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a b s t r a c t 

Precipitation in Duralumin, a historic quaternary alloy of the type: Al–Cu–Mg–Si, was never fully studied nor 
observed by current electron microscopy techniques. This article presents the full characterization and comparison 
of two alloys: a Duralumin (A-U4G) from the 1950s collected on a vintage aircraft and its modern equivalent: a 
2017A alloy. The as-received and peak-aging states were analysed with DSC, SAXS and TEM advanced techniques. 
It is shown that old Duralumin and modern 2017A present a similar nanoprecipitation in the as-received state 
and behave similarly upon artificial aging. As opposed to what has been reported in the past, three types of 
precipitates participating in hardening were found upon aging: 𝜃’-Al 2 Cu, Q’(Q)-AlCuMgSi and Ω -Al 2 Cu. 
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1 Created in 1926, AFNOR is the French association for standardization. 
. Introduction

Duralumin, with a composition close to 4 Cu–0.7 Mg–0.6 Mn–0.6
i wt%, is the oldest age-hardening aluminium alloy. Discovered in 1906
y Alfred Wilm, a German metallurgist [1] , it triggered the develop-
ent of aeronautics at the beginning of the XXth century. At the sci-

ntific and technical research centre in Neubabelsberg, Wilm experi-
ented many treatments on Al–Cu–Mn alloys with small amounts of
agnesium (0.5 wt%). He found out that by quenching from tempera-

ures below its melting point (about 450 °C) and by letting it age natu-
ally for a few days, the new alloy exhibited enhanced mechanical prop-
rties (strength and hardness). Thanks to its low density and strength,
uralumin soon became the prime choice for airplanes construction,
ell-illustrated by the airplane Breguet 14 whose production reached
2,000 during World War I [2] . From then on, aircraft production, pre-
iously a craftsmen business, transformed into a real industry. Following
n this discovery and for reaching even higher performance, metallur-
ists in the 1920s tuned aluminium alloys via the addition of microal-
oying elements. This was done empirically, as no explanation could yet
e provided for the age-hardening phenomenon. Merica et al. [3] were
he first team in 1929 to explain that the hardening during aging of du-
alumin was due to fine and highly dispersed Al 2 Cu precipitates. But
he concept of dislocation, essential to a complete understanding of the
tructural hardening mechanism, was introduced by Orowan in 1934
4] . The discovery of coherent copper-rich zones in the Al–Cu 4% al-
oy was achieved independently by Guinier [5] and Preston [6] with
-ray experiments in 1938. It took even longer to be able to observe
∗ Corresponding author. 
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irectly the nanoprecipitates responsible for the hardening: first obser-
ations were made on oxide replicas in France in 1952 by Saulnier and
yre [7] . 

Original Duralumin was thus improved experimentally by increas-
ng the magnesium content (up to 1.5 wt%), leading to a new alloy,
alled Duralumin FR in France in the early 1930s [8] . Duralumin and
uralumin FR became A-U4G and A-U4G1 respectively in 1943, to fol-

ow a new designation defined by AFNOR 

1 [9] . From the 1930s to the
950s, because of its lack of strength and ductility, A-U4G was replaced
radually in aeronautics construction by A-U4G1. In 1954, international
tandardization of aluminium alloys took place [10] : the numerical des-
gnation with 4 numbers was adopted. A-U4G was designated as 2017A
nd A-U4G1 as the well-known 2024. 

Original Duralumin has not received a major focus in the scientific
iterature related to the precipitation at nanoscale. In fact, published
orks on the precipitation occurring in Duralumin and even on the
odern 2017A alloys are scarce. Original studies on the precipitation

f industrial Duralumin were published in the 1950s. In 1950, Lambot
tudied the precipitation of an industrial Duralumin by X-ray abnor-
al scattering [11] . In accordance with results found by Guinier and
reston in Al–Cu alloys, after quenching and room temperature aging,
e detected scattering due to copper clusters or Guinier Preston Zones
GPZ). Then, upon aging at moderate temperatures, a first form of pre-
ipitates was evidenced, with a structure of three aluminium-rich planes

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mtla.2019.100429&domain=pdf
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Table 1

Elemental composition of alloys (in wt%) obtained by ICP-OES. 

Al Cu Mg Mn Si Fe Ti Zn Cr 

2017A Base 4.32 ± 0.08 0.68 ± 0.01 0.611 ± 0.002 0.618 ± 0.006 0.34 ± 0.01 0.043 ± 0.001 0.20 ± 0.04 0.029 ± 0.003 

A-U4G Base 4.18 ± 0.04 0.710 ± 0.005 0.67 ± 0.01 0.61 ± 0.01 0.285 ± 0.008 0.010 ± 0.001 0.082 ± 0.008 0.007 ± 0.0001 
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n between two copper-rich planes. This phase evolved to the well-
istinguished 𝜃’-Al 2 Cu phase when aging at higher temperatures. Other
cattering patterns, superimposed to the ones originating from Al 2 Cu
recipitates, were detected. They were attributed to the Al 4 CuMg 5 Si 4 
hase. This phase is expected at equilibrium state, in alloys of Mg/Si
atios lower than 1.73 [12] . Two years later, Saulnier and Syre [7] iden-
ified in a similar industrial Duralumin, thanks to electron microscopy
using oxide replicas), the presence of the so-called phase X (renamed
’’ later) after aging at 260 °C evolving into the 𝜃’-Al 2 Cu phase at 290 °C,
onfirming the findings of Lambot. Another phase was evidenced with
hermal dilatometry. However, it was attributed to Mg 2 Si needles. In
his work, the Q-Al 4 CuMg 5 Si 4 phase could not be evidenced. Similarly,
ano and Koda in 1968 [13] , observed by transmission electron mi-
roscopy (TEM), the presence of the 𝜃’-Al 2 Cu and Mg 2 Si phases in Du-
alumin. More recently, Härtel et al. [14] studied the 2017A alloy and
bserved the 𝜃’ phase and another phase, Ω -AlCu. However, they did not
ention the presence of Q-AlCuMgSi, neither Mg 2 Si. It is to be noted

hough that the silicon content was, in their case, very low (0.08 wt%).
s shown here, literature does not provide a clear and comprehensive
eport on precipitation occurring in Duralumin. 

This article focuses on the observation and identification of the
etastable phases and precipitation sequences occurring in a Duralu-
in (A-U4G) of 1958 collected on an old aircraft and aged at ambient

emperature for more than 60 years. It will be compared to a modern
quivalent, the 2017A alloy. When looking at the international stan-
ards [10] , it is interesting to note that, as opposed to the A-U4G1 which
omposition is significantly different from the modern equivalent 2024,
he composition of A-U4G/2017A has barely evolved over time. As the
ollected Duralumin is more than 60 years old, by comparing its be-
aviour and microstructure to the modern equivalent, it is also the oc-
asion to study long-term aging on this type of alloy. This constitutes a
rst motivation for studying this alloy. The second motivation is related
o Cultural Heritage. Duralumin constitutes most of the airplanes’ fuse-
age and structure before and during World War II. Precious specimens
onserved in Museum should be preserved. By understanding and doc-
menting the intrinsic constitution of the alloy and its behaviour over
ime, it will be easier to anticipate problems such as lack of mechanical
esistance and/or corrosion. 

The microstructure of the A-U4G and 2017A in different states, as-
eceived and after artificial aging, will be reported hereafter by com-
ining different techniques: conventional bright and dark field TEM, se-
ected area diffraction patterns (SADP), scanning transmission electron
icroscopy coupled with energy dispersive X-ray spectroscopy (STEM-
DS), with high angle annular dark field (HAADF) imaging or with elec-
ron energy loss spectroscopy (EELS), differential scanning calorimetry
DSC) and small angle X-ray scattering (SAXS) experiments. It is shown
hat, compared to what could be expected from the literature on quater-
ary Al–Cu–Mg–Si alloys [15,16] with a range of 2.5–4.5 wt% of cop-
er, and a ratio of Mg:Si close to 1 or what was observed in the 1950s
nd 1960s on Duralumin [7,13] , a complex and specific precipitation
equence occurs in these alloys. 

. Materials and characterization techniques

.1. Materials 

The studied alloy is a Duralumin, identified as A-U4G in the shape of
late (about 1 mm thick) collected on an aircraft from 1958, a Breguet
ahara 765: the sample was extracted from a flap of the landing gear,
 part not subjected to hot temperatures related to engine proximity
see Fig. S1 of supplementary information). The equivalent modern al-
oy, EN AW-2017A (labelled hereafter 2017A) was bought from Bikar
etalle GmbH. It was received in T4 state. In general, for 2017A and

024 alloys, the states T3 and T4 are common for parts of low thickness
 < 12 mm). In these states, the alloy exhibits a good corrosion resistance,
 high toughness and a good fatigue resistance [17] . The plate collected
n the plane received also a T4 treatment upon fabrication: it was clearly
entioned in the Breguet standards [18] . However, for this alloy, the as-

eceived state corresponds in fact, to a T4 state plus 10 years of service
nd 50 years in outdoors conditions. 

For each alloy, the inductively coupled plasma-optical emission
pectrometry (ICP-OES) measurements, performed by Evans Analyti-
al Group SAS, is reported in Table 1 . It is confirmed that the com-
ositions are similar. Currently, 2017A contains some zinc whereas old
ersion of this alloy does not. The ratios Mg:Si are 1.1 and 1.16 for
017A and A-U4G, respectively, which correspond to reported values for
uralumin [7] . 

For the study of hardening precipitation, two states were compared:
s-received and peak-aging conditions. To find peak-aging condition,
eceived samples were heat-treated at 180 °C during different times.
he samples were then cut along three perpendicular directions rela-
ive to the rolling direction and measurements of micro-hardness (Vick-
rs) were carried out in the corresponding planes (RP: rolling plane; NP:
ormal plane; TP: transverse plane). 

.2. Characterization techniques 

The alloys were analysed by different techniques, which required
dapted preparations. For hardness measurements as well as for the
bservation of the microstructure by optical microscope (OM) and
canning electron microscope (SEM), each specimen (in the 3 planes)
as embedded in an epoxy resin and mechanically polished on water-

ubricated abrasive papers (silicon carbide): P600 then P1200 and even-
ually on polishing cloths with diamond paste (from 3 μm down to
 μm). 

For TEM observations, the preparation was the following: to bring
he sample thickness down to 25 μm, a mechanical polishing with paper
rade up to 2400 SiC, was performed. The specimens were then elec-
rochemically thinned using a Tenupol-5 Struers apparatus operating at
0 V in a solution of methanol and nitric acid (3:1) at − 15 °C. Observa-
ions of the nanostructure were carried out on a JEOL 2010 operating at
00 kV. Bright field images were taken with an orientation slightly off
he [100] Al zone axis. Chemical elements were identified with a CM20
EG TEM/STEM microscope, operating at 200 kV and equipped with an
nergy dispersive X-ray spectroscopy (Quantax EDS system with silicon
rift detector from Bruker). For EDS mapping, an area of 235 ×88 pix-
ls was scanned with a probe size of about 5 nm and a high statistic
20 000 cps). 

HAADF scanning TEM micrographs of as-received and heat-treated
amples were acquired using a JEOL cold-FEG JEM-ARM200F instru-
ent operated at 200 kV (energy resolution, 0.3 eV) and equipped with
 probe Cs corrector with a spatial resolution of 0.078 nm. To identify
he phases and chemistry, energy electron loss spectroscopy (EELS) spec-
ra were acquired using a GIF Quantum ER imaging filter, between 850
nd 1850 eV in order to include the Cu-L 2,3 (931–951 eV), the Mg–K
1305 eV), the Si–K (1839 eV) and the Al–K (1560 eV) edges. EELS was
erformed on line scans across precipitates as well as on some fixed
ositions. 
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Fig. 1. DSC curves of A-U4G and 2017A, as-received state. The heating rate is 
20 °C/min. 2017A curve is shifted upward for a better visualisation. 
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DSC experiments were also carried out. For this, samples with a
hickness of 1 mm and a weight of about 20 mg were prepared. They
ere subjected to ramp heating between − 10 °C and 550 °C at 20 °C/min

n a Mettler–Toledo DSC3 + . Results were corrected for baseline and nor-
alized for the sample weight. 

SAXS measurements were performed on an Xeuss equipment pro-
osed by Xenocs. The X-ray source is equipped with a Cu anode and
he SAXS setup is equipped with anti-scattering slits and 6 M Pilatus de-
ector. The beam size is 1 mm 

2 . For SAXS experiments, samples were
hinned down to 100 μm. In order to investigate the large q-range avail-
ble, 3 sample-to-detector distances were considered (40 cm, 1.2 m and
.5 m). In addition, a fixed detector collected the intensity scattered at
ide angles, and allowed to obtain the first diffraction peaks of the ma-

erial. Transmission and background corrections were made using stan-
ard protocols. The quantitative analysis was carried out according to
he approach described in a previous article [19] . 

. Results

.1. As received state 

DSC results for A-U4G and 2017A in as-received state are presented
n Fig. 1 . Six different regions can be identified. Peaks are directly re-
ated to precipitates nucleation and growth in the alloy. The first region
I), from room temperature up to 150 °C is flat. It is generally assumed
hat in this temperature range, Guinier–Preston zones should appear.
ere, in the as-received alloys, GPZ are supposedly already formed. A

econd region (II) contains an endothermic peak between 150 °C and
80 °C and a small exothermic peak around 200 °C, ascribed to the dis-
olution of GPZ and the formation of 𝜃’’ phase, respectively. The third
nd fourth regions (III and IV) exhibit two large exothermic peaks: one
etween 220 °C and 280 °C (III) and one between 280 °C and 320 °C
IV). In literature on Al–Cu–Mg–Si alloys, these peaks were attributed
o different phases. It was first observed by Saulnier and Syre [7] that
n exothermic peak at 290 °C coincided with the presence of the 𝜃’-
l 2 Cu phase whereas the peak at 350 °C was marked by the apparition
f a needle shape precipitation, supposedly Mg 2 Si. More recent works
20–22] report a peak around 250 °C as the growth of the quaternary (Q’
r 𝜆’)-AlCuMgSi phase and a peak around 280 °C as the apparition of the
’-Al 2 Cu phase. The fifth region (V) is a small exothermic peak between
50 °C and 400 °C, associated by some authors to the incoherent 𝜃-Al 2 Cu
hase precipitation [22] . However, instead of a precipitation peak, this
houlder could correspond to the start of the dissolution of precipitates
resent in the alloy, which occurs here between 450 °C and 520 °C (re-
ion VI) and then proceeds to full solid solution at the solutionizing
emperature. 

The main observation from Fig. 1 is the similarity in between the
-U4G and 2017A behaviour. In the measurements, the observed peaks
re close to what is reported for the Duralumin in 1952 by Saulnier and
yre [7] and for the 2017A alloy by Härtel et al. [14] . Similar precip-
tation should thus be expected. Peak V is however slightly shifted to
igher temperatures (around 400 °C) for 2017A compared with A-U4G
around 350 °C). This could be the sign of an earlier start for precipitate
issolution in the A-U4G alloy. 

Representative bright-field TEM images in conventional mode for the
s-received samples oriented in [001] Al zone axis are shown in Fig. 2 (a)
nd (b). In the as-received samples, only dispersoids (AlMnSi) can be
bserved in bright field mode: they are larger in size (125 nm ± 51 nm in
verage) in 2017A than in the A-U4G (57 nm ± 25 nm in average), both
resenting a large standard deviation. Diffraction patterns (not shown in
ig. 2 ) do not present any visible spot that can be attributed to coherent
recipitation. 

Atomic resolved STEM-HAADF experiments were performed on the
s-received alloys, see Fig. 3 for the images of A-U4G in [001] Al zone
xis. Precipitation in the matrix was hardly detectable. In HAADF-mode,
ee Fig. 3 (b) and (d), the intensity is proportional to Z 1.5 –1.8 , Z being
he atomic number [23] . Bright dots/areas correspond to the heavier
lement and are thus representative of copper atoms. The EDS analysis
onfirmed the presence of copper in higher concentration in these zones
ompared with the matrix. Thus, Cu-rich zones, not very well defined
nd having a size of a few nanometres, were detected here and there in
he matrix (see Fig. 3 (a) and (b)). Some clusters were also located at the
atrix/dispersoid interfaces (see Fig. 3 (c) and (d)). 

SAXS measurements, performed on A-U4G and 2017A alloys in the
s-received state, are shown in Fig. 4 . The SAXS data observed on both
pecimens show a very similar behaviour that can be described by two
ain contributions. In the low q -range (0.01 < q < 0.1 Å− 1 ), a clear
 

− 4 contribution is observed, which can be attributed to large precip-
tates such as the dispersoids. In the range 0.1 < q < 1Å− 1 , a plateau
s observed, followed by an intensity decrease as q increases. We have
odelled this contribution by a distribution of spherical precipitates of
niform electron density (i.e., composition) with a polydispersity given
y the Schultz distribution (see [24] for the detailed expression of this
ontribution). A least-square fit of the data gives mean diameters of
bout 8 Å, which is consistent with the existence of GPZ or small clus-
ers in the alloy matrix. The exact nature of the clusters is at this stage
ot determined. 

.2. Artificial aging treatment at 180 °C and identification of precipitates 

Fig. 5 presents the Vickers hardness as a function of aging time for the
wo studied alloys: A-U4G and 2017A. Only RP hardness was plotted as
easurements on other planes gave similar results. The A-U4G is harder

han the modern alloy 2017A by about 10 HV throughout the aging
urve except for long over-aging times where the A-U4G hardness drops
aster. In both cases, the conditions corresponding to the maximum peak
ardness were reached after 8 h at 180 °C. These peak ageing conditions
ere selected for the investigation of the microstructure. 

Fig. 6 shows the SAXS measurements after aging for 8 h at 180 °C.
nce again, both alloys behave similarly. From these measurements, it

s seen that the signal, in the range of 0.1 < q < 1 Å− 1 , disappeared in
avour of a signal in the range 0.04 < q < 0.2 Å− 1 , which translates into
he disappearance of small clusters and the formation of larger particles.
his contribution to the scattered intensity can be reproduced by using
 flat cylinder model. Dimensions of precipitates are: 4 nm thick and
0 nm long for A-U4G and 3 nm thick and 40 nm long for 2017A. 

The microstructures corresponding to this peak-aged condition in
oth alloys, observed by TEM in conventional mode are shown in
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Fig. 2. TEM bright field images of as-received al- 
loys (a) 2017A ; (b) A-U4G showing mainly AlMnSi- 
dispersoids in the matrix. 

Fig. 3. STEM images of as-received A-U4G alloy in [001] Al 

zone axis; (a) and (c) Annular bright field; (b) and (d) high 
angle annular dark field. Images (a) and (b) on one side and (c) 
and (d) on the other side correspond to the exact same area. 
A cluster is indicated with the white arrow at the interface 
dispersoid/matrix. 
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ig. 7: bright-field images and corresponding selected-area electron
iffraction patterns are presented. Fig. 8 shows the STEM-EDS mapping
or the A-U4G alloy. 

After 8 h at 180 °C, a very dense precipitation is observed inside the
atrix ( Fig. 7 ) and at grain boundaries ( Fig. 8 ). In both alloys ( Fig. 7 (a)

nd (c)), precipitates lying in {100} Al planes are observed: some as
latelets and others as rods, with precipitation on dislocations. As the
bserved precipitation is similar in both A-U4G and 2017A alloys, ad-
anced analyses results are then only shown for A-U4G alloy. 

In Fig. 8 , precipitates at grain boundaries were identified by EDS:
hey are (Mg, Si)-precipitates and copper precipitates. On these EDS
aps, dispersoids of AlMnSi nature are present. A precipitation in the
atrix is also visible but hardly identifiable. 

As a matter of fact, different precipitates populations co-exist in-
ide the grains and their identification was made possible by combin-
ng different electron microscopy techniques. From SADP taken along
001] Al zone axis, shown in Fig. 7 (b) and (d), the presence of 𝜃’-Al 2 Cu
hase was evidenced thanks to the strikes along < 001 > Al directions and
aint spots (110) 𝜃’ at 1 of (220) Al [25] . They correspond to three vari-
2 
nts of plate-shape semi-coherent precipitates growing in the {100} Al 
lanes: one face-on and two edge-on. The 𝜃’-Al 2 Cu precipitate nature
as confirmed thanks to STEM-HAADF as shown in Fig. 9 (b). Similarly

o HAADF images taken on as-received states, bright dots correspond to
opper-rich atomic columns. Seen edge-on, the crystal structure of this
latelet is body-centred tetragonal as previously shown by Bourgeois
t al. [26] and Shen et al. [27] . The presence of pre- 𝜃’ − 1 (Al 2 Cu) pre-
ipitates coherent on the {100} Al planes, was also revealed with STEM-
AADF, as shown in Fig. 9( c)): these types of precipitates were recently

dentified by Liu et al. [28] . They consist of three parallel copper planes,
ach separated by two aluminium planes. On SADP, diffraction patterns
f the pre- 𝜃’ − 1 coincide with diffraction patterns of 𝜃’-Al 2 Cu. Both types
re thus, difficult to differentiate. At peak-aged conditions, this phase,
hich corresponds to the first stage of 𝜃’-Al 2 Cu formation, is not pre-
ominant: most of the population has evolved to the 𝜃’-Al 2 Cu phase. 

Other precipitates in the shape of rods were observed in the A-U4G
lloy after 8 h at 180 °C, as shown in the bright field images of Fig. 7 (a)
nd in the HAADF image of Fig. 9 (a). The rods, seen end-on, are oriented
long < 001 > directions. No clear identification being possible with
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Fig. 4. SAXS curves for 2017A and A-U4G in the as-received state. The model 
was superimposed to the experimental curves. 

Fig. 5. Hardness measurement on rolling plane for old (A-U4G) and modern 
(2017A) alloys heat treated at 180 °C. 
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Fig. 6. SAXS curves for 2017A and A-U4G at peak-aging state: after 8 h at 
180 °C. The model was superimposed to the experimental curves. 
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ADP, this phase was identified thanks to STEM-EELS. Rods appeared
o be the Q-AlCuMgSi phase or one of its precursors (Q’). The composi-
ion found for this phase by STEM-EELS was in average 73 ± 10 Al–10 ± 4
u–12 ± 6Mg–5 ± 5 Si at%. Aluminium content for this phase is overesti-
ated as part of the matrix is also probed. Moreover, as observed on

he STEM-HAADF image ( Fig. 10 (b)) and confirmed by STEM-EELS, the
recipitates have a core-shell structure with a core rich in silicon and
agnesium and a copper-rich shell. This core-shell structure observed
ere coincides with results reported by Matsuda et al. in 2007 [29] and
iswas et al. in 2014 [21] . 

In Fig. 9 (b), one of the quaternary precipitate is seen edge-on, co-
recipitated with a 𝜃’-Al 2 Cu precipitate. In this orientation, by STEM-
AADF, the Q’(Q)-AlCuMgsi phase can be recognized by the Cu-rich
olumns (high intensity due to high atomic number) surrounded by
ower intensity columns (Si, Al and Mg) similar to the cross-section struc-
ure viewed along < 100 > Al zone axis shown in Ding et al. [30] . 

Eventually, a third phase is present, detected thanks to the spots
t 1/3 and 2/3 of the [022] Al orientation in SADP ( Fig. 7 (b) and (d)).
TEM-HAADF in two orientations [110] Al and [112] Al (see Fig. 11 ) was
ecessary to identify this phase as the Ω -Al 2 Cu. This phase is known to
ave an orthorhombic structure, space group Fmmm with a = 0.496 nm;
 = 0.859 nm and c = 0.848 nm and to precipitate in the {111} Al planes
31] . Measurements of Cu-Cu distances on STEM-HAADF images along
001] Ω , [100] Ω and [010] Ω correlate with the expected lattice parame-
ers. These precipitates grow preferentially on dispersoids (AlMnSi).

All the observations provided a clear evidence on the phases present
pon artificial aging: at grain boundaries, copper and Mg-Si precipi-
ates were formed while in the matrix, 𝜃’-Al 2 Cu, Q’(Q)-AlCuMgSi and
 -Al 2 Cu were clearly identified. 

. Discussion

.1. Hardness evolution 

The higher hardness of A-U4G compared to 2017A in the as-received
tate (about 10 HV difference) could be explained by different factors.
hen considering precipitation at nanoscale, SAXS experiments pro-

ided evidence of the presence of clusters in as-received state whether
n A-U4G or in 2017A. DSC confirmed the presence of this population
n the as-received state, as a dissolution event occurred around 180 °C.
hese clusters, with a diameter in the range of 8 Å, are the principal
ause of hardness in Duralumin. However, it was shown that the nano-
recipitation is identical in both alloys, which rules out this factor as
he primary cause in the hardness difference. Secondly, dispersoids con-
ribute partly to hardness by controlling the grain size. It was shown
hat they are smaller and more numerous in A-U4G than in 2017A. This
ould be an explanation for the difference in hardness. However, since
he grain size is close in both alloys (see Fig. S2 in Supplementary in-
ormation), the contribution of dispersoids should not be significant.
he third explanation comes from the plates’ conditions. The old plate
as bent when collected. This action generated strain hardening, with
 higher density of dislocations (see Fig. S3 in Supplementary informa-
ion). The presence of these dislocations is believed to be the main factor
n the higher hardness of the A-U4G alloy in the as-received state. 

For over-ageing conditions, the hardness of the A-U4G alloy drops
aster until reaching the hardness of the modern alloy. It can be hypoth-
sized that after artificial ageing, the historical alloy loses part of its
dditional dislocation density through faster recovery. The final part of
he hardness curve could also be explained be the fact that alloys age
aster when additional dislocations are introduced, because the disloca-
ion network transports solute atoms through pipe diffusion [32] and
hus accelerates growth and coarsening of 𝜃’ precipitates, known to nu-
leate on dislocations [33] . This growth and coarsening will induce a
ecrease in hardness. 
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Fig. 7. TEM bright-field images and corresponding 
SADP in [001] Al zone axis after treatment at 180 °C–
8 h for 2017A: (a) and (b) and for A-U4G: (c) and 
(d). (110) 𝜃’ spots and strikes along [001] Al directions 
for the 𝜃’ phase are indicated with arrows. Spots at 
1/3 and 2/3 of (022) Al corresponding to Ω phase are 
surrounded. 

Fig. 8. STEM-EDS mapping after treatment at 180 °C–8 h in A-U4G showing precipitation at grain boundaries: MgSi and Cu as well as in the matrix. 
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.2. Nano-structure in the as-received state 

About the nano-clusters present in the as-received states, several
oints can be made. The copper-rich clusters observed by atomically-
esolved TEM images in HAADF mode were not sufficiently numerous
o correlate with the measured SAXS signal. Electron microscopy is thus
ot fully succeeding in observing and analysing nanoclusters. On an-
ther hand, at this stage, our experiments cannot differentiate between
PZ (flat clusters growing in the planes parallel to the < 100 > Al axes)
nd disordered clusters. GPZ are usually found in the model Al–4%Cu
lloy aged at room-temperature, as it was firstly proved by Guinier and
reston by XRD in 1938. Lambot [11] , who studied both Al–4%Cu and
uralumin by X-ray scattering, proved that the scattering signal was per-

ectly identical in both alloys, concluding thus that GP zones are present
n Duralumin aged at room temperature. It is to be noted that their stud-
es were carried out on single crystals. In the present case, SAXS signal
s an average of the measurements made on several grains: the infor-
ation related to orientation and/or anisotropy is then cancelled out.
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Fig. 9. (a) STEM Bright-field image of A-U4G 

alloy in [001] Al zone axis showing 𝜃’-Al 2 Cu 
(black arrows) and Q-AlCuMgSi rods (white ar- 
rows), (b) HAADF images of 𝜃’-Al 2 Cu platelets 
seen edge-on with co-precipitation of Q’(Q)- 
AlCuMgSi and (c) pre- 𝜃’ − 1 Al 2 Cu disks seen 
edge-on. 

Fig. 10. (a) STEM Bright-field image of A-U4G 

alloy in [001] Al zone axis (b) STEM-HAADF im- 
age of Q-AlCuMgSi rods seen top-on. 
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urther investigation is required to confirm the structural nature of these
lusters. 

.3. Upon artificial aging – identification of precipitation 

Upon artificial aging (at 180 °C for 8 h), it was demonstrated that
hree populations of precipitates coexist in the matrix: 𝜃’-Al 2 Cu, Q’(Q)-
lCuMgSi and Ω -Al 2 Cu. Linking back the TEM observations with DSC
esults and thanks to results reported in the literature for Al–Cu–Mg–
i alloys, it can be hypothesized that region III (between 220 °C and
80 °C) is related to the growth of Q’(Q)-AlCuMgSi phase and region IV
between 280 °C and 320 °C) to the growth of the 𝜃’-Al 2 Cu phase. As for
he Ω -Al 2 Cu phase, having the same stoichiometry as the 𝜃’-Al 2 Cu phase
nd if its growth is controlled by diffusion, there could be superimposi-
ion of peaks in the DSC curve. 

The 𝜃’-Al 2 Cu phase, found in large quantity, is not surprising. It con-
titutes the main hardening phase in the 2xxx family alloys and was
eported in all studies on Duralumin or 2017A alloy [7,11,13] . 

The presence of the Q-AlCuMgSi phase or one of his precursors
Q’) was evidenced, in both old and modern alloys. Although not sys-
ematically revealed in previous studies of Duralumin, these findings
onfirm the equilibrium diagrams data reported by Mondolfo in 1943
12] which predicts that with Mg:Si ratio < 1.73, hardening constituents
hould lead to the Al 2 Cu and Al 4 CuMg 5 Si 4 equilibrium phases. The sil-
con content is indeed higher than that required for the formation of
g 2 Si (Mg:Si = 1.08): the excess of silicon will combine with copper

nd magnesium to form the quaternary phase. The global stoichiomet-
ic composition for the Q phase has been, however, a controversial mat-
er. Mondolfo predicts two possible quaternary phases: Al 4 CuMg 5 Si 4 or
l 4 CuMg 4 Si 4 . In more recent literature, mainly for alloys of the 6xxx

amily (Al–Mg–Si with additions of copper) [15] , but also for 2014 al-
oys [20] , the stoichiometry reported in bulk alloys were Al 5 Cu 2 Mg 8 Si 6 ,
l 4 Cu 2 Mg 8 Si 7 , Al 3 Cu 2 Mg 9 Si 7 etc. However, the nanometre scale of

hese precipitates makes the quantitative analyses challenging. Biswas
t al. [21] used atom probe analysis and proved that the Q precipi-
ates evolved, upon aging, from a copper-rich composition (44Al–22Cu–
6Mg–16,5Si at%) to a magnesium and silicon-rich composition (28Al–
Cu–37Mg–26Si at%.) after 4 h at 260 °C. In a very recent paper, Ding
t al. [30] were able to provide, by combining atom probe tomography
nd atomic column intensity quantification in STEM-HAADF images, the
eason why varying composition were reported in past work: it was in-
eed proved to be due to the occupancy change of the atomic columns.
he stoichiometry of the Q phase and its precursor, the Q ’ phase were
ound to be: Al 5 Cu 3 Si 6 Mg 9 and Al 12 Cu 1 Si 4 Mg 5 , respectively. Even if
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Fig. 11. STEM Bright-field images and HAADF 
images of A-U4G alloy in (a) and (b): [110] Al 

zone axis; (c) and (d): [ 1 ̄1 2 ] Al zone axis show- 
ing Ω -Al 2 Cu platelets (white arrows) growing 
on dispersoids. 
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atrix effects cannot be excluded with EELS, the elemental composi-
ion found here by EELS in Duralumin (73 ± 10 Al–10 ± 4 Cu–12 ± 6 Mg–
 ± 5 Si at%) is in all cases much leaner in magnesium and silicon than
hat is usually reported. This results should be corroborated with other

echniques to confirm the tendency. The heterogeneous nucleation of
’-Al 2 Cu phase and the Q’(Q)-AlCuMgSi phase, observed in Fig. 9 (b),
as also reported by other authors [21,34] . It could be caused by the

train field of Q-phase precipitates on which the 𝜃’-Al 2 Cu nucleate. 
Another phase, Ω -Al 2 Cu, is here observed. The Ω phase is usually

ound in high density in Al–Cu–Mg–Ag quaternary alloys with a high
u:Mg ratio [25,31] . It presents one of the highest strengthening po-
ential in aluminium alloys. In particular, Al–Cu–Mg–Ag alloys have
een developed for elevated temperature aerospace industry applica-
ions [35] due to the enhanced thermal stability of the Ω phase. Some
uthors proved that silver was not required for the formation of Ω pre-
ipitates although its presence increases their density [36] . The Ω phase
as indeed observed in 2024 and 2124 alloys by Wang et al. [37] and
as actually found in 2017A alloy as well [14] . In 2024 and 2014 al-

oys, the Ω phase was found to form preferentially on manganese-based
ispersoids. This heterogeneous growth is clearly evidenced in our re-
orted results. To understand why such a phase appeared in Duralumin,
t is interesting to discuss its nucleation process. In Al–Cu–Mg–Ag alloys,
he process has been widely investigated: upon aging, magnesium and
ilver co-cluster, then copper atoms aggregate to the {111} Al planes.
uring coarsening, when copper concentration becomes close to Al 2 Cu,

ilver and magnesium start to migrate from the interior to the interface
f the precipitate. The interfacial structure was proved to be a double-
ayer composed of Ag in hexagonal structure and Mg and Cu below the
entre of the hexagon [38] . Magnesium is considered necessary for the
ucleation of the Ω phase. As for silver, its role is to accelerate the aggre-
ation of magnesium atoms by retaining vacancies and to assist in this
ay the magnesium diffusion [39] . Silicon is also an element that influ-

nces the presence of Ω phase. From Polmear et al. [35] , silicon (and
ron) should remain low (less than 0.10 wt%) to minimise the formation
f low melting point eutectics at grain boundaries and to maximise Ω
recipitation. In fact, high levels of silicon interfere with precipitation of
 because silicon interacts with magnesium and thus reduces the forma-

ion Mg–Ag co-clusters, which generally facilitate nucleation of Ω . This
as also observed in the work by Ünlu et al. [40] . However, the authors

howed that it is rather the Mg:Si ratio that had to be considered: some
 precipitation was found in alloys with silicon levels as high as 0.5
nd 0.65 wt% with corresponding Mg:Si ratios of 3.0 and 2.23. In the
resent alloys, the observation that Ω forms principally on dispersoids
n the Duralumin and 2017A can be explained by the presence of cop-
er clusters at the matrix/dispersoid interface in the as-received state.
oreover, it does not form as a phase dispersed in the matrix because

f the absence or the very low density of magnesium clusters in the ma-
rix. The magnesium clusters are in this case impeded by silicon, which
ather facilitates the formation of the Q-AlCuMgSi phase. 

onclusion 

An old Duralumin (A-U4G) and its modern equivalent (2017A) were
tudied with different characterization techniques to clarify the precip-
tation processes. The main findings are: 

- The precipitation sequence in Duralumin and modern 2017A upon
artificial aging is similar. It consists in 𝜃’-Al 2 Cu, Q’(Q)-AlCuMgSi
and Ω -Al Cu in the matrix. At grain boundaries, various precipitates
2 
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are found: copper-based and (Mg,Si) precipitates with unknown sto-
ichiometry. 

- The Q-AlCuMgSi phase or one of its precursors (Q’) is observed in
the matrix but the 𝛽-Mg 2 Si phase, previously reported in Duralumin,
is not present. This phase facilitates the nucleation of the 𝜃’-Al 2 Cu
phase through strain field.

- The Ω phase is observed and it grows preferentially on dispersoids.
It presumably nucleates due to the presence of copper clusters at
the matrix/dispersoid interface. This phase is a minor phase due to
the absence or rare occurrence of magnesium clusters in the matrix.
The nucleation mechanisms for the Ω phase on dispersoids in these
Al–Cu–Mg–Si alloys remains to be evidenced.

- In the as-received state (naturally aged), the presence of clusters is
evidenced, with copper as the main element but the structural nature
of these clusters is yet to be determined.

- Despite some differences in the microstructure, such as the disper-
soids’ size and density, Duralumin exhibits a similar nanoprecipita-
tion as its modern equivalent in the naturally aged conditions, and it
behaves also similarly upon artificial aging. These observations lead
to the conclusion that the conditions experienced by the collected
plate (10 years of service plus 50 years at ambient temperature) had
no significant impact on the nanostructure.

Overall, these results constitute a base for assessing the very long-
erm aging of aluminium alloys in aeronautics. 
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