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Abstract— Image flicker is a general film effect, which can be
observed in videos as well as in old films, and consists of fast
variations of the frame contrast and brightness. Reducing flicker
of a sequence improves its visual quality and can be an essential
first treatment before ulterior manipulations. This paper presents
an axiomatic analysis of the problem, which leads to a global
and fast method of “de-flicker”, based on scale-space theory. The
stability of this process, calledScale-Time Equalization, is ensured
by the scale-time framework. Results on different sequences are
given, and show a great visual improvement.

I. I NTRODUCTION

Image flicker is a general film effect, especially known
for its presence in old movies. It consists of fast variations
of the frame contrast and brightness. Old movies suffer at
the same time from age related degradations and from the
primitive technology used at the early age of cinema. In their
case, flicker can be caused by physical degradations of the
film, by the use of not very stable chemical products, or by
aberrations in the exposure time for each frame [7], etc... But
intensity flicker can also be observed in many amateur videos,
whose luminosity has not been controlled during the shooting,
or more strongly in the frequent case of low time sampling,
as in video surveillance.

There have been few attempts to remove flicker, probably
because the problem seems quite easy to solve. However,
this is not the case, as flicker can have many aspects, and
is not well removed by simple affine transformations on the
intensity of each frame. Most of the time, the problem is
considered as a global degradation of the image. In a sense,
this strong assumption is a simplification of the problem, but
global methods (dependent only on the images histograms)
are a priori much more robust to shaking, to motion and to
noise presence, than local ones. After a state of the art and a
discussion on the subject, we will make this basic assumption
in this paper. We will then see what kind of “time smoothing”
generic method can be considered. Such a method should
involve a scale of correction, representing the size of the time
neighborhood used to change each image. This size should
correspond to the limit between the flicker variations and the
“natural” intensity variations in the movie. Except for this time
scale, which is obviously user dependent, we look for a method
without anya priori assumption or user parameters.

The role of time scale however must be formalized and
leads us to involvescale-space theory. This theory, founded by

Witkin [18], Marr [11] and Koenderink [6], and among others
pursued by Florack, Romeny, Viergever and Lindeberg [8],
[9], [10], links, under basic assumptions, iterated filtering to
partial differential equations. It leans on the central concept of
causality, which must be understood here in the sense stated by
F. Guichard and J.M. Morel in [5]: it gathers such requirements
as regularity, recursivity (semi-group structure) and a local
comparison principle. As we shall see, these principles, associ-
ated with an axiomatic analysis of key examples, lead directly
to a simple solution of filtering, connected with the midway
image equalization presented in [3] and based on [2]. We will
see why this scale-time dimension ensures the stability of the
method. The end of the paper will be devoted to experiments.

II. F IRST STEPS ON THE SUBJECT

A. Some notations

Let us begin with some notations that we will use all along
the paper. Letv : Ω → [0, 1] (Ω ⊆ R2) be an image1 andh
the distribution of its intensity values (also called histogram of
u). Thecumulative histogramof v is the functionH : [0, 1]→
[0, 1] defined by:

H(x) =
∫ x

0

h(t)dt

Proposition 1 Let ϕ : [0, 1] → [0, 1] be a continuous and
strictly increasing function (such a function will be called
an increasing homeomorphism on[0, 1]). Thenϕ(v) is a new
image, whose cumulative histogram isH ◦ ϕ−1.

We point out that such a transformation, called contrast
change, preserves the order of the grey levels inv and does
not create or cancel any image information.

We define a movieu as a sequence of images(ut)t∈R having
the same set of definitionΩ. (Ht)t∈R denotes the sequence of
its cumulative histograms. In what follows, we will always
noteT a “de-flicker” operator, and̃u = T (u) the deflickered
sequence. For a sake of simplicity, we assume that the set of
definitionΩ is fixed and that all the films that we consider are
defined onΩ. As we will see that the results found forT are
independent fromΩ, this hypothesis is not restrictive.

1This definition is not restrictive, the range of an image can be put on[0, 1]
by an affine transformation.
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B. Previous work

The papers about flicker can be classified in two categories:
those which treat image flicker as a phenomenon affecting the
whole image in an equal way, and those which treat it as a local
degradation. In [15], [16], P. Richardson and D. Suter observe
that a standard compression algorithm (MPEG) is not really
suitable for old movies because of their obvious degradations,
and propose to restore a sequence prior to compression by
a motion-corrected temporal filtering technique. Before this
filtering, the flicker is reduced by applying an affine stretching
to the histogram of each frame, so that it fills a given dynamic
range. If this global correction is simple and seems judicious
at first, it is emphasized in [4] that it is not really satisfying. In
his Phd Thesis [4], E. Decencière proposes precisely methods
to correct intensity flicker in movies, which take as basic
assumption that each image suffers an affine degradation of
the form

ut = αtu
o
t + βt

where ut is the observed frame at timet and uot is the
original frame. If the frame at timet−1 has been restored, he
restores the frame at timet with the assumption that some
moments of the current frame remain constant (the mean
and/or the extrema of the frame for instance). All the frames
are restored this way. Finally, according to his conclusions,
the most satisfying results are obtained by fixing the mean
and the difference between the extrema of the frame. The
affine correction methods have the advantage of being fast
and simple, but such iterative methods involve an obvious
drawback: they are always very sensitive to initialization.
Here, the first frame is not restored and must be chosen very
carefully, because its characteristics will be propagated to all
frames. Recursive methods also lack of symmetry properties:
it would be natural for a deflickering process to depend
neither on the time direction, nor on the time origin. Another
important drawback is the fact that there is no reason for
the observed intensity degradations to be well modeled by
an affine transformation.

In order to allow completely general transformations, the
authors of [12] propose a solution based on histogram
matching: “The purpose is to change each image histogram
into a target histogram calculated as average of image
histogram and its neighbors”. This method is judicious
and seems to give good results (an example is available
at http://gpiserver.dcom.upv.es/restoration.html). However, we
will see later its drawbacks and why the scale-time equaliza-
tion, which has large similarities with it, is more suitable.

A first local treatment of flicker is proposed by Roosmalen
et al. in [17]. The idea is to split the frame in overlapping
blocks, and to consider that the flicker is affine on these
blocks. After the local estimation of parameters, a rejection
criterion is introduced in order to avoid problems due to local
motion or blotches in the correction. However, this method
is still sensible to outliers, and suffers from its recursive
form, which creates a bias in the correction and remains very
sensible to initialization. Ohuchi et al. [14] propose a more
robust method that models the transformation between two

consecutive frames by

ut+1(x) = αt(x)ut(x) + βt(x) + γt(x),

whereαt and βt are second order polynomials. The coeffi-
cients ofαt andβt are estimated by minimizing a function of
γt, chosen in order to be robust to outliers. A scale parameter
decides if a local change is due to flicker or motion. This
method still suffers of its lack of symmetry in the time
direction. Moreover, the choice of the scale parameter is critic,
and can lead to confuse a severe flicker with motion. Finally,
this method relies on a specific (polynomial) model, that might
not be well adapted to all examples (see Figure 4).

C. Flicker: local or global ? Brightness axiom.

Before trying to treat or remove intensity flicker from a
sequence, we should wonder how to define it. We referred
to it as variations of the frame brightness in a movie, but
did not specify if those variations could be local in space or
should be considered as global. As we said, papers which treat
it as a local phenomenon have to involve motion detectors.
Indeed, if we consider the very simple case of a dark object
moving on a light background, as represented in Figure 1, the
local histogram of the central region (delimited by a doted
line on the figure) changes obviously in time, whereas the
global image histogram remains identical. In the same way,

Fig. 1. Successive frames of a moving object on a white background. The
local brightness of the image changes, whereas the global histogram remains
constant.

any motion of an object on a background could be interpreted
as local flicker. Consequently, a local treatment of flicker has
to involve motion detectors in order to avoid correcting local
changes due to motion and not to flicker. Ultimately, even
a film composed of images of a centered gaussian noise of
standard deviationσ is flickering at the scale of the pixel,
whereas the global brightness impression does not change. In
addition to motion, a local definition of flicker is also much
more sensible to global shaking (usual in old films), local
blotches, or noise presence. Consequently, such a definition
may well mix several phenomena, and depends a lot on the
size of the chosen locality. In comparison, a global definition
of flicker relies only on the histograms of the frames, which
do not change much in case of shaking, object motion or in
presence of jitter noise. These are principally the reasons why
we chose to give up the use of the spatial and geometrical
coherence between the frames, and decided to define flicker
as a global phenomenon. As a consequence, ifT : u → ũ
is a flicker (or, in a symmetric way, deflicker) operator, we
consider that:

Axiom 0, Globality:

∀t ∈ R, ∀(x, y) ∈ Ω, (ut(x) = ut(y)⇒ ũt(x) = ũt(y))

∀t ∈ R, ∀(x, y) ∈ Ω, (ut(x) < ut(y)⇒ ũt(x) < ũt(y))
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This means thatT affects each frame of the film by a contrast
change. If the original film is(us)s∈R, the flicker changes it to
(ϕs(us))s∈R, where eachϕs is a contrast change. As we define
it, deflickering is then mostly independent from denoising and
from motion detectors.

D. Remarks on Naranjo’s method

As precised in the state of the art, affine methods [4], besides
their sensitivity to initialization, are clearly not sufficient in
general to model all the transformations imposed by flicker,
even if we suppose that these transformations are global. The
deflickering method proposed by V. Naranjo and A. Albiol
in [12] is based on contrast changes: the histogram of a frame
ut is specified on a joint histogram, computed as an average
of the histograms of the imagesus, s ∈ [t−T, t+T ]. This can
be a good and fast method in a number of cases. However,
we have seen in [3] the reason why a direct average between
two images histograms was not at all a satisfying intermediary
between them. Let us generalize this property to the case of
image sequences. We have observed in many films that the
evolution of the current frame’s histogram during time is not
always smooth and can present severe jumps. Assume thatu
is composed of frames all translated from a single imageu0:
∀t ∈ [a, c], ut = u0 + λ(t), λ(t) having a discontinuity atb,
as proposed in Figure 2.

Grey Level

− +
Time b Time b

Fig. 2. Top: Successive histograms of the frames of a film, with a jump at
time b. In this case, a direct weighted mean of the sequence of histograms is
not adapted, in so far as it creates a new histogram with two modes (bottom
left), and therefore stands a chance of making some new structure appear in
the film. Bottom right: Reasonable intermediate histogram.

For a frameut with t near tob, a direct weighted mean
of the histograms gives a result which looks like the bottom
left histogram of the figure. We see that it stands a chance
of creating a new histogram with several modes when all
the histograms of the original frames were unimodal. The
grey levels of the frame, which were concentrated around
some levelnt, are separated in two distant regions, and this
separation can make some new structure appear. In this case,
it would be much more natural an respectful of the frame
dynamics to define the new histogram as the translation of
the previous ones, located around an average value, as the
one represented on the bottom right of the figure. The Scale-
Time Equalization that we will define in next section, relies on
the same principle as Naranjo’s method: replacing each image
histogram by a target one, defined as a weighted intermediary

between it and its neighbors. However, as we have shown
(see [3] for details), the definition of an intermediary between
several histograms must be understood in a “transport” sense,
and not in an “average” sense.

III. SCALE-TIME EQUALIZATION .

A. Action on level sets. Morphologic axiom.

As stated before, we impose to our operatorT to follow
axiom 0, i.e. to act on each image only through a contrast
change. It follows thatT leaves the topographic map2 of
eachut unchanged, which naturally raises the question of the
action ofT on level sets.

Let us start with a very simple example, illustrated by
Figure 3: let u be a film representing a flickering dark
moving object on a flickering lighter background. We argue
that in this case, the flicker that affects the object should be
treated independently of the flicker that affects the background.
This strong assumption compensates the globality imposed by
axiom0: it localizes the action of the operatorT separately on
the object and on the background (see also the first example
in the experiments section, and Figure 4). In this example, the

Fig. 3. Successive frames of a film, representing a dark moving object on a
flickering light background. In this kind of film, a deflickering operator should
act independently on the object and on the background. This is the aim of
axiom 1.

object corresponds to thep darkest pixels of the image, and
the background to theN − p lightest ones. If we note, for
everyλ in [0, 1],

χλ(t) = {x ∈ Ω, Ht(ut(x)) ≤ λ}

χλ(t) = {x ∈ Ω, Ht(ut(x)) > λ},

then χλ(t) corresponds to theλ% darkest pixels ofut, and
χλ(t) to the (1 − λ)% lightest ones. Thus, the previous
statement can be translated by the following axiom,

Axiom 1, Figure/Background Independence:For every
λ in [0, 1], the action ofT on the sequencet → χλ(t) is
independent of the action ofT on the sequencet→ χλ(t).

If this property holds, it is equivalent to say thatT acts
independently on each “level set of rankλ” sequence.

This axiom simplifies considerably the possibilities of action
for T . Indeed, let us introduce the setC of films defined on
Ω and constituted of constant images (i.e. each image of the
film is a constant, but the value of the constant changes with
time). We know from axiom0 thatC is stable under the action
of T . Moreover, there is an obvious bijection betweenC and
FR, the set of real functions. Thus, the action ofT on C can

2The topographic map of an imagev is the set of its level sets, ordered
by inclusion and taken independently from their grey levels. Ifϕ is a strictly
increasing function,ϕ(v) has the same topographic map asv. See [1] for
more information on topographic maps.
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be completely represented by the action of an operatorT̆ on
FR. Now, we have the following result:

Proposition 2 The action of an operatorT satisfying axioms
0 and 1 only depends on its action onC, the set of films
constituted of constant images. More precisely, ifT̆ denotes
the corresponding action on the set of real functions, the action
of T on any filmu consists in separate actions of the operator
T̆ on the functionst→ H−1

t (λ).

Each functiont → H−1
t (λ) gives the evolution during the

time of the grey levels of rankλ in the images of the film.
The study of the action ofT on films constituted of constant
images is the aim of one of the next subsections.

B. The scale-time structure of deflicker.

Before studying the particular case of a film of constant
images, there is still a general and simple requirement that we
can impose onT . The kind of transformation that we want to
perform should naturally not depend on the choice of the time
origin for the film, and should also give the same result if we
reverse the time direction.

Axiom 2, Time Shift Invariance: T must commute with
translations and symmetries in time:

∀u, ∀µ ∈ R, T (τµ(u)) = τµ(T (u)),

∀u, T ((u−t)) = (T (u)−t).

This axiom leads actually to the question of the link between
the operatorT and the time: if the intensity flicker has to
be removed, we must avoid to make disappear the natural
variations of luminosity in the film, which are much slower.
This need becomes more and more necessary when the length
of the sequence increases. Hence, the reduction of flicker
should be seen as a scale-time problem. A flicker reduction
method should be flexible enough to allow the choice of
a “scale” of correction, corresponding to the limit between
intensity variations due to flicker, and those “natural” to the
movie.

A natural way to keep the possibility of luminosity vari-
ations from one image to another after the treatment, is to
use, instead ofT , a family (Ts)s∈R of deflicker operators, the
scale parameters being linked with the depth of correction.
Each element of the family is obviously supposed to follow
the axioms 0,1 and 2, and the next section should allow to
determine the form of the operatorsTs.

C. The particular case of a film constituted of constant
images.

In this paragraph, we will end up with the formulation of
axioms for deflicker. Surprisingly (as shown previously), it is
enough to state them in the case of constant images movies.
This very intuitive framework will lead to proposition 3.

Now, let c = (ct)t∈R ∈ C, the set of films onΩ constituted
of constant images. We study here the action onc of a family

(Ts)s∈R of operators following axioms0 to 2. First, if all of the
constantsct are identical, equal to the constantµ, we impose
naturally that each of theTs keeps the film unchanged:

Axiom 3, Preservation of constants:If ∃µ, ∀t ∈ R, ct =
µ, then∀s, Ts(c) = c.

The action of the operators(Ts)s∈R on a sequence{c(t), t ∈
R} is equivalent to a smoothing process in one dimension. By
making once more the parallel betweenC and FR, we call
(T̆s)s∈R the corresponding smoothing process onFR, in
order not to mistake its action for that of (Ts)s. The results
found for (T̆s) will determine the action of(Ts) on films via
its separated actions on the “rank” sequences(H−1

t (λ))t.
At this time of the reasoning, any family of one dimension

smoothing operators following axioms 2 (time shift invariance)
and 3 (preservation of the constants) could be considered as
convenient for(T̆s). However, some natural assumptions, as
the classical assumptions of scale-space theory, can be made
on this process. Several axiomatics are possible (see [8] for
a review of the main ones), depending on the authors, but
they all lead to the same conclusion: the convolution with
a gaussian kernel. We choose here the most general list of
axioms, as stated in [5]. First, we impose a pyramidal structure
on the family, which means that the signal at scalet can
be computed from the signal at scalet − h, for h small
enough. Next, we state that the family(T̆s) should naturally
satisfy the following local comparison principle: ifc is locally
larger thanc′, it remains larger for a smoothing small enough.
Finally, it seems sensible to impose a regularity assumption
on the family(T̆s)s∈R. All of these assumptions compose the
following axiom:

Axiom 4, Scale-Time Structure of(T̆s): The scale-time
family (T̆s)s∈R is causal, which means that(T̆s)s∈R
• is pyramidal: T̆s+h = T̆s+h,sT̆s, T̆0 = Id;
• satisfies a local comparison principle: ifc(t) > c′(t) for
t in a neighborhood oft0 and t 6= t0 , then forh small
enough

(T̆s+h,sc)(t0) ≥ (T̆s+h,sc′)(t0),

and if c ≥ c′ everywhere, then∀h, T̆s+h,sc ≥ T̆s+h,sc′;
• is regular: for c a quadratic form, there exists a function
F continuous with respect to the first variable, such that
whenh→ 0:

(T̆s+h,sc− c)(x)
h

→ F (D2c(t), Dc(t), t, c(t), s).

Finally, for the sake of simplicity, we choose to impose an
axiom of linearity on(T̆s)s∈R.

Axiom 5, Linearity: The scale-time(T̆s)s∈R is linear.

This last axiom is a deliberated choice which allows to
determine completely the action of(T̆s)s∈R (see [5]).

Theorem 1 Let (T̆s)s∈R be a “scale-time” family of opera-
tors acting on functionsc : R→ R and satisfying the axioms 2
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to 5. Then, for each functionc : R→ R, and up to a rescaling
s′ = f(s),

T̆sc = Gs ∗t c, whereGs(t) =
1

(4πs)
1
2
e−

t2
4s

Other solutions, non linear, could be considered for the
action of the family. The quality of the results given by this
specific process will be obviously its best justification. Let us
mention that the median filter on a neighborhood might be an
alternative choice, more adapted to scene changes.

D. Scale-Time Equalization (STE).

The association of proposition 2 and of the previous theorem
gives the following result, where∗t denotes the convolution
in the time direction.

Proposition 3 Let (Ts)s∈R be a family of operators acting
on films and satisfying axioms 0 to 3. We call(T̆s)s∈R the
family acting on real functions and reproducing the action of
(Ts) on C, the set of films of constant images. We suppose
that (T̆s)s∈R satisfies axioms 4 and 5. Then, there exists a
rescalings′ = f(s), such that the action of(Ts) on any film
u can be described via the formula

T̆s(t→ H−1
t (λ)) = Gs ∗t (t→ H−1

t (λ))

where
Gs(t) =

1
(4πs)

1
2
e−

t2
4s

Proof: Proposition 2 tells us that the action of each operator
Ts of the family on a filmu can be described by the separated
actions of the corresponding operatorT̆s on the functionst→
(H−1

t (λ))t (Ht being the cumulative histogram of the image
ut). Now, theorem 1 determines completely the action of the
family (T̆s). 2

The previous theorem describes completely the action of
a family of operators following the axioms previously stated.
This action is nothing more than a convolution of each “rank
function” of the film by a gaussian. It will be calledScale-
Time Equalization. In order to improve the understanding of
this action, we shall now study its stability and its effects on
different moments of the frames. In the last section, we will
experiment it on sequences presenting an artificial or a real
flicker.

E. Stability

First, let us study the effect of this time-smoothing process
on the mean of the frames. If we notemu(t) the mean of the
imageut, we have:

mu(t) =
∫ 1

0

xht(x)dx = 1−
∫ 1

0

Ht(x)dx =
∫ 1

0

Ht
−1(x)dx.

Consequently, any linear operation on the sequenceHt
−1

generates the same linear operation on the functionmu(t).
Hence the following proposition,

Proposition 4

∀t0, mTs(u)(t0) = Gs ∗t (mu)(t0).

The mean function is smoothed by the heat equation. In the
same way, every valueαt which can be written linearly from
the valuesHt

−1(x) is also smoothed by the heat equation, as
the median, for example, which is actually equal toHt

−1( 1
2 ).

The behaviour of the mean function in a real example and
for different choices ofs can be observed in the experiment
section (Figure 7 (c)).

The notion of stability here is closely related to the concrete
application of the method. Indeed, in the theoretical study,
we considered the filmu as if it was infinite, which is of
course not the case. The movieu has a finite discrete length
P . In order to apply the previous method, we consideru as a
time-periodic function. There is no reason for introducing an
interaction between the first and the last image of the film, so
we choose to symmetriseu on [0, 2P ] before its periodisation.
Hence,u is considered as periodic of period2P .

The smoothing process at scales changes each inverse
cumulative histogramλ → H−1

t0 (λ) into λ → (Gs ∗t
H−1
t (λ))(t0), which converges uniformly, whens → ∞,

towards a limit functionλ→ 1
2P

∫ 2P

0
H−1
t (λ)dt. And finally,

if we define

Hlim(λ) =

(
1

2P

∫ 2P

0

H−1
t (λ)dt

)−1

,

we can show the following result of convergence:

Proposition 5 If (t, λ)→ H−1
t (λ) is in L1([0, 1]× [0, 2P ])

and equicontinuous inλ, then, for all t, the sequence of
functions (λ → Hs

t (λ))s converges uniformly towardHlim

whens→∞.

This stability result supports the idea to use large scales in
order to equalize a sequence. In a sense, the scale represents
the size of the time neighborhood that we choose to equalize
each image of the film. The more the scale is large, the more
the final histograms of the sequence will be similar and tend
towardHlim. If a sequence does not contain scene transitions,
which is the case in the experiments of next section, we can
consider as reasonable to chooses ≥ 10.

IV. SOME EXPERIMENTS

We have tested our algorithm on several sequences, present-
ing either an artificial or a real flicker. The results are presented
here via some images of each sequence before and after the
equalization process. However, it is not easy to evaluate the
quality of the results on still images, and the improvement is
much more obvious seeing the films in motion: the sequences
used here and their corrections by scale-time equalization can
be found athttp://www.cmla.ens-cachan.fr/∼delon. One of the
advantages of the globality hypothesis relies on the speed of
the process: for images of 720x576 size, the whole process
treats around 4 images by second on a 800 MHz PC, and 18
images by second for a 240x180 size. Let us begin with two
sequences presenting an artificial flicker.



6

A. Sequences with an artificial flicker

The first one is a very simple synthetic case, which tends
to illustrate the works of the method. The images of the
film, that can be seen on Figure 4 (a), are all made from
a single image. This original image has only three different
grey levels: the first one corresponds to the clothes of the
character, the second one to its skin, and the last one to the
background. The different images of the film are obtained by
making these values vary independently in time (but without
changing the global order of the values: the background is
always the lighter one, etc...). This way, each image of the
film has an histogram composed of three peaks, located at grey
values that change in time (Figure 4 (b)). In this example the
artificial flicker is clearly global, but completely non-affine.
It cannot either be modeled by the local model of Ohuchi’s
paper [14]. Moreover, if we tried to replace each histogram by
a direct weighted average of its neighbour histograms (such as
suggested in Naranjo and Albiol paper [12]) the result would
be catastrophic: it would create histograms with several peaks
distributed all over the possible range, which has no sense.
Now, as we have seen, the Scale-Time Equalization compute
for each level set an average in the time direction of the grey
values taken by the set. Which means here that the grey values
of the background will be equalized together, etc... All the
images of the film here have the same geometry, therefore, at
a large scale, all the images obtained are identical (Figure 4
(c)). The corresponding limit histogram ((d)) is composed of
the same three peaks, located at the computed average values.
We can remark that if the character was moving in position
from one image to the other, the result would not change, as
it just relies on histograms.

The second example is a short film shot outdoor, to which
we added an artificial flicker. Concretely, each imageut is
replaced by an imageϕt(ut), whereϕt is a polynomial func-
tion whose coefficients change with time. Figure 5 (a) shows
three images of the degraded film (there is ten frames between
two consecutive images), and their intensity histograms, which
look pairwise very far from each other. On the same figure,
we represented the corresponding restored images and their
intensity histograms. We can see that the histograms of the
frames after restoration are almost identical, because of the
large scale chosen for restoration. The subjective quality of the
result is certain: visually, we can not distinguish this restored
sequence from the original one (before the degradation).

This example gives us the possibility to study the sensibility
of our algorithm to the presence of noise. Theoretically, if we
add a noiseb to an imageu, its intensity distribution becomes
hu ∗ hb, wherehb is the noise distribution. If the noise is
gaussian, the histogramhu is smoothed by this operation,
which should not be at all disturbing for the STE process. If
the noise is an impulsive noise, added top% of the pixels,
its distribution is of the formhb = (1 − p)δ0 + p. Thus,
hu ∗ hb = (1 − p)hu + ph̄u, which still should not be
much disturbing for the restoration process whenp is not too
large. In order to test it concretely, we made the following
experiment: before the flickering process, we added a gaussian
noise of standard deviationσ to each image of the original

film, and restored this new sequence with our algorithm. For
each imageu of the original sequence,unoise denotes the
corresponding noised image,unoise+flicker the corresponding
noised image after the flickering process, andurestored the
same image after deflickering. For each image of Figure 5,
we represented on Figure 6 the imagesunoise+flicker and
urestored for σ = 60. Visually, the results are quite good,
even for this large value ofσ. Logically, urestored should be
closer tounoise thanunoise+flicker. In order to verify it, we
measured, for different values ofσ, the averageL2 norms of
the differencesunoise − urestored andunoise − unoise+flicker
for the three images of Figure 5:

σ (noise std. dev.): 0 10 30 60
‖unoise − unoise+flicker‖2

image 1 51.62 51.45 50.01 46.45
image 10 15.84 15.76 15.32 14.13
image 20 53.98 53.74 52.25 47.97

‖unoise − urestored‖2
image 1 5.25 5.43 5.06 4.43
image 10 3.93 4.55 4.25 4.58
image 20 4.74 5.20 5.70 8.16

As expected, we see that the method is very robust to
gaussian noise. The globalL2 difference between each image
and its corresponding restored image does not change much
when σ increases. We begin to see differences aroundσ =
60, but they remain reasonable: forσ = 100, the ratio
‖unoise−urestored‖2/‖unoise−unoise+flicker‖2 is still around
1/5 for most of the images. The results for an impulsive noise
are quite similar: for a noise proportion of30%, the previous
ratio is still around1/10 for images 1 and 20, and around1/5
for image 10.

B. Sequences with a real flicker

The first real sequence is an extract of Chaplin’s movieHis
New Job(1915), and has been found on the page proposed
by Naranjo and Albiol in their paper [12]. Despite the fact
that the camera is fixed and the scene is shot indoor, the
sequence suffers from a severe real flicker. This proves that
the flicker can come from different sources, and be produced
by non natural causes (certainly the ageing of the film in this
particular case). Figure 7 (a) shows three samples of the film,
taken at equal intervals of time, and the same images after
the Scale-time Equalization. We can observe (even if it is
more obvious seeing the film in motion) that the flicker has
globally almost vanished. The same figure shows the time-
evolution of the current frame mean whens increases. As
predicted inProposition 4, this mean function is just smoothed
by the heat equation at scales. When s → ∞, the mean
function converges towards the constant function computed as
the average of all the frames means.

The second real example (Figure 8) is an extract of another
Chaplin’s movie, calledThe Cure (1917). The real flicker
present in this part of the film is much worse than in the
first example. In particular, some images are very dark and
low contrasted. After an equalization at a large scale, we
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can see that the flicker has almost vanished. However, the
quantization noise has globally increased, especially in low
contrasted zones. This drawback is inherent in any deflickering
method, local or global, affine or not: indeed, it appears as
soon as the grey level dynamic of an image is enlarged, even
locally. A good way to avoid it is to bound the slope of the
contrast function that is applied to the image for restoring it.

V. CONCLUSION

This paper presents a global way of reducing the effects
of flicker in films by a scale-time process. This process has
been constructed following a group of general and elementary
axioms, such as figure/background independence or time-shift
invariance, associated with basic axioms of scale-space theory.
As a global process, this method is robust to gaussian noise,
shaking, and motion. This simple method is more generic
than global affine methods, and we have seen why it is more
respectful of the grey level dynamics of the frames than
the method proposed by Naranjo and Albiol in their paper.
The scale-time dimension leads to simple results of stability,
ensures the robustness of the method to blotches or impulsive
noise, and guarantees that no bias or deviation can appear
in time, contrary to recursive methods. Results on sequences
containing an artificial or a real flicker are convincing: the
subjective quality of the films has clearly improved. In all cases
the flicker becomes almost imperceptible. In cases of a flicker
mixing both very local changes and global oscillations, this
process can still be used as a first step of deflickering before a
local treatment. Now, it is clear that such a deflickering process
looses its sense in the presence of scene transitions. It should
therefore be associated with a well chosen time-cut detector
(for instance, see [13]).
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(a)

(b)

(c)

(d)

Fig. 4. (a) Successive images with the same geometry, where flicker has
been added independently to the 3 different level sets. (b) Corresponding
histograms. We see that there is no affine transform that maps one histogram
on another. (c) Same images after Scale-Time Equalization at a large scale.
The values of the level sets have been regularized in time, and the geometry
does not change, hence the four images become identical. (d) Resulting
histograms of the four previous images. As expected, they are identical.
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(a)

(b)

(c)

(d)

Fig. 5. (a) Three images of a film to which we added a global and highly non-
affine artificial oscillating flicker, and (b) their intensity histograms. (c) Same
images after Scale Size Equalization at a large scale. The artificial flicker
has completely vanished. The original sequence is restored. (d) Intensity
histograms of the restored images. We see that they are very close to each
other.

Fig. 6. Top: Images of Figure 5, to which we added a gaussian noise of
standard deviationσ = 60 before adding the flicker. Bottom: Same images
after Scale-Time Equalization.

(a)

(b)

(c)

Fig. 7. (a) Three images of Chaplin’ s filmHis New Job, taken at equal
intervals of time. This extract of the film suffers from a severe real flicker.
(b) Same images after the Scale-Time Equalization at scales = 100. The
flicker observed before has globally decreased. (c) Evolution of the mean of
the current frame in time and at three different scales. The most oscillating
line is the mean of the original sequence. The second one is the mean at
scales = 10. The last one, almost constant, corresponds to the large scale
s = 1000. As expected fromProposition 4, the mean function is smoothed
by the heat equation.

Fig. 8. Top: Three images of Chaplin’s filmThe Cure, taken at equal interval
of time. This part of the film presents a strong real flicker. Some images in
particular are very dark and low contrasted. Bottom: Same images after a
scale-time equalization at a large scale. The flicker has almost vanished.


