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Nano and microporous connected structures have attracted increasing attention in the past decades due to
their high surface area, presenting interesting properties for a number of applications. These structures generally
coarsen by surface diffusion, leading to an enlargement of the structure characteristic length scale. We propose
to study this coarsening behavior using a phase-field model for surface diffusion. In addition to reproducing
the expected scaling law, our simulations enable to investigate precisely the evolution of the topological and
morphological characteristics along the coarsening process. In particular, we show that after a transient regime,
the coarsening is self-similar as exhibited by the evolution of both morphological and topological features.
In addition, the influence of surface anisotropy is discussed and comparisons with experimental tomographic
observations are presented.
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I. INTRODUCTION

Finely porous materials are characterized by a complex
structure of ligaments. Because the size of these ligaments
can reach very small scales (down to a few nanometers for
nanoporous gold [1]), they display a very large surface area
that is attractive for a number of applications, ranging from
actuators [2,3] to catalyst materials [4,5]. It was also sug-
gested that the nanoscale ligaments could lead to interesting
mechanical properties due to the confinement of dislocation
activity [6,7], or be used as radiation resistant materials [8],
because of the fast annihilation of point defects at the inter-
face.

These porous structures can be obtained from various
methods. Eletrochemical dealloying enables to produce very
fine nanoporous structures but is limited to noble metals
such as gold, palladium or copper [1,9–11]. Recently, this
limitation has been overcome with the development of liquid
metal dealloying, that consists in using a molten metal to
selectively dissolve one component out of a binary alloy [12].
This processing technique presents the advantage of being
applicable to a wide range of metals including titanium [13],
iron [14], niobium [15], and tantalum [16,17], or semiconduc-
tors such as silicon [18]. Also, comparable porous structures
have been obtained from vapor phase dealloying that relies on
the low partial pressure of one of the component of the alloy
to trigger selective dissolution [19,20].

*pierre-antoine.geslin@insa-lyon.fr

Despite the differences between these processing routes,
the resulting materials present very similar microstructures
that evolve at least partly through surface diffusion as demon-
strated by the activation energy of the coarsening process
and by the expected power-law evolution of the ligament
size [13,20–22]. This coarsening process is important to
control and limit as much as possible because it leads to a
severe decrease of the specific surface area and therefore to
a drop of materials properties. Common strategies consist of
decreasing the surface diffusion by reducing the dealloying
temperature [15,17,23] or adding impurities that reduce sur-
face diffusivity [24,25].

The coarsening behavior of these microstructures has been
investigated previously with both experimental and numerical
methods. Especially, nanotomography experiments demon-
strated that nanoporous gold coarsens by surface diffusion
and that its morphology is significantly affected by surface
energy anisotropy [26,27] but raised the question of the self-
similar character of this coarsening. Using atomistic Monte
Carlo simulations [28], Erlebacher showed that the coarsening
mechanism of finite-size dealloyed particles does not follow a
self-similar behavior and attributes this to topological changes
during coarsening. Another atomistic study [29] based on
molecular dynamics reports that plasticity can play an impor-
tant role in the network reconstruction during the coarsening
process of ligaments of a few nanometers.

On the other hand, phase-field modeling is an attractive
tool to investigate this type of complex evolution. As a con-
tinuous approach, it can be used to model arbitrary length and
time scales in contrast with atomistic methods. Furthermore,

2475-9953/2019/3(8)/083401(11) 083401-1 ©2019 American Physical Society

https://orcid.org/0000-0001-9549-7889
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.3.083401&domain=pdf&date_stamp=2019-08-08
https://doi.org/10.1103/PhysRevMaterials.3.083401


GESLIN, BUCHET, WADA, AND KATO PHYSICAL REVIEW MATERIALS 3, 083401 (2019)

the phase-field approach deals naturally with complex topo-
logical evolution as encountered during these microstructural
evolutions. Finally, it allows a better control of the surface en-
ergy anisotropy than atomistic models where the anisotropy is
function of the choice of the interatomic potential. The phase-
field approach has been successfully applied to investigate the
evolution of structures obtained after spinodal decomposition
and their coarsening by volume diffusion [30–32]. These stud-
ies shed light on this coarsening behavior, showing that these
structures follow the appropriate power law expected for bulk-
diffusion surface relaxation [33]. In addition, it was shown
that the morphological and topological characteristics of these
structures evolve in a self-similar way. We note also that
several previous phase-field studies discussed microstructural
evolution by surface diffusion [34,35], but these studies being
limited to 2D geometry, it is hazardous to generalize their
findings to 3D: in particular, the influence of the topological
changes can only be investigated in 3D.

Therefore it is highly desirable to use a similar continuous
phase-field approach to investigate microstructual evolution
by surface diffusion in 3D. The topological and morphological
evolution obtained by surface diffusion could be significantly
different than the one obtained by volume diffusion [30–32].
Indeed, as pointed out by Erlebacher [28], in the surface
diffusion case, the support on which the diffusion takes place
is affected by topological changes such as ligament pinch-off
events that break diffusion paths between regions. In this
paper, we propose to use a phase-field model for surface
diffusion to investigate in details this coarsening process.
The paper is structured as follows: first, the model and its
numerical implementation are described in Sec. II. Then, the
coarsening dynamics and the self-similar character of the
surface evolution are discussed in Sec. III and the influence of
surface anisotropy is discussed in Sec. IV. Finally, a valuable
comparison with experimental results is presented in Sec. V.

II. PHASE-FIELD MODEL FOR SURFACE DIFFUSION

In the past decades, phase-field modeling has emerged
as a tool of choice to investigate free boundary problems
involving complex morphological and topological changes,
as the one presently at hand. It relies on the introduction
of a phase-field denoted φ which takes different values in
different phases and adopts a smooth variation at the in-
terface location. The first models proposed to investigate
surface diffusion [35,36] simply by considering a Cahn-
Hilliard dynamics with a phase-dependent mobility that van-
ishes in both phases and is nonzero at the interface. Such
simple formulation however converges poorly towards the
expected sharp-interface behavior as shown in Refs. [37,38],
where the inaccuracies of this approach are pointed out. Lee
et al. [38] showed that employing a double-obstacle potential
instead of the classical double-well can however improve the
situation.

The model developed by Rätz, Ribalta, and Voigt [39]—
hereafter referred as the RRV model—has been shown to
converge faster towards the appropriate sharp interface be-
havior in the limit of vanishing interface thickness [37,39].
For an isotropic surface energy and mobility, the RRV model
relies on the following time-dependent equations for the

phase-field φ:

∂φ

∂t
= −∇ · J, (1)

J = −12M f (φ)

W 2
∇μ, (2)

μ = −W 2∇2φ + 2 f ′(φ)

10 f (φ)
, (3)

where M is an effective kinetic coefficient, W denotes the
interface width, J is the flux, μ is the chemical potential and
f (φ) = φ2(1 − φ)2 is the double-well function commonly
used in phase-field approaches. It was noted in Ref. [37] that
the term f (φ) in Eq. (3) combines adequately with the decay
of the mobility function to improve the convergence towards
the appropriate sharp interface limit.

We note that the kinetic coefficient M can be expressed
as a function of physical parameters [40,41] and scales like
the product of the surface energy γ by the surface diffusion
coefficient Ds:

M = Dsγ Ns�
2

kT
, (4)

where Ns is the number of diffusing atoms per surface area,
� is the atomic volume, and kT has its usual meaning. The
coefficient M can in principle be estimated from molecular
dynamics simulations for a specific interface. However, in this
study, the specific choice of M remains unimportant because it
is used to rescale the unique timescale of the problem at hand.

The time integration of Eqs. (1)–(3) is performed after
discretization of φ on a finite difference grid of dimensions
(Nx, Ny, Nz ). To stabilize the numerical scheme and increase
the computational efficiency, we use a semi-implicit scheme
inspired from Ref. [35], that relies on the evaluation of φ and
the fluxes J in Fourier space. After the Fourier transform of
the discretized phase-field φ (denoted φ̃ = F (φ)), its second
derivative ∇2φ appearing in Eq. (3) can easily be estimated in
Fourier space with a multiplication by a linear operator L̃ that
performs second-order derivatives finite differences:

{F (∇2φ)}ñx,ñy,ñz = L̃ñx,ñy,ñz φ̃ñx,ñy,ñz , (5)

L̃ñx,ñy,ñz =
[ ∑

ν=x,y,z

2

�ν2
cos

(
2π ñν

Nν

)]
, (6)

where (ñx, ñy, ñz ) are the indices on the Fourier space grid and
�x, �y, �z denote the grid spacing in the different spacial
directions.

The next step consists in going back to real space and
evaluating the chemical potentials μ and the fluxes J from
finite differences before performing a Fourier transform to
obtain J̃ in Fourier space.

Finally, the Fick equation (1) is integrated in Fourier space:

φ̃t+�t − φ̃t

�t
= D̃ · J̃, (7)

where �t denotes the time-step and D̃ν
ñx,ñy,ñz

= i
�ν

sin ( 2πν
Nν

)
is a linear operator that performs centered finite differences.
As noted in Ref. [35], integrating this equation with a for-
ward Euler scheme leads to a very severe time-step con-
straint to assure numerical stability due to the fourth order

083401-2



PHASE-FIELD INVESTIGATION OF THE COARSENING … PHYSICAL REVIEW MATERIALS 3, 083401 (2019)

derivative of φ. To overcome this limitation and stabilize the
numerical scheme, Zhu et al. [35] propose to add the term
A(L̃2φ̃t+�t − L̃2φ̃t ) to Eq. (7). For �t small enough, this
additional term has little influence on the dynamics but leads
to the following semi-implicit scheme:

φ̃t+�t = φ̃t + 1

1 + AL̃2
D̃ · J̃. (8)

Following Ref. [35], we choose a coefficient A = 1/2, allow-
ing an excellent stabilization of the numerical scheme while
limiting integration errors.

In the following, we will consider an interface width
W = 2�x, �x being the grid spacing considered equal in all
three directions. Before numerical integration, all the lengths
and times are rescaled by W and W 4/M, respectively. Also, a
time step dt = 0.02W 4/M is considered in the following.

The numerical implementation of the model is checked
by comparing the relaxation dynamics of a slightly perturbed
interface to the sharp interface analytical solution; the results
are summarized in Appendix A.

III. COARSENING KINETICS AND SELF-SIMILARITY

A. Choice of the initial microstructure

To generate numerical microstructures similar to the bicon-
tinuous structures obtained from dealloying experiments, we
use a phase-field model for spinodal decomposition, as the
one described in Ref. [31]. From a random noise distribution,
a bicontinuous microstructure naturally emerges for volume
fractions in the range 37.5%–62.5%. For volume fractions
lower than 35% and higher than 65%, one of the phase is
not continuous, as noted in Ref. [32]. In the case of surface
diffusion, the coarsening behavior is greatly affected by the
connectivity of the phase since disconnected elements do not
interact with the rest of the microstructure. Therefore we
discard these configurations and restrict ourselves to the con-
nected microstructures. We note also that, for obvious reasons,
the microstructure evolution is symmetric with respect to the
50% composition; therefore, we can restrict ourselves to the
composition range 37.5%–50%. The size of the microstruc-
ture features can be controlled by interrupting the spinodal
decomposition at various times. In our case, the initial charac-
teristic length scale is chosen small compared to the system
size in order to have a statistically representative structure
and large compared to the interface width to avoid any
spurious interface effect. In practice, we have 12W�λ�L/8.
A typical initial microstructure is depicted in Fig. 1(a).

The structures obtained from spinodal decompositions are
then used as input files to the surface-diffusion model pre-
sented above. In the following, we will consider results for
four different volume fractions 37.5%, 40%, 45%, and 50%.

B. Morphological evolution

The first morphological quantity of interest is the charac-
teristic length scale of the microstructure that will be denoted
λ. Various definitions of such a characteristic length scale
can be considered and are in principle equivalent: most au-
thors [26,27,30–32] use the inverse of the specific surface area
λS = V/S as a measure of the characteristic length scale.

FIG. 1. (a) Example of initial microstructure considered for
volume fraction ρ = 50%. (b) Coarsened structure obtained at
tM/W 4 = 3600. (c) Spherically averaged structure factors obtained
from three different configurations along a simulation and the
corresponding values of k0 shown with dash lines (see text for
explanations).

In this work, we prefer to use a definition of the length
scale that is related to the size of the elementary cell of the
microstructure. We rely on previous work [35,42] to estimate
this characteristic length scale from the structure factor of the
microstructure defined as

s(k) =
∑

r

∑
r′ e−ik·r[φ(r + r′)φ(r) − 〈φ〉2]

N2(〈φ2〉 − 〈φ〉2)
, (9)

where N = Nx Ny Nz is the number of grid points of the do-
main and the sums over r and r′ run on the 3D real space grid.
Considering that the structure does not have any privileged
direction and is isotropic, we then perform a spherical average
in k space to obtain the data shown in Fig. 1(c). We clearly
see that the averaged structure factor presents a peak-value
corresponding to a characteristic wave vector k0. Because the
maximum of this distribution may be difficult to determine
precisely due to the effect of the underlying discrete grid, we
compute the first moment of the structure factor and obtain
an estimate of k0 represented with dash lines in Fig. 1(c). The
characteristic length scale is then defined as λ = 2π/k0 and
represents the size of the elementary cell of the structure, or
in other words, the average distance between the center of two
neighboring ligaments.

Let us note that this definition of the cell size is rather
robust with respect to changes of the volume fraction. Indeed,
if we consider a given structure and erode the ligaments to
reduce the volume fraction, the surface area is reduced as
well, and the characteristic length scale λS increases, while
our definition of λ remains unchanged, making possible to
easily compare structures of different volume fractions. In
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FIG. 2. (a) Evolution of the characteristic length scale as function
of simulation time obtained for various volume fractions. (b) Same
graph with the y axis elevated to the fourth power.

addition, our definition of λ is not sensitive to the details
of the surface: surfaces obtained from experimental pictures
or atomistic calculations may include a roughness coming
from experimental noise or thermal fluctuations that may
increase spuriously the value of S (and therefore decrease the
estimate of λS). These effects are also avoided when using our
definition of λ as the cell size because it does not depends on
the details of the interface.

With this definition of the characteristic length scale,
the time evolution λ(t ) can be compared between different
volume fractions as shown on Fig. 2(a). These curves are
obtained from averaging ten different simulations to ensure
statistical significance of our results. Figure 2(a) shows that
the coarsening rate depends slightly on the volume fraction.
To better display the discrepancy between the different vol-
ume fractions, we show in Fig. 2(b) the time evolution of the
length scale elevated to the fourth power. The curves obtained
for ρ = 50% and 45% follow a perfect line, showing that
they coarsen with a power law λ4 ∼ t , expected for surface
diffusion evolution [33]. However, for lower volume fractions
(ρ = 40% and 37.5%), we clearly see a slight deviation from
this power-law behavior, the curves being slightly concave.
This is attributed to the development of a transient regime in
the first part of the dynamics. After this transient regime, the

TABLE I. Kinetics prefactor and steady-state connectivity ob-
tained for various volume fraction. The confidence intervals (one
standard deviation) are reported between parenthesis.

ρ 37.5% 40% 45% 50%

D (±2) 171.3 163.9 158.3 156
connectivity (±0.05) 1.14 1.29 1.43 1.50

time evolution of the characteristic length scale follows the
expected power-law as depicted in Fig. 2(b). In this steady-
state regime, the length scale evolution can be expressed as
λ(t )4 = λ4

t=0 + DMt , where D is a dimensionless coefficient
that depends slightly on the volume fraction and is reported in
Table I. Thus knowing the mobility coefficient M for a given
material would enable to predict the coarsening rate of the
structure; or reciprocally, measurements obtained from exper-
imental observations [43] could allow to extract a quantitative
estimate of the mobility M.

Other valuable information about the structure evolution
can be extracted from the interface morphology character-
ized by the interface curvatures (κ1, κ2). These quantities are
evaluated on every point of the interface from the phase-field
function following Ref. [32]. These quantities are commonly
displayed in the form of the probability density function for a
point of the interface to have curvature (κ1, κ2). Such interface
shape distribution (ISD) are shown in Fig. 3 for various
volume fractions. To assess the self-similarity behavior of the
coarsening, the curvatures are rescaled by the characteristic
length scale λ. The left and right columns display respectively
ISD obtained at short (t = 240W 4/M) and long simulation
times (t = 6000W 4/M). As expected for this type of con-
nected microstructures, the vast majority of the interface
displays curvatures of opposite signs, characteristic of locally
saddle shape morphologies.

Let us first examine the ISD obtained for 50% volume
fraction [Figs. 3(a) and 3(b)]. Both ISD are symmetric with
respect to κ2 = −κ1 dash line, as expected for this volume
fraction that has necessarily the same amount of concave and
convex surfaces.

The influence of volume fraction is also clearly visible in
Fig. 3. While the ISD obtained for ρ = 50% are symmetric
with respect to κ2 = −κ1 line, it is no longer the case for lower
volume fractions that contain less saddle-shape interfaces and
more interfaces with κ1 and κ2 of the same sign (i.e., locally
convex shape). This is also consistent with the results obtained
in experiments [27,43] and in phase-field simulations for bulk-
diffusion coarsening [30–32].

However, we note a slight difference between ISD obtained
at short and long time: the probability density distribution
obtained at longer times appears more concentrated and less
spread out in the κ2 = κ1 direction.

To check this more thoroughly, we show in Figs. 4(a)
and 4(b) the probability density function of the rescaled aver-
age curvature Hλ = λ(κ1 + κ2)/2 for two different times and
volume fractions. This function can be seen as the projection
of the ISD on the κ1 = κ2 dash line. For both volume fractions,
we clearly see that the maximum of the probability function
increases with time while the tails of the distribution diminish
slightly. This is also shown in Fig. 4(c) where the decrease of
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FIG. 3. ISD obtained for the different volume fractions at the
short times t = 240W 4/M (left column) and long simulation times
t = 6000W 4/M (right column).

the distribution standard deviation is visible, especially for the
low volume fraction ρ = 37.5%.

This can be attributed to the different scaling laws at-
tributed to surface and bulk coarsening. Indeed, the initial
microstructures are taken from spinodally decomposed struc-
tures that have evolved by bulk diffusion. The ISD obtained
after short times still display features characteristics of this
regime. In particular, for this bulk-diffusion dynamics, a per-
turbation of length scale λ is smoothed out on a time scaling
like tv ∼ λ3. In contrast, for surface diffusion, this time scales
like ts ∼ λ4 (see Ref. [33]). Therefore the regions with large
average curvatures have higher velocities in the surface dif-
fusion case than in the volume diffusion case, explaining that
the ISD are less spread-out after being subjected to surface

FIG. 4. [(a) and (b)] Probability distribution of the average cur-
vature H rescaled with the characteristic curvature λ at two different
times and for volume fraction ρ = 50% and ρ = 37.5%. (c) Tempo-
ral evolution of the standard deviation of the probability distribution
depicted in (a) and (b). The symbols display the value average over
ten independent simulations and the continuous lines a confidence
interval.

diffusion coarsening. This shrinkage is even more pronounced
for lower volume fractions as displayed for ρ = 37.5% in
Figs. 4(b) and 4(c).

We note that for ρ = 37.5%, this shrinkage occurs on a
transient regime with a duration comparable to the transient
regime observed in Fig. 2 (t � 500W 4/M). In the following
steady-state regime, the ISD evolution can be described as
being self-similar: the features of the ISD rescaled by λ

(average curvatures and the first moments) remain constants
or fluctuate slightly within the incertitude interval as displayed
in Fig. 4(c).

The slightly different coarsening rates obtained for the dif-
ferent volume fractions and discussed in the previous section
can also be analyzed in light of Fig. 4(c). Indeed, the driving
force for the coarsening is related to the spreading of the
interface distribution along the line κ2 = κ1: matter diffuses
from regions of curvature above the average towards regions
of curvature below and the intensity of this mass transfer
is proportional to the difference between the local curvature
and the average curvature of the structure. In other words,

083401-5



GESLIN, BUCHET, WADA, AND KATO PHYSICAL REVIEW MATERIALS 3, 083401 (2019)

a large standard deviation of the average curvature leads to
a large coarsening rate. Therefore, as shown in Fig. 4(c), the
larger value of the standard deviation of Hλ for ρ = 37.5%
as compared to ρ = 50% can be related to the difference of
coarsening rate observed on Fig. 2.

On the other hand, the mass transport from one part of the
structure to another can also be limited by the length of the
path between both regions and by the average connectivity
of the structure that is directly related to the topology of the
structure.

C. Topological evolution

Like most of the previous studies, we rely on the genus
denoted g to characterize the topology of our microstructures.
The genus is often described as the number of handles in
a given structure: it is 0 for a sphere, 1 for a torus, etc. It
is related to the structure morphology by the Gauss-Bonnet
relation:

g = 1 − 1

4π

∫
S

KdA, (10)

where the integral runs over the structure surface and K=κ1κ2

is the local gaussian curvature defined everywhere along the
surface. Some previous study used this relation to compute the
genus of the structure [28,30–32].

For reasons explained in Appendix B, we preferred a differ-
ent approach. We first use the marching-cube algorithm [44]
to obtain a description of the interface as a set of connected
simplexes. Then, we rely on the Euler formula that relates the
genus to simple characteristics of this set of simplexes:

g = 1
2 (2 − V + E − F ), (11)

where V , E , and F are respectively the number of vertices,
edges and faces in the set of simplexes. After running the
marching cube algorithm on a given structure, the computa-
tion of g is then straightforward.

Let us note also that g is not an extensive property of the
structure: it is obvious from Eq. (10) that g does not double
when the periodic structure is repeated. However, (g − 1)
(referred hereafter as the connectivity) is extensive in this
sense and is therefore the relevant topological quantity when
dealing with periodic surfaces [45]. This rectification may not
change drastically results when dealing with large structures
such as the ones presented in Fig. 1(a) or b where the genus
is typically higher than one hundred, but it is important when
comparing these structures with minimal surfaces such as the
gyroid or the P surface [46], whose genus are of the order of
unity per unit cell.

As an example, Fig. 5(a) displays the time evolution of
the connectivity for the volume fraction ρ = 50%. We note
that during the microstructure evolution, the connectivity de-
creases monotonically with time, and no “reconnection” is
observed. This strictly decreasing evolution is not necessar-
ily obvious for structures evolving through surface diffusion
where bridge reconnection can in principle occur in specific
situations, such as the collapse of surface pits in the silicon-
on-nothing technology [47].

Once the connectivity (g − 1) is computed for a given
structure, it is rescaled with the characteristic volume of the

FIG. 5. (a) Time evolution of the connectivity obtained for
ρ = 50%. (b) Rescale connectivity as a function of time for different
volume fraction. The continuous lines represent confidence interval
of one standard deviation.

unit cell λ3 to obtain the connectivity per unit cell whose
evolution is displayed in Fig. 5(b) as a function of time. The
average behavior from ten independent simulations is shown
with symbols while the standard deviations of these results
are displayed with continuous lines. We observe different
behaviors for the various volume fractions. In particular, the
evolution obtained for the volume fraction ρ = 37.5% clearly
increases before reaching a steady-state value. This transient
regime can be related to the transient morphological evolution
discussed in the previous section. After this transient regime,
the rescale connectivity remains constant for all volume frac-
tions, showing that the topological evolution of the structures
is self-similar. This steady-state value of the rescaled connec-
tivity (reported in Table I) increases with volume fraction and
reach a maximum of 1.50 ± 0.05 for ρ = 50%.

We note that during the time evolution of the structures,
the characteristic length scale evolves like λ4 = λ4

0 + DMt .
Therefore, since the rescaled connectivity remains constant
(denoted C) in the self-similar regime, we necessarily have

g(t ) − 1 = CV(
λ4

0 + DMt
)3/4 . (12)

As expected, this prediction drawn with a red dash line in
Fig. 5(a) reproduces very well the time evolution of the
connectivity.

We can also compare the rescaled connectivity of these
structures with the one of well-know minimal surfaces [46].
The gyroid, sometimes considered as a model arrange-
ment for these complex connected structures has a rescaled
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connectivity of 4, well above the values obtained here. A
similar result was obtained by Kwon et al. [30–32] for struc-
tures evolved by bulk diffusion. Therefore the topology of the
structures coarsened by surface diffusion are very different
than the gyroid surface which is much more connected. The
minimal surface with the lowest connectivity is the Schwartz P
surface that has a rescaled connectivity of 2, still significantly
above the values obtained here.

IV. INFLUENCE OF SURFACE ANISOTROPY

The results presented in the previous sections are obtained
for surfaces with isotropic surface energy and mobility. How-
ever, experimental observations on nanoporous gold [26,27]
demonstrated that anisotropic surface energy affects signifi-
cantly the morphology of the structures.

Surface energy anisotropy can be incorporated in a
straightforward way in the RRV model. Following the ap-
proach described in Ref. [39], we incorporate a weak surface
anisotropy of the form

γ (n) = γ̄
[
1 + ε4

(
5
(
n4

x + n4
y + n4

z

) − 3
)]

, (13)

where γ̄ is the surface energy averaged over all orientations
and ε4 is the anisotropy parameter. This expression displays
a quadratic symmetry representative of anisotropy for face-
centered and body-centered structures. Also, we restrict our-
selves to weak surface energy anisotropy that satisfy ε4<1/18
in order to avoid any singular orientations. In principle,
stronger anisotropy could also be investigated in the RRV
formalism but would necessitate the development of more
complex numerical tools [39,48,49].

Microstructures obtained for ρ = 50% after a time
tM/W 4 = 1200 are shown in Figs. 6(a) and 6(b) for ε4 = 0
and 0.05, respectively. We can already see that Fig. 6(b)
displays less isotropic microstrcuture with more surfaces ori-
ented along the [111] directions that have the lowest en-
ergy [see Eq. (13)]. The anisotropic morphology is more
visible on Figs. 6(c) and 6(d) that displays the interfacial
normal distribution in a polar plot. We clearly see that in
the anisotropic case [Fig. 6(d)], the [111] normal directions
is over-represented as compared to [100] or [110] that have
higher energies. In contrast, Fig. 6(c) obtained in the isotropic
case does not display any privileged orientation.

However, this clear influence of the surface anisotropy
on the structure morphology does not affect significantly the
coarsening kinetics of the structure as shown in Fig. 6(e) that
displays the time evolution of the characteristic length scale
for both isotropic and anisotropic cases. A strong surface
anisotropy influences the surface orientation but does not
change significantly the chemical potential along the interface
that control the coarsening kinetics.

The difference of surface anisotropy leads to topologically
different microstructures as pointed out by dashed circles in
Figs. 6(a) and 6(b). This is expected because of the influence
of surface anisotropy on the dynamics of the Rayleigh-Plateau
instability which is slowed down or accelerated depending
on crystalline orientation of the ligament [50]. However, as
shown in Fig. 6(e), the average rescaled connectivity is not
significantly affected by the surface anisotropy and fluctuates
around the value 1.5 obtained for isotropic structures.

FIG. 6. [(a) and (b)] Structures obtained at tM/W 4 = 1200 with-
out (a) and with (b) interface anisotropy. [(c) and (d)] Density of
surface normal without (c) and with (d) interface anisotropy. (e) Time
evolution of the characteristic length scale and rescaled connectiv-
ity for both isotropic (continuous lines) and anisotropic structures
(dash lines).

Similar results are obtained for the other volume fractions:
despite the influence of the surface anisotropy on the structure
morphology, it affects only marginally the coarsening kinetics
and the evolution of the rescaled connectivity. However, we
note that a stronger surface anisotropy for which some orien-
tations would be forbidden could influence significantly the
coarsening kinetics by completely impeding the development
of the Rayleigh-Plateau instability and ligament pinch-off in
some directions.

V. COMPARISON WITH EXPERIMENTAL
MICROSTRUCTURES

In addition to the numerical study presented above, we
propose here to compare our results with tomographic pictures
of samples obtained from liquid metal dealloying [51]. As
detailed in Ref. [51], two different samples with volume
fractions of 40% and 50% have been obtained from precur-
sor alloys of (FeCr)0.4Ni0.6 and (FeCr)0.5Ni0.5 compositions
respectively. Upon immersion of the samples in liquid Mg
during 1 hour at 1097 K, Ni is dissolved selectively in the Mg
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FIG. 7. (a) Tomographic imaging of a microporous FeCr sam-
ple with volume fraction 50% obtained from liquid metal dealloy-
ing [51]. (b) Rescaled connectivity as a function of the size of the
analyzed volume (see text for explanations). (c) Comparison of the
average connectivity with numerical results.

bath while Fe and Cr reorganize and form a porous connected
structure. The 3D microstructure of the samples are obtained
using x-ray tomography, leading to observations as the one
shown in Fig. 7(a) for a volume fraction of 50%. We note that,
in these experiments, the time necessary to dealloy the sample
thickness is small (�10 min) compared to the subsequent
coarsening (∼50 min) [52]. During this coarsening stage, the
ligament size grows significantly from about 400 nm to 4 μm.

In addition, these changes are expected to takes place by
surface diffusion because of the strong immiscibility of Fe and
Cr in liquid Mg and the slow diffusion in the solid phase [14].

From the microstructure shown in Fig. 7, the rescaled
connectivity can be obtained using the analysis discussed
above. We first compute the characteristic length scale of
both structures (40% and 50% volume fractions) with the
structure factor analysis and find characteristic length scales
of λ40% = 8.43 μm and λ50% = 7.68 μm, respectively. We
note that these quantities are in good agreement with the sum
of the ligament and pore size reported in Ref. [51].

Considering the finite size of the samples, the structures
topology can be more challenging to measure precisely. To
assess the influence of surface effects on the measure of the
structure connectivity, we analyze various volumes of differ-
ent sizes that are representative subsets of the global structure
[such as the one of dimension Lcell shown in Fig. 7(a)]. To be
consistent with the analysis of numerical structures, the cell
is replicated eight times with mirror boundary conditions in
order to obtain a periodic structure. The genus of this periodic
structure is then computed based on the Euler formula of
Eq. (11). Figure 7(b) displays the rescaled connectivity as a
function of cell sizes (all cells are cubic). The dashed grey
lines represent the rescaled connectivity for different locations
of the subcell (eight different locations are considered, each of
them corresponding to a corner of the structure) and the thick
lines show the evolution of their average (thin continuous lines
represents the standard deviations).

The average rescaled connectivity does not vary signif-
icantly with the cell size, which shows that the volumes
are large enough to be representative and that the artifacts
introduced by replicating the structure do not influence signif-
icantly the results. We obtain values of the rescaled connectiv-
ity of 1.38 ± 0.08 and 1.62 ± 0.04, respectively, for 40% and
50%. As shown in Fig. 7(c), these estimates fall close (within
10%) to the values obtained from numerical microstructures,
showing a good agreement between numerical and experi-
mental microstructures.

A discrepancy between numerical and experimental struc-
tures is expected because the microstructures obtained nu-
merically are perfectly isotropic while the samples obtained
from liquid metal dealloying present a privileged orientation
aligned with the dealloying direction.

VI. CONCLUSION

We have used a phase-field model to characterize the
evolution of connected structures by surface diffusion, that
is ubiquitous during the fabrication of nano/micro-porous
materials with the dealloying technique. We show that after
a transient regime, the evolution of the characteristic length
scale of these microstructures follows the expected t1/4 power-
law for the different volume fractions investigated here. In
addition, in this steady-state regime, we find that the structures
evolve in a self-similar way: both morphological and topo-
logical characteristics remain constant once rescaled by the
characteristic length scale. This contrasts with the conclusion
of previous experimental and numerical studies [27,28] that
showed a lack of self-similarity of coarsening by surface
diffusion.
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For the atomistic study of Erlebacher [28], this discrepancy
can be related to two notable differences with our simulations:
first, Erlebacher considered finite-size particles in contrast
with the infinite periodic systems investigated here. The in-
corporation of a second length scale (the radius of the particle)
can influence significantly the coarsening behavior and break
down its self-similar evolution. Second, the microstructures of
Ref. [28] are obtained after a dealloying step that consists in
removing progressively atoms from an initial binary structure.
Therefore the topological and morphological characteristics
of these microstructures might differ significantly from the
ones presented here that are obtained by spinodal decom-
position, as suggested in Ref. [53]. These differences might
influence the subsequent coarsening mechanisms and its self-
similar character.

A lack of self-similarity is also mentioned in Ref. [27],
on the basis of tomographic observations of nanoporous
gold. It is suggested that the non-self-similar character of
the coarsening is related to the surface energy anisotropy.
As discussed in Sec. IV, we show that a weak surface
anisotropy (without singular orientations) does not change
significantly the coarsening rate and the self-similar behav-
ior of the coarsening. However, in the case of nanoporous
gold evolution at moderate temperatures (550 ◦C–650 ◦C in
the case of Ref. [27]), the magnitude of the surface energy
anisotropy might be stronger than investigated here, impeding
the development of the Rayleigh-Plateau instabilities along
some crystalline orientations, and breaking down self-similar
coarsening.

The above discussion reveals the limitations of the current
study and hints perspectives for future works. A first limitation
lies in the choice of the initial structure obtained from spinodal
decomposition. Indeed, in the context of structures obtained
from dealloying, the dealloying direction is always a privi-
leged orientation of the system, making the resulting structure
anisotropic, even after significant coarsening. In addition, it
was suggested that structures manufactured from dealloying
can present significantly different topologies than the ones
obtained from spinodal decomposition [53]. To account for
these effects, a natural extension of this work will consist
of taking more realistic initial microstructures, obtained ei-
ther from numerical models [1,16,28] or from tomographic
observations of dealloyed samples [26,27,43,51]. Another
limitation of the present study is the weak surface energy
anisotropy considered in Sec. IV that may not represent the
case of nanoporous gold [5,27] or other porous materials.
Future work will consist in extending the RRV model used
in this study to account for such strong anisotropy [48,49] to
investigate the coarsening behavior in this situation.
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APPENDIX A: CHECK OF SURFACE DIFFUSION MODEL

To check the numerical implementation of the model,
we consider the simple case of an interface with an ini-
tially perturbed position h(x) = h0 sin(2πx/Lx ). Figure 8(b)
shows the time evolution of the perturbation amplitude: as
expected by the sharp-interface solution in the limit h0 � Lx,
the amplitude of this perturbation decreases exponentially in
time, following h(t ) = h0eωkt with a decay rate ωk = −Mk4

reported in Fig. 8(c). This power law with an exponent n = 4
is ubiquitous in surface diffusion problems [33]. The slight

FIG. 8. (a) Slightly perturbed interface. (b) Exponential relax-
ation kinetics to equilibrium. (c) Growth rate as a function of wave
vector of the perturbation, showing that dispersion relation ωk =
−Mk4 is well verified.
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FIG. 9. Connectivity (g − 1) obtained from integration of the
Gauss-Bonnet integral and from Euler formula for the gyroid struc-
ture as a function of the number of voxels in the system.

deviation (less than 5%) obtained for short wave-length is
attributed to the numerical discretization of the model.

APPENDIX B: COMPUTATION OF THE TOPOLOGICAL
CHARACTERISTICS OF THE STRUCTURES

Several approaches can be used to compute the topological
characteristics (i.e., the genus) of structures investigated here.
In particular, some previous studies relied on the Gauss-
Bonnet relation [Eq. (10)] to compute the genus from the

integration of the curvature along the surface. While this
method is mathematically valid, its practical implementation
on a discretized structure can present some difficulties. First,
the computation of the Gaussian curvature must rely on a field
whose evolution is slow compared to the grid spacing [30–32].
In addition, once an estimate of the gaussian curvature is
known, it needs to be interpolated on the surface before
estimating the integral in Eq. (10). These additional steps
introduce small numerical errors, especially for curvature
radii close to the grid spacing.

The influence of these numerical errors is demonstrated in
Fig. 9 where the computed connectivity of the gyroid structure
is shown as function of the number of voxels in the system.
For fine discretizations of the structure, the connectivity con-
verges towards the expected value of g − 1 = 4. However, for
coarser discretizations, the obtained value of the connectivity
diverts significantly from 4 due to the accumulation of numer-
ical errors. Especially, for the coarser grid of 4×4×4 voxels,
the integration of the Gauss-Bonnet relation entirely fails to
give the correct value of the connectivity.

As discussed in the main paper, we prefer to rely on the
Euler formula to compute these topological quantity. After
applying a marching cube algorithm to the structure, we
compute the genus by using the Euler relation of Eq. (11).
The result is thus immediately an integer value and does not
present any computational challenge. As illustrated in Fig. 9,
using the Euler formula provides a better numerical stability
even for a very coarse numerical grids.
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