a class of intruder theories that covers the one of Fig. 4; F contains a set of homomorphic functions F hom . We reduce any I from this class to I ∆ such that: I ∆ is simpler than I; I ∆ is sound wrt I. First, given any trace τ wrt I, we show that there is I ∆ generating τ and where: (i) the homomorphic properties are restricted by arguments from honest parties in τ ; (ii) the abelian group is degenerated, allowing to obtain any factors from products. Second, we augment any set of rules S to S ∆ , which records as facts the homomorphic arguments of S, and I ∆ is generalized to cover any trace of S ∆ . H1 and H2 help in proofs [START_REF]Additional material: Tamarin code and long paper version[END_REF]; R 0 from Figure 4 respects them. Intuitively, we split the homomorphic argument of f in two parts, e.g. f (u * v, w), where the factors of v are known by the adversary, while the factors of u are provided by honest parties (in S). When the adversary applies Hom to such a term, to get e.g. f (u * v * t, w), there is a smaller term f (u, w) that can be used to obtain the same result, since the adversary knows v * t. The term u will be added by S ∆ to ∆(f ) so Hom ∆ can be applied on it. Proposition 4. For any S, M 0 , M 1 s.t. M 1 can be derived from M 0 using rules in S ∪ I, there is ∆ s.t. M 1 can be derived from M 0 using S ∪ I ∆ ; ∆ can be iteratively constructed by a set S ∆ -augmenting each rule in S with a constant number of facts.

Corollary 1. For any S and formulas Ψ, Φ, we have S ∆ , I ∆ ; Ψ |= Φ ⇒ S, I; Ψ |= Φ Scope. The reduction is sound for any set of protocol rules. However, since I ∆ allows to freely decompose products, it gives too much power to the adversary (leading to false attacks) for certain classes of protocols, e.g. when a nonce r protects a secret s in s * r. The reduction is useful for proofs only when secret data is protected by (homomorphic) cryptographic constructions, e.g. exponentiation, encryption, etc.

Related and future work

Several works extend the scope of Tamarin to new cryptographic primitives [START_REF] Schmidt | Automated verification of group key agreement protocols[END_REF][START_REF] Dreier | Automated unbounded verification of stateful cryptographic protocols with exclusive OR[END_REF][START_REF] Dreier | Beyond subterm-convergent equational theories in automated verification of stateful protocols[END_REF] or infrastructure features [START_REF] Kremer | Automated analysis of security protocols with global state[END_REF][START_REF] Backes | A novel approach for reasoning about liveness in cryptographic protocols and its application to fair exchange[END_REF]. Our models contribute to both of these directions. On the crypto side, an open question is to cover deductions like enc(u, k), enc(v, k) ⇒ enc(u * v, k), which would allow to model e.g. homomorphic tallying for voting [START_REF] Baudron | Practical multi-candidate election system[END_REF]. Protocol verification modulo this theory is studied in [START_REF] Yang | Theories of homomorphic encryption, unification, and the finite variant property[END_REF], where abstractions different from ours are used for reducing the theory, but the case studies are limited to unification problems and relatively simple protocols.

Works complementary to ours aim to provide formal guarantees for code executed on the blockchain [START_REF] Bartoletti | Bitml: A calculus for bitcoin smart contracts[END_REF][START_REF] Bhargavan | Formal verification of smart contracts[END_REF][START_REF] Hildenbrandt | KEVM: A complete formal semantics of the ethereum virtual machine[END_REF]. Our ledger models are, on one hand, grounded on such guarantees and, on the other hand, they allow to reason about the properties of higher-level protocols and applications. In future work, we can extend our models to cover more general smart contracts, hybrid ledgers and applications [START_REF] Dziembowski | Fairswap: How to fairly exchange digital goods[END_REF][START_REF] Hearn | Corda: A distributed ledger[END_REF][START_REF] Dziembowski | General state channel networks[END_REF]. Current ZKCP protocols don't allow seller/buyer unlinkability, while the security properties leave scope for it. An open problem is ZKCP on ledgers with more privacy [START_REF] Ben-Sasson | Zerocash: Decentralized anonymous payments from bitcoin[END_REF][START_REF] Zyskind | Enigma: Decentralized computation platform with guaranteed privacy[END_REF][START_REF] Malavolta | Concurrency and privacy with payment-channel networks[END_REF] and appropriate unlinkability notions.
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 5 Let F coin L = {!Coin, !HCoin, !Spend, !Time} and F coin C = {Unspent}. The corresponding facts represent: !Coin(sn, g(k)
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 1 Fig. 1. Ledger coin rules:L base = {R new , R c2c }; L hash = L base {R c2h , R h2c , R h2cr }

  xsn, x pk , s, y), !HCoin(ysn, y)] R h2c : [!HCoin(xsn, y), In(u)] --[ Φ h2c (xsn, y, u) ] → [!Spend(xsn, y, s, y pk ), !Coin(zsn, y pk )] R h2cr : [!HCoin(xsn, y), In(u)] --[ Φ h2cr (xsn, y, u) ] → [. . . , !Coin(zsn, x pk ), !Time(xsn) ] where Rc2c : u = s, ysn, y pk ; Φc2c = ver(s, c2c, xsn, ysn, y pk, x pk ) ≈ ok; v = s, y pk R c2h : u = s, ysn, y pk , y h ; Φ c2h = ver(s, c2h, xsn, y pk , y h , x pk ) ≈ ok; y = x pk , y pk , y h R h2c : y = x pk , y pk , y h ; u = s,ysn, yw ; Φ h2c = ver(s, h2c, xsn, yw , y pk ) ≈ ok ∧ y h ≈ h(yw) (similarly for R h2cr ) Ledger-based protocol rules (typical examples) Sc2c : [ !Key(x sk ), !Pk(y pk ), !Coin(xsn, g(x sk )), xs = sign( c2c, xsn, ρsn, y pk , x sk , ρr) ] --[ Unspent(xsn) ] → [ Out( xs, ρsn, y pk ) ] S c2h : [ !Key(x sk ), !Pk(y pk ), !Coin(xsn, g(x sk )), Hash(y h ) ] --[ Unspent(xsn) ] → [ Out(u c2h ) ] S h2c : [ !Key(y sk ), !HCoin(xsn, x pk , g(y sk ), h(xw) ), Inv(yw) ] --[ Unspent(xsn), Claim(xsn, g(y sk )) ] → [ Out(u h2c ) ] where t c2h = c2h, xsn, y pk , y h ; u c2h = sign(t c2h , x sk , ρr), ρsn, y pk , y h t h2c = h2c, xsn, xw, ρsn ; u h2c = sign(t h2c , y sk , ρr), ρsn, yw
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 4 Fig. 4. Intruder theory I base ; and ∀f ∈ F(k) .[K(x 1 ), . . . , K(x k )] ⇒ [K(f (x 1 , . . . , x k ))]

Fig. 5 .

 5 Fig. 5. ZKCP on L base ; Seller = (S 0 , . . . , S 4 ); Buyer = (B 0 , . . . , B 3 , B go 4 , B ab 4 )
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 78 A base for F is a function ∆ with dom(∆) = F hom and ∀f ∈ F (n) hom . ∆(f ) ⊆ T n . We assume that ∆ is closed modulo AC, i.e. ∆ f (u * v, w) ⇒ ∆ f (v * u, w) and similarly for associativity, and closed by: ∆ f (u * v, w) ⇒ ∆ f (u, w).We extend intruder deduction to rules of the form [∆ f (x), M ] ⇒ [N ], which have the same semantics as [M ] ⇒ [N ] with the additional constraint that xθ ∈ ∆(f ) holds for the substitution θ that instantiates the rule. We consider the class of intruder theories as defined below (left):Initial theory I (with Hom for all f ∈ F hom ) Hom : [ K(f (x, z)), K(y) ] ⇒ [K(f (x * y, z))] AG : x * i(x) = 1 , x * 1 = x x * y = y * x , (x * y) * z = x * (y * z) R 0 : {l 1 → r 1 , . . . , l k → r k } Reduced theory I ∆ for base ∆ Hom ∆ : [ ∆ f (x, z), K(y)) ] ⇒ [K(f (x * y, z))] AP : [ K(x * y) ] ⇒ [K(x)] x * y = y * x , (x * y) * z = x * (y * z) R 0 : {l 1 → r 1 , . . . , l k → r k }We assume that every l → r ∈ R 0 satisfies H1:top(l), top(r) / ∈ F hom ∪{ * , i} H2:∀t ∈ st(r) st(l). top(t)∩(F hom ∪{ * , i}) = ∅ Given such I and a base ∆, we define the reduced theory I ∆ as above (right). I, I ∆ also contain the deduction rules ∀f.[K(x 1 ), . . . , K(x k )] ⇒ [K(f (x 1 , . . . , x k ))].

  !Res(xres), !Key(x kb ), !Pk(x pks ), !Coin(xsn, g(x kb )) ] ⇒ [ state0 ] B1:[ state0, In( xπ, xew, x h ) ] --[ ver zk (xπ, xew, xres, x h , x pks ) ≈ ok, Pay(g(x kb ), xres, ρsn, xπ, xew, x h ) ] → [ Out( sign( c2h, xsn, ρsn, x pks , x h , x kb ), ρsn, x pks , x h , state1 ] B go 2 :[ state1, !Spend(ρsn, z, xs, x k , x pks ), xwtn = sdec(xew, x k ) ] --[ h(x k ) ≈ x h , f (xwtn) ≈ xres, Witness(xres) ] → [ ] B ab 2 :[state1, !HCoin(xsn, g(x kb ), x pks , x h )] --[ Unspent(xsn) ] → [Out( sign( h2cr, xsn, ρsn , x kb ), ρsn )]

	1 , B go 2 , B ab 2 )
	S0:[ !Key(x ks ), !Witn(xwtn) ]--[ Sell(g(x ks ), xwtn) ] →[ state0 ]
	S1:[ state0, Fr(k), xew = senc(xwtn, k), xπ = zk(xwtn, k, x ks ) ] ⇒ [ Out( xπ, xew, h(k) ), state1 ]
	S2:[ state1, !HCoin(xsn, x pkb , g(x ks ), h(k) ) ]--[ Unspent(xsn), Claim(g(x ks ), xwtn, xsn, xsn) ] →
	[ Out( sign( h2c, xsn, ρsn, k , x ks ), k, ρsn ) ]
	B0:[

Definition 2. Let Q be a set of (protocol and ledger) rules and Ψ be a set of restrictions. We say that (Q, Ψ ) is a coin infrastructure if Q produces !Spend(u coin , u, u pk ) ledger facts and Ψ coin ⊆ Ψ (see Figure

1

and Example 6); time infrastructure if Q produces !Time(u) actions (see Example 7 and Example 8); key infrastructure if Q keys

  xstate) Φ1(Ψ1) : Pay(x pk , xres, x coin , xstate) @ i ⇒ Ψ1(xres, xstate) Φ2(Ψ0, Ψ1) : ∀xres, y, xstate. Ψ0(y, xstate) ∧ Ψ1(xres, xstate) ⇒ ∃xw. xres = f (xw) ∧ y, xstate xw

  2 sn , x pks , s = sign(t, . . .) ) ⇒ [state2 ] B3:[ state2, In( xtcom, xπ ), Fr(r) ] --[ ver zk (xπ, xres, t, x 12 pk ) ≈ ok, vertc(xtcom, g(x k 1 )) ≈ ok, Pay(g(x kb ), xres, ρ 1

	sn , xπ, xtcom, x 12 pk ) ] →
	B go 4 :[ state3, !Spend(ρ 1	[ Out( sign( c2c, x 0 sn , ρ 1 sn , x 12 pk , x kb , r), ρ 1 sn , x 12 pk ), state3 ]

sn , z, s, x pks ), xwtn = extract(xπ, s) ]--[ xres ≈ f (xwtn), Witness(xres) ] →[ ] B ab 4 :[ state3, !Coin(ρ 1 sn , g(x 12 k )), In(x k 1 ), Fr(r), x 12 k
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