Vincent Cheval

Steve Kremer

Exploiting Symmetries When Proving Equivalence Properties for Security Protocols

Keywords: Security and privacy → Formal security models, Logic and verification Security Protocols, Partial-Order Reductions, Symmetry ACM Reference Format:

Verification of privacy-type properties for cryptographic protocols in an active adversarial environment, modelled as a behavioural equivalence in concurrent-process calculi, exhibits a high computational complexity. While undecidable in general, for some classes of common cryptographic primitives the problem is coNEXP-complete when the number of honest participants is bounded.

In this paper we develop optimisation techniques for verifying equivalences, exploiting symmetries between the two processes under study. We demonstrate that they provide a significant (several orders of magnitude) speed-up in practice, thus increasing the size of the protocols that can be analysed fully automatically.

INTRODUCTION

Security protocols are distributed programs transmitting data between several parties. The underlying messages may be sensitivefor economical, political, or privacy reasons-and communications are usually performed through an untrusted network such as the Internet. Therefore, such protocols need to guarantee strong security requirements in an active adversarial setting, i.e., when considering an adversary that has complete control over the communication network. Formal, symbolic methods, rooted in the seminal work of Dolev and Yao [START_REF] Dolev | On the Security of Public Key Protocols[END_REF], have been successful in analysing complex protocols, including for instance the recent TLS 1.3 proposal [START_REF] Bhargavan | Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate[END_REF][START_REF] Cremers | A Comprehensive Symbolic Analysis of TLS 1.3[END_REF] and the upcoming 5G standard [START_REF] Basin | A Formal Analysis of 5G Authentication[END_REF].

While some security properties can be formalised as reachability statements, privacy related properties are generally defined as the indistinguishability of two situations where the value of a private attribute differs. This is why privacy-type properties such as anonymity, (strong flavors of) secrecy, unlinkability, or privacy in e-voting are often modelled as behavioural equivalences in concurrent process calculi, such as the applied pi-calculus [START_REF] Abadi | The Applied Pi Calculus: Mobile Values, New Names, and Secure Communication[END_REF]. The problem of verifying such equivalences is undecidable in the full, Turing-complete, calculus. Still, decidability results and fully automated analysers exist when the number of protocol sessions is bounded.

Unfortunately, recent results [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF] show that the problem has a high computational worst-case complexity (coNEXP-complete). Yet, other results show that the problem is exponentially simpler (coNP-complete) for a class of practical scenarios (determinate processes) [START_REF] Cortier | A method for proving observational equivalence[END_REF]. This gap is all the more striking in practice as, for determinate processes, the verification time can effectively be reduced by several orders of magnitude using partial-order reductions [START_REF] Baelde | Partial Order Reduction for Security Protocols[END_REF][START_REF] Cheval | The DEEPSEC prover[END_REF]. This highlights the gap between the general, pessimistic complexity bound and what can be achieved by exploiting specificities of given instances. In practice, the processes that are analysed show a great amount of symmetries as they often consist of several copies (sessions) of the same protocol executed in parallel. Exploiting this helps factoring out large, redundant parts of equivalence proofs, and making theoretically hard verification feasible in practice.

Contributions

We present optimisations for the verification of trace equivalence in the applied pi-calculus. For that we exploit the symmetries of the two processes to be shown equivalent. More specifically, our contributions are as follows.

(1) We introduce equivalence by session, a new process equivalence that implies the classical trace equivalence. Intuitively, it is a refinement of trace equivalence designed for two processes sharing a similar structure, making verification easier. [START_REF] Adida | Helios: web-based open-audit voting[END_REF] We show how partial-order reductions presented in [START_REF] Baelde | Partial Order Reduction for Security Protocols[END_REF] for determinate processes, can be used for proving equivalence by session for any processes. (3) We give a group-theoretic characterisation of internal process redundancy, inspired by classical formalisations of symmetries in model checking [START_REF] Emerson | Symmetry and model checking[END_REF], and use it to reduce further the complexity of deciding equivalence by session. [START_REF] Arapinis | New privacy issues in mobile telephony: fix and verification[END_REF] We design a symbolic version of the above equivalence and optimisations, based on the constraint solving techniques of the DeepSec prover [START_REF] Cheval | The DEEPSEC prover[END_REF], a state-of-the-art tool for verifying equivalence properties in security protocols. This allowed us to implement our techniques in DeepSec and evaluate the gain in verification time induced by our optimisations.

Note that, while we designed equivalence by session as an efficient proof technique for trace equivalence it is also of independent interest: to some extent, equivalence by session models attackers that can distinguish different sessions of a same protocol. This may be considered realistic when servers allocate a distinct ephemeral port for each session; in other contexts, e.g. RFID communication this may however be too strong. When equivalence by session is used as a proof technique for trace equivalence, false attacks are possible, as it is a sound, but not complete, refinement. However, on the existing protocols we experimented on, each time equivalence by session was violated, trace equivalence was violated as well.

Our prototype is able to successfully analyse various security protocols that are currently out of scope-in terms of expressivity or exceeding a 12h timeout-of similar state-of-the-art analysers. We observe improvements of several orders of magnitude in terms of efficiency, compared to the original version of DeepSec. Among the case studies that we consider are q the Basic Acces Control (BAC) protocol [START_REF]PKI for machine readable travel documents offering ICC read-only access[END_REF] implemented in Eu- ropean e-passports. In previous work, verification was limited to merely 2 sessions, while in this paper we scale up to 5 sessions.

q the Helios e-voting protocol [START_REF] Adida | Helios: web-based open-audit voting[END_REF]. Automated analyses of this pro- tocol exist when no revote is allowed, or is limited to one revote from a honest voter [START_REF] Arapinis | When are three voters enough for privacy properties?[END_REF][START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF]. In this paper, we analyse several models covering revote scenarios for 7 emitted honest ballots.

The main technical proofs of our results can be found in appendix. See the companion technical report [START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF] for full proofs and more general versions of the results presented in this paper.

Related work

Partial-order reduction (por) techniques for the verification of cryptographic protocols were first introduced by Clark et al. [START_REF] Clarke | Efficient verification of security protocols using partial-order reductions[END_REF]: while well developed in verification of reactive systems these existing techniques do not easily carry over to security protocols, mainly due to the symbolic treatment of attacker knowledge. Mödersheim et al. [START_REF] Mödersheim | Constraint differentiation: Search-space reduction for the constraint-based analysis of security protocols[END_REF] proposed por techniques that are suitable for symbolic methods based on constraint solving. However, both the techniques of Clark et al. [START_REF] Clarke | Efficient verification of security protocols using partial-order reductions[END_REF] and Mödersheim et al. [START_REF] Mödersheim | Constraint differentiation: Search-space reduction for the constraint-based analysis of security protocols[END_REF] are only correct for trace properties.

Partial order reduction techniques for equivalence properties were only introduced more recently by Baelde et al. [START_REF] Baelde | A Reduced Semantics for Deciding Trace Equivalence Using Constraint Systems[END_REF][START_REF] Baelde | Partial Order Reduction for Security Protocols[END_REF]: implementing these techniques in the APTE tool resulted in spectacular speed-ups. Other state-of-the-art tools, AKISS [START_REF] Chadha | Automated verification of equivalence properties of cryptographic protocols[END_REF] and DeepSec [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF], integrated these techniques as well. However, these existing techniques are limited in scope as they require protocols to be determinate. Examples of protocols that are typically not modelled as determinate processes are the BAC protocol, and the Helios e-voting protocol mentioned above. In recent work, Baelde et al. [START_REF] Baelde | POR for Security Protocol Equivalences -Beyond Action-Determinism[END_REF] propose por techniques that also apply to non-determinate processes (but do not support private channels) and implement these techniques in the DeepSec tool. Unfortunately, these techniques introduce a computational overhead, that limits the efficiency gain.

As our experiments will show, our techniques, although including some approximations, significantly improve efficiency.

There exist other tools for the verification of equivalence properties in the case of a bounded number of sessions. The SAT-Eqiv tool [START_REF] Cortier | SAT-Equiv: an efficient tool for equivalence properties[END_REF] is extremely efficient, but its scope is more narrow: it does not support user-defined equational theories and is restricted to determinate processes. As shown in [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF], the AKISS [START_REF] Chadha | Automated verification of equivalence properties of cryptographic protocols[END_REF] and SPEC tool [START_REF] Tiu | SPEC: An Equivalence Checker for Security Protocols[END_REF] were already less efficient (by orders of magnitude) than the DeepSec tool before our current work. We also mention the less recent S 3 A tool [START_REF] Durante | Automatic testing equivalence verification of spi calculus specifications[END_REF] that verifies testing equivalence in the SPI calculus and integrates some symmetry (but no partial-order) reductions [START_REF] Cibrario | Exploiting symmetries for testing equivalence in the spi calculus[END_REF]. The tool however only supports a fixed equational theory and no else branches. We are not aware of a publicly available implementation.

Finally, our approach can also be compared to tools for an unbounded number of sessions. The ProVerif [START_REF] Blanchet | Automated verification of selected equivalences for security protocols[END_REF], Tamarin [START_REF] Basin | Automated Symbolic Proofs of Observational Equivalence[END_REF] and Maude-NPA [START_REF] Santiago | A Formal Definition of Protocol Indistinguishability and Its Verification Using Maude-NPA[END_REF] tools all show a process equivalence that is more fine-grained than trace-equivalence. The resulting equivalence is often referred to as diff-equivalence in that it requires that equivalent processes follow the same execution flow and only differ on the data. As a result these techniques may fail to prove equivalence of processes that are trace equivalent. Our approach goes in the same direction but equivalence by session is less fine-grained, for example capturing equivalence proofs for the BAC protocol. A detailed comparison between these two equivalences is given in Section 3.1. Besides, the restriction to a bounded number of sessions allows us to decide equivalence by session, while termination is not guaranteed for tools in the unbounded case.

MODEL

We first present our model for formalising privacy-type properties of security protocols. They are represented by trace equivalence of processes in the applied-pi calculus [START_REF] Abadi | The Applied Pi Calculus: Mobile Values, New Names, and Secure Communication[END_REF].

Messages and cryptography

To analyse protocols, we rely on symbolic models rooted in the seminal work of Dolev and Yao [START_REF] Dolev | On the Security of Public Key Protocols[END_REF]. Cryptographic operations are modelled by a finite signature, i.e., a set of function symbols with their arity F = {f/n, g/m, . . .}. Atomic data such as nonces, random numbers, or cryptographic keys are represented by an infinite set of names N = {a, b, k, . . .} = N pub ∪ N priv partitioned into public and private names. We also consider an infinite set of variables X = {x, y, z, . . .}. Protocol messages are then modelled as terms obtained by application of function symbols to names, variables or other terms. If A ⊆ N ∪ X, T (F , A) refers to the set of terms built from atoms in A.

Example 2.1. The following signature F models classical primitives: pair and projections, public-key generation, randomised asymmetric encryption and decryption, and digital signature.

⟨•, •⟩/2 proj 1 /1 proj 2 /1 pk/1 aenc/3 adec/2 sign/2 verify/2
For example, let m ∈ N pub model some public value, and k, r ∈ N priv a private key and a random value, respectively. The term c = aenc(m, pk(k), r) represents a ciphertext obtained by encrypting m with the public key pk(k) and randomness r . Its decryption is represented by the term adec(c, k). △

An equational theory is a binary relation E on terms. It is extended to an equivalence relation = E that is the closure of E by reflexivity, symmetry, transitivity, substitution and applications of function symbols. All the optimisations we present in this paper are sound for arbitrary equational theories although, obviously, the implementation in DeepSec naturally inherits the restrictions of the tool (limited to destructor subterm convergent rewriting systems).

Example 2.2. The following equations characterise the behaviour of the primitives introduced in Example 2.1:

proj 1 (⟨x, y⟩) = E x adec(aenc(x, pk(y), z), y) = E x proj 2 (⟨x, y⟩) = E y verify(sign(x, y), pk(y)) = E x
That is, a message encrypted with a public key pk(k) can be recovered with the corresponding private key k, and a message signed with k can be recovered with pk(k). Using the notations of Example 2.1, we can derive from these equations that adec(c, k) = E m. One-wayness of h is modelled by an absence of equations. △

A substitution σ is a mapping from variables to terms, homomorphically extended to a function from terms to terms. We use the classical postfix notation tσ instead of σ (t), and the set notation σ = {x 1 → x 1 σ, . . . , x n → x n σ }. In particular we may use operators such as ⊆ or ∩ with substitutions.

Protocols as processes

Syntax. Protocols are modelled as concurrent processes exchanging messages (i.e. terms). We define the syntax of plain processes by the following grammar:

P, Q := 0 null P | Q parallel if u = v then P else Q conditional c ⟨u⟩.P output c(x).P input
where u, v are terms, x ∈ X, and c ∈ Ch where Ch denotes a set of channels. We assume a partition Ch = Ch pub ∪ Ch priv of channels into public and private channels: while public channels are under the control of the adversary, private channels allow confidential, internal communications. The 0 process is the terminal process which does nothing, the operator P | Q executes P and Q concurrently, c ⟨u⟩ sends a message u on channel c, and c(x) receives a message (and binds it to the variable x).

We highlight two restrictions compared to the calculus of [START_REF] Abadi | The Applied Pi Calculus: Mobile Values, New Names, and Secure Communication[END_REF]: we only consider a bounded number of protocol sessions (i.e. there is no operator for unbounded parallel replication) and channels are modelled by a separate datatype (i.e. they are never used as parts of messages). The first restriction is necessary for decidability [START_REF] Chadha | Automated verification of equivalence properties of cryptographic protocols[END_REF][START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF][START_REF] Tiu | SPEC: An Equivalence Checker for Security Protocols[END_REF] but still allows to detect many flaws since attacks tend to require a rather small number of sessions. Our optimisations also rely on an invariant that private channels remain unknown to the adversary, hence the restriction to disallow channel names in messages.

Example 2.3. We describe a minimal toy protocol for electronic voting that will serve as a running example throughout the paper. We build upon the signature and equational theory introduced in Examples 2.1 and 2.2. The system operates as follows:

(1) Each voter generates a private signature key and sends the corresping public key to the voting authority using an authenticated channel;

(2) The voter encrypts a pair ⟨vote, public key⟩ (using the public key of the voting authority), signs it, and casts it; (3) After verifying the signatures and decrypting the messages, the voting authority shuffles the votes using a mixnet, and outputs them in clear. The first messages of the protocol (communication of the signature key, casting one vote, and verification of the signature) can be modelled as follows in the applied pi-calculus:

Voter(c, vote, s, r) = auth⟨pk(s V)⟩. c ⟨pk(s V)⟩. c ⟨sign(v, s V)⟩. 0 with v = aenc(⟨vote, pk(s V)⟩, pk(s A), r) Authority = auth(pk sign1). c(x 1). if proj 2 (adec(verify(x 1 , pk sign1), s A)) = pk sign1 then auth(pk sign2). c(x 2). if proj 2 (adec(verify(x 1 , pk sign2), s A)) = pk sign2 then (• • •)
where auth ∈ Ch priv , s V ∈ N priv is the generated signature key, and s A ∈ N priv the authority's private key. In the voter process, the authenticated transfer of the signature key is modelled by two consecutive outputs of pk(s V): a first output on a private channel auth and a second output on a public channel c. The private channel ensures that the adversary cannot block or modify the content of the message; the public channel enables the adversary to eavesdrop the message. In the authority process, two signed votes are verified. The overall system with two voters is modelled by

S(v 1 , v 2) = Voter(c 1 , v 1 , s 1 , r 1) | Voter(c 2 , v 2 , s 2 , r 2) | Authority where c 1 , c 2 ∈ Ch pub , s 1 , s 2 , r 1 , r 2 ∈ N priv . △
Semantics. The behaviour of protocols is defined by an operational semantics on processes. Its first ingredients are simplifying rules to normalise processes from non-observable, deterministic actions (Figure 1). These simplifying rules get rid of 0 processes, and evaluate conditionals at toplevel. We say that a process on which no more rule applies is in ⇝-normal form. This rewriting relation being convergent, we will denote by P ⇝ the unique ⇝-normal form of P. The operational semantics then operates on extended processes. An extended process is a pair (P, Φ), where P is a multiset of plain processes (in ⇝-normal form) and Φ is a substitution, called the frame. Intuitively, P is the multiset of processes that are ready to be executed in parallel, and Φ is used to record outputs on public channels. The domain of the substitution Φ is a subset of a set AX of axioms, disjoint from X: they record the raw observations of the attacker, that is, they are the axioms in intruder deduction proofs. The semantics (Figure 2) takes the form of a labelled transition relation α -→ between extended processes, where α is called an action and indicates what kind of transition is performed.

P | 0 ⇝ P 0 | P ⇝ P (P | Q) | R ⇝ P | (Q | R) P | Q ⇝ P ′ | Q Q | P ⇝ Q | P ′ if P ⇝ P ′ if u = v then P else Q ⇝ P if u = E v Q otherwise
(Out) ({{c ⟨u⟩.P }} ∪ P, Φ) The output rule (Out) models that outputs on a public channel are added to the attacker knowledge, i.e., stored in Φ in a fresh axiom. The axioms thus provide handles for the attacker to refer to these outputs. The input rule (In) reads a term ξ , called a recipe provided by the attacker, on a public channel. This term ξ can be effectively constructed by the attacker as it is built over public names and elements of dom(Φ), i.e. previous outputs. The resulting term is then bound to the input variable x. Rule (Comm) models internal communication on a private channel and rule (Par) adds processes in parallel to the multiset of active processes. These last two actions are internal actions (label τ), unobservable by the attacker.

c ⟨ax⟩ -----→ ({{P ⇝ }} ∪ P, Φ ∪ {ax → u}) c ∈ Ch pub , ax ∈ AX ∖ dom(Φ) (In) ({{c(x).P }} ∪ P, Φ) c(ξ) ---→ ({{P[x → ξ Φ] ⇝ }} ∪ P, Φ) c ∈ Ch pub , ξ ∈ T (F , N pub ∪ dom(Φ)) (Comm) ({{c ⟨u⟩.P, c(x).Q }} ∪ P, Φ) τ -→ ({{P, Q[x → u]}} ∪ P, Φ) c ∈ Ch priv (Par) ({{P 1 | . . . | P n }} ∪ P, Φ) τ -→ ({{P i }} n i=1 ∪ P, Φ)
Traces. A trace of an extended process A is a sequence of reduction steps starting from the extended process A, written

t : A α 1 --→ A 1 α 2 --→ • • • α n --→ A n .
When the intermediate processes are not relevant we rather write

t : A α 1 •••α n = ===== ⇒ A n .
We define tr(t) to be the word of actions α 1 • • • α n (including τ 's), and Φ(t) to be the frame of A n .

The set of the traces of A is written T(A), and the notation is extended to plain processes by writing T(P) for T({{P }}, ∅). Indistinguishability against active adversaries will be modelled as relations between such sets of traces.

Example 2.4. Consider again the voting system partially represented in Example 2.3. Let us write R the non-modelled part of the process Authority. Then the system S has the following trace modelling the first voter casting her vote:

({{S }}, ∅) τ -→ ({{Voter(c 1 , v 1 , s 1 , r 1), Voter(c 2 , v 2 , s 2 , r 2), Authority}}, ∅) τ c 1 ⟨ax 1 ⟩c 1 ⟨ax 2 ⟩ = ============ ⇒ ({{0, Voter(c 2 , v 2 , s 2 , r 2), A ′ }}, Φ) c(ax 2) -----→ ({{0, Voter(c 2 , v 2 , s 2 , r 2), A ′′ }}, Φ)
where

A ′ = c(x 1). if proj 2 (adec(verify(x 1 , pk(s 1)), s A)) = pk(s 1) then A ′′ A ′′ = auth(pk sign2). c(x 2).
if proj 2 (adec(verify(x 1 , pk sign2), s A)) = pk sign2 then R Φ = {ax 1 → pk(s 1), ax 2 → sign(aenc(⟨v 1 , pk(s 1)⟩, pk(s A), r 1), pk(s 1))} △

Security properties

Many security properties can be expressed in terms of indistinguishability (from the attacker's viewpoint). The preservation of anonymity during a protocol execution can for example be modelled as the indistinguishability of two instances of the protocol with different participants. Strong flavors of secrecy can also be expressed: after interacting with the protocol, the attacker is still unable to distinguish between a secret used during the protocol and a fresh random nonce. Our case studies also include such modellings of unlinkability or vote privacy.

Static equivalence. The ability to distinguish or not between two situations lies on the attacker's observations, i.e. the frame. Indistinguishability of two frames is captured by the notion of static equivalence. Intuitively, we say that two frames are statically equivalent if the attacker cannot craft an equality test that holds in one frame and not in the other.

Definition 2.1. Two frames Φ 1 and Φ 2 are statically equivalent, written Φ 1 ∼ Φ 2 when dom(Φ 1) = dom(Φ 2) and, for any recipes ξ 1 , ξ 2 ∈ T (F , N pub ∪ dom(Φ 1)),

ξ 1 Φ 1 = E ξ 2 Φ 1 ⇔ ξ 1 Φ 2 = E ξ 2 Φ 2
We lift static equivalence to traces and write t 0 ∼ t 1 when Φ(t 0) ∼ Φ(t 1) and tr 0 = tr 1 , where tr i is obtained by removing τ 's from tr(t i). Removing τ actions reflects that these actions are unobservable by the attacker.

Trace equivalence. While static equivalence models the (passive) indistinguishability of two sequences of observations, trace equivalence captures the indistinguishability of two processes P and Q in the presence of an active attacker. Intuitively, we require that any sequence of visible actions executable on P is also executable on Q and yields indistinguishable outputs, i.e., statically equivalent frames.

Definition 2.2. Let P, Q be plain processes in ⇝-normal form. P is trace included in Q, written P ⊑ tr Q, when

∀t ∈ T(P), ∃t ′ ∈ T(Q), t ∼ t ′ .
We say that P and Q are trace equivalent, written P ≈ tr Q, when P ⊑ tr Q and Q ⊑ tr P. where vote 1 , vote 2 ∈ N pub model two potentiel different votes. For a shorter, more concrete example, we let s ∈ N priv and define

V (R) = c(x). if proj 2 (verify(x, pk(s))) = pk(s) then R.
This is similar to the verification performed by the authority in the running example, without encryption. The secrecy of s, i.e. the inability of the attacker to forge signatures, can be stated by

V (c ⟨oops⟩) ≈ tr V (0) .
As expected, this statement does not hold anymore if s is revealed,

V (c ⟨oops⟩) | c ⟨s⟩ ̸ ≈ tr V (0) | c ⟨s⟩
where c ∈ Ch pub . A possible witness of non-equivalence is the following trace in A = ({{V (c ⟨oops⟩) | c ⟨s⟩}}, ∅), where n ∈ N pub :

t left : A c ⟨ax 1 ⟩ = ==== ⇒ ({{V (c ⟨oops⟩)}}, {ax 1 → s}) c(sign(⟨n,pk(ax 1)⟩,ax 1)) --------------------→ ({{c ⟨oops⟩}}, {ax 1 → s}) c ⟨ax 2 ⟩ -----→ ({{0}}, {ax 1 → s, ax 2 → oops}) △

OPTIMISING VERIFICATION

The problem of verifying trace equivalence in the presented model is coNEXP-complete for equational theories represented as subterm convergent destructor rewrite systems [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF]. Despite this high theoretical complexity, automated analysers can take advantage of the specificities of practical instances. One notable example is the class of determinate processes that encompasses many practical scenarios and has received quite some attention [START_REF] Baelde | Partial Order Reduction for Security Protocols[END_REF][START_REF] Chadha | Automated verification of equivalence properties of cryptographic protocols[END_REF][START_REF] Cheval | The DEEPSEC prover[END_REF][START_REF] Cortier | A method for proving observational equivalence[END_REF]. It allows for partial-order reductions [START_REF] Baelde | Partial Order Reduction for Security Protocols[END_REF], speeding up the verification time by several orders of magnitude. Our approach, similar in spirit but applicable in a more general setting, consists in guiding the decision procedure with the structural similarities of the two processes that we aim to show equivalent.

Equivalence by session

We introduce a new equivalence relation, equivalence by session: the main idea is that, when proving the equivalence of P and Q, every action of a given parallel subprocess of P should be matched by the actions of a same subprocess in Q. This is indeed often the case in protocol analysis where a given session (the execution of an instance of a protocol role) on one side is matched by a session on the other side. By requiring to match sessions rather than individual actions, this yields a more fine-grained equivalence and effectively reduces the combinatorial explosion. Moreover, thanks to the optimisations that exploit the structural properties of equivalence by session (presented in the following sections), we obtain significant speed-ups during the verification of case studies that are neither determinate nor in scope of the (even more fined-grained) diff-equivalence of ProVerif and Tamarin.

Twin-processes. To formalise session matchings we use a notion of twin-process, that are pairs of matched processes that have the same action at toplevel, called their skeleton.

Definition 3.1. A twin-process is a pair of plain processes in ⇝-normal form (P, Q) such that skel(P) = skel(Q), where

if c ∈ Ch pub : skel(c(x).Q) = {{in c }} skel(c ⟨x⟩.Q) = {{out c }} if d ∈ Ch priv : skel(d(x).Q) = {{in}} skel(d ⟨x⟩.Q) = {{out}} skel(P 1 | • • • | P n) = skel(P 1) ∪ . . . ∪ skel(P n)
An extended twin-process A 2 = (P 2 , Φ 0 , Φ 1) is then a triple where P 2 is a multiset of twin-processes and Φ 0 , Φ 1 are frames. This thus models two extended processes with identical skeletons, matched together. We retrieve the original extended processes by projection,

fst(A 2) = ({{P 0 | (P 0 , P 1) ∈ P 2 }}, Φ 0) snd(A 2) = ({{P 1 | (P 0 , P 1) ∈ P 2 }}, Φ 1)
The semantics of twin-processes is defined in Figure 3 and mostly requires that the two projections follow the same reduction steps in the single-process semantics. The rule (Par) is however replaced by a rule that allows to match each parallel subprocess from the left with a parallel process from the right. We underline that, by definition of twin-processes, a transition A 2 α -→ s (P 2 , Φ) is possible only if for all (P, Q) ∈ P 2 , it holds that skel(P) = skel(Q).

Similarly to extended processes, we use T(A 2) to denote the set of reduction steps from an extended twin-process A 2 . Besides if

t 2 : A 2 α 1 --→ s A 2 1 • • • α n --→ s A 2 n ∈ T(A 2 1
) , we also lift the projection functions by writing

fst(t 2) : fst(A 2) α 1 --→ s fst(A 2 1) • • • α n --→ s fst(A 2 n+1
) and similarly for snd(t 2). Note that fst(t 2) ∈ T(fst(A 2)).

Equivalence by session. Equivalence by session is similar to trace equivalence but only considers the traces of Q matching the structure of the trace of P under study. This structural requirement is formalised by considering traces of the twin-process (P, Q). Formally speaking, given two plain processes P and Q in ⇝-normal form having the same skeleton, we write P ⊑ s Q when ∀t ∈ T(P), ∃t 2 ∈ T(P, Q), t = fst(t 2) ∼ snd(t 2) .

We say that P and Q are equivalent by session, referred as P ≈ s Q, when P ⊑ s Q and Q ⊑ s P.

While equivalence by session has been designed to increase efficiency of verification procedures, it is also of independent interest. Equivalence by session captures a notion of indistinguishability against an adversary that is able to distinguish actions which originate from different protocol sessions. Such an adversarial model may for instance be considered realistic in protocols where servers dynamically allocate a distinct ephemeral port to each session. An attacker would therefore observe these ports and always differentiate one session from another. When considering equivalence by session, this allocation mechanism does not need to be explicitly modelled as it is already reflected natively in the definition. On the contrary when considering trace equivalence, an explicit modelling within the processes would be needed. For example equivalence by session of two protocol sessions operating on a public channel c,

P(c) | P(c) ≈ s Q(c) | Q(c)
could be encoded by relying on dynamically-generated private channels that are revealed to the attacker. This can be expressed in the original syntax of the applied pi-calclulus [START_REF] Abadi | The Applied Pi Calculus: Mobile Values, New Names, and Secure Communication[END_REF] as:

P fresh | P fresh ≈ tr Q fresh | Q fresh where P fresh = new e. c ⟨e⟩. P(e)
and Q fresh = new e. c ⟨e⟩. Q(e) Such encodings however break determinacy and are therefore incompatible with the partial-order reductions of [START_REF] Baelde | Partial Order Reduction for Security Protocols[END_REF]. Our dedicated

({{P i }}, Φ i) α -→ ({{P ′ i }}, Φ ′ i) by rule (In) or (Out) for all i ∈ {0, 1} ({{(P 0 , P 1)}} ∪ P 2 , Φ 0 , Φ 1) α -→ s ({{(P ′ 0 , P ′ 1)}} ∪ P 2 , Φ ′ 0 , Φ ′ 1) (IO) ({{P i , Q i }}, Φ i) τ -→ ({{P ′ i , Q ′ i }}, Φ i) by rule (Comm) for all i ∈ {0, 1} ({{(P 0 , P 1), (Q 0 , Q 1)}} ∪ P 2 , Φ 0 , Φ 1) τ -→ s ({{(P ′ 0 , P ′ 1), (Q ′ 0 , Q ′ 1)}} ∪ P 2 , Φ 0 , Φ 1) (Comm)
π permutation of ⟦1, n⟧

({{(P 1 | • • • | P n , Q 1 | • • • | Q n)}} ∪ P 2 , Φ 0 , Φ 1) τ -→ s ({{(P i , Q π (i))}} n i=1 ∪ P 2 , Φ 0 , Φ 1) (Match)
Figure 3: Semantics on twin-processes equivalence offers similar-in-spirit optimisations that are applicable on all processes . In this paper we mostly focus on the use of equivalence by session as a heuristic for trace equivalence.

Comparison to other equivalences

Relation to trace equivalence. We first show that equivalence by session is a sound refinement of trace equivalence.

Proposition 3.2.

If P ≈ s Q then P ≈ tr Q.
This is immediate as t 2 ∈ T(P, Q) entails snd(t 2) ∈ T(Q). The converse does not hold in general, meaning that two processes that are not equivalent by session might be trace equivalent. The simplest example is, for n ∈ N pub ,

P = c ⟨n⟩. c ⟨n⟩ Q = c ⟨n⟩ | c ⟨n⟩
We call false attacks traces witnessing a violation of equivalence by session, but that can still be matched trace-equivalence-wise. In this example even the empty trace is a false attack since the two processes fail to meet the requirement of having identical skeletons. Such extreme configurations are however unlikely to occur in practice: as previously explained, privacy is usually modelled as the equivalence of two protocol instances where some private attributes are changed. In particular the overall structure in parallel processes remains common to both sides. More realistic false attacks may arise when the structural requirements of equivalence by session are too strong, i.e. when matching the trace requires mixing actions from different sessions. Consider for example the two processes

P = s ⟨n⟩. a⟨n⟩ | s(x). b ⟨n⟩ Q = s ⟨n⟩. b ⟨n⟩ | s(x). a⟨n⟩
with a, b ∈ Ch pub and s ∈ Ch priv . These two processes first synchronise on a private channel s by the means of an internal communication, and then perform two parallel outputs on public channels a, b. They are easily seen to be trace equivalent. However the skeletons at toplevel constrain the session matchings, i.e. the application of rule (Match). The consequence is that any trace executing an output on either a or b is a false attack.

Let us finally mention that false attacks cannot happen for determinate processes, i.e. the class of processes for which the partialorder reductions of [START_REF] Baelde | Partial Order Reduction for Security Protocols[END_REF] were designed. A plain process P is determinate if it does not contain private channels and, ∀ P tr = ⇒ ({{P 1 , . . . , P n }}, Φ), ∀i j, skel(P i) skel(P j) . Proposition 3.3. If P, Q are determinate plain processes such that P ≈ tr Q then P ≈ s Q.

The core argument is that determinacy ensures the uniqueness of potential session matchings; that is, there is always at most one permutation that can be chosen when applying the rule (Match) to a pair of determinate processes. We detailed the proof of this proposition in Appendix B: thanks to the structural requirements imposed by skeletons, we even prove that trace equivalence (≈ tr) and inclusion by session (⊑ s) coincide for determinate processes.

Relation to diff-equivalence. ProVerif, Tamarin and Maude-NPA are semi-automated tools that can provide equivalence proofs for an unbounded number of protocol sessions. For that they rely on another refinement of trace equivalence, called diff-equivalence (≈ d). It relies on a similar intuition as equivalence by session, adding (much stronger) structural requirements to proofs. To prove diffequivalence of P and Q, one first requires that P and Q have syntactically the same structure and that they only differ by the data (i.e. the terms) inside the process. Second, any trace of P must be matched in Q by the trace that follows exactly the same control flow. Consider for example

P = c ⟨u⟩ | c ⟨v⟩ | R Q = c ⟨u ′ ⟩ | c ⟨v ′ ⟩ | R ′
For P and Q to be diff-equivalent, traces of P starting with c ⟨u⟩ need to be matched by traces of Q starting with c ⟨u ′ ⟩.

In the original definition of diff-equivalence [START_REF] Blanchet | Automated Verification of Selected Equivalences for Security Protocols[END_REF] conditional branchings were also required to result into the same control-flow. This condition has however been relaxed within [START_REF] Cheval | Proving More Observational Equivalences with ProVerif[END_REF]: the resulting diff-equivalence can be defined in our formalism as equivalence by session in which the rule (Match) only performs the identity matching. That is, if we write T d (P, Q) for the subset of traces of T(P, Q) where the rule (Match) is replaced by

({{(P 1 | • • • | P n , Q 1 | • • • | Q n)}} ∪ P 2 , Φ 0 , Φ 1) τ -→ s ({{(P i , Q i)}} n i=1 ∪ P 2 , Φ 0 , Φ 1)
then we define P ⊑ d Q as the statement

∀t ∈ T(P), ∃t 2 ∈ T d (P, Q), t = fst(t 2) ∼ snd(t 2) .
We say that P and Q are diff-equivalent, written P ≈ d Q, when P ⊑ d Q and Q ⊑ d P. By definition T d (P, Q) ⊆ T(P, Q) and diffequivalence therefore refines equivalence by session. The converse does not hold in general as witnessed by

P = c ⟨a⟩ | c ⟨b⟩ Q = c ⟨b⟩ | c ⟨a⟩ a, b ∈ N pub distinct
This example is rather extreme as a simple pre-processing on parallel operators would make the processes diff-equivalent. Such a pre-processing is however not possible for more involved, realworld examples such as the equivalences we prove on the BAC protocol in Section 7. The underlying reason is that the matchings have to be selected dynamically, that is, different session matchings are needed to match different traces. To sum up:

Proposition 3.4. ≈ d ⊊ ≈ s ⊊ ≈ tr

Trace refinements

In this section we present an abstract notion of optimisation, based on trace refinements. This comes with several properties on how to compose and refine them, providing a unified way of presenting different concrete optimisations for the decision of equivalence by session in the following sections.

Definition 3.5. An optimisation is a pair O = (O ∀ , O ∃)
where O ∀ is a set of traces of extended processes (universal optimisation), and O ∃ a set of traces of extended twin-processes (existential optimisation).

Intuitively, an optimisation reduces the set of traces that are considered when verifying equivalence: when proving P ⊑ s Q, only traces of T(P) ∩ O ∀ and T(P, Q) ∩ O ∃ will be studied. That is, we define the equivalence

≈ O = ⊑ O ∩ ⊒ O where P ⊑ O Q means ∀t ∈ T(P) ∩ O ∀ , ∃t 2 ∈ T(P, Q) ∩ O ∃ , t = fst(t 2) ∼ snd(t 2) .
In particular ≈ O all is the equivalence by session, where O all = (O ∀ all , O ∃ all) contains all traces. However, of course, such refinements may induce different notions of equivalence, hence the need for correctness arguments specific to each layer of optimisation. We specify this as follows: if

O α = (O ∀ α , O ∃ α) and O β = (O ∀ β , O ∃ β), we say that O α is a correct refinement of O β when O ∀ α ⊆ O ∀ β and O ∃ α ⊆ O ∃ β and ≈ O α = ≈ O β .
Correct refinements contribute to reducing the complexity of deciding equivalence.

Properties. The remainder of this section provides elementary properties useful when constructing, and composing optimisations. First we show that they can be constructed stepwise.

Proposition 3.6 (transitivity). If O 1 is a correct refinement of O 2 , and O 2 is a correct refinement of O 3 , then O 1 is a correct refinement of O 3 .
Moreover, we can prove refinements of an optimisation in a modular way, showing separately that universal and existential optimisations are correct. Proposition 3.7 (combination). all , O ∃)). This lightens presentation as we can now meaningfully talk about universal (resp. existential) optimisations being correct refinements of others.

If (O ∀ opt , O ∃) and (O ∀ , O ∃ opt) are correct refinements of (O ∀ , O ∃), then (O ∀ opt , O ∃ opt) is a correct refine- ment of (O ∀ , O ∃).
Finally, when implementing such optimisations in tools, deciding the membership of a trace in the sets O ∀ or O ∃ may sometimes be inefficient or not effective. In these cases we may want to implement these optimisations partially, using for example sufficient conditions. The following proposition states that such partial implementations still result into correct refinements.

Proposition 3.8 (partial implementability). Let us consider

O ∀ opt ⊆ O ∀ part ⊆ O ∀ and O ∃ opt ⊆ O ∃ part ⊆ O ∃ . If O ∀ opt is a correct refine- ment of O ∀ and O ∃ opt is a correct refinement of O ∃ , then (O ∀ part , O ∃ part) is a correct refinement of (O ∀ , O ∃).
This is a straightforward corollary of Proposition 3.7. In the rest of the paper we assume the reader familiar with group theory (group actions, stabilisers), in particular the group of permutations (written in cycle notation). Most of our optimisations are indeed expressed using this terminology.

PARTIAL-ORDER REDUCTIONS

In this section we present partial-order reductions for equivalence by session. They are inspired by similar techniques developed for proving trace equivalence of determinate processes [START_REF] Baelde | Partial Order Reduction for Security Protocols[END_REF], although they differ in their technical development to preserve correctness in our more general setting. In particular the optimisations we present account for non determinacy and private channels which will be useful when analysing e-voting protocols.

Labels and independence

Labels. Partial-order reductions identify commutativity relations in a set of traces and factor out the resulting redundancy. Here we exploit the permutability of concurrent actions without output-input data flow. For that we introduce labels to reason about dependencies in the execution:

q Plain processes P are labelled [P] ℓ , with ℓ a word of integers reflecting the position of P within the whole process.

q Actions α are labelled [α] L to reflect the label(s) of the pro- cess(es) they originate from. That is, L is either a single word of integers ℓ (for inputs and outputs) or a pair of such, written ℓ 1 | ℓ 2 (for internal communications).

Labels can be bootstrapped arbitrarily, say, by the empty word ε, and are propagated as follows in the operational semantics. The (Par) rule extends labels:

({{[P 1 | • • • | P n] ℓ }} ∪ P, Φ) [τ] ℓ ----→ s ({{[P i] ℓ.i }} n i=1 ∪ P, Φ)
The rules (In) and (Out) preserve them:

({{[P] ℓ }} ∪ P, Φ) [α] ℓ ----→ s ({{[P ′] ℓ }} ∪ P, Φ ′)
and so does (Comm), however producing a double label:

({{[P] ℓ , [Q] ℓ ′ }} ∪ P, Φ) [τ] ℓ|ℓ ′ ------→ ({{[P ′] ℓ , [Q ′] ℓ ′ }} ∪ P, Φ) .
In particular, we always implicitly assume the invariant preserved by transitions that extended processes contain labels that are pairwise incomparable w.r.t. the prefix ordering.

Independence. Labels materialise control-flow dependencies. Two

actions α = [a] L and α ′ = [a ′] L ′
are sequentially dependent if one of the (one or two) words of L, and one of L ′ , are comparable w.r.t. the prefix ordering. Regarding input-output dependencies, we say that α and α ′ are data dependent when {a, a ′ } = {c ⟨ax⟩, c(ξ)} and ax appears in ξ . The two notions combine into: Definition 4.1 (independence). Two actions α and α ′ are said independent, written α || α ′ , when they are sequentially independent and data independent.

There is some redundancy in the trace space in that, intuitively, swapping adjacent, independent actions in a trace has no substantial effect. The rest of this section formalises the intuition that equivalence by session can be studied up to arbitrary permutation of their independent actions (proofs in Appendix C).

Correctness of por techniques. If tr

= α 1 • • • α n and π is a per- mutation of ⟦1, n⟧, we write π .tr = α π (1) • • • α π (n)
for the new sequence of actions obtained after permuting the actions of tr with π . This is an action of the group of permutations of ⟦1, n⟧ on action words of size n.

We say that π permutes independent actions of tr if either π = id, or π = π 0 • (i i +1) with α i || α i+1 and π 0 permutes independent actions of (i i+1).tr. An important result is that the actions of such permutations can be meaningfully lifted to entire traces rather than only action words: This leads to the core property justifying the correctness of our partial-order reductions for equivalence by session. The remaining of Section 4 constructs optimisations leveraging this result.

Proposition 4.3. Let O ∀ 1 ⊆ O ∀
2 be universal optimisations. We assume that for all t ∈ O ∀ 2 , there is π permuting independent actions of t such that π .

t ∈ O ∀ 1 . Then O ∀ 1 is a correct refinement of O ∀ 2 .

Compression optimisations

We first present a compression of traces into blocks of actions of a same type (inputs, outputs and parallel, or internal communications). It is presented as a sequence of three successive universal optimisations. Whether a trace t is discarded or not depends on its action word tr(t). The correctness of these refinements essentially follows from Proposition 4.3.

Optim. 1: performing outputs and parallel in priority. We say that an action is negative when the underlying transition is derived from the rules (Par) or (Out). This vocabulary is taken from [START_REF] Baelde | Partial Order Reduction for Security Protocols[END_REF], where traces are compressed in a similar way, inspired by focused proof theory. We observe that negative actions are data-independent of all previous actions in the trace: in practice, when executing actions from different parallel subprocesses, it is therefore sound to give priority to negative ones by Proposition 4.3.

To formalise this universal optimisation O ∀ c,1 we impose that, if a trace has a non-negative action α + before a negative action α -then there must be an intermediate action β (possibly β = α +) on which α -depends. This indeed makes it incorrect to push α - before α + by adjacent swaps. Formally, for all traces

t : A α 1 •••α n = ===== ⇒ B we have that t ∈ O ∀ c,1 if, and only if ∀i < j, if α i non-negative α j negative then ∃i ⩽ k < j, ¬(α k || α j) Proposition 4.4. O ∀ c,1 is a correct refinement of O ∀ all .
Optim. 2: performing negative actions deterministically. Data independence between negative actions trivially holds. By Proposition 4.3 again, we can therefore fix some arbitrary priority over the execution of consecutive, concurrent negative actions. This universal optimisation O ∀ c,2 is defined as follows. For all traces

t : A α 1 •••α n = ===== ⇒ B
we have that t ∈ O ∀ c,2 if, and only if for all i < n such that α i and α i+1 are sequentially-independent negative actions, it holds that α i ≼ α i+1 (where ≼ is an arbitrary total ordering on actions).

Proposition 4.5. O ∀ c,1 ∩ O ∀ c,2 is a correct refinement of O ∀ c,1 .
Optim. 3: performing chains of inputs in a row. Finally, we observe that inputs are data-independent of all actions appearing later in the trace. In particular, by permuting independent actions, it is always possible to group together consecutive inputs on a same label. It is also possible to move them to the end of traces when they are sequentially independent of all following actions. We formalise this universal optimisation O ∀ c,3 as follows. For all traces

t : A α 1 •••α n = ===== ⇒ B
we have that t ∈ O ∀ c,3 if, and only if q for all i, j ∈ ⟦1, n⟧, if

α i = [c(ξ)] ℓ and α j = [d(ζ)] ℓ with j ⩾ i+2,
then there exists i < k < j such that α k and α j are sequentially dependent;

q and for all i ∈ ⟦1, n -1⟧, if α i and α i+1 are input actions on different labels then all α j , j ⩾ i, are input actions. Combining everything we obtain the compression optimisation

O ∀ c = O ∀ c,1 ∩ O ∀ c,2 ∩ O ∀ c,3
whose correctness is stated below.

Proposition 4.6. O ∀ c is a correct refinement of O ∀ c,1 ∩ O ∀ c,2 .

Reduction optimisations

Blocks. This optimisation relies on the observation that all compressed sequences of actions, i.e. sequences tr(t) with t ∈ O ∀ c , can be uniquely decomposed into blocks

tr(t) = b - 0 b + 1 b - 1 • • • b + n b - n B where each b s i is a sequence of actions such that q no b s i is empty except maybe b - 0 ;
q all b + i are either a positive block (i.e., a sequence of input actions on a same label ℓ(b + i)) or a single internal communication;

q all b - i contain only negative actions;

q B is a (possibly-empty) sequence of positive blocks.

We call b i = b + i b - i (i > 0) a block of tr(t). Just as actions, adjacent blocks b i , b j may be independent (written b i || b j) in the sense that all actions appearing in b i are independent of all actions appearing in b j . The goal of this optimisation is to fix, as much as possible, the order of execution of blocks by exploiting their independence.

Authorisation. Concretely, this optimisation O ∀ c+r ⊆ O ∀ c defines a condition on sequences of blocks that only accepts sequences that are lexicographically minimal among all those that can be obtained by independent permutations. We formalise this through a predicate Minimal that characterises, step by step, such traces. Formally, with the notations above,

t ∈ O ∀ c+r iff n i=1 Minimal(b 1 • • • b i-1 , b i)
where the predicate Minimal is inductively defined by

Minimal(b 1 • • • b p , b i) =            ⊤ if p = 0 or ¬(b p || b i) ℓ(b + p) ≺ lex ℓ(b + i) ∧ Minimal(b 1 • • • b p-1 , b i) otherwise Proposition 4.7. O ∀ c+r is a correct refinement of O ∀ c .

REDUCTIONS BY SYMMETRY

In this section, we show how to exploit process symmetries for equivalence by session, referring again to the framework of Section 3.3. Such symmetries often appear in practice when we verify multiple sessions of a same protocol as it results into parallel copies of identical processes, up to renaming of fresh names. We first provide a group-theoretical characterisation of internal process redundancy, and then design two optimisations.

Group actions and process redundancy

Let P = P 1 | • • • | P n be a plain process and π ∈ S n , where S n denotes the symmetric group, i.e., the group of all permutations of ⟦1, n⟧. Then we denote by ì P and π . ì P the tuples of plain processes

ì P = ⟨P 1 , . . . , P n ⟩ π . ì P = ⟨P π (1) , . . . , P π (n) ⟩ .
Suppose that ≡ is an equivalence relation on tuples of processes that is stable by application of permutations, i.e. ì P ≡ ì Q implies π . ì P ≡ π . ì Q. We can capture process redundancy w.r.t. this equivalence relation using group-theoretic terminology. This is inspired from model-checking where the symmetries of systems have been represented by the group of their automorphisms [START_REF] Emerson | Symmetry and model checking[END_REF]. We can define the set of symmetries of P for ≡ by means of the group stabiliser

Stab ≡ (ì P) = {π ∈ S n | π

Structural equivalence

We exhibit a notion of redundancy based on identifying processes that have an identical structure. We define structural equivalence ≡ on plain processes as the smallest relation such that

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)
and that is closed under context application (that is, composition of equivalent processes with either a same process in parallel, or an input, output, or conditional instruction at toplevel). To capture equivalence modulo the equational theory, we write Pσ ≡ E Qσ ′ when P ≡ Q and σ, σ ′ are substitutions such that xσ = E xσ ′ for all variables x. We lift ≡ to tuples of plain processes by requiring that the tuples are pointwise equivalent, i.e., ⟨P 1 , . . . , P n ⟩ ≡ E ⟨Q 1 , . . . , Q n ⟩ if, for all i, P i ≡ E Q i . We also add a restricted form of alpha equivalence of private names. We write ì P ≡ A α ì Qρ when ì P ≡ E ì Q and ρ is a bijective renaming of private names such that ρ |names(A)∩N priv = id, i.e., only private names outside of A may be renamed.

Universal symmetry optimisation

The first optimisation is a universal optimisation: there is no need to consider all executions of available inputs when the underlying processes are structurally equivalent. In this case we can simply choose one of these process as a representant for all the others. Note that for negative actions this is already achieved by the optimisation 2 of the compression (Section 4.2). Consider a labelled instance of the rule (In) at the root of the process, of the form

({{[P i] i }} n i=1 , ∅) [c(ξ)] ℓ ------→ s A (⋆)
To characterise redundancy in (⋆) we define

S = Stab ≡ 0 α (⟨P 1 , . . . , P n ⟩)
and the binary relation ∼ on integers of ⟦1, n⟧ i ∼ j iff ∃π ∈ S, i = π (j) .

We have that ∼ is an equivalence relation as S is a subgroup of S n . Indeed, S contains the identity (hence the reflexivity); S is closed by inverse (hence the symmetry); and S is closed by composition (hence the transitivity).

Then we say that an instance of (In) is well-formed when ℓ is minimal in its equivalence class for ∼. We write O ∀ c+r+s the set of traces of O ∀ c+r whose instances of (⋆) are all well-formed. The correctness of this optimisation is straightforward and stated below. Proposition 5.2. O ∀ c+r+s is a correct refinement of O ∀ c+r .

Existential symmetry optimisation

The goal of this optimisation is to exploit symmetries when applying the matching rule: when several processes are structurally equivalent we do not need to consider redundant matchings. For instance, suppose that we need to match P 1 | P 2 with Q | Q. Just considering the identity permutation would be sufficient, and the permutation (1 2) should be considered as redundant. Consider an instance of the rule (Match)

(P 2 ∪ {{(P 1 | • • • | P n , Q 1 | • • • | Q n)}}, Φ 0 , Φ 1) τ -→ s (P 2 ∪ {{(P i , Q π (i))}} n i=1 , Φ 0 , Φ 1) (⋆)
We let A = (snd(P 2), Φ 0), and define

S = Stab ≡ A α (⟨Q 1 , . . . , Q n ⟩) .
Moreover, we define the binary relation ∼ on permutations

π ∼ π ′ iff ∃u ∈ S, π ′ = π • u .
As in the previous subsection, ∼ is an equivalence relation as S is a subgroup of S n . We say that an instance of (⋆) is well-formed when π is minimal (w.r.t. the lexicographic ordering) in its equivalence class for ∼. We denote by O ∃ s the set of traces on extended bi-processes whose instances of (⋆) are all well-formed.

The correctness of this optimisation essentially states that it does not introduce additional false attacks. The actual proof can be found in Appendix D.

Proposition 5.3. O ∃ s is a correct refinement of O ∃ all .

SYMBOLIC SETTING

Even though we do not consider unbounded replication, the semantics of our process calculus defines an infinite transition system due to the unbounded number of possible inputs that can be provided by the adversary. To perform exhaustive verification of such infinite systems, it is common to resort to symbolic techniques abstracting inputs by symbolic variables and constraints. We briefly describe in this section how our optimisations are integrated in the symbolic procedure underlying the DeepSec tool.

DeepSec's baseline procedure

Symbolic setting. In the DeepSec tool [START_REF] Cheval | The DEEPSEC prover[END_REF] and its underlying theory [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF], the deduction capabilities of the attacker are represented by so-called deduction facts X ⊢ ? u, intuitively meaning that the attacker is able to deduce the term u by the means of a recipe represented by the variable X . Additionally, conditional branching, e.g. if u = v then . . . else . . ., is represented by equations u = ? v and disequations u ? v.

To represent infinitely many extended processes, [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF] relies on symbolic processes (P, Φ, C) where P and Φ are, as in our setting, a multiset of processes and a frame respectively. The difference is that the processes and frame may contain free variables: they model the variables bound by inputs and are subject to constraints in C. These constraints are a conjunction of deduction facts, equations and disequations. For example, if we consider the process

P = c(x). if proj 1 (x) = t then c ⟨h(x)⟩
then after executing symbolically the input and the positive branch of the test, we reach the symbolic process

({{0}}, {ax → h(x)}, X ⊢ ? x ∧ proj 1 (x) = ? t)
A concrete extended process is thus represented by any ground instantiation of the free variables of the symbolic process that satisfies the constraints in C. Such instantiations are called solutions, and therefore form an abstraction of concrete traces treated as symbolic objects and constraint solving. Example 6.1. Let us continue Example 2.5 where we introduced an equivalence statement to model the secrecy of a signature key. After the symbolic execution of the head input of V (R), finding an attack trace reduces to finding a solution of the constraint:

C = X ⊢ ? x ∧ proj 2 (verify(x, pk(s))) = ? pk(s)
Intuitively the internal constraint solver will gradually deduce that solutions to this constraint need to map x to a term of the form sign(y, z), then y to a term of the form ⟨y 1 , y 2 ⟩, where y 2 and z point to recipes for constructing pk(s) and s, respectively. △ Partition tree. To decide trace equivalence between two processes P and Q, the procedure underlying DeepSec builds a refined tree of symbolic executions of P and Q, called a partition tree. This finite, symbolic tree intuitively embodies all scenarios of (potential violations of) equivalence, and the final decision criterion is a simple syntactic check on this tree. More technically, nodes of the partition tree contain sets of symbolic processes derived from P or Q; that is, a branch is a symbolic abstraction of a subset of T(P)∪T(Q). It is constructed in a way that each node contains all-and only-equivalent processes reachable from P or Q with given trace actions tr. When generating this partition tree, trace equivalence holds if and only if each node contains at least one symbolic process derived from P and one from Q.

Symbolic matching

Subprocess matchings. In order to make the integration into DeepSec easier, we used an alternative characterisation of equivalence by session that is closer to trace equivalence. In essence, it expresses the structural constraints imposed by twin processes as explicit bijections between labels (as defined in Section 4.1) that we call session matchings. A precise definition is given in Appendix A, as well as a proof that this is equivalent to the twin-process-based definition of equivalence.

In practice, our implementation consists of keeping track of these session matchings into the nodes of the partition tree generated by DeepSec. The set of all these bijections is then updated at each new symbolic transition step in the partition tree, among others to satisfy the requirement that matched subprocesses should have the same skeleton (recall Definition 3.1). Example 6.2. Consider two initial processes

P = c(x).P 0 | c(x).P 1 | c ⟨u⟩.P 2 Q = c(x).Q 0 | c ⟨u ′ ⟩.Q 1 | c(x).Q 2 .
In the root of the partition tree, P and Q will be labeled by 0, i.e. the root will contain the two symbolic processes

({[P] 0 }, ∅, ∅) ({[Q] 0 }, ∅, ∅) .
There is only a single bijection between their labels, i.e. the identity 0 → 0. Upon receiving this initial node, DeepSec applies the symbolic transition corresponding to our rule (Par), hence generating the two symbolic processes

({{[c(x).P 0] 0.1 ; [c(x).P 1] 0.2 ; [c ⟨u⟩.P 2] 0.3 }},∅, ∅) ({{[c(x).Q 0] 0.1 ; [c ⟨u ′ ⟩.Q 1] 0.2 ; [c(x).Q 2] 0.3 }},∅, ∅)
There are then only two possible bijections of labels that respect the skeleton requirement of twin processes:

0.1 → 0.1 0.1 → 0.3 0.2 → 0.3 and 0.2 → 0.1 0.3 → 0.2 0.3 → 0.2 △
These bijections are kept within the node of the partition tree and updated along side the other transformation rules of DeepSec. For obvious performance reasons, we cannot represent them by a naive enumeration of all permutations. Fortunately, the skeleton requirement ensures an invariant that the set S of session matchings between two processes A and B is always of the form

S = {π | ∀i, ∀ℓ ∈ C i , π (ℓ) ∈ D i }
where C 1 , . . . , C n is a partition of the labels of A and D 1 , . . . , D n a partition of the labels of B. In particular, S can succinctly be stored as a simple association list of equivalence classes.

Decision of equivalence. Finally, as our trace refinements depend on two sets O ∀ and O ∃ , we annotate each symbolic process in the node by ∀, ∃ or ∀∃ tags. They mark whether the trace from the root of the partition tree to the tagged process is determined to be in O ∀ , O ∃ or both respectively. For instance, the two initial symbolic processes in the root of the partition tree are labeled by ∀∃. We also provide a decision procedure for inclusion by session ⊑ s that consists of tagging one of the initial processes as ∀ and the other one as ∃.

The decision criterion for equivalence is then strenghtened. For equivalence to hold, not only each node of the partition tree should contain at least one process originated from P and one process originated from Q, but each of them that has the tag ∀ should be paired with at least one other process of the node with the tag ∃.

Integration

From a high-level of abstraction, the integration of the universal optimisations described in sections Sections 4 and 5 prune some branches of the partition tree-those that abstract traces that do not belong to O ∀ c+r+s . For instance in Section 4.2, we showed that to prove equivalence by session, we can always perform output and parallel actions in priority. Therefore on a process c ⟨u⟩.P | c(x).Q, we prevent DeepSec from generating a node corresponding to the execution of the input due to the presence of the output.

The integration of other optimisations is more technical in a symbolic setting, in particular the reduction O ∀ c+r described in Section 4.3. Remember that it discards traces that do not satisfy the predicate Minimal, that identifies lexicographically-minimal traces among those obtained by permutation of independent blocks. Unfortunately, the notion of independence (Definition 4.1) is only defined for ground actions-and not their symbolic counterpart, that intuitively abstracts a set of ground actions. A branch may therefore be removed only if all its solutions violate the predicate Minimal. However, by Proposition 3.8, such partial implementations do not break correctness.

EXPERIMENTS

Equivalence by session in practice. Based on the high-level description of the previous section, we extended the implementation of the DeepSec tool to decide equivalence by session of P and Q. Upon completing an analysis, two cases can arise:

(1) The two processes are proved equivalent by session. Then they are also trace equivalent by Proposition 3.2. (2) The two processes are not equivalent by session and DeepSec returns an attack trace t, say, in P, as a result. In the second case, when using equivalence by session as a heuristic for trace equivalence, the conclusion is not straightforward. As discussed in Section 3.2, the witness trace t may not violate trace equivalence (false attack). We integrated a simple test to our prototype, that checks whether this is the case or not. For that we leverage the internal procedure of DeepSec by, intuitively, restricting the generation of the partition tree for checking P ⊑ tr Q to the unique branch corresponding to the trace t.

If this trace t appears to violate trace equivalence, which is the case for example in our analysis of two sessions of the BAC protocol, we naturally conclude that P ̸ ≈ tr Q. Otherwise, the false attack may guide us to discover a real attack. Our analysis of session equivalence indeed consider traces with a specific shape (see Sections 4 and 5): thus, we implemented a simple heuristic that, whenever a false attack is discovered, also checks whether different permutations of its actions could lead to a true attack. For instance, this heuristic allowed us to disprove trace equivalence in some analyses of n ⩾ 3 sessions of BAC. When our heuristic cannot discover a true attack, the result is not conclusive: the processes may well be trace equivalent or not. We leave to future work the design of an efficient and complete decision procedure for trace equivalence that builds on a preliminary analysis of equivalence by session.

Experimental setting. We report experiments (Figure 4) comparing the scope and efficiency of the following two approaches for proving trace equivalence:

q The original version of DeepSec as a baseline for comparison; q The analysis leveraging our contributions (preliminary analysis of equivalence by session, test of false attack if it fails, and the heuristic attempting to reconstruct a true attack from false ones). We describe the benchmarks below in more details. The column # roles is an indicator of the intricacy of the system, namely the number of parallel processes that the model file exhibits.

All benchmarks were carried out on 20 Intel Xeon 3.10GHz cores, with 50 Gb of memory. We ran the toy example described in this paper on a single core to illustrate simply the algorithmic improvements compared to DeepSec. As DeepSec supports parallelisation, we distributed the computation of the other, bigger proofs over 20 cores. The implementation and the specification files are available at https://deepsec-prover.github.io/.

Running example: toy voting. We modelled the toy e-voting protocol that was partially specified in Example 2.3 and ran an analysis of vote privacy. The parts of this protocol that are not ✗ false attack (disproves session equivalence but unable to conclude for trace equivalence)

✓ <1s ✓ <1s 2 × A 1 × B 11 ✓ 2h41m ✓ 1m2s 3 × A 1 × B 12 ✓ 2m40s 3 × A 2 × B 13
✓ 7m40s 4 × A 2 × B 14
✓ 16m36s 7 × A 3 × B 18 ✓ 3h53m Helios 2 honest + 1 dishonest 9 ✓ 3m26s (total)
Figure 4: Experimental evaluation specified in the body of the paper, i.e. mostly the mixnet, can be represented in several ways that may trigger or not a false attack. Mixnets are usually modelled as processes receiving the values to mix, and then outputing them in an arbitrary order induced by the inherent non-determinism of concurrency. However, the mixing of two elements can be performed using two models (where c is a private channel):

MixSeq = c(x). c(y). (c ⟨x⟩ | c ⟨y⟩) MixPar = (c(x). c ⟨x⟩) | (c(y) | c ⟨y⟩)
In the second case, subprocess-matching constraints arise earlier in the trace, triggering a false attack. However, the natural modelling of MixSeq allows to complete a security proof. We observed the same behaviour on other experimentation on voting protocols with mixnets.

On the other hand, the baseline version of DeepSec does not suffer from this shortcoming as it decides trace equivalence precisely. However, due to the combinatorics of its proofs the tool fails to terminate the analysis within 12h when adding two dishonest voters to the models.

BAC. We also study the Basic Access Control (BAC) protocol implemented in European electronic passport [START_REF]PKI for machine readable travel documents offering ICC read-only access[END_REF]. The security property we study is unlinkability formalised as an equivalence statement. This property is out of the scope of the fine-grained diff-equivalence of ProVerif and Tamarin, and computationally out of reach of tools for a bounded number of sessions.

Unlinkability is formalised here as the indistinguishability of two situations where n systems-each consisting of a passport and a reader-are put in parallel: on one side all n systems are distinct (fresh), while on the other side a same system may appear several times. Our analysis indicates that, depending on the precise setting, the security property may be violated in the model or not. This is due to the error codes raised when a passport communicates with a wrong reader: depending on how many identical systems the process contains, the same number of such errors may not be observable. Although not present in the result table, we also implemented inclusion by session (i.e. ⊑ s) as it is sometimes used to define other flavours of unlinkability.

Helios. As a bigger e-voting case study, we consider the Helios e-voting protocol [START_REF] Adida | Helios: web-based open-audit voting[END_REF]. We analyse vote privacy of a version that uses zero-knowledge proofs to ensure the voter knows the plaintext of her vote, thus avoiding copy-attacks [START_REF] Cortier | Attacking and fixing Helios: An analysis of ballot secrecy[END_REF]. Vote privacy is formalised as in our running example, using a vote-swapping model.

A reduction result of Arapinis et al. [START_REF] Arapinis | When are three voters enough for privacy properties?[END_REF] ensures that it is sufficient to consider two honest voters and one dishonest voter (that is implicit in the model, embedded in the intruder capabilities) to obtain a proof of the system for an unbounded number of sessions. Such scenarios could already be handled by automated analysers, e.g. DeepSec [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF] and ProVerif [START_REF] Arapinis | When are three voters enough for privacy properties?[END_REF]. However, when revoting is allowed, one needs to consider all scenarios when the tally accepts 7 ballots. In particular, it is not sufficient to consider only revotes by the adversary, but also arbitrary revotes of the two honest voters. In Figure 4 we listed several scenarios, indexed by how many times the honest voters A and B are sending revotes.

This kind of analysis is out of the scope of many automated analysers. For example, Figure 4 shows that DeepSec (baseline) fails to prove after 12h of computation any scenarios where more than one honest revote is emitted. In [START_REF] Arapinis | When are three voters enough for privacy properties?[END_REF] the ProVerif proofs are limited to dishonest revotes. We compiled several intermediary scenarios to give an overview of the verification-time growth using our prototype, but all are subsumed by the last scenario were we allow A to revote 7 times and B 3 times. Indeed, using a simple symmetry argument on A and B this covers all scenarios where honest voters cast a total of 7 ballots or less. Note however that, strictly speaking, the reduction result of [START_REF] Arapinis | When are three voters enough for privacy properties?[END_REF] does not bound the number of emitted honest revotes (that may not be effectively received by the ballot box) that have to be considered during an analysis of vote privacy; extensions of this reduction should be considered in the future.

We also experimented an other model of voting privacy inspired by the game-based definition BPRIV [START_REF] Bernhard | A comprehensive analysis of game-based ballot privacy definitions[END_REF]. In this definition the (re)votes are dicted to honest voters by the adversary, which permits to effectively model revotes of arbitrary values. As reported in Figure 4 DeepSec was able to handle the 19 queries modelling all revote scenarios for 7 emitted ballots, in a total of a few minutes.

Other case studies. As side experiments, we also tried our prototype on other model files of similar tools that we could find in the literature. We performed for example an analysis of vote privacy of an e-voting protocol by Scytl deployed in the Swiss canton of Neuchâtel, based on the ProVerif file presented in [START_REF] Cortier | A formal analysis of the Neuchâtel e-voting protocol[END_REF]. We also studied anonymity in a model of the AKA protocol deployed in 3G telephony networks [START_REF] Arapinis | New privacy issues in mobile telephony: fix and verification[END_REF] (without XOR), presented in the previous version of DeepSec [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF].

CONCLUSION AND FUTURE WORK

In this paper we introduce a new process equivalence, the equivalence by session. We show that it is a sound proof technique for trace equivalence which allows for several optimisations when performing automated verification. This includes powerful partial order reductions, that were previously restricted to the class of determinate processes, and allows to exploit symmetries that naturally arise when verifying multiple sessions of a same protocol. In addition to the theoretical basis we have implemented these techniques in the DeepSec tool and evaluated their effectiveness in practice. The optimisations indeed allowed for efficient verification of non-determinate processes that were previously out of scope of existing techniques.

We also discussed how to handle false attacks, that are a natural consequence of the fact that equivalence by session is a strict refinement of trace equivalence. We implemented a test to verify automatically, when equivalence by session is disproved, whether the underlying attack is genuine with respect to trace equivalence. When this is not the case, as part of future work it would be interesting to refine the part of the proof that failed, while exploiting that some parts of the system have already been shown equivalent.

A EXPLICIT SESSION MATCHINGS

In this section we present an alternative characterisation of equivalence by session. The process matchings operated by twin processes (in particular in the rule (Match) of the semantics) are represented by an explicit permutation with properties mirroring the structure of twin processes.

Twin-process based characterisations makes it easier to define symmetry-based optimisations and limit the manipulation of permutations to the minimum, thus simplifying many proofs. On the contrary, the formalism presented here makes a closer link with the definition of trace equivalence: this is the characterisation we use in the implementation, fitting better to the existing procedure of the DeepSec prover for trace equivalence.

Session matchings. We first characterise the condition under which, given two traces t, t ′ , there exists t 2 such that fst(t 2) = t and snd(t 2) = t ′ . For that we rely on the notion of labels introduced in Section 4.1 to make reference to subprocess positions. In the rest of the paragraph, we refer to two plain processes in ⇝-normal form P, Q such that skel(P) = skel(Q) and two labelled traces t ∈ T(P), t ′ ∈ T(Q) such that tr(t) = tr(t ′):

t : A 0 [α 1] ℓ 1 ------→ • • • [α n] ℓn ------→ A n t ′ : B 0 [α 1] ℓ ′ 1 ------→ • • • [α n] ℓ ′ n ------→ B n
We write L and L ′ the sets of labels appearing in t and t ′ , respectively.

Definition A.1. A session matching for t and t ′ is a bijection π : L → L ′ verifying the following properties

(1) π (ε) = ε (2) ∀i ∈ ⟦1, n⟧, π (ℓ i) = ℓ ′ i (3) ∀ℓ • p ∈ dom(π), ∃q, π (ℓ • p) = π (ℓ) • q (4
) for all i ∈ ⟦0, n⟧, if π (ℓ) = ℓ ′ and A i and B i respectively contain a process [P] ℓ and a process [Q] ℓ ′ , then skel(P) = skel(Q).

Proposition A.2. The following two points are equivalent:

(1) There exists a session matching for t and t ′ .

(2) ∃t 2 ∈ T(P, Q), fst(t 2) = t and snd(t 2) = t ′ .

Proof of 1⇒2. The trace t 2 can be easily constructed by induction on the length of t:

q Items 1 and 4 of Definition A.1 ensure that the twin-processes in t 2 are composed of pairs of processes with the same skeleton as expected, q Item 2 ensures that pairs of transitions of P and Q can be mapped into transitions of twin-processes, and q The permutations required by applications of the rule (Match) can be inferred from Item 3. Indeed, consider two instances of the rule (Par) in t and t ′ :

({{[P 1 | . . . | P n] ℓ }} ∪ P, Φ) τ -→ ({{[P i] ℓ •i }} n i=1 ∪ P, Φ) ({{[Q 1 | . . . | Q n] ℓ ′ }} ∪ Q, Ψ) τ -→ ({{[Q i] ℓ ′ •i }} n i=1 ∪ Q, Ψ)
Given π a session matching for t and t ′ , we consider the permutation of ⟦1, n⟧ mapping i ∈ ⟦1, n⟧ to the (unique) j such that π (ℓ • p) = ℓ ′ • j. This permutation can be used to construct the instance of rule (Match) corresponding to these two (Par) transitions. □ Proof of 2⇒1. Let t 2 be a trace given by Item 2. We lift the labellings of t = fst(t 2) and t ′ = snd(t 2) to the twin processes appearing in t 2 ; that is, if P 2 is such a process, we may refer to the labellings of fst(P 2) and snd(P 2). Thus, each instance of rule (Match) in t 2

({{([P 1 | • • • | P n] ℓ , [Q 1 | • • • | Q n)] ℓ ′ }} ∪ P 2 , Φ 0 , Φ 1) τ -→ s ({{([P i] ℓ •i , [Q σ (i)] ℓ ′ •i)}} n i=1 ∪ P 2 , Φ 0 , Φ 1)
can be associated with a permutation σ and two labels ℓ, ℓ ′ . We list all such elements σ 1 , ℓ 1 , ℓ ′ 1 , . . . , σ p , ℓ p , ℓ ′ p when considering all instances of rule (Match) in t 2 . In particular the ℓ i 's are pairwise distinct and, if L is the set of labels appearing in t, we have

L = {ε} ∪ p i=1 {ℓ i • j | j ∈ dom(σ i)} .
An analoguous statement can be done for L ′ the set of labels appearing in t ′ . Therefore the following equations well define a bijection π : L → L ′ :

π (ε) = ε ∀p ∈ dom(σ i), π (ℓ i • p) = ℓ ′ i • σ i (p) .
A quick induction on the length of t 2 shows that π is a session matching for t and t ′ . □ Link with equivalence. As a direct corollary, we give an alternative characterisation of equivalence by session.

Proposition A.3. Let P, Q be plain processes in ⇝-normal form such that skel(P) = skel(Q). The following points are equivalent:

(1) P ⊑ s Q (2) for all t ∈ T(P), there exist t ′ ∈ T(Q) and a session matching for t and t ′ , such that tr(t) = tr(t ′) (labels removed) and Φ(t) ∼ Φ(t ′)

B FALSE ATTACKS AND DETERMINACY

In this section we give a detailed proof of Proposition 3.3, stating that equivalence by session suffers from no false attacks for determinate processes. The intuition of this rather technical proof is determinacy ensures the uniqueness of traces with a given action word; in particular, matched traces need follow the same structure, and a proof of equivalence by session can be derived from a proof of trace equivalence.

In the proof, by slight abuse of notation, we may say that an extended process is determinate. We also cast the notion of skeleton to extended processes by writing skel((P, Φ)) = skel(P) = P ∈ P skel(P) , and to traces with

skel(A 0 α 1 --→ • • • α n --→ A n) = skel(A 0) • skel(A 1) • . . . • skel(A n) .
That is, the skeleton of a trace is the sequence of the skeletons of the processes of which it is composed. Thus, if

t : A 0 α 1 --→ • • • α n --→ A n t ′ : B 0 β 1 --→ • • • β p --→ B p we have skel(t) = skel(t ′) iff n = p and for all i ∈ ⟦0, n⟧, skel(A i) = skel(B i).
Simplifying equivalence. First we simplify the problem by forcing the application of (Par) rules in priority in traces.

Definition B.1. If P is a plain process in ⇝-normal form, we write T τ (P) the set of traces where the rule (Par) is always performed in priority, i.e. where the rules (In) and (Out) are never applied to extended processes (P, Φ) such that P contains a process with a parallel a its root (i.e. a process P such that |skel(P)| > 1). Proposition B.2. If P, Q are plain processes in ⇝-normal form such that skel(P) = skel(Q):

q P ⊑ tr Q iff ∀t ∈ T τ (P), ∃t ′ ∈ T τ (Q), t ∼ t ′ q P ⊑ s Q iff ∀t ∈ T τ (P), ∃t 2 ∈ T(P, Q), t = fst(t 2) ∼ snd(t 2)
Proof. The first point is standard. The proof of the second point can be seen as a corollary of the compression optimisations of equivalence by session (see Section 4.2). □ Definition B.3. We say that ({{P 1 , . . . , P n }}, Φ) is τ -deterministic if there is at most one i ∈ ⟦1, n⟧ such that P i has a parallel operator at its root (i.e. |skel(P i)| > 1).

The τ -determinism will be an invariant in proofs by induction on the length of traces. More precisely, if A, B are extended processes we call Inv(A, B) the property stating

(i) A i , B i are determinate (ii) skel(A i) = skel(B i) (iii) A i ∼ B i (
iv) A i , B i are τ -deterministic, and A i contains a process with a parallel operator at its root (i.e. a process P i such that |skel(P i)| > 1) iff B i does.

Equivalence and inclusion. We prove that trace equivalence coincides with a notion of trace inclusion strengthened with identical actions and skeleton checks.

Proposition B.4. If P, Q are determinate plain processes in ⇝normal form s.t. skel(P) = skel(Q), then the following points are equivalent

(1) P ≈ tr Q (2) ∀t ∈ T τ (P), ∃t ′ ∈ T τ (Q),        tr(t) = tr(t ′) Φ(t) ∼ Φ(t ′) skel(t) = skel(t ′)
Proof of 2⇒1. Given two determinate extended processes A, B, we write φ(A, B) the property stating that

∀t ∈ T τ (A), ∃t ′ ∈ T τ (B),        tr(t) = tr(t ′) Φ(t) ∼ Φ(t ′) skel(t) = skel(t ′)
. Note that φ(A, B) implies skel(A) = skel(B) by choosing the empty trace. In particular, to prove 2⇒1, it sufficies to prove that for all A, B determinate, φ(A, B) ⇒ A ⊑ tr B and φ(A, B) ⇒ φ(B, A).

The first implication is immediate. As for the second implication, we prove that for all extended processes A 0 , B 0 such that φ(A 0 , B 0) and Inv(A 0 , B 0), and all

t ′ : B 0 α 1 --→ • • • α n --→ B n ∈ T τ (B 0) , there exists t : A 0 α 1 --→ • • • α n
--→ A n ∈ T τ (A 0) , s.t. for all i ∈ ⟦0, n⟧, Inv(A i , B i). This is sufficient to conclude as Inv(P, Q) holds for any determinate plain processes P, Q in ⇝normal form s.t. skel(P) = skel(Q).

We proceed by induction on n. If n = 0 the conclusion is immediate. Otherwise, assume by induction hypothesis that it holds for any trace of length n -1.

▷ case 1: α 1 = τ . We know that B 0 does not contain private channels by determinacy (Inv(A 0 , B 0) Item (i)). Therefore, the transition B 0 τ -→ B 1 is derived by the rule (Par). In particular by Inv(A 0 , B 0) Item (iv), there also exists a transition A 0 τ -→ A 1 . The conclusion can now follow from the induction hypothesis applied to A 1 , B 1 ; but to apply it we have to prove that φ(A 1 , B 1) and Inv(A 1 , B 1) hold.

→ proof that φ(A 1 , B 1).

Let s ∈ T τ (A 1). Then (A 0 τ -→ A 1) • s ∈ T τ (A 0) and by φ(A 0 , B 0) there exists (B 0 τ -→ B ′ 1) • s ′ ∈ T τ (B 0) such that tr(s) = tr(s ′), Φ(t) ∼ Φ(t ′) and skel(t) = skel(t ′). But by τ -determinism of B 0 we deduce that B 1 = B ′ 1 , and s ′ ∈ T τ (B 1) satisfies the expected requirements.

→ proof that Inv(A 1 , B 1).

(i) A 0 and B 0 are determinate and determinacy is preserved by transitions. (ii) skel(A 1) = skel(A 0) = skel(B 0) = skel(B 1) (iii) A 0 ∼ B 0 and the rule (Par) does not affect the frame.

(iv) A 0 and B 0 are τ -deterministic and τ -determinism is preserved by transitions (w.r.t. T τ). Besides we know that neither of A 1 nor B 1 contain a parallel operator due to the ⇝-normalisation, hence the result. ▷ case 2: α 1 τ . By definition T τ (B 0), we know that the rule (Par) is not applicable to B 0 ; neither to A 0 by Inv(A 0 , B 0) Item (iv), which means that traces of T τ (B 0) may start by an application of rules (In) or (Out). Using this and the fact that skel(A 0) = skel(B 0) (Inv(A 0 , B 0) Item (ii)), we obtain that there exists a transition A 0 α 1 --→ A 1 . The conclusion can now follow from the induction hypothesis applied to A 1 , B 1 ; but to apply it we have to prove that φ(A 1 , B 1) and Inv(A 1 , B 1) hold. → proof that φ(A 1 , B 1).

The argument is the same as its analogue in case 1, using the determinacy of B 0 instead of its τ -determinism. → proof that Inv(A 1 , B 1).

(i) A 0 and B 0 are determinate and determinacy is preserved by transitions. (ii) By applying φ(A 0 , B 0) with the trace t 0 : A 0 As we argued already at the beginning of case 2, neither P nor Q contain processes with parallel operators at their roots. Therefore, we only have to prove that P 1 has a parallel operator at its root iff Q 1 does. For cardinality reasons, this a direct corollary of the following points:

skel(P 0) = skel(Q 0) (same action α 1 being executable at topelevel), -skel(A 0) = skel(B 0) (hypothesis Inv(A 0 , B 0)), and skel(A 1) = skel(B 1) (Item (ii) proved above). □ Proof of 1⇒2. The proof will follow in the steps as the other implication (we construct the trace t ′ by induction on the length of t while maintaining the invariant Inv).

More formally, we prove that for all extended processes A 0 , B 0 such that A 0 ≈ tr B 0 and Inv(A 0 , B 0), and all

t : A 0 α 1 --→ • • • α n --→ A n ∈ T τ (A 0) , there exists t ′ : B 0 α 1 --→ • • • α n --→ B n ∈ T τ (B 0) , s.t. for all i ∈ ⟦0, n⟧, Inv(A i , B i).
We proceed by induction on n. We proceed by induction on n. If n = 0 the conclusion is immediate. Otherwise, assume by induction hypothesis that it holds for any trace of length n -1. ▷ case 1: α 1 = τ .

Similarly to the converse implication, there exists a transition B 0 τ -→ B 1 (derived by (Par)) and it sufficies to prove that A 1 ≈ tr B 1 and Inv(A 1 , B 1) hold in order to apply the induction hypothesis and conclude.

→ proof that A 1 ≈ tr B 1 .

Let s ∈ T τ (A 1). Then (A 0 τ -→ A 1)•s ∈ T τ (A 0) and since A 0 ≈ tr B 0 there is (B 0 τ -→ B ′ 1) • s ′ ∈ T τ (B 0) such that

(A 0 τ -→ A 1) • s ∼ (B 0 τ -→ B ′ 1) • s ′ .
But by τ -determinism of B 0 we deduce that B 1 = B ′ 1 , and thus s ′ ∈ T τ (B 1) and s ∼ s ′ . This justifies that A 1 ⊑ tr B 1 , and a symmetric argument can be used for the converse inclusion B 1 ⊑ tr A 1 .

→ proof that Inv(A 1 , B 1).

By the exact same arguments as that of the analogue case in the converse implication.

▷ case 2: α 1 τ .

Similarly to the converse implication, there exists a transition B 0 α 1 --→ B 1 and it sufficies to prove that A 1 ≈ tr B 1 and Inv(A 1 , B 1) hold in order to apply the induction hypothesis and conclude.

→ proof that A 1 ≈ tr B 1 .
The argument is the same as its analogue in case 1, using the determinacy of B 0 instead of its τ -determinism.

→ proof that Inv(A 1 , B 1). This is the proof obligation whose arguments substantially differ from that of the converse implication.

(i) A 0 and B 0 are determinate and determinacy is preserved by transitions. (ii) We assume by contradiction that skel(A 1) skel(B 1). By symmetry, say that skel(A 1) ⊈ skel(B 1) and let us fix a skeleton s ∈ skel(A 1) ∖ skel(B 1). By definition of T τ (A 0), we know that the rule (Par) is neither applicable to A 0 nor B 0 ; in particular, there exists a transition A 1 α -→ A derived from rule (In) or (Out) (the one corresponding to the skeleton s) such that B 1 ̸ α -→. But by determinacy of B 0 , the transition B 0 α 1 --→ B 1 is the only transition from B 0 that has label α 1 . Thus, this yields a contradiction with A 0 ≈ tr B 0 : more precisely the trace A 0 α 1 --→ A 1 α -→ A is not matched. (iii) By determinacy of B 0 , the transition t ′ 0 : B 0 α 1 --→ B 1 is the only transition from B 0 that has label α 1 . In particular, using the hypothesis A 0 ≈ tr B 0 , we obtain that t ′ 0 ∈ T τ (B 0) is the only trace such that

t 0 : (A 0 α 1 --→ A 1) ∼ t ′ 0 .
In particular A 1 ∼ B 1 . (iv) Same cardinality argument as the analogue case in the converse implication. □ Session matchings. Proposition B.4 is the core result of the proof. We now connect it with the equivalence by session by using the characterisation of Appendix A.

Figure 1 :

 1 Figure 1: Simplification rules for plain processes

Figure 2 :

 2 Figure 2: Operational semantics of the applied pi-calculus

Example 2 . 5 .

 25 A statement of vote privacy of the voting system modelled in Example 2.3 would be S(vote 1 , vote 2) ≈ tr S(vote 2 , vote 1)

 Proof. Let ≈××, ≈ •× , ≈× • and ≈ •• the equivalences induced by the optimisations (O ∀ , O ∃), (O ∀ opt , O ∃), (O ∀ , O ∃ opt) and (O ∀ opt , O ∃ opt), respectively. As ≈ •× = ≈×× = ≈× • by hypothesis, the result follows from the straightforward inclusions ≈ •• ⊆ ≈ •× and ≈× • ⊆ ≈ •• . □ Relying on this result, we see a universal optimisation O ∀ (resp. existential optimisations O ∃) as the optimisation (O ∀ , O ∃ all) (resp. (O ∀

Proposition 4 . 2 .

 42 If t : A tr = ⇒ B and π permutes independent actions of tr, then there exists a trace A π .tr= == ⇒ B. This trace is unique if we take labels into account, and will be denoted π .t.

✓

 trace equivalence verified trace equivalence violated timeout(12 hours)

α 1 - 1 - 1 -

 111 -→ A 1 , we obtain a trace t ′ 0 : B 0 α -→ B ′ 1 such that skel(A 1) = skel(B ′ 1). But by determinacy of B 0 , the transition B 0 α -→ B 1 is the only transition from B 0 that has label α 1 , hence B 1 = B ′1 and the conclusion. (iii) Identical proof as that of Item (ii) above, using the fact thatA 1 ∼ B ′ 1 instead of skel(A 1) = skel(B ′ 1). (iv) Let us write A 0 = ({{P 0 }} ∪ P, Φ) A 1 = ({{P 1 }} ∪ P, Φ ′) B 0 = ({{Q 0 }} ∪ Q, Ψ) B 1 = ({{Q 1 }} ∪ Q, Ψ ′)

Acknowledgements. The authors wish to thank the anonymous reviewers for their helpful comments. The research leading to these results has received funding from the ERC under the EU's H2020 research and innovation program (grant agreements No 645865-SPOOC), as well as from the French ANR under the projects SE-QUOIA (ANR-14-CE28-0030-01) and TECAP (ANR-17-CE39-0004-01). Itsaka Rakotonirina benefits from a Google PhD Fellowship.

Proposition B.5. Let P, Q two determinate plain processes in ⇝normal form and two labelled traces t ∈ T τ (A 0) and t ′ ∈ T τ (Q) such that tr(t) = tr(t ′) and skel(t) = skel(t ′). Then there exists a session matching for t and t ′ .

Proof. We prove that for all τ -deterministic, determinate extended processes A 0 and B 0 , and

if skel(t) = skel(t ′), then there exists a session matching for t and t ′ . We proceed by induction on n. If n = 0 the session matching is π : ε → ε. Otherwise, let us write

By induction hypothesis, let π be a session matching for the first n -1 transitions of t and t ′ ; in particular, the labels of A n-1 are in the domain of π . ▷ case 1: α n τ .

In this case we write

First of all, we observe that skel(P) = skel(Q) because the same observable action α n can be performed at the root of P and Q. In particular, by determinacy (hypothesis), unicity of the process with a given label (invariant of the labelling procedure), and Item 4 of Definition A.1, we deduce that π (ℓ n) = ℓ ′ n . Therefore by the hypothesis skel(A n-1) = skel(B n-1), we obtain skel(P) = skel(Q). Hence skel(P ′) = skel(Q ′) by the hypothesis skel(A n) = skel(B n). All in all, π is a session matching for the whole traces t and t ′ . ▷ case 2: α n = τ .

In this case we write

Since determinacy excludes private channels, the last transition of t and t ′ is derived from the rule (Par). By τ -determinism, this means that P and Q are the only processes in A n-1 and B n-1 , respectively, that contain a parallel operator at their roots. In particular, by Item 4 of Definition A.1, we deduce that π (ℓ n) = ℓ ′ n and skel(P) = skel(Q); and thus k = k ′ .

Therefore, there exists a permutation σ of ⟦1, k⟧ such that for all i ∈ ⟦1, k⟧, skel(P i) = skel(Q σ (i)) (although this is not needed for the proof, this permutation appears to be unique by determinacy). Thus if π ′ : L → L ′ is the function extending π and such that

then π ′ is a session matching for t and t ′ . □ Altogether Propositions A.3 to B.5 justify the following corollary (that actually appears to be stronger than the expected Proposition 3.3).

Corollary B.6. If P and Q are determinate plain processes in ⇝-normal form, P ≈ tr Q iff P ⊑ s Q.

C CORRECTNESS OF PARTIAL-ORDER REDUCTIONS

In this section we give the proofs of the main technical results of our partial-order reductions, namely that traces can be considered up to permutation of independent actions. First we prove Proposition 4.2 for traces of two actions.

Proof. Since the labels of α and β are incomparable w.r.t. the prefix ordering by independence, the trace t needs have the form

). Now we construct the trace u, by a case analysis on α and β. In each case, we omit the construction of the trace t 2 that can be inferred easily. ▷ case 1: α and β are inputs or τ actions.

In particular Φ ′′ = Φ ′ = Φ and it sufficies to choose u :

▷ case 2: α is an output and β is an input or a τ action.

In particular Φ ′′ = Φ ′ = Φ ∪ {ax → m} with ax dom(Φ) and ax does not appear in β. Then it sufficies to choose the trace u :

▷ case 3: α is an input or a τ action and β is an output. Similar to case 2. ▷ case 4: α and β are both outputs.

Then Proposition 4.2 can be obtained by induction on the hypothesis of π permuting independent actions of tr, using Proposition C.1. We actually prove the stronger result:

Proof. The uniqueness of π .t is immediate, as a quick induction on the length of traces shows that any labelled trace u is uniquely determined by the action word tr(u) (if labels are included). We then construct π .t by induction on the hypothesis that π permutes independent actions of tr(t). Let us write

If π = id it sufficies to choose π .t = t. Otherwise let us write π = π 0 • (i i + 1) with α i || α i+1 and π 0 permutes independent actions of tr

such that for all u 2 : A 2 tr ′ = ⇒ s B 2 verifying fst(u 2) = u, there exists

Then since π 0 permutes independent actions of tr ′ = tr(u), it sufficies to choose π .t = π 0 .u by induction hypothesis.

□

And finally we have the Proposition 4.3 that follows from this result.

Proof of Proposition 4.3.

Therefore by hypothesis, there exists π permuting independent actions of t such that π .

Therefore by Proposition C.2, there exists t 2 ∈ T(P, Q) such that t = fst(t 2) ∼ snd(t 2). □

D CORRECTNESS OF THE REDUCTIONS BY SYMMETRY

In this section we prove of the technical optimisation relying on symmetries of matchings (Proposition 5.3). For that we introduce a notion of equivalence of traces; this is intuitively the invariant preserved by permutation of structurally-equivalent subprocesses.

Definition D.1. We write

when ρ is a bijective renaming of private names, Q i ≡ E Q ′ i for all i, and Φ 1 ≡ E Φ ′ 1 . We extend this to traces by writing

Lemma D.2. ≡ α is an equivalence relation.

Proof. Reflexivity and Symmetry are immediate, but transitivity requires the observation that for any terms t, t ′ and bijective renaming of private names ρ, t = E t ′ entails t ρ = E t ′ ρ. □ Proposition D.3. The relation ≡ α has the following properties

Proof. The property (i) can be proved by induction on the length of the trace. The main argument is that if A 2 α -→ s B 2 is ill-formed, then there exists a well-formed transition A 2 α -→ s C 2 such that B 2 ≡ α C 2 . The property (ii) follows from the fact that Φ = E Φ ′ implies Φ ∼ Φ ′ , and Φ ∼ Φρ for any bijective renaming of private names ρ. The property (iii) is immediate. □ Then Proposition 5.3 is a simple corollary of this proposition:

Proof of Proposition 5.3. Let us write ≈ the notion of equivalence induced by the optimisation O ∃ s . The inclusion ≈ ⊆ ⊑ s is immediate. Let us then assume that P ⊑ s Q and prove that P ⊑ Q. Let t ∈ T(P). By hypothesis, there is t 2 ∈ T(P, Q) such that t = fst(t 2) ∼ snd(t 2) . By Proposition D.3 (Item (i)), there exists s 2 ∈ O ∃ s such that t 2 ≡ α s 2 . Therefore we have, by Items (i) and (ii), t = fst(s 2) ∼ snd(s 2) . □