
HAL Id: hal-02269043
https://hal.science/hal-02269043

Submitted on 22 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Symmetries When Proving Equivalence
Properties for Security Protocols

Vincent Cheval, Steve Kremer, Itsaka Rakotonirina

To cite this version:
Vincent Cheval, Steve Kremer, Itsaka Rakotonirina. Exploiting Symmetries When Proving Equiva-
lence Properties for Security Protocols. CCS’19 - 26th ACM Conference on Computer and Commu-
nications Security, Nov 2019, London, United Kingdom. �hal-02269043�

https://hal.science/hal-02269043
https://hal.archives-ouvertes.fr

Exploiting Symmetries When Proving
Equivalence Properties for Security Protocols

Vincent Cheval
INRIA Nancy Grand-Est

LORIA

Steve Kremer
INRIA Nancy Grand-Est

LORIA

Itsaka Rakotonirina
INRIA Nancy Grand-Est

LORIA

ABSTRACT

Verification of privacy-type properties for cryptographic protocols
in an active adversarial environment, modelled as a behavioural
equivalence in concurrent-process calculi, exhibits a high computa-
tional complexity. While undecidable in general, for some classes of
common cryptographic primitives the problem is coNEXP-complete
when the number of honest participants is bounded.

In this paper we develop optimisation techniques for verifying
equivalences, exploiting symmetries between the two processes
under study.We demonstrate that they provide a significant (several
orders of magnitude) speed-up in practice, thus increasing the size
of the protocols that can be analysed fully automatically.

CCS CONCEPTS

• Security and privacy→ Formal security models; Logic and
verification.

KEYWORDS

Security Protocols; Partial-Order Reductions; Symmetry

ACM Reference Format:

Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2019. Exploiting
Symmetries When Proving Equivalence Properties for Security Protocols.
In 2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’19), November 11–15, 2019, London, United Kingdom. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3319535.3354260

1 INTRODUCTION

Security protocols are distributed programs transmitting data be-
tween several parties. The underlying messages may be sensitive—
for economical, political, or privacy reasons—and communications
are usually performed through an untrusted network such as the In-
ternet. Therefore, such protocols need to guarantee strong security
requirements in an active adversarial setting, i.e., when considering
an adversary that has complete control over the communication
network. Formal, symbolic methods, rooted in the seminal work
of Dolev and Yao [26], have been successful in analysing complex
protocols, including for instance the recent TLS 1.3 proposal [11, 25]
and the upcoming 5G standard [8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3354260

While some security properties can be formalised as reachabil-
ity statements, privacy related properties are generally defined as
the indistinguishability of two situations where the value of a pri-
vate attribute differs. This is why privacy-type properties such as
anonymity, (strong flavors of) secrecy, unlinkability, or privacy in
e-voting are often modelled as behavioural equivalences in con-
current process calculi, such as the applied pi-calculus [1]. The
problem of verifying such equivalences is undecidable in the full,
Turing-complete, calculus. Still, decidability results and fully au-
tomated analysers exist when the number of protocol sessions is
bounded.

Unfortunately, recent results [16] show that the problem has
a high computational worst-case complexity (coNEXP-complete).
Yet, other results show that the problem is exponentially simpler
(coNP-complete) for a class of practical scenarios (determinate pro-
cesses) [21]. This gap is all the more striking in practice as, for deter-
minate processes, the verification time can effectively be reduced
by several orders of magnitude using partial-order reductions [6, 17].
This highlights the gap between the general, pessimistic complex-
ity bound and what can be achieved by exploiting specificities of
given instances. In practice, the processes that are analysed show a
great amount of symmetries as they often consist of several copies
(sessions) of the same protocol executed in parallel. Exploiting this
helps factoring out large, redundant parts of equivalence proofs,
and making theoretically hard verification feasible in practice.

Contributions

We present optimisations for the verification of trace equivalence
in the applied pi-calculus. For that we exploit the symmetries of
the two processes to be shown equivalent. More specifically, our
contributions are as follows.

(1) We introduce equivalence by session, a new process equiva-
lence that implies the classical trace equivalence. Intuitively,
it is a refinement of trace equivalence designed for two pro-
cesses sharing a similar structure, making verification easier.

(2) We show how partial-order reductions presented in [6] for
determinate processes, can be used for proving equivalence
by session for any processes.

(3) We give a group-theoretic characterisation of internal pro-
cess redundancy, inspired by classical formalisations of sym-
metries in model checking [28], and use it to reduce further
the complexity of deciding equivalence by session.

(4) We design a symbolic version of the above equivalence and
optimisations, based on the constraint solving techniques of
the DeepSec prover [17], a state-of-the-art tool for verifying
equivalence properties in security protocols. This allowed
us to implement our techniques in DeepSec and evaluate the
gain in verification time induced by our optimisations.

https://doi.org/10.1145/3319535.3354260
https://doi.org/10.1145/3319535.3354260

Note that, while we designed equivalence by session as an effi-
cient proof technique for trace equivalence it is also of independent
interest: to some extent, equivalence by session models attackers
that can distinguish different sessions of a same protocol. This may
be considered realistic when servers allocate a distinct ephemeral
port for each session; in other contexts, e.g. RFID communication
this may however be too strong. When equivalence by session is
used as a proof technique for trace equivalence, false attacks are
possible, as it is a sound, but not complete, refinement. However, on
the existing protocols we experimented on, each time equivalence
by session was violated, trace equivalence was violated as well.

Our prototype is able to successfully analyse various security
protocols that are currently out of scope—in terms of expressivity
or exceeding a 12h timeout—of similar state-of-the-art analysers.
We observe improvements of several orders of magnitude in terms
of efficiency, compared to the original version of DeepSec. Among
the case studies that we consider areq the Basic Acces Control (BAC) protocol [29] implemented in Eu-

ropean e-passports. In previous work, verification was limited to
merely 2 sessions, while in this paper we scale up to 5 sessions.q the Helios e-voting protocol [2]. Automated analyses of this pro-
tocol exist when no revote is allowed, or is limited to one revote
from a honest voter [3, 16]. In this paper, we analyse several
models covering revote scenarios for 7 emitted honest ballots.
Themain technical proofs of our results can be found in appendix.

See the companion technical report [18] for full proofs and more
general versions of the results presented in this paper.

Related work

Partial-order reduction (por) techniques for the verification of cryp-
tographic protocols were first introduced by Clark et al. [20]: while
well developed in verification of reactive systems these existing
techniques do not easily carry over to security protocols, mainly
due to the symbolic treatment of attacker knowledge. Mödersheim
et al. [30] proposed por techniques that are suitable for symbolic
methods based on constraint solving. However, both the techniques
of Clark et al. [20] and Mödersheim et al. [30] are only correct for
trace properties.

Partial order reduction techniques for equivalence properties
were only introduced more recently by Baelde et al. [5, 6]: im-
plementing these techniques in the APTE tool resulted in spec-
tacular speed-ups. Other state-of-the-art tools, AKISS [14] and
DeepSec [16], integrated these techniques as well. However, these
existing techniques are limited in scope as they require protocols
to be determinate. Examples of protocols that are typically not mod-
elled as determinate processes are the BAC protocol, and the Helios
e-voting protocol mentioned above. In recent work, Baelde et al. [7]
propose por techniques that also apply to non-determinate pro-
cesses (but do not support private channels) and implement these
techniques in the DeepSec tool. Unfortunately, these techniques
introduce a computational overhead, that limits the efficiency gain.
As our experiments will show, our techniques, although including
some approximations, significantly improve efficiency.

There exist other tools for the verification of equivalence prop-
erties in the case of a bounded number of sessions. The SAT-Eqiv
tool [22] is extremely efficient, but its scope is more narrow: it does

not support user-defined equational theories and is restricted to
determinate processes. As shown in [16], the AKISS [14] and SPEC
tool [32] were already less efficient (by orders of magnitude) than
the DeepSec tool before our current work. We also mention the
less recent S3A tool [27] that verifies testing equivalence in the
SPI calculus and integrates some symmetry (but no partial-order)
reductions [19]. The tool however only supports a fixed equational
theory and no else branches. We are not aware of a publicly avail-
able implementation.

Finally, our approach can also be compared to tools for an un-
bounded number of sessions. The ProVerif [13], Tamarin [9] and
Maude-NPA [31] tools all show a process equivalence that is more
fine-grained than trace-equivalence. The resulting equivalence is
often referred to as diff-equivalence in that it requires that equiva-
lent processes follow the same execution flow and only differ on
the data. As a result these techniques may fail to prove equiva-
lence of processes that are trace equivalent. Our approach goes in
the same direction but equivalence by session is less fine-grained,
for example capturing equivalence proofs for the BAC protocol. A
detailed comparison between these two equivalences is given in
Section 3.1. Besides, the restriction to a bounded number of sessions
allows us to decide equivalence by session, while termination is
not guaranteed for tools in the unbounded case.

2 MODEL

We first present our model for formalising privacy-type properties
of security protocols. They are represented by trace equivalence of
processes in the applied-pi calculus [1].

2.1 Messages and cryptography

To analyse protocols, we rely on symbolic models rooted in the
seminal work of Dolev and Yao [26]. Cryptographic operations
are modelled by a finite signature, i.e., a set of function symbols
with their arity F = {f/n, g/m, . . .}. Atomic data such as nonces,
random numbers, or cryptographic keys are represented by an
infinite set of names

N = {a,b,k, . . .} = Npub ∪ Npriv

partitioned into public and private names. We also consider an
infinite set of variables X = {x,y, z, . . .}. Protocol messages are
then modelled as terms obtained by application of function symbols
to names, variables or other terms. If A ⊆ N ∪ X, T(F ,A) refers
to the set of terms built from atoms in A.

Example 2.1. The following signature F models classical primitives:
pair and projections, public-key generation, randomised asymmet-
ric encryption and decryption, and digital signature.

⟨·, ·⟩/2 proj1/1 proj2/1 pk/1

aenc/3 adec/2 sign/2 verify/2
For example, let m ∈ Npub model some public value, and k, r ∈

Npriv a private key and a random value, respectively. The term c =
aenc(m, pk(k), r) represents a ciphertext obtained by encrypting
m with the public key pk(k) and randomness r . Its decryption is
represented by the term adec(c,k). △

An equational theory is a binary relation E on terms. It is ex-
tended to an equivalence relation =E that is the closure of E by

reflexivity, symmetry, transitivity, substitution and applications of
function symbols. All the optimisations we present in this paper
are sound for arbitrary equational theories although, obviously, the
implementation inDeepSec naturally inherits the restrictions of the
tool (limited to destructor subterm convergent rewriting systems).

Example 2.2. The following equations characterise the behaviour
of the primitives introduced in Example 2.1:

proj1(⟨x,y⟩) =E x adec(aenc(x, pk(y), z),y) =E x

proj2(⟨x,y⟩) =E y verify(sign(x,y), pk(y)) =E x

That is, a message encrypted with a public key pk(k) can be recov-
ered with the corresponding private key k , and a message signed
with k can be recovered with pk(k). Using the notations of Exam-
ple 2.1, we can derive from these equations that adec(c,k) =E m.
One-wayness of h is modelled by an absence of equations. △

A substitution σ is a mapping from variables to terms, homo-
morphically extended to a function from terms to terms. We use
the classical postfix notation tσ instead of σ (t), and the set nota-
tion σ = {x1 7→ x1σ , . . . , xn 7→ xnσ }. In particular we may use
operators such as ⊆ or ∩ with substitutions.

2.2 Protocols as processes

Syntax. Protocols are modelled as concurrent processes exchang-
ing messages (i.e. terms). We define the syntax of plain processes by
the following grammar:

P,Q := 0 null
P | Q parallel
if u = v then P else Q conditional
c ⟨u⟩.P output
c(x).P input

where u,v are terms, x ∈ X, and c ∈ Ch where Ch denotes a set of
channels. We assume a partition Ch = Chpub ∪ Chpriv of channels
into public and private channels: while public channels are under
the control of the adversary, private channels allow confidential, in-
ternal communications. The 0 process is the terminal process which
does nothing, the operator P | Q executes P and Q concurrently,
c ⟨u⟩ sends a message u on channel c , and c(x) receives a message
(and binds it to the variable x).

We highlight two restrictions compared to the calculus of [1]:
we only consider a bounded number of protocol sessions (i.e. there
is no operator for unbounded parallel replication) and channels are
modelled by a separate datatype (i.e. they are never used as parts of
messages). The first restriction is necessary for decidability [14, 16,
32] but still allows to detect many flaws since attacks tend to require
a rather small number of sessions. Our optimisations also rely on an
invariant that private channels remain unknown to the adversary,
hence the restriction to disallow channel names in messages.

Example 2.3. We describe a minimal toy protocol for electronic
voting that will serve as a running example throughout the paper.
We build upon the signature and equational theory introduced in
Examples 2.1 and 2.2. The system operates as follows:
(1) Each voter generates a private signature key and sends the

corresping public key to the voting authority using an authen-
ticated channel;

(2) The voter encrypts a pair ⟨vote, public key⟩ (using the public
key of the voting authority), signs it, and casts it;

(3) After verifying the signatures and decrypting the messages, the
voting authority shuffles the votes using a mixnet, and outputs
them in clear.

The first messages of the protocol (communication of the signature
key, casting one vote, and verification of the signature) can be
modelled as follows in the applied pi-calculus:
Voter(c, vote, s, r) =

auth⟨pk(sV)⟩.
c ⟨pk(sV)⟩.
c ⟨sign(v, sV)⟩. 0 with v = aenc(⟨vote, pk(sV)⟩, pk(sA), r)

Authority =

auth(pksign1). c(x1).
if proj2(adec(verify(x1, pksign1), sA)) = pksign1 then
auth(pksign2). c(x2).
if proj2(adec(verify(x1, pksign2), sA)) = pksign2 then
(· · ·)

where auth ∈ Chpriv , sV ∈ Npriv is the generated signature key,
and sA ∈ Npriv the authority’s private key. In the voter process,
the authenticated transfer of the signature key is modelled by two
consecutive outputs of pk(sV): a first output on a private channel
auth and a second output on a public channel c . The private channel
ensures that the adversary cannot block or modify the content of
the message; the public channel enables the adversary to eavesdrop
the message. In the authority process, two signed votes are verified.
The overall system with two voters is modelled by

S(v1, v2) = Voter(c1, v1, s1, r1) | Voter(c2, v2, s2, r2) | Authority

where c1, c2 ∈ Chpub , s1, s2, r1, r2 ∈ Npriv . △

Semantics. The behaviour of protocols is defined by an operational
semantics on processes. Its first ingredients are simplifying rules
to normalise processes from non-observable, deterministic actions
(Figure 1).

P | 0⇝ P 0 | P ⇝ P (P | Q) | R ⇝ P | (Q | R)

P | Q ⇝ P ′ | Q
Q | P ⇝ Q | P ′

}
if P ⇝ P ′

if u = v then P elseQ ⇝
{

P if u =E v
Q otherwise

Figure 1: Simplification rules for plain processes

These simplifying rules get rid of 0 processes, and evaluate con-
ditionals at toplevel. We say that a process on which no more rule
applies is in⇝-normal form. This rewriting relation being conver-
gent, we will denote by P ⇝ the unique⇝-normal form of P .

The operational semantics then operates on extended processes.
An extended process is a pair (P,Φ), where P is a multiset of plain
processes (in⇝-normal form) and Φ is a substitution, called the
frame. Intuitively, P is the multiset of processes that are ready to
be executed in parallel, and Φ is used to record outputs on public
channels. The domain of the substitution Φ is a subset of a set AX

of axioms, disjoint from X: they record the raw observations of the
attacker, that is, they are the axioms in intruder deduction proofs.
The semantics (Figure 2) takes the form of a labelled transition
relation

α
−→ between extended processes, where α is called an action

and indicates what kind of transition is performed.

(Out) ({{c ⟨u⟩.P}} ∪ P,Φ)
c ⟨ax⟩
−−−−−→ ({{P

⇝

}} ∪ P,Φ ∪ {ax 7→ u})
c ∈ Chpub, ax ∈ AX ∖ dom(Φ)

(In) ({{c(x).P}} ∪ P,Φ)
c(ξ)
−−−→ ({{P[x 7→ ξΦ]

⇝

}} ∪ P,Φ)
c ∈ Chpub, ξ ∈ T (F ,Npub ∪ dom(Φ))

(Comm) ({{c ⟨u⟩.P, c(x).Q}} ∪ P,Φ)
τ
−→ ({{P,Q[x 7→ u]}} ∪ P,Φ)

c ∈ Chpriv

(Par) ({{P1 | . . . | Pn }} ∪ P,Φ)
τ
−→ ({{Pi }}

n
i=1 ∪ P,Φ)

Figure 2: Operational semantics of the applied pi-calculus

The output rule (Out) models that outputs on a public channel
are added to the attacker knowledge, i.e., stored inΦ in a fresh axiom.
The axioms thus provide handles for the attacker to refer to these
outputs. The input rule (In) reads a term ξ , called a recipe provided
by the attacker, on a public channel. This term ξ can be effectively
constructed by the attacker as it is built over public names and
elements of dom(Φ), i.e. previous outputs. The resulting term is
then bound to the input variable x . Rule (Comm) models internal
communication on a private channel and rule (Par) adds processes
in parallel to the multiset of active processes. These last two actions
are internal actions (label τ), unobservable by the attacker.

Traces. A trace of an extended processA is a sequence of reduction
steps starting from the extended process A, written

t : A
α1
−−→ A1

α2
−−→ · · ·

αn
−−→ An .

When the intermediate processes are not relevant we rather write

t : A
α1 · · ·αn
======⇒ An .

We define tr(t) to be the word of actions α1 · · ·αn (including τ ’s),
and Φ(t) to be the frame of An .

The set of the traces of A is written T(A), and the notation is
extended to plain processes by writing T(P) for T({{P}}, ∅). Indistin-
guishability against active adversaries will be modelled as relations
between such sets of traces.

Example 2.4. Consider again the voting system partially repre-
sented in Example 2.3. Let us write R the non-modelled part of
the process Authority. Then the system S has the following trace
modelling the first voter casting her vote:

({{S}}, ∅)
τ
−→ ({{Voter(c1,v1, s1, r1),Voter(c2,v2, s2, r2),Authority}}, ∅)

τ c1 ⟨ax1 ⟩c1 ⟨ax2 ⟩
=============⇒ ({{0,Voter(c2,v2, s2, r2),A′}},Φ)

c(ax2)
−−−−−→ ({{0,Voter(c2,v2, s2, r2),A′′}},Φ)

where

A′ = c(x1).

if proj2(adec(verify(x1, pk(s1)), sA)) = pk(s1) then A′′

A′′ = auth(pksign2). c(x2).

if proj2(adec(verify(x1, pksign2), sA)) = pksign2 then R

Φ = {ax1 7→ pk(s1),

ax2 7→ sign(aenc(⟨v1, pk(s1)⟩, pk(sA), r1), pk(s1))} △

2.3 Security properties

Many security properties can be expressed in terms of indistin-
guishability (from the attacker’s viewpoint). The preservation of
anonymity during a protocol execution can for example be mod-
elled as the indistinguishability of two instances of the protocol
with different participants. Strong flavors of secrecy can also be
expressed: after interacting with the protocol, the attacker is still un-
able to distinguish between a secret used during the protocol and a
fresh random nonce. Our case studies also include such modellings
of unlinkability or vote privacy.

Static equivalence. The ability to distinguish or not between two
situations lies on the attacker’s observations, i.e. the frame. Indis-
tinguishability of two frames is captured by the notion of static
equivalence. Intuitively, we say that two frames are statically equiv-
alent if the attacker cannot craft an equality test that holds in one
frame and not in the other.

Definition 2.1. Two frames Φ1 and Φ2 are statically equivalent,
written Φ1 ∼ Φ2 when dom(Φ1) = dom(Φ2) and, for any recipes
ξ1, ξ2 ∈ T (F ,Npub ∪ dom(Φ1)),

ξ1Φ1 =E ξ2Φ1 ⇔ ξ1Φ2 =E ξ2Φ2

We lift static equivalence to traces and write t0 ∼ t1 when
Φ(t0) ∼ Φ(t1) and tr0 = tr1, where tri is obtained by removing
τ ’s from tr(ti). Removing τ actions reflects that these actions are
unobservable by the attacker.

Trace equivalence. While static equivalence models the (passive)
indistinguishability of two sequences of observations, trace equiv-
alence captures the indistinguishability of two processes P and Q
in the presence of an active attacker. Intuitively, we require that
any sequence of visible actions executable on P is also executable
on Q and yields indistinguishable outputs, i.e., statically equivalent
frames.

Definition 2.2. Let P,Q be plain processes in⇝-normal form. P
is trace included in Q , written P ⊑tr Q , when

∀t ∈ T(P), ∃t ′ ∈ T(Q), t ∼ t ′ .

We say that P and Q are trace equivalent, written P ≈tr Q , when
P ⊑tr Q and Q ⊑tr P .

Example 2.5. A statement of vote privacy of the voting system
modelled in Example 2.3 would be

S(vote1, vote2) ≈tr S(vote2, vote1)

where vote1, vote2 ∈ Npub model two potentiel different votes. For
a shorter, more concrete example, we let s ∈ Npriv and define

V (R) = c(x). if proj2(verify(x, pk(s))) = pk(s) then R.

This is similar to the verification performed by the authority in
the running example, without encryption. The secrecy of s , i.e. the
inability of the attacker to forge signatures, can be stated by

V (c ⟨oops⟩) ≈tr V (0) .

As expected, this statement does not hold anymore if s is revealed,

V (c ⟨oops⟩) | c ⟨s⟩ ̸≈tr V (0) | c ⟨s⟩

where c ∈ Chpub. A possible witness of non-equivalence is the
following trace in A = ({{V (c ⟨oops⟩) | c ⟨s⟩}}, ∅), where n ∈ Npub:

tleft : A
c ⟨ax1 ⟩
=====⇒ ({{V (c ⟨oops⟩)}}, {ax1 7→ s})

c(sign(⟨n,pk(ax1)⟩,ax1))
−−−−−−−−−−−−−−−−−−−−→ ({{c ⟨oops⟩}}, {ax1 7→ s})

c ⟨ax2 ⟩
−−−−−→ ({{0}}, {ax1 7→ s, ax2 7→ oops}) △

3 OPTIMISING VERIFICATION

The problem of verifying trace equivalence in the presented model
is coNEXP-complete for equational theories represented as sub-
term convergent destructor rewrite systems [16]. Despite this high
theoretical complexity, automated analysers can take advantage
of the specificities of practical instances. One notable example is
the class of determinate processes that encompasses many practical
scenarios and has received quite some attention [6, 14, 17, 21]. It
allows for partial-order reductions [6], speeding up the verifica-
tion time by several orders of magnitude. Our approach, similar in
spirit but applicable in a more general setting, consists in guiding
the decision procedure with the structural similarities of the two
processes that we aim to show equivalent.

3.1 Equivalence by session

We introduce a new equivalence relation, equivalence by session:
the main idea is that, when proving the equivalence of P and Q ,
every action of a given parallel subprocess of P should be matched
by the actions of a same subprocess in Q . This is indeed often the
case in protocol analysis where a given session (the execution of
an instance of a protocol role) on one side is matched by a session
on the other side. By requiring to match sessions rather than in-
dividual actions, this yields a more fine-grained equivalence and
effectively reduces the combinatorial explosion. Moreover, thanks
to the optimisations that exploit the structural properties of equiv-
alence by session (presented in the following sections), we obtain
significant speed-ups during the verification of case studies that are
neither determinate nor in scope of the (even more fined-grained)
diff-equivalence of ProVerif and Tamarin.

Twin-processes. To formalise session matchings we use a notion
of twin-process, that are pairs of matched processes that have the
same action at toplevel, called their skeleton.

Definition 3.1. A twin-process is a pair of plain processes in
⇝-normal form (P,Q) such that skel(P) = skel(Q), where

if c ∈ Chpub: skel(c(x).Q)= {{inc }} skel(c ⟨x⟩.Q)= {{outc }}
if d ∈ Chpriv : skel(d(x).Q)= {{in}} skel(d ⟨x⟩.Q)= {{out}}

skel(P1 | · · · | Pn) = skel(P1) ∪ . . . ∪ skel(Pn)

An extended twin-processA2 = (P2,Φ0,Φ1) is then a triple where
P2 is a multiset of twin-processes and Φ0,Φ1 are frames. This thus
models two extended processes with identical skeletons, matched
together. We retrieve the original extended processes by projection,

fst(A2) = ({{P0 | (P0, P1) ∈ P2}},Φ0)

snd(A2) = ({{P1 | (P0, P1) ∈ P2}},Φ1)

The semantics of twin-processes is defined in Figure 3 andmostly
requires that the two projections follow the same reduction steps
in the single-process semantics. The rule (Par) is however replaced
by a rule that allows to match each parallel subprocess from the
left with a parallel process from the right. We underline that, by
definition of twin-processes, a transitionA2 α

−→s (P
2,Φ) is possible

only if for all (P,Q) ∈ P2, it holds that skel(P) = skel(Q).
Similarly to extended processes, we use T(A2) to denote the set

of reduction steps from an extended twin-process A2. Besides if

t2 : A2 α1
−−→s A

2
1 · · ·

αn
−−→s A

2
n ∈ T(A2

1) ,

we also lift the projection functions by writing

fst(t2) : fst(A2)
α1
−−→s fst(A2

1) · · ·
αn
−−→s fst(A2

n+1)

and similarly for snd(t2). Note that fst(t2) ∈ T(fst(A2)).

Equivalence by session. Equivalence by session is similar to trace
equivalence but only considers the traces of Q matching the struc-
ture of the trace of P under study. This structural requirement is
formalised by considering traces of the twin-process (P,Q). For-
mally speaking, given two plain processes P and Q in⇝-normal
form having the same skeleton, we write P ⊑s Q when

∀t ∈ T(P), ∃t2 ∈ T(P,Q), t = fst(t2) ∼ snd(t2) .

We say that P and Q are equivalent by session, referred as P ≈s Q ,
when P ⊑s Q and Q ⊑s P .

While equivalence by session has been designed to increase effi-
ciency of verification procedures, it is also of independent interest.
Equivalence by session captures a notion of indistinguishability
against an adversary that is able to distinguish actions which origi-
nate from different protocol sessions. Such an adversarial model
may for instance be considered realistic in protocols where servers
dynamically allocate a distinct ephemeral port to each session. An
attacker would therefore observe these ports and always differen-
tiate one session from another. When considering equivalence by
session, this allocation mechanism does not need to be explicitly
modelled as it is already reflected natively in the definition. On the
contrary when considering trace equivalence, an explicit modelling
within the processes would be needed. For example equivalence by
session of two protocol sessions operating on a public channel c ,

P(c) | P(c) ≈s Q(c) | Q(c)

could be encoded by relying on dynamically-generated private
channels that are revealed to the attacker. This can be expressed in
the original syntax of the applied pi-calclulus [1] as:

Pfresh | Pfresh ≈tr Qfresh | Qfresh where Pfresh = new e . c ⟨e⟩. P(e)

and Qfresh = new e . c ⟨e⟩.Q(e)

Such encodings however break determinacy and are therefore in-
compatible with the partial-order reductions of [6]. Our dedicated

({{Pi }},Φi)
α
−→ ({{P ′i }},Φ

′
i) by rule (In) or (Out) for all i ∈ {0, 1}

({{(P0, P1)}} ∪ P2,Φ0,Φ1)
α
−→s ({{(P

′
0, P

′
1)}} ∪ P2,Φ′

0,Φ
′
1)

(IO)

({{Pi ,Qi }},Φi)
τ
−→ ({{P ′i ,Q

′
i }},Φi) by rule (Comm) for all i ∈ {0, 1}

({{(P0, P1), (Q0,Q1)}} ∪ P2,Φ0,Φ1)
τ
−→s ({{(P

′
0, P

′
1), (Q

′
0,Q

′
1)}} ∪ P2,Φ0,Φ1)

(Comm)

π permutation of ⟦1,n⟧
({{(P1 | · · · | Pn, Q1 | · · · | Qn)}} ∪ P2,Φ0,Φ1)

τ
−→s ({{(Pi ,Qπ (i))}}

n
i=1 ∪ P2,Φ0,Φ1)

(Match)

Figure 3: Semantics on twin-processes

equivalence offers similar-in-spirit optimisations that are applica-
ble on all processes . In this paper we mostly focus on the use of
equivalence by session as a heuristic for trace equivalence.

3.2 Comparison to other equivalences

Relation to trace equivalence. We first show that equivalence
by session is a sound refinement of trace equivalence.

Proposition 3.2. If P ≈s Q then P ≈tr Q .

This is immediate as t2 ∈ T(P,Q) entails snd(t2) ∈ T(Q). The
converse does not hold in general, meaning that two processes
that are not equivalent by session might be trace equivalent. The
simplest example is, for n ∈ Npub ,

P = c ⟨n⟩. c ⟨n⟩ Q = c ⟨n⟩ | c ⟨n⟩

We call false attacks traces witnessing a violation of equivalence
by session, but that can still be matched trace-equivalence-wise. In
this example even the empty trace is a false attack since the two
processes fail to meet the requirement of having identical skele-
tons. Such extreme configurations are however unlikely to occur
in practice: as previously explained, privacy is usually modelled
as the equivalence of two protocol instances where some private
attributes are changed. In particular the overall structure in parallel
processes remains common to both sides.

More realistic false attacks may arise when the structural require-
ments of equivalence by session are too strong, i.e. when matching
the trace requires mixing actions from different sessions. Consider
for example the two processes

P = s ⟨n⟩. a⟨n⟩ | s(x).b⟨n⟩ Q = s ⟨n⟩.b⟨n⟩ | s(x). a⟨n⟩

with a,b ∈ Chpub and s ∈ Chpriv . These two processes first syn-
chronise on a private channel s by the means of an internal commu-
nication, and then perform two parallel outputs on public channels
a,b. They are easily seen to be trace equivalent. However the skele-
tons at toplevel constrain the session matchings, i.e. the application
of rule (Match). The consequence is that any trace executing an
output on either a or b is a false attack.

Let us finally mention that false attacks cannot happen for deter-
minate processes, i.e. the class of processes for which the partial-
order reductions of [6] were designed. A plain process P is deter-
minate if it does not contain private channels and,

∀P
tr
=⇒ ({{P1, . . . , Pn }},Φ), ∀i , j, skel(Pi) , skel(Pj) .

Proposition 3.3. If P,Q are determinate plain processes such that
P ≈tr Q then P ≈s Q .

The core argument is that determinacy ensures the uniqueness
of potential session matchings; that is, there is always at most one
permutation that can be chosen when applying the rule (Match)
to a pair of determinate processes. We detailed the proof of this
proposition in Appendix B: thanks to the structural requirements
imposed by skeletons, we even prove that trace equivalence (≈tr)
and inclusion by session (⊑s) coincide for determinate processes.

Relation to diff-equivalence. ProVerif, Tamarin andMaude-
NPA are semi-automated tools that can provide equivalence proofs
for an unbounded number of protocol sessions. For that they rely
on another refinement of trace equivalence, called diff-equivalence
(≈d). It relies on a similar intuition as equivalence by session, adding
(much stronger) structural requirements to proofs. To prove diff-
equivalence of P and Q , one first requires that P and Q have syn-
tactically the same structure and that they only differ by the data
(i.e. the terms) inside the process. Second, any trace of P must be
matched in Q by the trace that follows exactly the same control
flow. Consider for example

P = c ⟨u⟩ | c ⟨v⟩ | R Q = c ⟨u ′⟩ | c ⟨v ′⟩ | R′

For P and Q to be diff-equivalent, traces of P starting with c ⟨u⟩
need to be matched by traces of Q starting with c ⟨u ′⟩.

In the original definition of diff-equivalence [12] conditional
branchings were also required to result into the same control-flow.
This condition has however been relaxed within [15]: the resulting
diff-equivalence can be defined in our formalism as equivalence
by session in which the rule (Match) only performs the identity
matching. That is, if we write Td (P,Q) for the subset of traces of
T(P,Q) where the rule (Match) is replaced by

({{(P1 | · · · | Pn,Q1 | · · · | Qn)}} ∪ P2,Φ0,Φ1)
τ
−→s ({{(Pi ,Qi)}}

n
i=1 ∪ P2,Φ0,Φ1)

then we define P ⊑d Q as the statement

∀t ∈ T(P), ∃t2 ∈ Td (P,Q), t = fst(t2) ∼ snd(t2) .

We say that P and Q are diff-equivalent, written P ≈d Q , when
P ⊑d Q and Q ⊑d P . By definition Td (P,Q) ⊆ T(P,Q) and diff-
equivalence therefore refines equivalence by session. The converse

does not hold in general as witnessed by

P = c ⟨a⟩ | c ⟨b⟩ Q = c ⟨b⟩ | c ⟨a⟩ a,b ∈ Npub distinct

This example is rather extreme as a simple pre-processing on par-
allel operators would make the processes diff-equivalent. Such a
pre-processing is however not possible for more involved, real-
world examples such as the equivalences we prove on the BAC
protocol in Section 7. The underlying reason is that the matchings
have to be selected dynamically, that is, different session matchings
are needed to match different traces. To sum up:

Proposition 3.4. ≈d ⊊ ≈s ⊊ ≈tr

3.3 Trace refinements

In this section we present an abstract notion of optimisation, based
on trace refinements. This comes with several properties on how
to compose and refine them, providing a unified way of presenting
different concrete optimisations for the decision of equivalence by
session in the following sections.

Definition 3.5. An optimisation is a pairO = (O∀,O∃)whereO∀ is
a set of traces of extended processes (universal optimisation), andO∃

a set of traces of extended twin-processes (existential optimisation).

Intuitively, an optimisation reduces the set of traces that are
considered when verifying equivalence: when proving P ⊑s Q ,
only traces of T(P) ∩ O∀ and T(P,Q) ∩ O∃ will be studied. That is,
we define the equivalence ≈O =⊑O ∩ ⊒O where P ⊑O Q means

∀t ∈ T(P) ∩ O∀, ∃t2 ∈ T(P,Q) ∩ O∃, t = fst(t2) ∼ snd(t2) .

In particular ≈Oall is the equivalence by session, where Oall =
(O∀

all,O
∃

all) contains all traces. However, of course, such refinements
may induce different notions of equivalence, hence the need for
correctness arguments specific to each layer of optimisation. We
specify this as follows: if Oα = (O∀

α ,O
∃
α) and Oβ = (O∀

β ,O
∃

β), we
say that Oα is a correct refinement of Oβ when

O∀

α ⊆ O∀

β and O∃

α ⊆ O∃

β and ≈Oα = ≈Oβ .

Correct refinements contribute to reducing the complexity of
deciding equivalence.

Properties. The remainder of this section provides elementary
properties useful when constructing, and composing optimisations.
First we show that they can be constructed stepwise.

Proposition 3.6 (transitivity). If O1 is a correct refinement
of O2, and O2 is a correct refinement of O3, then O1 is a correct
refinement of O3.

Moreover, we can prove refinements of an optimisation in a
modular way, showing separately that universal and existential
optimisations are correct.

Proposition 3.7 (combination). If (O∀

opt,O
∃) and (O∀,O∃

opt) are
correct refinements of (O∀,O∃), then (O∀

opt,O
∃

opt) is a correct refine-
ment of (O∀,O∃).

Proof. Let ≈××, ≈◦×, ≈×◦ and ≈◦◦ the equivalences induced by
the optimisations (O∀,O∃), (O∀

opt,O
∃), (O∀,O∃

opt) and (O∀

opt,O
∃

opt),
respectively. As ≈◦× =≈×× =≈×◦ by hypothesis, the result follows
from the straightforward inclusions ≈◦◦ ⊆ ≈◦× and ≈×◦ ⊆ ≈◦◦. □

Relying on this result, we see a universal optimisation O∀ (resp.
existential optimisations O∃) as the optimisation (O∀,O∃

all) (resp.
(O∀

all,O
∃)). This lightens presentation as we can now meaningfully

talk about universal (resp. existential) optimisations being correct
refinements of others.

Finally, when implementing such optimisations in tools, decid-
ing the membership of a trace in the sets O∀ or O∃ may sometimes
be inefficient or not effective. In these cases we may want to im-
plement these optimisations partially, using for example sufficient
conditions. The following proposition states that such partial im-
plementations still result into correct refinements.

Proposition 3.8 (partial implementability). Let us consider
O∀

opt ⊆ O
∀

part ⊆ O
∀ andO∃

opt ⊆ O
∃

part ⊆ O
∃. IfO∀

opt is a correct refine-
ment of O∀ and O∃

opt is a correct refinement of O∃, then (O∀

part,O
∃

part)

is a correct refinement of (O∀,O∃).

This is a straightforward corollary of Proposition 3.7. In the
rest of the paper we assume the reader familiar with group theory
(group actions, stabilisers), in particular the group of permutations
(written in cycle notation). Most of our optimisations are indeed
expressed using this terminology.

4 PARTIAL-ORDER REDUCTIONS

In this section we present partial-order reductions for equivalence
by session. They are inspired by similar techniques developed for
proving trace equivalence of determinate processes [6], although
they differ in their technical development to preserve correctness in
our more general setting. In particular the optimisations we present
account for non determinacy and private channels which will be
useful when analysing e-voting protocols.

4.1 Labels and independence

Labels. Partial-order reductions identify commutativity relations
in a set of traces and factor out the resulting redundancy. Herewe ex-
ploit the permutability of concurrent actions without output-input
data flow. For that we introduce labels to reason about dependencies
in the execution:q Plain processes P are labelled [P]ℓ , with ℓ a word of integers

reflecting the position of P within the whole process.q Actions α are labelled [α]L to reflect the label(s) of the pro-
cess(es) they originate from. That is, L is either a single word
of integers ℓ (for inputs and outputs) or a pair of such, written
ℓ1 | ℓ2 (for internal communications).
Labels can be bootstrapped arbitrarily, say, by the empty word

ε , and are propagated as follows in the operational semantics. The
(Par) rule extends labels:

({{[P1 | · · · | Pn]
ℓ}} ∪ P,Φ)

[τ]ℓ

−−−−→s ({{[Pi]
ℓ.i }}ni=1 ∪ P,Φ)

The rules (In) and (Out) preserve them:

({{[P]ℓ}} ∪ P,Φ)
[α]ℓ

−−−−→s ({{[P
′]ℓ}} ∪ P,Φ′)

and so does (Comm), however producing a double label:

({{[P]ℓ, [Q]ℓ
′

}} ∪ P,Φ)
[τ]ℓ |ℓ

′

−−−−−−→ ({{[P ′]ℓ, [Q ′]ℓ
′

}} ∪ P,Φ) .

In particular, we always implicitly assume the invariant pre-
served by transitions that extended processes contain labels that
are pairwise incomparable w.r.t. the prefix ordering.

Independence. Labelsmaterialise control-flow dependencies. Two
actions α = [a]L and α ′ = [a′]L

′

are sequentially dependent if one
of the (one or two) words of L, and one of L′, are comparable w.r.t.
the prefix ordering. Regarding input-output dependencies, we say
that α and α ′ are data dependent when {a,a′} = {c ⟨ax⟩, c(ξ)} and
ax appears in ξ . The two notions combine into:

Definition 4.1 (independence). Two actions α and α ′ are said in-
dependent, written α || α ′, when they are sequentially independent
and data independent.

There is some redundancy in the trace space in that, intuitively,
swapping adjacent, independent actions in a trace has no substan-
tial effect. The rest of this section formalises the intuition that
equivalence by session can be studied up to arbitrary permutation
of their independent actions (proofs in Appendix C).

Correctness of por techniques. If tr = α1 · · ·αn and π is a per-
mutation of ⟦1,n⟧, we write

π .tr = απ (1) · · ·απ (n)

for the new sequence of actions obtained after permuting the actions
of trwith π . This is an action of the group of permutations of ⟦1,n⟧
on action words of size n.

We say that π permutes independent actions of tr if either π = id,
or π = π0 ◦ (i i+1) with αi || αi+1 and π0 permutes independent
actions of (i i+1).tr. An important result is that the actions of such
permutations can be meaningfully lifted to entire traces rather than
only action words:

Proposition 4.2. If t : A
tr
=⇒ B and π permutes independent

actions of tr, then there exists a trace A
π .tr
===⇒ B. This trace is unique

if we take labels into account, and will be denoted π .t .

This leads to the core property justifying the correctness of our
partial-order reductions for equivalence by session. The remaining
of Section 4 constructs optimisations leveraging this result.

Proposition 4.3. Let O∀

1 ⊆ O∀

2 be universal optimisations. We
assume that for all t ∈ O∀

2, there is π permuting independent actions
of t such that π .t ∈ O∀

1. Then O
∀

1 is a correct refinement of O∀

2.

4.2 Compression optimisations

We first present a compression of traces into blocks of actions of
a same type (inputs, outputs and parallel, or internal communica-
tions). It is presented as a sequence of three successive universal
optimisations. Whether a trace t is discarded or not depends on its
action word tr(t). The correctness of these refinements essentially
follows from Proposition 4.3.

Optim. 1: performing outputs and parallel in priority. We say that
an action is negative when the underlying transition is derived from
the rules (Par) or (Out). This vocabulary is taken from [6], where
traces are compressed in a similar way, inspired by focused proof
theory. We observe that negative actions are data-independent of
all previous actions in the trace: in practice, when executing actions

from different parallel subprocesses, it is therefore sound to give
priority to negative ones by Proposition 4.3.

To formalise this universal optimisation O∀

c,1 we impose that,
if a trace has a non-negative action α+ before a negative action
α− then there must be an intermediate action β (possibly β = α+)
on which α− depends. This indeed makes it incorrect to push α−

before α+ by adjacent swaps. Formally, for all traces

t : A
α1 · · ·αn
======⇒ B

we have that t ∈ O∀

c,1 if, and only if

∀i < j, if
{
αi non-negative
α j negative

then ∃i ⩽ k < j,¬(αk || α j)

Proposition 4.4. O∀

c,1 is a correct refinement of O∀

all.

Optim. 2: performing negative actions deterministically. Data in-
dependence between negative actions trivially holds. By Proposi-
tion 4.3 again, we can therefore fix some arbitrary priority over
the execution of consecutive, concurrent negative actions. This
universal optimisation O∀

c,2 is defined as follows. For all traces

t : A
α1 · · ·αn
======⇒ B

we have that t ∈ O∀

c,2 if, and only if for all i < n such that αi and
αi+1 are sequentially-independent negative actions, it holds that
αi ≼ αi+1 (where ≼ is an arbitrary total ordering on actions).

Proposition 4.5. O∀

c,1 ∩ O
∀

c,2 is a correct refinement of O∀

c,1.

Optim. 3: performing chains of inputs in a row. Finally, we observe
that inputs are data-independent of all actions appearing later in the
trace. In particular, by permuting independent actions, it is always
possible to group together consecutive inputs on a same label. It
is also possible to move them to the end of traces when they are
sequentially independent of all following actions. We formalise this
universal optimisation O∀

c,3 as follows. For all traces

t : A
α1 · · ·αn
======⇒ B

we have that t ∈ O∀

c,3 if, and only ifq for all i, j ∈ ⟦1,n⟧, ifαi = [c(ξ)]ℓ andα j = [d(ζ)]ℓ with j ⩾ i+2,
then there exists i < k < j such that αk and α j are sequentially
dependent;q and for all i ∈ ⟦1,n − 1⟧, if αi and αi+1 are input actions on
different labels then all α j , j ⩾ i , are input actions.

Combining everything we obtain the compression optimisation

O∀

c = O
∀

c,1 ∩ O
∀

c,2 ∩ O
∀

c,3

whose correctness is stated below.

Proposition 4.6. O∀
c is a correct refinement of O∀

c,1 ∩ O
∀

c,2.

4.3 Reduction optimisations

Blocks. This optimisation relies on the observation that all com-
pressed sequences of actions, i.e. sequences tr(t) with t ∈ O∀

c, can
be uniquely decomposed into blocks

tr(t) = b−0 b
+
1 b

−
1 · · ·b+nb

−
nB

where each bsi is a sequence of actions such thatq no bsi is empty except maybe b−0 ;

q all b+i are either a positive block (i.e., a sequence of input actions
on a same label ℓ(b+i)) or a single internal communication;q all b−i contain only negative actions;q B is a (possibly-empty) sequence of positive blocks.

We call bi = b+i b
−
i (i > 0) a block of tr(t). Just as actions, adjacent

blocks bi ,bj may be independent (written bi || bj) in the sense that
all actions appearing in bi are independent of all actions appearing
in bj . The goal of this optimisation is to fix, as much as possible,
the order of execution of blocks by exploiting their independence.

Authorisation. Concretely, this optimisation O∀
c+r ⊆ O

∀
c defines

a condition on sequences of blocks that only accepts sequences
that are lexicographically minimal among all those that can be
obtained by independent permutations. We formalise this through
a predicate Minimal that characterises, step by step, such traces.
Formally, with the notations above,

t ∈ O∀

c+r iff
n∧
i=1

Minimal(b1 · · ·bi−1,bi)

where the predicateMinimal is inductively defined by

Minimal(b1 · · ·bp ,bi) =

⊤ if p = 0 or ¬(bp || bi)

ℓ(b+p) ≺lex ℓ(b
+
i) ∧

Minimal(b1 · · ·bp−1,bi)
otherwise

Proposition 4.7. O∀
c+r is a correct refinement of O∀

c.

5 REDUCTIONS BY SYMMETRY

In this section, we show how to exploit process symmetries for
equivalence by session, referring again to the framework of Sec-
tion 3.3. Such symmetries often appear in practice when we verify
multiple sessions of a same protocol as it results into parallel copies
of identical processes, up to renaming of fresh names. We first
provide a group-theoretical characterisation of internal process
redundancy, and then design two optimisations.

5.1 Group actions and process redundancy

Let P = P1 | · · · | Pn be a plain process and π ∈ Sn , where Sn
denotes the symmetric group, i.e., the group of all permutations of
⟦1,n⟧. Then we denote by ®P and π . ®P the tuples of plain processes

®P = ⟨P1, . . . , Pn⟩ π . ®P = ⟨Pπ (1), . . . , Pπ (n)⟩ .

Suppose that ≡ is an equivalence relation on tuples of processes
that is stable by application of permutations, i.e. ®P ≡ ®Q implies
π . ®P ≡ π . ®Q . We can capture process redundancy w.r.t. this equiva-
lence relation using group-theoretic terminology. This is inspired
from model-checking where the symmetries of systems have been
represented by the group of their automorphisms [28]. We can de-
fine the set of symmetries of P for ≡ by means of the group stabiliser

Stab≡(®P) = {π ∈ Sn | π . ®P ≡ ®P}

Example 5.1. Stab≡(⟨P, . . . , P⟩) = Sn models the extreme case
where all parallel subprocesses are identical. On the contrary, the
case where Stab≡(⟨P1, . . . , Pn⟩) = {id} models that there is no re-
dundancy at all between parallel processes. Intermediate examples
model partial symmetries: the larger the stabilizer, the more re-
dundancy we have. For example, if P ̸≡ Q , Stab≡(⟨P, P,Q,Q,Q⟩) is

the subgroup of Sn generated by (1 2), (3 4) and (3 5) (using cycle
notation for permutations). △

Proposition 5.1. Stab≡(®P) is a subgroup of Sn .

Proof. Consider the application (π , ®P) 7→ π . ®P . It is a group
action of Sn on the set of tuples of plain processes quotiented by
the equivalence relation ≡. Stab≡(P) is a stabiliser of this action,
hence the conclusion. □

5.2 Structural equivalence

We exhibit a notion of redundancy based on identifying processes
that have an identical structure. We define structural equivalence ≡
on plain processes as the smallest relation such that

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

and that is closed under context application (that is, composition
of equivalent processes with either a same process in parallel, or
an input, output, or conditional instruction at toplevel). To capture
equivalence modulo the equational theory, we write Pσ ≡E Qσ ′

when P ≡ Q and σ ,σ ′ are substitutions such that xσ =E xσ ′ for all
variables x .

We lift ≡ to tuples of plain processes by requiring that the tuples
are pointwise equivalent, i.e., ⟨P1, . . . , Pn⟩ ≡E ⟨Q1, . . . ,Qn⟩ if, for
all i , Pi ≡E Qi . We also add a restricted form of alpha equivalence
of private names. We write ®P ≡Aα ®Qρ when ®P ≡E ®Q and ρ is a
bijective renaming of private names such that ρ |names(A)∩Npriv = id,
i.e., only private names outside of Amay be renamed.

5.3 Universal symmetry optimisation

The first optimisation is a universal optimisation: there is no need
to consider all executions of available inputs when the underlying
processes are structurally equivalent. In this case we can simply
choose one of these process as a representant for all the others. Note
that for negative actions this is already achieved by the optimisation
2 of the compression (Section 4.2). Consider a labelled instance of
the rule (In) at the root of the process, of the form

({{[Pi]
i }}ni=1, ∅)

[c(ξ)]ℓ
−−−−−−→s A (⋆)

To characterise redundancy in (⋆) we define

S = Stab≡0
α
(⟨P1, . . . , Pn⟩)

and the binary relation ∼ on integers of ⟦1,n⟧
i ∼ j iff ∃π ∈ S, i = π (j) .

We have that ∼ is an equivalence relation as S is a subgroup of Sn .
Indeed, S contains the identity (hence the reflexivity); S is closed
by inverse (hence the symmetry); and S is closed by composition
(hence the transitivity).

Then we say that an instance of (In) is well-formed when ℓ is
minimal in its equivalence class for ∼. We write O∀

c+r+s the set
of traces of O∀

c+r whose instances of (⋆) are all well-formed. The
correctness of this optimisation is straightforward and stated below.

Proposition 5.2. O∀
c+r+s is a correct refinement of O∀

c+r.

5.4 Existential symmetry optimisation

The goal of this optimisation is to exploit symmetries when ap-
plying the matching rule: when several processes are structurally
equivalent we do not need to consider redundant matchings. For
instance, suppose that we need to match P1 | P2 with Q | Q . Just
considering the identity permutation would be sufficient, and the
permutation (1 2) should be considered as redundant. Consider an
instance of the rule (Match)

(P2 ∪ {{(P1 | · · · | Pn, Q1 | · · · | Qn)}},Φ0,Φ1)
τ
−→s (P

2 ∪ {{(Pi ,Qπ (i))}}
n
i=1,Φ0,Φ1)

(⋆)

We let A = (snd(P2),Φ0), and define

S = Stab≡Aα (⟨Q1, . . . ,Qn⟩) .

Moreover, we define the binary relation ∼ on permutations

π ∼ π ′ iff ∃u ∈ S, π ′ = π ◦ u .

As in the previous subsection, ∼ is an equivalence relation as S is a
subgroup of Sn .We say that an instance of (⋆) iswell-formed when π
is minimal (w.r.t. the lexicographic ordering) in its equivalence class
for ∼. We denote by O∃

s the set of traces on extended bi-processes
whose instances of (⋆) are all well-formed.

The correctness of this optimisation essentially states that it
does not introduce additional false attacks. The actual proof can be
found in Appendix D.

Proposition 5.3. O∃
s is a correct refinement of O∃

all.

6 SYMBOLIC SETTING

Even though we do not consider unbounded replication, the seman-
tics of our process calculus defines an infinite transition system due
to the unbounded number of possible inputs that can be provided
by the adversary. To perform exhaustive verification of such infinite
systems, it is common to resort to symbolic techniques abstracting
inputs by symbolic variables and constraints. We briefly describe in
this section how our optimisations are integrated in the symbolic
procedure underlying the DeepSec tool.

6.1 DeepSec’s baseline procedure

Symbolic setting. In the DeepSec tool [17] and its underlying
theory [16], the deduction capabilities of the attacker are repre-
sented by so-called deduction facts X ⊢? u, intuitively meaning that
the attacker is able to deduce the term u by the means of a recipe
represented by the variable X . Additionally, conditional branching,
e.g. if u = v then . . . else . . ., is represented by equations u =? v
and disequations u ,? v .

To represent infinitely many extended processes, [16] relies on
symbolic processes (P,Φ, C) where P and Φ are, as in our setting,
a multiset of processes and a frame respectively. The difference is
that the processes and frame may contain free variables: they model
the variables bound by inputs and are subject to constraints in C.
These constraints are a conjunction of deduction facts, equations
and disequations. For example, if we consider the process

P = c(x). if proj1(x) = t then c ⟨h(x)⟩

then after executing symbolically the input and the positive branch
of the test, we reach the symbolic process

({{0}}, {ax 7→ h(x)}, X ⊢? x ∧ proj1(x) =
? t)

A concrete extended process is thus represented by any ground
instantiation of the free variables of the symbolic process that
satisfies the constraints in C. Such instantiations are called solutions,
and therefore form an abstraction of concrete traces treated as
symbolic objects and constraint solving.

Example 6.1. Let us continue Example 2.5 where we introduced
an equivalence statement to model the secrecy of a signature key.
After the symbolic execution of the head input of V (R), finding an
attack trace reduces to finding a solution of the constraint:

C = X ⊢? x ∧ proj2(verify(x, pk(s))) =
? pk(s)

Intuitively the internal constraint solver will gradually deduce that
solutions to this constraint need to map x to a term of the form
sign(y, z), then y to a term of the form ⟨y1,y2⟩, where y2 and z
point to recipes for constructing pk(s) and s , respectively. △

Partition tree. To decide trace equivalence between two processes
P and Q , the procedure underlying DeepSec builds a refined tree
of symbolic executions of P and Q , called a partition tree. This
finite, symbolic tree intuitively embodies all scenarios of (potential
violations of) equivalence, and the final decision criterion is a simple
syntactic check on this tree.

More technically, nodes of the partition tree contain sets of sym-
bolic processes derived from P or Q ; that is, a branch is a symbolic
abstraction of a subset of T(P)∪T(Q). It is constructed in a way that
each node contains all—and only—equivalent processes reachable
from P orQ with given trace actions tr. When generating this parti-
tion tree, trace equivalence holds if and only if each node contains
at least one symbolic process derived from P and one from Q .

6.2 Symbolic matching

Subprocess matchings. In order to make the integration into
DeepSec easier, we used an alternative characterisation of equiva-
lence by session that is closer to trace equivalence. In essence, it
expresses the structural constraints imposed by twin processes as
explicit bijections between labels (as defined in Section 4.1) that we
call session matchings. A precise definition is given in Appendix A,
as well as a proof that this is equivalent to the twin-process-based
definition of equivalence.

In practice, our implementation consists of keeping track of these
session matchings into the nodes of the partition tree generated
by DeepSec. The set of all these bijections is then updated at each
new symbolic transition step in the partition tree, among others to
satisfy the requirement that matched subprocesses should have the
same skeleton (recall Definition 3.1).

Example 6.2. Consider two initial processes

P = c(x).P0 | c(x).P1 | c ⟨u⟩.P2 Q = c(x).Q0 | c ⟨u ′⟩.Q1 | c(x).Q2 .

In the root of the partition tree, P and Q will be labeled by 0, i.e.
the root will contain the two symbolic processes

({[P]0}, ∅, ∅) ({[Q]0}, ∅, ∅) .

There is only a single bijection between their labels, i.e. the identity
0 7→ 0. Upon receiving this initial node, DeepSec applies the sym-
bolic transition corresponding to our rule (Par), hence generating
the two symbolic processes

({{[c(x).P0]0.1 ; [c(x).P1]0.2 ; [c ⟨u⟩.P2]0.3}},∅, ∅)
({{[c(x).Q0]0.1; [c ⟨u ′⟩.Q1]0.2; [c(x).Q2]0.3}},∅, ∅)

There are then only two possible bijections of labels that respect
the skeleton requirement of twin processes:

0.1 7→ 0.1 0.1 7→ 0.3
0.2 7→ 0.3 and 0.2 7→ 0.1
0.3 7→ 0.2 0.3 7→ 0.2 △

These bijections are kept within the node of the partition tree
and updated along side the other transformation rules of DeepSec.
For obvious performance reasons, we cannot represent them by a
naive enumeration of all permutations. Fortunately, the skeleton
requirement ensures an invariant that the set S of sessionmatchings
between two processes A and B is always of the form

S = {π | ∀i,∀ℓ ∈ Ci , π (ℓ) ∈ Di }

where C1, . . . ,Cn is a partition of the labels of A and D1, . . . ,Dn a
partition of the labels of B. In particular, S can succinctly be stored
as a simple association list of equivalence classes.

Decision of equivalence. Finally, as our trace refinements depend
on two sets O∀ and O∃, we annotate each symbolic process in the
node by ∀, ∃ or ∀∃ tags. They mark whether the trace from the root
of the partition tree to the tagged process is determined to be in
O∀, O∃ or both respectively. For instance, the two initial symbolic
processes in the root of the partition tree are labeled by ∀∃. We
also provide a decision procedure for inclusion by session ⊑s that
consists of tagging one of the initial processes as ∀ and the other
one as ∃.

The decision criterion for equivalence is then strenghtened. For
equivalence to hold, not only each node of the partition tree should
contain at least one process originated from P and one process
originated from Q , but each of them that has the tag ∀ should be
paired with at least one other process of the node with the tag ∃.

6.3 Integration

From a high-level of abstraction, the integration of the universal
optimisations described in sections Sections 4 and 5 prune some
branches of the partition tree—those that abstract traces that do
not belong to O∀

c+r+s . For instance in Section 4.2, we showed that to
prove equivalence by session, we can always perform output and
parallel actions in priority. Therefore on a process c ⟨u⟩.P | c(x).Q ,
we prevent DeepSec from generating a node corresponding to the
execution of the input due to the presence of the output.

The integration of other optimisations is more technical in a
symbolic setting, in particular the reduction O∀

c+r described in Sec-
tion 4.3. Remember that it discards traces that do not satisfy the
predicate Minimal, that identifies lexicographically-minimal traces
among those obtained by permutation of independent blocks. Unfor-
tunately, the notion of independence (Definition 4.1) is only defined
for ground actions—and not their symbolic counterpart, that intu-
itively abstracts a set of ground actions. A branch may therefore

be removed only if all its solutions violate the predicateMinimal.
However, by Proposition 3.8, such partial implementations do not
break correctness.

7 EXPERIMENTS

Equivalence by session in practice. Based on the high-level de-
scription of the previous section, we extended the implementation
of the DeepSec tool to decide equivalence by session of P and Q .
Upon completing an analysis, two cases can arise:

(1) The two processes are proved equivalent by session. Then
they are also trace equivalent by Proposition 3.2.

(2) The two processes are not equivalent by session andDeepSec
returns an attack trace t , say, in P , as a result.

In the second case, when using equivalence by session as a heuris-
tic for trace equivalence, the conclusion is not straightforward. As
discussed in Section 3.2, the witness trace t may not violate trace
equivalence (false attack). We integrated a simple test to our pro-
totype, that checks whether this is the case or not. For that we
leverage the internal procedure of DeepSec by, intuitively, restrict-
ing the generation of the partition tree for checking P ⊑tr Q to the
unique branch corresponding to the trace t .

If this trace t appears to violate trace equivalence, which is the
case for example in our analysis of two sessions of the BAC protocol,
we naturally conclude that P ̸≈tr Q . Otherwise, the false attack may
guide us to discover a real attack. Our analysis of session equiva-
lence indeed consider traces with a specific shape (see Sections 4
and 5): thus, we implemented a simple heuristic that, whenever a
false attack is discovered, also checks whether different permuta-
tions of its actions could lead to a true attack. For instance, this
heuristic allowed us to disprove trace equivalence in some analyses
of n ⩾ 3 sessions of BAC. When our heuristic cannot discover a
true attack, the result is not conclusive: the processes may well
be trace equivalent or not. We leave to future work the design of
an efficient and complete decision procedure for trace equivalence
that builds on a preliminary analysis of equivalence by session.

Experimental setting. We report experiments (Figure 4) compar-
ing the scope and efficiency of the following two approaches for
proving trace equivalence:q The original version of DeepSec as a baseline for comparison;q The analysis leveraging our contributions (preliminary analysis
of equivalence by session, test of false attack if it fails, and the
heuristic attempting to reconstruct a true attack from false ones).
We describe the benchmarks below in more details. The column

roles is an indicator of the intricacy of the system, namely the
number of parallel processes that the model file exhibits.

All benchmarks were carried out on 20 Intel Xeon 3.10GHz cores,
with 50 Gb of memory. We ran the toy example described in this
paper on a single core to illustrate simply the algorithmic improve-
ments compared to DeepSec. As DeepSec supports parallelisation,
we distributed the computation of the other, bigger proofs over 20
cores. The implementation and the specification files are available
at https://deepsec-prover.github.io/.

Running example: toy voting. We modelled the toy e-voting
protocol that was partially specified in Example 2.3 and ran an
analysis of vote privacy. The parts of this protocol that are not

https://deepsec-prover.github.io/

Protocol scenario # roles

DeepSec DeepSec
baseline eq. by session

Toy voting
(parallel mix) 2 honest 1 dishonest 7 ✓ 1m41s ✗ <1s

Toy voting
2 honest + 1 dishonest 7 ✓ 15s ✓ <1s
2 honest + 2 dishonest 9 ✓ 30m ✓ <1s
2 honest + 3 dishonest 11 � ✓ 22s

BAC

2 identical 4 E <1s E <1s
2 identical + 1 fresh 6 � E 2s
3 identical + 1 fresh 8 � E 3s
2 identical + 2 fresh 8 � ✓ 1m20s
4 identical + 1 fresh 10 � E 4s
3 identical + 2 fresh 10 � E 9m22s
2 identical + 3 fresh 10 � ✓ 11h06m

Helios
vote swap

no revote 6 ✓ <1s ✓ <1s
2 × A 1 × B 11 ✓ 2h41m ✓ 1m2s
3 × A 1 × B 12 � ✓ 2m40s
3 × A 2 × B 13 � ✓ 7m40s
4 × A 2 × B 14 � ✓ 16m36s
7 × A 3 × B 18 � ✓ 3h53m

Helios 2 honest + 1 dishonest 9
� ✓

3m26s
(total)BPRIV 7 ballots (19 scenarios) (each)

Scytl vote privacy 5 ✓ 3m8s ✓ 1s

AKA anonymity 8 ✓ 30s ✓ 4s

✓ trace equivalence verified E trace equivalence violated � timeout (12 hours)
✗ false attack (disproves session equivalence but unable to conclude for trace equivalence)

Figure 4: Experimental evaluation

specified in the body of the paper, i.e. mostly the mixnet, can be
represented in several ways that may trigger or not a false attack.
Mixnets are usually modelled as processes receiving the values to
mix, and then outputing them in an arbitrary order induced by the
inherent non-determinism of concurrency. However, the mixing
of two elements can be performed using two models (where c is a
private channel):

MixSeq = c(x). c(y). (c ⟨x⟩ | c ⟨y⟩)

MixPar = (c(x). c ⟨x⟩) | (c(y) | c ⟨y⟩)

In the second case, subprocess-matching constraints arise earlier in
the trace, triggering a false attack. However, the natural modelling
of MixSeq allows to complete a security proof. We observed the
same behaviour on other experimentation on voting protocols with
mixnets.

On the other hand, the baseline version of DeepSec does not
suffer from this shortcoming as it decides trace equivalence pre-
cisely. However, due to the combinatorics of its proofs the tool fails
to terminate the analysis within 12h when adding two dishonest
voters to the models.

BAC. We also study the Basic Access Control (BAC) protocol imple-
mented in European electronic passport [29]. The security property

we study is unlinkability formalised as an equivalence statement.
This property is out of the scope of the fine-grained diff-equivalence
of ProVerif and Tamarin, and computationally out of reach of
tools for a bounded number of sessions.

Unlinkability is formalised here as the indistinguishability of
two situations where n systems—each consisting of a passport and
a reader—are put in parallel: on one side all n systems are distinct
(fresh), while on the other side a same system may appear several
times. Our analysis indicates that, depending on the precise setting,
the security property may be violated in the model or not. This
is due to the error codes raised when a passport communicates
with a wrong reader: depending on how many identical systems
the process contains, the same number of such errors may not
be observable. Although not present in the result table, we also
implemented inclusion by session (i.e. ⊑s) as it is sometimes used
to define other flavours of unlinkability.

Helios. As a bigger e-voting case study, we consider the Helios
e-voting protocol [2]. We analyse vote privacy of a version that uses
zero-knowledge proofs to ensure the voter knows the plaintext of
her vote, thus avoiding copy-attacks [24]. Vote privacy is formalised
as in our running example, using a vote-swapping model.

A reduction result of Arapinis et al. [3] ensures that it is sufficient
to consider two honest voters and one dishonest voter (that is
implicit in the model, embedded in the intruder capabilities) to
obtain a proof of the system for an unbounded number of sessions.
Such scenarios could already be handled by automated analysers,
e.g. DeepSec [16] and ProVerif [3]. However, when revoting is
allowed, one needs to consider all scenarios when the tally accepts
7 ballots. In particular, it is not sufficient to consider only revotes by
the adversary, but also arbitrary revotes of the two honest voters.
In Figure 4 we listed several scenarios, indexed by how many times
the honest voters A and B are sending revotes.

This kind of analysis is out of the scope of many automated anal-
ysers. For example, Figure 4 shows that DeepSec (baseline) fails to
prove after 12h of computation any scenarios where more than one
honest revote is emitted. In [3] the ProVerif proofs are limited to
dishonest revotes. We compiled several intermediary scenarios to
give an overview of the verification-time growth using our proto-
type, but all are subsumed by the last scenario were we allow A
to revote 7 times and B 3 times. Indeed, using a simple symmetry
argument on A and B this covers all scenarios where honest voters
cast a total of 7 ballots or less. Note however that, strictly speaking,
the reduction result of [3] does not bound the number of emitted
honest revotes (that may not be effectively received by the ballot
box) that have to be considered during an analysis of vote privacy;
extensions of this reduction should be considered in the future.

We also experimented an other model of voting privacy inspired
by the game-based definition BPRIV [10]. In this definition the
(re)votes are dicted to honest voters by the adversary, which permits
to effectively model revotes of arbitrary values. As reported in
Figure 4 DeepSec was able to handle the 19 queries modelling all
revote scenarios for 7 emitted ballots, in a total of a few minutes.

Other case studies. As side experiments, we also tried our proto-
type on other model files of similar tools that we could find in the
literature. We performed for example an analysis of vote privacy
of an e-voting protocol by Scytl deployed in the Swiss canton of
Neuchâtel, based on the ProVerif file presented in [23]. We also
studied anonymity in a model of the AKA protocol deployed in 3G
telephony networks [4] (without XOR), presented in the previous
version of DeepSec [16].

8 CONCLUSION AND FUTUREWORK

In this paper we introduce a new process equivalence, the equiv-
alence by session. We show that it is a sound proof technique for
trace equivalence which allows for several optimisations when
performing automated verification. This includes powerful partial
order reductions, that were previously restricted to the class of
determinate processes, and allows to exploit symmetries that nat-
urally arise when verifying multiple sessions of a same protocol.
In addition to the theoretical basis we have implemented these
techniques in the DeepSec tool and evaluated their effectiveness in
practice. The optimisations indeed allowed for efficient verification
of non-determinate processes that were previously out of scope of
existing techniques.

We also discussed how to handle false attacks, that are a natu-
ral consequence of the fact that equivalence by session is a strict
refinement of trace equivalence. We implemented a test to verify

automatically, when equivalence by session is disproved, whether
the underlying attack is genuine with respect to trace equivalence.
When this is not the case, as part of future work it would be inter-
esting to refine the part of the proof that failed, while exploiting
that some parts of the system have already been shown equivalent.

Acknowledgements. The authors wish to thank the anonymous
reviewers for their helpful comments. The research leading to these
results has received funding from the ERC under the EU’s H2020
research and innovation program (grant agreements No 645865-
SPOOC), as well as from the French ANR under the projects SE-
QUOIA (ANR-14-CE28-0030-01) and TECAP (ANR-17-CE39-0004-
01). Itsaka Rakotonirina benefits from a Google PhD Fellowship.

REFERENCES

[1] Martín Abadi, Bruno Blanchet, and Cédric Fournet. 2018. The Applied Pi Calculus:
Mobile Values, New Names, and Secure Communication. J. ACM (2018).

[2] B. Adida. 2008. Helios: web-based open-audit voting. In USENIX Security Sympo-
sium.

[3] Myrto Arapinis, Véronique Cortier, and Steve Kremer. 2016. When are three
voters enough for privacy properties?. In European Symposium on Research in
Computer Security (ESORICS).

[4] M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde, K. Redon, and R. Borgaonkar.
2012. New privacy issues in mobile telephony: fix and verification. In ACM
Conference on Computer and Communications Security (CCS).

[5] David Baelde, Stéphanie Delaune, and Lucca Hirschi. 2014. A Reduced Seman-
tics for Deciding Trace Equivalence Using Constraint Systems. In International
Conference on Principles of Security and Trust (POST).

[6] David Baelde, Stéphanie Delaune, and Lucca Hirschi. 2015. Partial Order Re-
duction for Security Protocols. International Conference on Concurrency Theory
(CONCUR) (2015).

[7] David Baelde, Stéphanie Delaune, and Lucca Hirschi. 2018. POR for Security
Protocol Equivalences - Beyond Action-Determinism. In European Symposium
on Research in Computer Security (ESORICS).

[8] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf Sasse, and
Vincent Stettler. 2018. A Formal Analysis of 5G Authentication. In ACM Confer-
ence on Computer and Communications Security (CCS).

[9] David A. Basin, Jannik Dreier, and Ralf Sasse. 2015. Automated Symbolic Proofs of
Observational Equivalence. In ACM Conference on Computer and Communications
Security (CCS).

[10] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bog-
dan Warinschi. 2015. A comprehensive analysis of game-based ballot privacy
definitions. In IEEE Symposium on Security and Privacy (S&P).

[11] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. 2017. Verified
Models and Reference Implementations for the TLS 1.3 Standard Candidate. In
IEEE Symposium on Security and Privacy (S&P).

[12] Bruno Blanchet, Martín Abadi, and Cédric Fournet. 2005. Automated Verification
of Selected Equivalences for Security Protocols. In 20th IEEE Symposium on Logic
in Computer Science (LICS).

[13] Bruno Blanchet, Martín Abadi, and Cédric Fournet. 2008. Automated verification
of selected equivalences for security protocols. J. Log. Algebr. Program. (2008).

[14] Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kremer. 2016. Auto-
mated verification of equivalence properties of cryptographic protocols. ACM
Transactions on Computational Logic (2016).

[15] Vincent Cheval and Bruno Blanchet. 2013. Proving More Observational Equiva-
lences with ProVerif. In Proceedings of the 2nd International Conference on Princi-
ples of Security and Trust (POST’13).

[16] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2018. DEEPSEC: Deciding
Equivalence Properties in Security Protocols – Theory and Practice. In IEEE
Symposium on Security and Privacy (S&P).

[17] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2018. The DEEPSEC
prover. In International Conference on Computer Aided Verification (CAV).

[18] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2019. Exploiting sym-
metries when proving equivalence properties for security protocols (technical
report). available at https://hal.archives-ouvertes.fr/hal-02267866.

[19] Ivan Cibrario, Luca Durante, Riccardo Sisto, and Adriano Valenzano. 2004. Ex-
ploiting symmetries for testing equivalence in the spi calculus. In International
Symposium on Automated Technology for Verification and Analysis (ATVA).

[20] Edmund M. Clarke, Somesh Jha, and Wilfredo R. Marrero. 2003. Efficient verifi-
cation of security protocols using partial-order reductions. STTT (2003).

[21] Véronique Cortier and Stéphanie Delaune. 2009. A method for proving observa-
tional equivalence. In IEEE Computer Security Foundations Symposium (CSF).

https://hal.archives-ouvertes.fr/hal-02267866

[22] Véronique Cortier, Stéphanie Delaune, and Antoine Dallon. 2017. SAT-Equiv: an
efficient tool for equivalence properties. In IEEE Computer Security Foundations
Symposium (CSF).

[23] Véronique Cortier, David Galindo, and Mathieu Turuani. 2018. A formal analysis
of the Neuchâtel e-voting protocol. In IEEE European Symposium on Security and
Privacy (EuroS&P).

[24] Véronique Cortier and Ben Smyth. 2013. Attacking and fixing Helios: An analysis
of ballot secrecy. Journal of Computer Security (2013).

[25] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. 2017. A Comprehensive Symbolic Analysis of TLS 1.3. In ACM Conference
on Computer and Communications Security (CCS).

[26] D. Dolev and A.C. Yao. 1981. On the Security of Public Key Protocols. In Sympo-
sium on Foundations of Computer Science (FOCS).

[27] Luca Durante, Riccardo Sisto, and Adriano Valenzano. 2003. Automatic testing
equivalence verification of spi calculus specifications. ACM Transactions on
Software Engineering and Methodology (TOSEM) (2003).

[28] E. Allen Emerson and A. Prasad Sistla. 1996. Symmetry and model checking.
Formal methods in system design (1996).

[29] PKI Task Force. 2004. PKI for machine readable travel documents offering ICC
read-only access. Technical Report. International Civil Aviation Organization.

[30] Sebastian Mödersheim, Luca Viganò, and David A. Basin. 2010. Constraint differ-
entiation: Search-space reduction for the constraint-based analysis of security
protocols. Journal of Computer Security (2010).

[31] Sonia Santiago, Santiago Escobar, Catherine Meadows, and José Meseguer. 2014.
A Formal Definition of Protocol Indistinguishability and Its Verification Using
Maude-NPA. In International Workshop on Security and Trust Management (STM).

[32] Alwen Tiu, Nam Nguyen, and Ross Horne. 2016. SPEC: An Equivalence Checker
for Security Protocols. In Asian Symposium on Programming Languages and
Systems (APLAS).

A EXPLICIT SESSION MATCHINGS

In this section we present an alternative characterisation of equiva-
lence by session. The process matchings operated by twin processes
(in particular in the rule (Match) of the semantics) are represented
by an explicit permutation with properties mirroring the structure
of twin processes.

Twin-process based characterisations makes it easier to define
symmetry-based optimisations and limit the manipulation of per-
mutations to the minimum, thus simplifying many proofs. On the
contrary, the formalism presented here makes a closer link with
the definition of trace equivalence: this is the characterisation we
use in the implementation, fitting better to the existing procedure
of the DeepSec prover for trace equivalence.

Session matchings. We first characterise the condition under
which, given two traces t, t ′, there exists t2 such that fst(t2) = t
and snd(t2) = t ′. For that we rely on the notion of labels intro-
duced in Section 4.1 to make reference to subprocess positions.
In the rest of the paragraph, we refer to two plain processes in
⇝-normal form P,Q such that skel(P) = skel(Q) and two labelled
traces t ∈ T(P), t ′ ∈ T(Q) such that tr(t) = tr(t ′):

t : A0
[α1]

ℓ1
−−−−−−→ · · ·

[αn]ℓn

−−−−−−→ An t ′ : B0
[α1]

ℓ′1
−−−−−−→ · · ·

[αn]ℓ
′
n

−−−−−−→ Bn

We write L and L′ the sets of labels appearing in t and t ′, respec-
tively.

Definition A.1. A session matching for t and t ′ is a bijection
π : L → L′ verifying the following properties

(1) π (ε) = ε
(2) ∀i ∈ ⟦1,n⟧, π (ℓi) = ℓ′i
(3) ∀ℓ · p ∈ dom(π), ∃q, π (ℓ · p) = π (ℓ) · q
(4) for all i ∈ ⟦0,n⟧, if π (ℓ) = ℓ′ and Ai and Bi respectively

contain a process [P]ℓ and a process [Q]ℓ
′

, then skel(P) =
skel(Q).

Proposition A.2. The following two points are equivalent:
(1) There exists a session matching for t and t ′.
(2) ∃t2 ∈ T(P,Q), fst(t2) = t and snd(t2) = t ′.

Proof of 1⇒2. The trace t2 can be easily constructed by induc-
tion on the length of t :q Items 1 and 4 of Definition A.1 ensure that the twin-processes in
t2 are composed of pairs of processes with the same skeleton as
expected,q Item 2 ensures that pairs of transitions of P andQ can be mapped
into transitions of twin-processes, andq The permutations required by applications of the rule (Match)
can be inferred from Item 3. Indeed, consider two instances of
the rule (Par) in t and t ′:

({{[P1 | . . . | Pn]
ℓ}} ∪ P,Φ)

τ
−→ ({{[Pi]

ℓ ·i }}ni=1 ∪ P,Φ)

({{[Q1 | . . . | Qn]
ℓ′}} ∪ Q,Ψ)

τ
−→ ({{[Qi]

ℓ′ ·i }}ni=1 ∪ Q,Ψ)

Given π a session matching for t and t ′, we consider the per-
mutation of ⟦1,n⟧ mapping i ∈ ⟦1,n⟧ to the (unique) j such
that π (ℓ · p) = ℓ′ · j. This permutation can be used to construct
the instance of rule (Match) corresponding to these two (Par)
transitions. □

Proof of 2⇒1. Let t2 be a trace given by Item 2. We lift the
labellings of t = fst(t2) and t ′ = snd(t2) to the twin processes
appearing in t2; that is, if P2 is such a process, we may refer to
the labellings of fst(P2) and snd(P2). Thus, each instance of rule
(Match) in t2

({{([P1 | · · · | Pn]
ℓ, [Q1 | · · · | Qn)]

ℓ′}} ∪ P2,Φ0,Φ1)
τ
−→s ({{([Pi]

ℓ ·i , [Qσ (i)]
ℓ′ ·i)}}ni=1 ∪ P2,Φ0,Φ1)

can be associated with a permutation σ and two labels ℓ, ℓ′. We
list all such elements σ1, ℓ1, ℓ′1, . . . ,σp , ℓp , ℓ

′
p when considering all

instances of rule (Match) in t2. In particular the ℓi ’s are pairwise
distinct and, if L is the set of labels appearing in t , we have

L = {ε} ∪
⋃p
i=1{ℓi · j | j ∈ dom(σi)} .

An analoguous statement can be done for L′ the set of labels appear-
ing in t ′. Therefore the following equations well define a bijection
π : L → L′:

π (ε) = ε ∀p ∈ dom(σi), π (ℓi · p) = ℓ
′
i · σi (p) .

A quick induction on the length of t2 shows that π is a session
matching for t and t ′. □

Link with equivalence. As a direct corollary, we give an alterna-
tive characterisation of equivalence by session.

Proposition A.3. Let P,Q be plain processes in⇝-normal form
such that skel(P) = skel(Q). The following points are equivalent:

(1) P ⊑s Q
(2) for all t ∈ T(P), there exist t ′ ∈ T(Q) and a session matching

for t and t ′, such that tr(t) = tr(t ′) (labels removed) and
Φ(t) ∼ Φ(t ′)

B FALSE ATTACKS AND DETERMINACY

In this section we give a detailed proof of Proposition 3.3, stating
that equivalence by session suffers from no false attacks for de-
terminate processes. The intuition of this rather technical proof is
determinacy ensures the uniqueness of traces with a given action
word; in particular, matched traces need follow the same structure,
and a proof of equivalence by session can be derived from a proof
of trace equivalence.

In the proof, by slight abuse of notation, we may say that an
extended process is determinate. We also cast the notion of skeleton
to extended processes by writing

skel((P,Φ)) = skel(P) =
⋃
P ∈P skel(P) ,

and to traces with

skel(A0
α1
−−→ · · ·

αn
−−→ An) = skel(A0) · skel(A1) · . . . · skel(An) .

That is, the skeleton of a trace is the sequence of the skeletons of
the processes of which it is composed. Thus, if

t : A0
α1
−−→ · · ·

αn
−−→ An t ′ : B0

β1
−−→ · · ·

βp
−−→ Bp

we have skel(t) = skel(t ′) iff n = p and for all i ∈ ⟦0,n⟧, skel(Ai) =
skel(Bi).

Simplifying equivalence. First we simplify the problem by forc-
ing the application of (Par) rules in priority in traces.

Definition B.1. If P is a plain process in⇝-normal form, we write
Tτ (P) the set of traces where the rule (Par) is always performed
in priority, i.e. where the rules (In) and (Out) are never applied to
extended processes (P,Φ) such that P contains a process with a
parallel a its root (i.e. a process P such that |skel(P)| > 1).

Proposition B.2. If P,Q are plain processes in⇝-normal form
such that skel(P) = skel(Q):q P ⊑tr Q iff ∀t ∈ Tτ (P), ∃t

′ ∈ Tτ (Q), t ∼ t ′q P ⊑s Q iff ∀t ∈ Tτ (P), ∃t
2 ∈ T(P,Q), t = fst(t2) ∼ snd(t2)

Proof. The first point is standard. The proof of the second point
can be seen as a corollary of the compression optimisations of
equivalence by session (see Section 4.2). □

Definition B.3. We say that ({{P1, . . . , Pn }},Φ) is τ -deterministic
if there is at most one i ∈ ⟦1,n⟧ such that Pi has a parallel operator
at its root (i.e. |skel(Pi)| > 1).

The τ -determinism will be an invariant in proofs by induction on
the length of traces. More precisely, if A,B are extended processes
we call Inv(A,B) the property stating

(i) Ai ,Bi are determinate
(ii) skel(Ai) = skel(Bi)
(iii) Ai ∼ Bi
(iv) Ai ,Bi are τ -deterministic, and Ai contains a process with

a parallel operator at its root (i.e. a process Pi such that
|skel(Pi)| > 1) iff Bi does.

Equivalence and inclusion. We prove that trace equivalence co-
incides with a notion of trace inclusion strengthened with identical
actions and skeleton checks.

Proposition B.4. If P,Q are determinate plain processes in⇝-
normal form s.t. skel(P) = skel(Q), then the following points are
equivalent

(1) P ≈tr Q

(2) ∀t ∈ Tτ (P), ∃t ′ ∈ Tτ (Q),

tr(t) = tr(t ′)
Φ(t) ∼ Φ(t ′)
skel(t) = skel(t ′)

Proof of 2⇒1. Given two determinate extended processesA,B,
we write φ(A,B) the property stating that

∀t ∈ Tτ (A), ∃t
′ ∈ Tτ (B),

tr(t) = tr(t ′)
Φ(t) ∼ Φ(t ′)
skel(t) = skel(t ′)

.

Note that φ(A,B) implies skel(A) = skel(B) by choosing the empty
trace. In particular, to prove 2⇒1, it sufficies to prove that for all
A,B determinate, φ(A,B) ⇒ A ⊑tr B and φ(A,B) ⇒ φ(B,A).

The first implication is immediate. As for the second implication,
we prove that for all extended processes A0,B0 such that φ(A0,B0)
and Inv(A0,B0), and all

t ′ : B0
α1
−−→ · · ·

αn
−−→ Bn ∈ Tτ (B0) ,

there exists

t : A0
α1
−−→ · · ·

αn
−−→ An ∈ Tτ (A0) ,

s.t. for all i ∈ ⟦0,n⟧, Inv(Ai ,Bi). This is sufficient to conclude as
Inv(P,Q) holds for any determinate plain processes P,Q in ⇝-
normal form s.t. skel(P) = skel(Q).

We proceed by induction on n. If n = 0 the conclusion is imme-
diate. Otherwise, assume by induction hypothesis that it holds for
any trace of length n − 1.

▷ case 1: α1 = τ .

We know that B0 does not contain private channels by deter-
minacy (Inv(A0,B0) Item (i)). Therefore, the transition B0

τ
−→ B1

is derived by the rule (Par). In particular by Inv(A0,B0) Item (iv),
there also exists a transition A0

τ
−→ A1. The conclusion can now

follow from the induction hypothesis applied toA1,B1; but to apply
it we have to prove that φ(A1,B1) and Inv(A1,B1) hold.

→ proof that φ(A1,B1).

Let s ∈ Tτ (A1). Then (A0
τ
−→ A1) · s ∈ Tτ (A0) and by φ(A0,B0)

there exists (B0
τ
−→ B′

1) · s
′ ∈ Tτ (B0) such that tr(s) = tr(s ′),

Φ(t) ∼ Φ(t ′) and skel(t) = skel(t ′). But by τ -determinism of B0
we deduce that B1 = B′

1, and s ′ ∈ Tτ (B1) satisfies the expected
requirements.

→ proof that Inv(A1,B1).

(i) A0 and B0 are determinate and determinacy is preserved by
transitions.

(ii) skel(A1) = skel(A0) = skel(B0) = skel(B1)
(iii) A0 ∼ B0 and the rule (Par) does not affect the frame.

(iv) A0 and B0 are τ -deterministic and τ -determinism is pre-
served by transitions (w.r.t. Tτ). Besides we know that nei-
ther of A1 nor B1 contain a parallel operator due to the
⇝-normalisation, hence the result.

▷ case 2: α1 , τ .
By definition Tτ (B0), we know that the rule (Par) is not appli-

cable to B0; neither to A0 by Inv(A0,B0) Item (iv), which means
that traces of Tτ (B0) may start by an application of rules (In) or
(Out). Using this and the fact that skel(A0) = skel(B0) (Inv(A0,B0)

Item (ii)), we obtain that there exists a transition A0
α1
−−→ A1. The

conclusion can now follow from the induction hypothesis applied
to A1,B1; but to apply it we have to prove that φ(A1,B1) and
Inv(A1,B1) hold.

→ proof that φ(A1,B1).
The argument is the same as its analogue in case 1, using the

determinacy of B0 instead of its τ -determinism.
→ proof that Inv(A1,B1).
(i) A0 and B0 are determinate and determinacy is preserved by

transitions.
(ii) By applying φ(A0,B0) with the trace t0 : A0

α1
−−→ A1, we

obtain a trace t ′0 : B0
α1
−−→ B′

1 such that skel(A1) = skel(B′
1).

But by determinacy of B0, the transition B0
α1
−−→ B1 is the

only transition from B0 that has label α1, hence B1 = B′
1 and

the conclusion.
(iii) Identical proof as that of Item (ii) above, using the fact that

A1 ∼ B′
1 instead of skel(A1) = skel(B′

1).
(iv) Let us write

A0 = ({{P0}} ∪ P,Φ) A1 = ({{P1}} ∪ P,Φ′)

B0 = ({{Q0}} ∪ Q,Ψ) B1 = ({{Q1}} ∪ Q,Ψ′)

As we argued already at the beginning of case 2, neither
P nor Q contain processes with parallel operators at their
roots. Therefore, we only have to prove that P1 has a parallel
operator at its root iff Q1 does. For cardinality reasons, this
a direct corollary of the following points:
– skel(P0) = skel(Q0) (same action α1 being executable at
topelevel),

– skel(A0) = skel(B0) (hypothesis Inv(A0,B0)), and
– skel(A1) = skel(B1) (Item (ii) proved above). □

Proof of 1⇒2. The proof will follow in the steps as the other
implication (we construct the trace t ′ by induction on the length of
t while maintaining the invariant Inv).

More formally, we prove that for all extended processes A0,B0
such that A0 ≈tr B0 and Inv(A0,B0), and all

t : A0
α1
−−→ · · ·

αn
−−→ An ∈ Tτ (A0) ,

there exists

t ′ : B0
α1
−−→ · · ·

αn
−−→ Bn ∈ Tτ (B0) ,

s.t. for all i ∈ ⟦0,n⟧, Inv(Ai ,Bi).
We proceed by induction on n. We proceed by induction on n. If

n = 0 the conclusion is immediate. Otherwise, assume by induction
hypothesis that it holds for any trace of length n − 1.
▷ case 1: α1 = τ .

Similarly to the converse implication, there exists a transition
B0

τ
−→ B1 (derived by (Par)) and it sufficies to prove that A1 ≈tr B1

and Inv(A1,B1) hold in order to apply the induction hypothesis and
conclude.

→ proof that A1 ≈tr B1.

Let s ∈ Tτ (A1). Then (A0
τ
−→ A1)·s ∈ Tτ (A0) and sinceA0 ≈tr B0

there is (B0
τ
−→ B′

1) · s
′ ∈ Tτ (B0) such that

(A0
τ
−→ A1) · s ∼ (B0

τ
−→ B′

1) · s
′ .

But by τ -determinism of B0 we deduce that B1 = B′
1, and thus s ′ ∈

Tτ (B1) and s ∼ s ′. This justifies that A1 ⊑tr B1, and a symmetric
argument can be used for the converse inclusion B1 ⊑tr A1.

→ proof that Inv(A1,B1).

By the exact same arguments as that of the analogue case in the
converse implication.
▷ case 2: α1 , τ .
Similarly to the converse implication, there exists a transition

B0
α1
−−→ B1 and it sufficies to prove that A1 ≈tr B1 and Inv(A1,B1)

hold in order to apply the induction hypothesis and conclude.
→ proof that A1 ≈tr B1.

The argument is the same as its analogue in case 1, using the
determinacy of B0 instead of its τ -determinism.

→ proof that Inv(A1,B1).

This is the proof obligation whose arguments substantially differ
from that of the converse implication.

(i) A0 and B0 are determinate and determinacy is preserved by
transitions.

(ii) We assume by contradiction that skel(A1) , skel(B1). By
symmetry, say that skel(A1) ⊈ skel(B1) and let us fix a skele-
ton s ∈ skel(A1) ∖ skel(B1). By definition of Tτ (A0), we
know that the rule (Par) is neither applicable to A0 nor B0;
in particular, there exists a transition A1

α
−→ A derived from

rule (In) or (Out) (the one corresponding to the skeleton s)
such that B1 ̸

α
−→.

But by determinacy of B0, the transition B0
α1
−−→ B1 is the

only transition from B0 that has label α1. Thus, this yields
a contradiction with A0 ≈tr B0: more precisely the trace
A0

α1
−−→ A1

α
−→ A is not matched.

(iii) By determinacy of B0, the transition t ′0 : B0
α1
−−→ B1 is the

only transition from B0 that has label α1. In particular, using
the hypothesis A0 ≈tr B0, we obtain that t ′0 ∈ Tτ (B0) is the
only trace such that

t0 : (A0
α1
−−→ A1) ∼ t ′0 .

In particular A1 ∼ B1.
(iv) Same cardinality argument as the analogue case in the con-

verse implication. □

Session matchings. Proposition B.4 is the core result of the proof.
We now connect it with the equivalence by session by using the
characterisation of Appendix A.

Proposition B.5. Let P,Q two determinate plain processes in⇝-
normal form and two labelled traces t ∈ Tτ (A0) and t ′ ∈ Tτ (Q) such
that tr(t) = tr(t ′) and skel(t) = skel(t ′). Then there exists a session
matching for t and t ′.

Proof. We prove that for all τ -deterministic, determinate ex-
tended processes A0 and B0, and

t : A0
[α1]

ℓ1
−−−−−−→ · · ·

[αn]ℓn

−−−−−−→ An t ′ : B0
[α1]

ℓ′1
−−−−−−→ · · ·

[αn]ℓ
′
n

−−−−−−→ Bn

if skel(t) = skel(t ′), then there exists a session matching for t and
t ′. We proceed by induction on n. If n = 0 the session matching is
π : ε 7→ ε . Otherwise, let us write

An−1 = ({{[P]ℓn }} ∪ P,Φ) Bn−1 = ({{[Q]ℓ
′
n }} ∪ Q,Ψ)

By induction hypothesis, let π be a session matching for the first
n − 1 transitions of t and t ′; in particular, the labels of An−1 are in
the domain of π .
▷ case 1: αn , τ .
In this case we write

An = ({{[P ′]ℓn }} ∪ P,Φ′) Bn = ({{[Q ′]ℓ
′
n }} ∪ Q,Ψ′)

First of all, we observe that skel(P) = skel(Q) because the same
observable action αn can be performed at the root of P and Q . In
particular, by determinacy (hypothesis), unicity of the process with
a given label (invariant of the labelling procedure), and Item 4 of
Definition A.1, we deduce that π (ℓn) = ℓ′n .

Therefore by the hypothesis skel(An−1) = skel(Bn−1), we obtain
skel(P) = skel(Q). Hence skel(P ′) = skel(Q ′) by the hypothesis
skel(An) = skel(Bn). All in all, π is a session matching for the whole
traces t and t ′.
▷ case 2: αn = τ .
In this case we write

P = P1 | · · · | Pk An = ({{[Pi]
ℓn ·i }}ki=1 ∪ P,Φ′)

Q = Q1 | · · · | Qk ′ Bn = ({{[Qi]
ℓ′n ·i }}k

′

i=1 ∪ Q,Ψ′)

Since determinacy excludes private channels, the last transi-
tion of t and t ′ is derived from the rule (Par). By τ -determinism,
this means that P and Q are the only processes in An−1 and Bn−1,
respectively, that contain a parallel operator at their roots. In par-
ticular, by Item 4 of Definition A.1, we deduce that π (ℓn) = ℓ′n and
skel(P) = skel(Q); and thus k = k ′.

Therefore, there exists a permutation σ of ⟦1,k⟧ such that for all
i ∈ ⟦1,k⟧, skel(Pi) = skel(Qσ (i)) (although this is not needed for
the proof, this permutation appears to be unique by determinacy).
Thus if π ′ : L → L′ is the function extending π and such that

∀i ∈ ⟦1,k⟧, π ′(ℓ · i) = π (ℓ) · σ (i) ,

then π ′ is a session matching for t and t ′. □

Altogether Propositions A.3 to B.5 justify the following corollary
(that actually appears to be stronger than the expected Proposi-
tion 3.3).

Corollary B.6. If P and Q are determinate plain processes in
⇝-normal form, P ≈tr Q iff P ⊑s Q .

C CORRECTNESS OF PARTIAL-ORDER

REDUCTIONS

In this section we give the proofs of the main technical results of our
partial-order reductions, namely that traces can be considered up to
permutation of independent actions. First we prove Proposition 4.2
for traces of two actions.

Proposition C.1. If α || β and t : A
α β
==⇒ B, then there exists a

trace u : A
βα
==⇒ B. It has the property that for all traces u2 : A2 βα

==⇒s

B2 such that fst(u2) = u, there exists t2 : A2 α β
==⇒s B2 such that

fst(t2) = t .

Proof. Since the labels of α and β are incomparable w.r.t. the
prefix ordering by independence, the trace t needs have the form

A = (P ∪ Q ∪ R,Φ)
α
−→ (P ′ ∪ Q ∪ R,Φ′)

β
−→s (P

′ ∪ Q ′ ∪ R,Φ′′)

with (P,Φ)
α
−→ (P ′,Φ′) and (Q,Φ′)

β
−→ (Q ′,Φ′′). Now we con-

struct the trace u, by a case analysis on α and β . In each case, we
omit the construction of the trace t2 that can be inferred easily.
▷ case 1: α and β are inputs or τ actions.
In particular Φ′′ = Φ′ = Φ and it sufficies to choose

u : (P ∪ Q ∪ R,Φ)
β
−→ (P ∪ Q ′ ∪ R,Φ)

α
−→ (P ′ ∪ Q ′ ∪ R,Φ) .

▷ case 2: α is an output and β is an input or a τ action.
In particular Φ′′ = Φ′ = Φ ∪ {ax 7→ m} with ax < dom(Φ) and

ax does not appear in β . Then it sufficies to choose the trace

u : (P ∪ Q ∪ R,Φ)
β
−→ (P ∪ Q ′ ∪ R,Φ)

α
−→ (P ′ ∪ Q ′ ∪ R,Φ′) .

▷ case 3: α is an input or a τ action and β is an output.
Similar to case 2.
▷ case 4: α and β are both outputs.
Then Φ′ = Φ ∪ {ax 7→ m} and Φ′′ = Φ′ ∪ {ax′ 7→ m′} with

ax , ax′, {ax, ax′} ∩ dom(Φ) = ∅. Then we choose

u : (P ∪ Q ∪ R,Φ)
β
−→ (P ∪ Q ′ ∪ R,Φ ∪ {ax′ 7→m′})

α
−→ (P ′ ∪ Q ′ ∪ R,Φ′′) . □

Then Proposition 4.2 can be obtained by induction on the hypoth-
esis of π permuting independent actions of tr, using Proposition C.1.
We actually prove the stronger result:

Proposition C.2. If t : A
tr
=⇒ B and π permutes independent

actions of tr, then A
π .tr
===⇒ B. This trace is unique if we take labels

into account, and is referred as π .t . It has the property that for all

u2 : A2 π .tr
===⇒s B

2 such that fst(u2) = π .t , there exists t2 : A2 tr
=⇒s B

2

such that fst(t2) = t .

Proof. The uniqueness of π .t is immediate, as a quick induction
on the length of traces shows that any labelled trace u is uniquely
determined by the action word tr(u) (if labels are included). We
then construct π .t by induction on the hypothesis that π permutes
independent actions of tr(t). Let us write

t : A = A0
α1
−−→ · · ·

αn
−−→ An = B .

If π = id it sufficies to choose π .t = t . Otherwise let us write
π = π0 ◦ (i i+1) with αi || αi+1 and π0 permutes independent
actions of tr′ = αp · · ·αi−1αi+1αiαi+2 · · ·αn . By Proposition C.1,
there exists a trace

u : A0
α1
−−→ · · ·

αi−1
−−−−→ Ai−1

αi+1αi
=====⇒ Ai+1

αi+2
−−−−→ · · ·

αn
−−→ An

such that for all u2 : A2 tr′
=⇒s B

2 verifying fst(u2) = u, there exists
t2 : A2 tr

=⇒s B2 such that fst(t2) = t . Then since π0 permutes
independent actions of tr′ = tr(u), it sufficies to choose π .t = π0.u
by induction hypothesis. □

And finally we have the Proposition 4.3 that follows from this
result.

Proof of Proposition 4.3. Let ≈i= ⊑i ∩ ⊒i the equivalence
induced by O∀

i . The inclusion ≈2 ⊆ ≈1 is immediate. Let us then
assume P ⊑1 Q and prove P ⊑2 Q . Let t ∈ T(P) ∩ O∀

2. Therefore by
hypothesis, there exists π permuting independent actions of t such
that π .t ∈ O∀

1. Since P ⊑1 Q , there is u2 ∈ T(P,Q) such that

π .t = fst(u2) ∼ snd(u2) .

Therefore by Proposition C.2, there exists t2 ∈ T(P,Q) such that
t = fst(t2) ∼ snd(t2). □

D CORRECTNESS OF THE REDUCTIONS BY

SYMMETRY

In this section we prove of the technical optimisation relying on
symmetries of matchings (Proposition 5.3). For that we introduce
a notion of equivalence of traces; this is intuitively the invariant
preserved by permutation of structurally-equivalent subprocesses.

Definition D.1. We write

({{(Pi ,Qi)}}
n
i=1,Φ0,Φ1) ≡α ({{(Pi ,Q

′
i ρ)}}

n
i=1,Φ0,Φ

′
1ρ)

when ρ is a bijective renaming of private names, Qi ≡E Q ′
i for

all i , and Φ1 ≡E Φ′
1. We extend this to traces by writing A2

0
α1
−−→s

· · ·
αn
−−→s A

2
n ≡α B20

α1
−−→s · · ·

αn
−−→s B

2
n when A2

0 = B20 and A
2
i ≡α B2i

for all i > 0.

Lemma D.2. ≡α is an equivalence relation.

Proof. Reflexivity and Symmetry are immediate, but transitiv-
ity requires the observation that for any terms t, t ′ and bijective
renaming of private names ρ, t =E t ′ entails tρ =E t ′ρ. □

Proposition D.3. The relation ≡α has the following properties
(i) ∀t2 ∈ T(A2), ∃s2 ∈ O∃

s, s
2 ≡α t2

(ii) if t2 ≡α s2, then fst(t2) ∼ snd(t2) iff fst(s2) ∼ snd(s2)
(iii) if t2 ≡α s2, then fst(t2) = fst(s2)

Proof. The property (i) can be proved by induction on the
length of the trace. The main argument is that if A2 α

−→s B2 is
ill-formed, then there exists a well-formed transition A2 α

−→s C
2

such that B2 ≡α C2. The property (ii) follows from the fact that
Φ =E Φ′ implies Φ ∼ Φ′, and Φ ∼ Φρ for any bijective renaming
of private names ρ. The property (iii) is immediate. □

Then Proposition 5.3 is a simple corollary of this proposition:

Proof of Proposition 5.3. Let us write ≈ the notion of equiv-
alence induced by the optimisation O∃

s . The inclusion ≈ ⊆ ⊑s is
immediate. Let us then assume that P ⊑s Q and prove that P ⊑ Q .
Let t ∈ T(P). By hypothesis, there is t2 ∈ T(P,Q) such that

t = fst(t2) ∼ snd(t2) .

By Proposition D.3 (Item (i)), there exists s2 ∈ O∃
s such that t2 ≡α s2.

Therefore we have, by Items (i) and (ii),

t = fst(s2) ∼ snd(s2) . □

	Abstract
	1 Introduction
	2 Model
	2.1 Messages and cryptography
	2.2 Protocols as processes
	2.3 Security properties

	3 Optimising verification
	3.1 Equivalence by session
	3.2 Comparison to other equivalences
	3.3 Trace refinements

	4 Partial-order reductions
	4.1 Labels and independence
	4.2 Compression optimisations
	4.3 Reduction optimisations

	5 Reductions by symmetry
	5.1 Group actions and process redundancy
	5.2 Structural equivalence
	5.3 Universal symmetry optimisation
	5.4 Existential symmetry optimisation

	6 Symbolic setting
	6.1 DeepSec's baseline procedure
	6.2 Symbolic matching
	6.3 Integration

	7 Experiments
	8 Conclusion and future work
	References
	A Explicit session matchings
	B False attacks and determinacy
	C Correctness of partial-order reductions
	D Correctness of the Reductions by Symmetry

