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A B S T R A C T

This paper investigates biochemical, morphological and mechanical properties of a large range of plant fibres explored with the same methods. Biochemical results 
clearly exhibit strong differences between gelatinous, i.e. flax and hemp, and xylan type, i.e. jute and kenaf, cell walls. These differences into parietal composition 
have an impact on cell wall stiffness, highlighted through nanoindentation and atomic force microscopy measurements, but also on fibre individualisation, due to 
variations into fibre bundles cohesion. In addition, the morphology and particularly the lumen size induces apparent density differences. Moreover, the influence of 
fibre mor-phology and properties is demonstrated on UD materials. Finally, longitudinal Young’s modulus of each plant fibre batches is back-calculated from UD 
stiffness by an inverse method; the results obtained are in accordance with the values in the literature values, proving the interest of this method to estimate 
longitudinal Young’s modulus of short plant fibres.

1. Introduction

Nature offers a huge diversity of plant fibres; for their use in com-
posite industry some key factors have to be considered. Regarding
technico-economical data, price and availability of plant fibres are key
issues, particularly for high volume industrial applications such as
transport or building industry. Due to textile applications and im-
portant needs, flax fibres [1] are more expensive than glass ones [2],
whereas high volume fibres, such as alfa, sisal or bamboo [3], are
available at low cost in link with their low fibre quality, i.e. colour,
length, mechanical properties or fineness. An intermediate group of
fibres, including hemp and jute [4,5], represents an interesting com-
promise between performance and cost and can be considered as a good
alternative able to fillers such as wood flour [6]. Localization of the
fibre production is also an important parameter for final choice. Asian
countries are leaders in the worldwide production of plant fibres pro-
duction, particularly jute, coir and bamboo [2]. Nevertheless, other
parts of the world have leading positions such as Brazil for sisal or

France for flax. Despite their low volume on a global world scale, flax
and hemp are mainly cultivated in Europe [2] and around 50% of the
world production of these fibres is concentrated in France.

From a biological point of view, plant fibres are generally classified
according to their location in plants [7]; they exhibit different functions
and geometries, but also very diversified modes of growth that can
explain differences into structural and morphological properties. In the
case of primary phloemian fibres such as hemp or flax, the growth is
well-described in literature. Main steps of the fibre development are
characterized by first the cell multiplication [8], a first moderate co-
ordinated elongation, a strong intrusive growth with cell wall struc-
turing and finally a radial thickening [9]. During the intrusive growth,
the fibre length increases of 5– 20mm per day to a length of several tens
of mm [9]. This extraordinary elongation, leading to remarkable length
for single cell is allowed by multiplication of the nuclei along the cell
[9]. Among the diversity of fibres, ramie fibres length can raise around
550mm [10]; flax ones 40mm [11–13] and hemp about 15mm [9].
Finally, after this intrusive elongation begins the secondary cell wall
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Hemp fibres (Cannabis sativa L, Fedora 17 variety) were supplied by La
Chanvrière de l’Aube (Grand Est, France). Stems were mechanically
harvested and dew-retted before hammer mill extraction. Jute (Corch-
orus capsularis L) and kenaf (Hibiscus cannabinus L) fibres, provided by
Derotex (Wielsbeke, Belgium), were grown in Bangladesh, retted in
water before being mechanically extracted from the stems. All fibres
batches were cultivated in 2015, whatever their origin. An epoxy resin
(Axson, Epolam 2020, density 1.2) was used as matrix. It was mixed
with its amine hardener at 100:34 ratio.

2.2. Density measurements

The density of the different fibres was first determined by an im-
mersion method in ethanol according to EN ISO 1183-1. A Mettler
Toledo XS205 high accuracy weighing scale was used for the mea-
surements. First, a low amount of fibres is weighted in the air and then
introduced in ethanol until the weight stabilizes; density can then be
calculated using:
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where ρ ρ,f air (0.0012 g cm−3), ρeth (0.7876 g cm−3) represent fibres, air
and ethanol densities at 22 °C, respectively.mair and meth are the weight
of the sample in air and in ethanol. For each type of fibres, weighing
was repeated at least five times and the average of the measured values
was calculated.

In addition, the fibres density was also determined by helium
pycnometer. Prior to the measurements, the fibres were kept minimum
12 h at 21 °C and 50% RH. A Sartoruis R160D high accuracy weighing
scale was used to get accurate mass value. Accupyc II 1340 gas pycn-
ometer from MicromeriticsTM was employed. Calibration was per-
formed with a steel sphere before each series. The measurement is
performed in two steps: 10 purge cycles and 30 measurement cycles.
The density is obtained using the method described in ISO 1183-3 [26]
standard with the following equation:
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where mf is he sample mass, ρf the sample density, Vcel the sample
chamber volume, Vexp the expansion chamber volume, P1 the gauge
pressure after fill and P2 the gauge pressure after expansion.

2.3. SEM analysis and estimation of the fibre elements individualisation

To enable the observation of their cross sections, fibres were em-
bedded in an epoxy resin before polishing. Samples were then me-
tallized with gold before being observed using a JEOL JSM 6460LV
scanning electron microscope operated at an accelerating voltage of
20 kV. The sections of the fibres bundles are isolated on the SEM images
using the GIMP® software and their areas were analysed with the
ImageJ® software. A diagram describing the evolution of the cumulated
frequency of fibre elements area is thus created. The coefficient of
bundle individualisation is the ratio between the area under the cu-
mulated frequency curve of the considered fibre element and the one
corresponding to a perfect individualisation. The value of this coeffi-
cient is included between 0 and 1. The closer the value is to one, the
more individualised the fibres are.

2.4. Monosaccharide analysis

The identification and quantification of neutral monosaccharide
was carried out using high performance anion exchange chromato-
graphy in the manner described previously [27] but with slight mod-
ifications. The fibre elements fractions (approximately 1 g each) were
cryo-grinded prior to hydrolysis. To do so, the sample powders were

thickening by filling with cellulose and non-cellulosic polymers. In 
several plant species such as kenaf, hemp or jute, one can notice the 
apparition of secondary fibres, also developed with an intrusive mode 
and secondary cell wall thickening, but appearing latter than primary 
ones, produced by a cambium, and having a structuring and supporting 
function but a length of only few mm [2].

Besides these morphological differences, the functions of fibres 
within the plant induce major structural differences in terms of che-
mical composition, microfibrils angle (MFA) or lumen size. For fibres 
coming from annual stems such as hemp, flax, jute or kenaf, MFA values 
are generally included between 9 and 15° whereas they can be much 
higher when fibres originate from fruits or leaves [2]. The lumen size 
greatly varies according to the fibre origin, its area may represent only a 
few percent of the fibre whole cross section area for flax or hemp and 
can reach 30% for sisal, jute and even 60% for kenaf [2]. These 
structural parameters have a direct impact on apparent mechanical and 
hygroscopic performances of plant fibres [14].

Moreover, in addition to these structural differences, the biochem-
ical composition of the fibres cell wall varies considerably according to 
the species, the method of cultivation or extraction mode of the fibres; 
thus the retting conditions are particularly influential on the composi-
tion of the fibre bundles, its action allowing to eliminate the common 
lamellae rich in lignin and pectins; if it is too prolonged it can also 
damage the structure of the secondary fibre wall [15]. It has been 
shown that these differences in biochemical composition can have an 
impact on the mechanical performance of plant fibres [16].

Thus, morphological, structural or biochemical properties of re-
inforcement fibres are key parameters that have a direct impact on 
composite performances. They can influence the fibre mechanical per-
formances [17], the quality of the interface between fibres and matrix 
[18], the final microstructure of parts [19] and consequently the quality 
of the stress transfer between fibre and polymer matrix [20]. Besides 
these intrinsic parameters, exogenous ones such as thigmomorpho-
genesis [21], cultural practices [22] or environmental conditions [23] 
may also contribute to modify plant slenderness [24] and fibre prop-
erties and consequently structure and properties of associated compo-
sites.

The purpose of the present work is to explore the relationship be-
tween the origin and extraction conditions of plant fibres and perfor-
mances of associated unidirectional composite. Four species of plant 
fibres, namely flax, hemp, jute and kenaf, originated from stems and 
industrially available, were selected. For flax, oleaginous flax fibres, 
flax tows as well as two qualities of long scutched fibres were chosen. 
These seven different fibre batches were firstly characterized in terms of 
biochemical composition, individualisation and water sorption beha-
viour. Then, unidirectional composite materials, made with epoxy 
matrix, were manufactured and tensile tested. Longitudinal fibre stiff-
ness was estimated thanks to a back-calculation and mechanical per-
formances of the composites were discussed according to the origin and 
the properties of plant reinforcements.

2. Materials and methods

2.1. Materials

Four types of flax (Linum usitatissimum L) were studied in this work; 
flax tows and long scutched flax fibres (Melina variety) obtained from 
Agylin (Normandy, France). Another quality of long scutched flax fibres 
were tested to compare with the previous one; thus, Eden, a flax variety 
known for its lodging resistance, was obtained from Terre De Lin 
(Normandy, France). Oleaginous flax tows (Solal variety) were culti-
vated and provided by the agricultural cooperative CAVAC (Pays de 
Loire, France). These four types of flax were all cultivated under normal 
meteorological conditions [25], dew-retted in fields and mechanically 
scutched in the same conditions; he plants were all grown during the 
same year and in neighbouring cultivation areas (Normandy, France).



(25%, 50%, 75% and 100%) in order to maintain the fibre bundle and
the cell wall structure during sample surface preparation. Final em-
bedding resin polymerisation was carried out in an oven (60 °C, over-
night). Then, the whole resin block with the sample is machined to
reduce its cross section and an ultramicrotome (Leica Ultracut R) is
used with diamond knives (Diatom Histo and Ultra AFM) to cut a series
of very thin sections (about 50 nm thick in the last step) at reduced
cutting speed (≈1 mm/s) to minimize compression and sample de-
formation during the cutting process. A commercial nanoindentation
system (Nanoindenter XP, MTS Nano Instruments) was used at room
temperature (23 ± 1 °C) with a continuous stiffness measurement
(CSM) technique, equipped with a three-side pyramid (Berkovich) in-
denter. The system was operated at 3 nm amplitude, 45 Hz oscillations
using a 0.05 s−1 loading rate. Measurements were taken at depths up to
120 nm. Around 20 indents were performed in each sample. In addi-
tion, mechanical characterization was performed by using a Multimode
AFM (Bruker Corporation, USA) with Peak-Force Quantitative
Nanomechanical property Mapping (PF-QNM) mode at 2 kHz. At each
oscillation, the probe indents into the surface of the sample with a ty-
pical depth of 1 to 3 nm. RTESPA-525 (Bruker) probe was used. Its
spring constant, around 200 N/m, was calibrated using the so-called
Sader method [30], with a Scanning Electron Microscope (Jeol JSM
6460LV) for the measurements of the cantilever length and width, and
the AFM in TappingTM mode, for the measurement of its frequency
response (resonance frequency and quality factor). The applied max-
imum load (peak force) is set to 200 nN for all the measurements,
leading to a contact stiffness of the same order as the cantilever stiffness
for the studied materials [31]. The calibration was checked by com-
paring values obtained with those of nanoindentation.

3. Results and discussions

3.1. Investigations at the reinforcement scale

3.1.1. Study of the biochemical composition of plant fibres
First of all, for the biochemical composition of the plant fibres used,

some components are in very low quantities. To measure such low
quantities, such as Fucose, we used an HPAEC-PAD analytical system to
increase in sensitivity [32]. Table 1 shows the results of biochemical
composition analysis for each sample. These values are averaged from 3
separate analyses.

Interestingly, one can notice that the total polysaccharide content is
in the same range, almost 3/4 of the dry matter whatever the plant
species. In this study, all fibres come from bast fibres that are sup-
porting tissues within the plant and, although this point can be mod-
erate for jute and kenaf, with fibres coming from bark but also of core
(wood/xylem) area [33], the relationship between function and overall
polysaccharidic content can be underlined. The total amount of poly-
saccharides is included between 71.8 ± 3.7% for flax tows and
79.5 ± 2.4% for jute fibres, which is similar to values reported for
similar plant varieties in the literature [7,34–36]. Slight variations
between the different batches may be linked to the particular history of
each plant batch (e.g., growth, environmental stress). Other compo-
nents of dry matter are probably lignin, proteins, waxy-lipids or mi-
nerals; they were not quantified during this work.

Whatever the plant species, the main component is glucose, which is
often associated to para-crystalline cellulose and representing between
79% and 87% of the whole monosaccharides (Table 1: ratio between
glucose content and total of monosaccharides). One can notice lower
glucose content for jute and kenaf fibres, which is also in good agree-
ment with literature data [37]. Whatever for jute or kenaf, within the
plant; fibres are arranged in bundles of several tens located along the
radial section of the stem, from the cortex to the cambial zone. As il-
lustrated in Fig. 1, with examples of cross sections of flax, hemp, jute
and kenaf stem, plant fibres may come from different tissues. The
function of these latters differs. Some of them ensuring a role of

obtained by milling individually the samples in a centrifugal grinding 
mill (Retsch ZM100) equipped with a 0.5 mm sieve, in liquid nitrogen 
to limit any heating effects. For hydrolysis, approximately 5 mg of each 
sample was immerged in 125 µL of 12 M H2SO4 acid for 2 h at room 
temperature and then the acid was diluted to 1.5 M and heat for 2 h at 
100 °C. All samples were then filtered (PTFE, 0.22 µm) before being 
injected into a CarboPac PA-1 anion exchange column (4 × 250 mm, 
Dionex). Detection was performed by pulsed amperometry (PAD 2, 
Dionex) and samples were eluted using the following conditions: A 
(Milli-Q water) 95–0% with B (0.1 M NaOH in Milli-Q water) 5–100%
for 19 min; then 100–0% B with C (0.3 M AcONa; 0.1 M NaOH in Milli-
Q water) 0–100% for 49 min; and D 100% (0.3 M NaOH in Milli-Q 
water) for 6 min. A post-column addition of 0.3 M NaOH was used. 
Typical retention time obtained are 6; 15.5; 17; 21; 25; 31; 35; 51 and 
51 min for Fucose (Fuc); Arabinose (Ara); Rhamnose (Rha); Galactose 
(Gal); Glucose (Glc); Xylose (Xyl); Manose (Man); Galacturonic Acid 
(Gal)A and Glucoronic Acid (GlcA) respectively. The monosaccharide 
composition was analysed and quantified using 2-deoxy-D-ribose as 
internal standard as well as three concentrations of standard solutions 
of neutral monosaccharides (L-arabinose, D-glucose, D-xylose, D-ga-
lactose and D-mannose) as calibration curves. Analyses were performed 
in three independent assays for every sample. The monosaccharide 
content is the sum of the amounts of the monosaccharides, and is ex-
pressed in two ways: as the percentage of the dry matter and as the 
percentage of the total carbohydrate.

2.5. Unidirectional composites manufacturing

Due to the small sample size, the fibres bundles used are short 
(80 mm) and it is quite simple to select straight ones for the manu-
facture of composites. There is no pre-tension applied to the fibres 
bundles at this stage. The amount of fibres bundles required to manu-
facture each composite is weighed and, then, they are manually aligned 
to form a unidirectional bundle. The bundle was then impregnated with 
the resin. The impregnated fibre bundle was then placed in an alumi-
nium mould with open sections at each end to evacuate the excess of 
resin during compression. Given the small size of the mould section, the 
resin flow is mainly longitudinal and is assumed to have a reduced 
effect on mis-orientation [28]. After hardening at room temperature, 
6 × 2 × 80 mm samples were post-cured following the resin supplier 
recommendations (3 h at 40 °C, 2 h at 60 °C, 2 h at 80 °C and finally 5 h 
at 100 °C) in order to complete the cross-linking of the resin. The vo-
lume fraction of fibres within the composites was set to 50% before the 
manufacturing and was then calculated by image analysis of composite 
cross sections. To prevent any slippage during tensile experiments, 
glass-epoxy end tabs were added to the specimens prior to tensile tests.

2.6. Mechanical characterization

2.6.1. Tensile tests on UD composites
Monotonic tensile tests were conducted on the unidirectional com-

posites using an electromechanical testing machine INSTRON 5566A 
equipped with a 10 kN load cell. An INSTRON extensometer with a 
nominal length of 25 mm was used. Tensile tests were performed ac-
cording to ISO 527 standard in controlled atmosphere in the laboratory 
(23 °C and RH = 50%). For each type of fibre, at least five samples were 
tested at a cross-head speed of 1 mm/min and the results were averaged 
arithmetically. The elastic modulus was calculated conservatively from 
the final portion of the stress–strain curve where stiffness is almost 
constant. This point has been deeply discussed elsewhere [29].

2.6.2. Atomic force microscopy investigations at the cell wall scale
Fibre elements were first dehydrated with a concentration series of 

ethanol/deionised water (50%, 75%, 90% and 100%) and then em-
bedded in mixture containing increasing ratios of Agar epoxy (AGAR 
low viscosity resin kit, AGAR Scientific Ltd, Stansted, UK)/ethanol



conduction of the raw or elaborated sap, others being composed only by
fibres intended to support the stem and ensure its stability. For kenaf,
fibres are located in the bast (cortical layer) and core (wood) region.
The bast ones constitute around 40% of the total fibre amount. In case
of jute the presence of two types of fibres was also demonstrated [38].
Both primary phloic fibre (PPF) from procambium in the protophloem
region and secondary phloic fibre (SPF) from cambium are developed.
In a mature jute plant, PPF and SPF account for about 10 and 90% of
the total fibre fraction [39]. Thus, for kenaf but also for jute, the che-
mical composition of the fibres is highly dependent on the tissue from
which they come. The lower glucose level observed for jute and kenaf
can be explained by possible mix between primary and secondary fibres
in our batches. A lower glucose amount is also noticed for oleaginous
Solal flax, previous works have highlighted some differences between
biochemical composition of textile and oleaginous flax. For example,
Alix et al. [40] estimated a cellulose content of 84% and 77% for
Hermes textile variety and Oliver oleaginous one, respectively.

To go further and better analyse the monosaccharide composition of
the different plant cell walls, Fig. 2 details the parietal composition
without the glucose component. Interestingly, the distinction between
xylan and gelatinous cell wall is highly demonstrated, especially re-
garding the xylose content in jute and kenaf cell walls, which is sig-
nificantly higher than for hemp or flax fibres. Due to higher lumen size,
jute and kenaf fibres contain more important fraction of primary cell
wall expressed relatively, which are enriched in xylose compared to
other layers. Moreover, conduction fibres originating from stem coreTa
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Fig. 1. Schematic drawing of a part of flax, hemp, jute and kenaf stem cross
section; fibres are evidenced in red colour. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)



may exhibit higher xyloglucan content. On the other side, flax and
hemp cell walls exhibit high gelatinous components such as arabinose,
rhamnose, galactose and mannose. Thus, the composition of the walls
also varies according to the species considered, Mikshina et al. [41]
propose a classification making it possible to differentiate gelatinous
fibres rich in cellulose (flax and hemp for example) from xylane-type
fibres, enriched in xylose and lignin and lower in cellulose (wood or
jute). Galactose fraction is significantly higher for flax compared to
hemp and especially to jute and kenaf; as underlined by Beaugrand
et al. [27]. Galactose content can be linked to the cell wall or fibres
mechanical performances as well as arabinose, thanks to the involve-
ment of these two monosaccharides in structuring hemicelluloses
building. One can notice the very strong reproducibility into bio-
chemical composition of Melina and Eden long scutched fibres, proving
the high degree of quality and scutching of these two batches, being
free of impurities such as residual shives or cortical components. This
point is underlined if we look at Melina tows or oleaginous Solal fibres.
Due to a lower scutching degree and potential pollution of the batches
with shives and dust particles, xylose fraction, coming probably from
residual shives, is significantly higher. Finally, if we consider hemp
composition, the main difference with flax is the high mannose and
GalA (Galacturonic acid) contents. These two components are pre-
ferentially located in primary cell wall and also in middle lamella for
GalA; it can be an indication of lower retting degree for our hemp
sample with remaining middle lamella fractions. Finally for hemp bast
fibres, an interesting comparison could be done with a recent paper
from Liu et al. [42]. Those authors quantified the hemp mono-
saccharide in non-retted bast fibres and in treated ones by biological
depectinization in the laboratory with the help of a lignocellulosic de-
composer (white rot fungi). This treatment is expected to result in a
modification of pectin, as the dew retting impact. If we compare the
arabinose (Ara), GalA and other monosaccharides, we face globally a
very comparable content.

3.1.2. Density of the plant bundles walls
Fig. 3 shows the average densities measured for the different plant

reinforcements studied during this work; data were obtained thanks to
both liquid (ethanol) immersion method and gas (helium) pycnometer.

Regarding liquid immersion measurements, significant variations are
noticed according to the nature of the fibres studied. The value usually
used for the density of the plant cell walls is 1.54 g/cm3 [43] but the
apparent density of the fibre may be very different mainly depending on
the size of the lumen that may influence the filling of this latter by the
ethanol used for the measurement, the length of the fibres or their state
of retting. In fact, the presence of pectic compounds with a high affinity
for water may distort the measurement. For flax fibre, our density
measurements range from 1.28 g/cm3 to 1.43 g/cm3. These values are
consistent with data from the literature, which generally range between
1.28 g/cm3 [44] and 1.53 g/cm3 [45]; the large variations noted can be
explained by the absence of a standardized method but also by

Fig. 2. Monosaccharide composition of the different plant fibres elements (excepted Glc). Results are expressed relatively to dry matter content. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Average density of the different plant fibres bundles obtained by liquid
immersion and gas pycnometer methods. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)



differences in morphology between the different varieties. However,
the values obtained on oleaginous Solal flax are much lower than those
obtained on the three lots of textile flax. As can be seen in Fig. 3,
oleaginous Solal flax fibres have much more pronounced lumens than
textile flax varieties, which can influence the measurements, as the li-
quid used during the measurement has difficulty in penetrating the
whole lumens. The measured densities are then more apparent fibre
densities than wall densities. In addition, the retting level of this flax
may be lower and residues of middle lamellae or shives may alter the
measured density value. For the other fibres studied, the values are of
the same order of magnitude as the data in the literature, whether for
hemp, kenaf or jute [2]. The lower values observed on kenaf and jute
can also be explained by the large lumen sizes, especially for kenaf, but
also by the differences in biochemical composition, these walls being
less rich in cellulose, which is the densest component among the plant’s
cell walls.

In addition, measurements with helium pycnometer were per-
formed, results are showed in Fig. 3. Interestingly, a significant differ-
ence is shown between helium pycnometer and liquid immersion
measurements with double weighing in ethanol. Due to the ease with
which helium can penetrate cell wall porosities and in particular lu-
mens, the density values obtained by helium pycnometer are higher
than those obtained by liquid immersion means. The difference be-
tween the two densities is between 6.2% and 20.6% depending on the
type of plant considered. The lowest values are obtained with textile
fibre flax, which has the smallest lumens, and the highest with kenaf
and oleaginous flax, both of which having significant lumens (Fig. 4).
Surprisingly, the difference is more reduced with jute fibres, for which,
despite a rather pronounced lumen size, the difference between the two
densities is only 13.1%. This can be explained by the short length of the
fibres and their structuring into cohesive bundles, which probably
makes it more difficult for gas to penetrate the core of all lumens. Fi-
nally, it is interesting to note that the density values obtained by gas
pycnometer are all very similar, whatever the plants considered, they
are between 1.489 ± 0.004 and 1.554 ± 0.004. This result shows
that, whatever the biochemical composition of the walls, their densities
are close, which confirms that the densities of their constituents are
similar [46]. The use of two methods also shows the limits of certain
techniques [47]; liquid immersion measurements make it possible to
obtain apparent fibre densities whereas by using gas pycnometer, it is
possible, depending on the morphology of the fibres, to approach the
true density of the plant fibre walls.

3.1.3. Estimation of the plant fibres individualisation within UD composites
Fig. 4 shows observations of the cross-sections of the different fibres

elements through scanning electron microscopy. We can see significant
differences in the filling rate of the cell walls between the fibres species.
The fibres from the long scutched fibre (Fig. 4.a and 4.b) have a well
hexagonal geometrical shape and reduced lumens dimensions. These
fibres therefore possess a morphology that is favourable to obtaining
good mechanical properties.

The Melina flax tow fibres (Fig. 4.c) and even more the oleaginous
Solal flax fibres (Fig. 4.d) have a flatter cross-section that indicates
insufficient secondary cell wall filling, so we can expect lower perfor-
mance. Oleaginous flax is a plant mainly grown for its seeds. The
transformation of its fibres into nonwovens is part of a process to va-
lorise the co-products of the seed. Hemp fibres (Fig. 4.e) have a fairly
irregular cross-section and variability in filling rates, which has been
already demonstrated by various authors [17,48]. Moreover, these fi-
bres can be obtained from primary or secondary fibre areas depending
on the size of the stems and the areas of removal in the plant [48],
which can lead to a significant scattering in the morphology of the fi-
bres, the ones issue from the secondary fibres area having significantly
smaller diameters. Finally, the kenaf and jute fibres (Fig. 4.f and g) have
a larger lumen but highlight an apparent regular cross-section geo-
metry.

Whether carried out in the field (for flax and hemp) or in water (jute
and kenaf), the control of retting is a key point for optimal fibre pre-
paration. For flax and hemp, the purpose of retting is to degrade the
middle lamellae (to improve the separation of the bundles), while for
kenaf and jute it is used to facilitate the extraction of the bundles of
fibres from the stem. For flax and hemp, one of the major consequences
of an incomplete retting is the important presence of remaining middle
lamellae that prevents a good separation of the bundles [49]. To
achieve optimum stress transfer between the fibre and matrix in the
composite by maximizing the contact surface, it is important to use
well-divided fibre bundles and to remove non-adherent residues of
middle lamellae on fibre surface, which act like drawbacks. Moreover, a
limited amount of middle lamellae reduces the size of the bundles in
width and improves the homogeneity of the fibre material. For kenaf
and jute, lignin acts as a link between the elementary fibres and also
promotes fibre/matrix adhesion [50]. In order to use plant fibres as
reinforcements for composite materials, the impact of retting on the
individualisation of fibres can be studied by taking into account their
botanical origin as well as the extraction route.

Fig. 5.a shows the evolution of the surface distribution of fibre
elements and Fig. 5.b the individualisation coefficients calculated for
each fibre type. The higher the coefficient, the higher the in-
dividualisation. We note that jute, kenaf and hemp fibres exhibit the
lower individualisation values; these three types of fibres have a higher
lignin content than flax, particularly in the region of middle lamellae,
making the fibre bundles more cohesive and more difficult to separate.
On the other hand, the bundles of flax fibres, whether long fibres or
tows, are already very divided, the division having probably been
carried out during the scutching process, facilitated by an optimised
retting process.

By comparing the individualisation coefficients of the different fibre
types, two main groups of morphologies can be distinguished. On the
one hand, reinforcements with a good division (tows and long flax fi-
bres) and, on the other hand, bundles that are more lignified and
therefore more cohesive and can be divided less easily (hemp, kenaf,
jute). The greater amount of lignin present in the bundles of hemp, jute
and kenaf fibres [33] may be due either to the late harvest date for
hemp or to the composition of the walls for kenaf and jute. The flax
fibres have undergone a retting process that has allowed to degrade the
middle lamellae (enriched in pectin) and thus to improve the in-
dividualisation of the bundles.

3.1.4. Comparison of plant cell wall indentation modulus
Fig. 6 shows nanoindentation and AFM PF-QNM indentation mod-

ulus values obtained on the different plant cell walls. In this work,
nanoindentation tests are performed with the objective to validate the
AFM PF-QNM values which are more arguable due to the low in-
vestigation depth within the cell walls (only few nm).

Generally speaking, the nanoindentation tests conducted in the
plant cell walls yield a longitudinal indentation modulus between 15
and 22 GPa [2]. These values are difficult to compare with apparent
longitudinal modulus obtained by tensile tests on elementary fibres
because of the scale of investigation and the non-uniaxial loading
nature of indentation, especially enhanced for anisotropic material
[51]. Thus the resulting modulus is generally an intermediate value
between transverse and longitudinal one, the plant fibres having a high
degree of mechanical anisotropy [52,53]. The values obtained in our
case are consistent with the data from the literature cited above; they
are included between 17.5 ± 2.4 GPa for jute fibres and
23.9 ± 2.4 GPa for Eden flax fibres. Regarding the nanoindentation
modulus, our values are in the same range than flax, jute or hemp fibres
studied in a previous study [54]. Nevertheless, some significant dif-
ferences exist and two main groups can be distinguished, the first one,
with high indentation modulus values, concerns textile flax and hemp
cell walls and the second includes oleaginous Solal flax, jute and kenaf
with lower indentation modulus values. Variations between plant
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varieties may be induced by variation into the microfibril angle (MFA)
of the crystalline cellulose or by the cellulose to matrix volume ratio. As
described in Eder et al [51], the indentation modulus is not mainly
linked to the cellulose properties, and to their microfibrillar angle, but
to the cell wall matrix properties too, due to the high sensitivity of the

indentation modulus to both transverse modulus and shearing stress.
The nanoindentation test can be considered relatively macroscopic

at the plant wall scale, with an investigation volume of a few micro-
metres square in our case. It cannot provide a fine analysis at the
monosaccharide, but the response may vary depending on the

Fig. 4. SEM observation of fibres bundles’ cross sections of Melina flax fibres (a), Eden flax fibres (b), Melina flax tows (c), Solal flax fibres (d), hemp (e), kenaf (f) and
jute (g).



crystalline cellulose content of the plant cell walls investigated. Here,
the two populations identified in terms of indentation modulus are also
distinguished by their glucose content, which is a representative marker
of the amount of β-Glucan in cell wall, arguably cellulosic and mostly
crystalline in the fibre plant cell walls studied. Table 2 thus clearly
shows lower cellulose content for jute, kenaf and oleaginous Solal flax.
These nanoindentation data were supported by an AFM PF-QNM ana-
lysis at the cell wall scale. Fig. 7 proposes example of PF-QNM in-
dentation modulus mapping at the cell wall scale for Eden flax, hemp
and kenaf fibres. One can notice, there are undulations in the in-
dentation modulus map of kenaf. They are caused by interferences from
the incident AFM laser and its reflection on the sample surface [55]. It
induces a bias in the measurement of the adhesion force that is taken
into account in the computation of the indentation modulus. In our
case, for these measurements, nothing could be done to reduce or re-
move them, but this bias does not change our analysis of the average
behaviour of the cell wall. Firstly, one can notice a good correlation
between the two investigation ways (Fig. 6). The S2 layers indentation
modulus values obtained by PF-QNM are very close to those obtained
by nanoindentation with low difference between the two measurement
methods whatever the fibre studied. AFM PF-QNM indentation modulus

values are in good agreement with similar measurements on flax, and
jute or kenaf data are similar to previously values measured on palm
cell walls [2]. The significant differences in terms of indentation
modulus are confirmed in AFM PF-QNM, which proves that the me-
chanical performance of the secondary cell wall is linked to the plant's
genetic pool and the biochemical architecture of the walls, which dif-
fers between the two varieties [40]. One can observe a larger lumen in
the kenaf fibres but this consideration must be moderated given the
small area of investigation, which is not necessarily representative of
the whole lot. Finally, there are significant morphological differences in
the middle lamella between the fibres. In the case of Eden flax, it is very
thin and much thicker for hemp and kenaf. It has a morphology com-
parable to that already observed on hemp fibres [48]. The degree of
significant lignification in these areas is probably an influential factor in
this morphology. In the case of flax, the extraction and senescence of
the plant occurs before this lignification takes place. In this section, PF-
QNM and nanoindentation experiments were combined to investigate
the cell wall mechanical performances of our different plant fibre bat-
ches. Interestingly PF-QNM confirms nanoindentation values and gives
pertinent information in terms of cell wall bundles structure and mor-
phology.

3.2. Investigations at the composite scale

3.2.1. Longitudinal tensile properties on UD composites
Table 2 synthetizes results of the tensile mechanical properties as

well as porosity content and fibre volume fraction. The porosity content
was calculated from SEM images similar to Fig. 4 ones. Four images
were analysed for each sample thanks to ImageJ® software and an au-
tomatic calculation of the degree of porosity. Average values of por-
osities are reported in Table 2. Fibre volume fraction was obtained
considering the porosity degree of each sample with:
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+ −

−

ρ ρ
ρ ρ

V
(V 1)

,f
c m· p
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where ρc, ρm and ρf being the density of composite, polymer matrix and
fibres, respectively and Vp the porosity volume fraction. We considered
the fibre density obtained with liquid immersion method in order to
take into account the apparent density of fibre and not the true density
of the cell walls.

Fig. 5. Cumulated frequency of fibres cross sections (A) and coefficient of in-
dividualisation (B) for each fibre reinforcement. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 6. Nanoindentation and AFM PF-QNM indentation modulus of the plant
cell walls. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)



Fig. 8 shows the tensile mechanical behaviour of the different plant
fibres unidirectional composites; values for apparent modulus, strength
and strain at break are detailed in Fig. 9. The curves selected are re-
presentative of average tensile behaviour for each sample. As expected,
and whatever the plant fibre considered, a non-linear behaviour is
highlighted [28] with two distinct slopes on the stress-strain curves
separated by an inflection point corresponding to the beginning of the
plant fibres microfibrils reorganisation. The considered fibres exhibit
very close MFA. Values for flax, hemp, jute and kenaf being included
between 8° and 15° Due to this particular behaviour, the pertinent area
for modulus calculation is questionable in the case of plant fibres UD.
As evidenced by Shah [29] and Bourmaud [56], UD plant fibre com-
posites exhibit significant instability and a drop of stiffness up to an
applied strain of 0.4% (Fig. 8), which suggests that the initial stiffness is
probably not conservative enough. After this decrease, stiffness remains
quite stable with a moderate improvement until the composite failure.
In this work, apparent modulus calculation were performed in the
second part of the curve; Bourmaud et al. [56] demonstrated, on PA11-

flax UD, that this stiffness value is very similar to the rule of mixture
prediction, whatever the fibre volume fraction considered and can be
assumed to be the more pertinent for UD. Fig. 10 compares the Young’s
modulus and strength at break of epoxy/plant fibres composites with
literature data. One can notice a suitable correlation between the fibres
volume fraction and the composites Young’s modulus or tensile
strength. Indeed, the properties of the unidirectional composites are
mainly influenced by the mechanical performance of the reinforcement.
Mechanical properties of Eden and Solal Flax fibres are well correlated
with literature data. Same conclusion can be notice for flax tows epoxy
composite, especially for strength value that is fully in line with lit-
erature values for different fibres loading rate. These three batches of
composites exhibit similar strength values (Fig. 9); the stiffness is
slightly lower when flax tows are used, probably due to the fibre length
and consequently to the lower fibre aspect ratio. Regarding the com-
posite strength, this parameter is generally highly positively impacted
by the fibre individualisation, which is suitable whatever the con-
sidered fibre batch.

Fibrer origin Young’s Modulus (GPa) Strength at break (MPa) Strain at break (%) Porosity content (%) Fibre volume fraction (%) Estimated fibre modulus (GPa)

Kenaf 17.9 ± 1.3 202 ± 28 1.07 ± 0.15 1.16 ± 0.13 51.6 ± 1.2 32.6 ± 9.6
Jute 21.6 ± 1.3 195 ± 11 0.91 ± 0.09 0.92 ± 0.08 51.4 ± 0.9 39.9 ± 7.5
Hemp 14.2 ± 1.8 222 ± 9 1.49 ± 0.08 1.12 ± 0.27 58.2 ± 1.3 22.7 ± 2.2
Melina flax tows 21.8 ± 1.4 310 ± 22 1.35 ± 0.16 0.83 ± 0.11 53.5 ± 0.8 38.7 ± 4.0
Solal flax fibres 13.3 ± 1.6 190 ± 38 1.28 ± 0.15 0.91 ± 0.08 49.4 ± 0.8 26.9 ± 3.1
Eden Flax fibres 29.7 ± 1.8 303 ± 55 1.11 ± 0.13 0.65 ± 0.10 52.6 ± 0.7 59.0 ± 5.2
Melina flax fibres 24.8 ± 4.0 302 ± 62 1.26 ± 0.12 0.78 ± 0.15 48.7 ± 0.6 48.5 ± 3.2

Fig. 7. Example of AFM PF-QNM indentation modulus map of Eden flax (A), hemp (B) and kenaf (C).

Table 2
Mechanical properties of unidirectional plant fibre composites.



Mechanical values of composites reinforced with oleaginous flax
fibres exhibit lower stiffness and strength values compared to other flax
samples. This assessment is consistent with indentation modulus ob-
tained from AFM investigation and also with the cell wall thickening,
which is very low compared to other batches of flax. The low cell wall
thickness and stiffness fully explain the lower mechanical values of the
associated composites. These fibres were grown in a region located
further south of France, which does not have climatic conditions as
favourable for flax cultivation as Normandy; the quality of the soil can
also be different. The combination of these environmental parameters
can lead to cells with a lower cellulose content, less mature but also
with a shorter length, which penalizes the performance of the asso-
ciated composites [23]. In addition, the quality of the retting can also
be impacted and influences the performance of the fibres [49]. The wall
stiffness measured by AFM, very low compared to those of the other flax
samples, indicate a sub-maturity of these fibres in terms of structuring
of the main cell wall constitutive polymers, this non cellulosic polymer
architecture having an impact on cell wall mechanical performances
[40]

Composites reinforced with hemp fibres exhibit also very low per-
formances regarding the considered fibre volume fraction. The poor

exhibited performances (Fig. 9) can be explained by differences in
terms of biochemical composition; as underlined before, galactose
fraction is significantly higher for flax compare to hemp. It has been
showed that galactose is one of the main monosaccharides involved in
the architecture of structuring hemicelluloses that have a major role on
fibre’s mechanical performances [27]. Moreover, one can notice that
hemp fibres are the less individualised of the seven batches considered
which also strongly penalizes the reinforcement of composite, middle
lamellae within bundles being potential weak areas. This statement is
probably linked to a sub-retting of hemp fibres. Nevertheless, the
epoxy-hemp composite UD performances are consistent with literature
data (Fig. 10). Interestingly, one can notice that hemp composite per-
formances, in term of stiffness and strength at break (blue points in
Fig. 10), are similar to flax ones for low fibre volume fraction but a
significant drop appears from 50% fibres volume fraction. This beha-
viour can be linked to problems into impregnation induced by the
packing of the fibres for high fibre fraction and the significant fraction
of middle lamella; the maximal reachable reinforcement ratio, i.e.
packing factor being thus penalized.

Finally, composite properties of kenaf and jute reinforced compo-
sites are shown. The associated composites exhibit lower properties
compared to flax ones but in the same range of hemp. Interestingly, our
results are well correlated with literature ones, especially for kenaf.
Low performances may be explained by the short fibre length and the
important bundle cohesion leading to poor individualisation (Fig. 5), as
well as by the moderate cell wall stiffness (Fig. 6).

3.2.2. Estimation of plant fibres stiffness
Having the mechanical properties of UD composites, it is possible to

back calculate the fibre’s stiffness thanks to a Rule Of Mixture (ROM)
modified by Madsen et al. [57]:
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where EL,UD , EL,f , and Em are the tangent modulus of the unidirectional
composite, of the elementary fibre and of the polymer matrix, respec-
tively, and Vf, Vm and Vp the volume fraction of fibre, polymer matrix
and porosities, respectively. If significant differences exist between
experimental and calculated fibre’s strength, generally due to quality of
interface and fibre’s individualisation [58], we can assume that it is
relevant to estimate the longitudinal fibre modulus, a good correlation
being generally noticed between fibres and composite stiffness. Fig. 11
gives the synthesis of these calculations for each fibre batch. As ex-
pected, the scutched flax fibres exhibit the better stiffness, the values
obtained are well correlated with literature data for textile varieties
[59]. Estimated stiffness is significantly lower for Solal fibres and Me-
lina tows; one can notice from biochemical results that these two bat-
ches exhibit some fractions of woody core as evidenced by high xylose
and mannose content; these components penalize the composite stiff-
ness by creating weak areas. Moreover, the relatively low cell wall
thickness of the oleaginous fibres also explains the low fibre perfor-
mances. Regarding hemp, kenaf and jute stiffness, the estimation of the
fibre stiffness is in line with literature results both for elementary fibre
tests [2] and for back calculation from composite characterization [60].

4. Conclusion

In this study, biochemical compositions, apparent densities, degrees
of individualisation and mechanical performances at the cell wall scale
of a wide range of plant fibres were explored. Thus, textile flax, olea-
ginous flax, flax tow, hemp, kenaf and jute fibres elements were char-
acterized using the same techniques and protocols. The biochemical
compositions showed significant differences, particularly in terms of
glucose, xylose, mannose and galactose content, making it possible to

Fig. 8. Stress-Strain tensile behaviour of the unidirectional epoxy-plant fibres
composites. The curves selected are representative of average tensile behaviour
for each sample. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Tensile modulus, strength and elongation at break of the unidirectional
epoxy-plant fibres composites. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)



differentiate gelatinous fibres (flax and hemp) from xylose fibres (jute
and kenaf) types. These differences are linked to the botanical origin of
the fibres and also to their function in the plant. This biochemical
composition, and in particular the galactose content, which is a struc-
turing polymer of the cell walls, plays a major role on the mechanical
performance; this has been demonstrated by nanoindentation and
atomic force microscopy tests. In addition, biochemical architecture of
middle lamella impacts the individualisation capacity of the bundles.
The morphology of the cell, and in particular the size of the lumen, also
has an impact on the apparent density of the fibres and consequently on
those of the associated composites. This was confirmed by tensile tests
conducted on epoxy-plant fibre UD composites. The latter also high-
lighted the importance of fibre length, bundle cohesion and fibre in-
dividualisation on the mechanical properties of composites. The last
section of the study focuses on the calculation of the stiffness of the
different fibres studied using an inverse method, knowing the volume
fractions and Young's moduli of the UD composites produced. The
performances obtained are consistent with the literature data; they

confirm the use of this method to estimate the longitudinal properties of
the fibres that are too short to be tested in tension, such as jute and
sisal.
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