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Abstract: Multi-agent systems are well-known for their expressiveness to explore interactions and
knowledge representation in complex systems. Multi-agent systems have been applied in the
energy domain since the 1990s. As more applications of multi-agent systems in the energy domain
for advanced functions, the interoperability raises challenge raises to an increasing requirement
for data and information exchange between systems. Therefore, the application of ontology in
multi-agent systems needs to be emphasized and a systematic approach for the application needs to
be developed. This study aims to investigate literature on the application of ontology in multi-agent
systems within the energy domain and map the key concepts underpinning these research areas.
A scoping review of the existing literature on ontology for multi-agent systems in the energy domain
is conducted. This paper presents an overview of the application of multi-agent systems (MAS) and
ontologies in the energy domain with five aspects of the definition of agent and MAS; MAS applied
in the energy domain, defined ontologies in the energy domain, MAS design methodology, and
architectures, and the application of ontology in the MAS development. Furthermore, this paper
provides a recommendation list for the ontology-driven multi-agent system development with the
aspects of 1) ontology development process in MAS design, 2) detail design process and realization of
ontology-driven MAS development, 3) open standard implementation and adoption, 4) inter-domain
MAS development, and 5) agent listing approach.

Keywords: multi-agent system; ontology; energy sector; scoping review

1. Introduction

The energy sector is facing a new paradigm shift following the large-scale integration of renewable
energy sources (RES) [1]. The significant use of fossil resources is one of the major concerns of today’s
society. Climate changes, environmental impacts, and the scarcity of resources have led to the need
for RES. RES reduce greenhouse gas emission while contributing to an increase in life quality and
sustainable development [2]. The inclusion of RES is a highly complex task. The demand and supply
need to be balanced due to the unpredictable behavior of RES. This influences not only the electricity
system but also heating and cooling systems due to the considerable linkage between subdomains.

In order to solve these problems, multiple stakeholders need to work together and provide solutions.
Models of such solutions are essential to explore the interactions between consumption, production,
and transportation as well as economic, environmental and technical phenomena. Multi-agent systems
(MAS) can contribute to explore and develop such solutions since MAS can simulate how multiple
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stakeholders work, interact, and influence each other. The MAS simulations make it possible to
simulate systems which consist of agents with different or conflicting objectives.

Agents often collaborate towards a specific goal and need to communicate and share results.
Different languages and vocabularies are domain-specific, and often cause problems for the agents in
a system. It requires a common language to ensure that messages are interpreted correctly between
agents [3]. Therefore, ontology can be applied to establish effective communication between agents.
Ontology can specify terms that are used for communication within a specific context and enable
agents to make declarations or ask queries that are understood by all other agents in the system [4].
It is an important tool for the development of an intelligent multi-agent energy system, e.g., for the
knowledge sharing and knowledge reuse [5].

As more applications of multi-agent systems in the energy domain for advanced functions,
the interoperability challenge raises due to an increasing requirement for data and information
exchange between systems. Meanwhile, the energy system is strongly connected with other domains.
Therefore, the application of ontology in multi-agent systems needs to be emphasized and a systematic
approach for the application needs to be developed.

Although some review papers have investigated agent-based modeling and tools for the electricity
domain (e.g., [6]), very few studies have investigated the MAS design and the applications of ontology
in MAS for the energy domain. Moreover, many studies focus on specific subdomains and how to
solve one specific problem. Hence, investigation and analysis of more complex systems and problems,
integration of subdomains, including different agents and ontologies, is needed. Meanwhile, it is
important to highlight the relevant literature and map the key concepts underpinning the research
area [7]. The scoping review can provide the means that identify, characterize, and summarise existing
literature regarding the state of research activities. Moreover, the review result can identify gaps in
the literature.

This paper conducts a scoping review to investigate the existing studies on the application of
ontologies in the MAS for the energy domain. Based on the results of the literature analysis, this paper
proposes a recommendation list for the ontology-driven MAS development for the energy domain.
This recommendation aims to address certain aspects that are missing in the literature or need more
emphasis in future work.

The paper is organized as follows: Section 2 describes the methodology and the research process.
Section 3 presents the literature analysis results, and Section 4 discusses the findings followed by
Section 5 that concludes. The conclusion section also states the recommendation for future work and
the limitations of this study.

2. Method

The study is designed to compile the relevant contributions from previous publications and to
analyze their results in relation to multi-agent modeling design for the energy domain. This study firstly
conducts a literature search of ontologies and multi-agent systems for the energy domain. The literature
search was performed during the first quarter of 2019. To retrieve the relevant articles for this literature
study, four online databases are selected that are relevant in the fields of energy, and MAS and
ontologies: ACM digital library, IEEE Xplore, Web of Science, ScienceDirect. The review covers books,
conference proceedings, academic journal articles, research articles, and review articles. Other forms
of publications, such as newspapers, posters, etc., were not considered since their publication forms
are not for scientific research purposes. There was no limitation on the publication years for the
literature search.

The data collection was divided into three rounds with relevant keywords. The keyword search
was only applied to titles due to a large number of the literature in the fields and the concerns of the
relevance in the selected domains. The first round focused on the multi-agent systems in the energy
domain. To avoid excluding any relevant study, the search strings were:



Energies 2019, 12, 3200 3 of 31

(‘multi-agent’ OR ‘multiagent’) AND (‘energy’ OR ‘electricity’ OR ‘heating’ OR ‘grid’ OR ‘electric’
OR ‘power’ OR ‘wind’)

The strings, in the first round, resulted in 1433 publications. The result from each database is
shown in Table 1. All these 1433 publications were imported to the reference management software-
Endnote (https://endnote.com/).

Table 1. Results in the first round search.

Database Result

Web of Science 355
IEEE 822

ScienceDirect 58
ACM 198
Total 1433

To dismiss the duplicated publications, i.e., articles which were obtained through multiple
databases or strings, 856 articles were removed by this criterion. The remaining 577 articles were
selected for further analysis. This study searched the remaining articles with ‘ontology’ OR ‘ontologies’
in titles, abstracts, and keywords, and resulted in 24 articles with full-text.

Based on the text mining in the analysis software NVivo (https://www.qsrinternational.com/nvivo/

home) and careful review, the 24 articles were separated into six sub-domains (shown in Table 2).
Majority of the selected articles only address one sub-domain, and one article [8] addresses three
sub-domains (energy management, microgrid, and buildings), and another article [9] addresses two
sub-domains (power system and microgrid). The publications show that the application of ontologies
in the field of MAS for the energy domain was mainly conducted after the year 2004, with focus on the
sub-domain of grid control between 2004 to 2014, and expanded into the sub-domain of electricity
market since 2014. A list of the 24 articles in the Appendix A shows the focused aspects in the energy
domain, ontology, and MAS design.

Table 2. Six addressed sub-domains by the selected articles.

Grid Control Power
System

Energy Management
System Microgrid Buildings/Demand

Side
Electricity

Market

8 3 2 3 5 6

3. Results

This study reviews and analyses the selected 24 articles to investigate the current research on the
application of ontologies in MAS for the energy domain, and the main discussion in the 24 articles
can be divided into five categories: 1) definition of agent MAS, 2) MAS applied in energy domains
3) defined ontologies in the energy domain, 4) MAS Design and architectures, and 5) Ontology in the
MAS development.

3.1. Definition of Agent and MAS

3.1.1. Agent and Agent-Based Modeling

An agent is defined as an entity that reacts to changes in its environment through a reasoning
process [10]. The attributes of an agent are autonomy, sociability, reactivity, pro-activeness, adaptiveness,
interactivity, rationality, and interactivity, etc. [11]. Russell [12] defines an intelligent agent as
an autonomous entity which has the following properties:

• It has the ability to communicate and interact with its environment;
• It is able to perceive the (local) environment;

https://endnote.com/
https://www.qsrinternational.com/nvivo/home
https://www.qsrinternational.com/nvivo/home
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• It is guided by basic objectives;
• It has feedback behavior.

An agent structure shows: (1) a set of modules that the agent is decomposed in to, (2) the
interaction between these modules and the environment and other agents (shown in Figure 1), and
generally, there are three types of agent structures: deliberative architecture, reactive architecture and
hybrid architecture [13].

Agent-based modeling is a model of a system with the description of agents and agents’
interactions [14]. Agent-based modeling usually models part of the system rather than a whole
system due to the complexity of the system.

Figure 1. Agent structure [13].

3.1.2. Multi-Agent Systems

Multi-agent System (MAS) is a complex system that is composed by more than one distributed
agents and these agents communicate to deal with problems which usually can’t be solved by a single
agent [14,15]. According to [16], a MAS is characterized by:

• Large numbers of actors are able to interact, in competition or in cooperation;
• Local agents focusing on local interests and negotiating with more global agents;
• Implementation of distributed decision making, through negotiation processes between different

local or global agents;
• Communication between actors is minimized to generic information exchange between agents:

only the information necessary for their functioning is sent between agents.

MAS is based on the divide-and-conquer mechanism [17]. In a MAS, each agent has limited
knowledge about its environment, and work individually towards a certain goal based on their local
knowledge and their behavioral algorithms and interact in a cooperative or competitive manner with
other agents [18].

The idea of using MAS is to divide a complex system into smaller and more related objectives
and construct agents for these sub-objectives [17]. MAS can simulate and control large complex
decentralized systems that can cope with the dynamics of the system, reduce the complexity, and
increase flexibility [19]. One of the most important benefits of MAS is its fault tolerance, based on
multiple agents can provide the same services [17].
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3.2. MAS Applied in Energy Domains

The energy sector is becoming more complex and consists of multiple hybrid systems,
which includes various interactions and amounts of knowledge. MAS is being studied in many
areas of power engineering including diagnostics, condition monitoring, power system restoration,
market simulation, network control and automation, and hierarchical decision making, as smart
grid (SG) and microgrids (MG) [18,20]. The development of simulation platforms based on MAS is
increasing as a good option to simulate real systems in which stakeholders have different and often
conflicting objectives [21].

3.2.1. MAS for Grid Control

According to [18], research on using MAS in power engineering mainly focuses on distributed
control architectures and simulation. MAS is a decentralized scheme that utilizes distributed controllers
for energy management and optimization, and it is an alternative approach for smart system optimizers
(SSOs) implementation within a typically integrated energy system (IESs) [22]. MAS is an obvious
and promising choice for the smart grid control system because MASs can overcome the threat of
SPOFs (single-point-of-failure) due to their distributed characteristic [23]. Meanwhile, Considering
the agent properties, the variety of components used in power transformer and the huge amounts
of data involved, MAS provides the best possible choice for the purpose of monitoring, automating,
controlling and diagnosing the power transformer components [24]. MAS has proven to be suitable for
addressing the demands of SGs both theoretically and practically [25].

Most of the research work in this area have focused on hierarchical control, optimization, and power
restoration using MAS. For instance, [21] proposes a MAS-based optimal energy management solution
for the optimization problem of the interactive operation of generation units and DR [26]. Similarly,
introduces a decentralized agent-based approach for optimal residential demand planning [27]. A MAS
is used in [28] to restore power in case of failure, and [29] introduces a flexible and versatile MAS for
fault isolation and power restoration. Meanwhile, [30] presents a MAS automated management and
analysis of SCADA and Digital Fault Recorder Data. Furthermore, a multi-agent system is used to
control the voltage of the power system with co-ordination in [31].

Other distributed MAS-based solutions to grid control are also presented microgrids, islanded
microgrids, and multiple microgrids [8]. The applications of MAS in a microgrid is similar to the
smart grid control, e.g., Microgrid control, optimal energy exchange, and multi-level management,
but also link to buildings or demand-side management. For instance, [32] presents a MAS for Microgrid
control and a classical distributed algorithm. [33] proposes a MAS microgrid system for optimal energy
exchange between the production units of the Microgrid and local loads. based on MAS, [34] proposes
an Intelligent Distributed Autonomous Power System (IDAPS) to increase the reliability of the critical
loads. [35] proposes a multi-level management and control scheme for microgrid systems taking
into account the interaction among agents at different levels. [36] presents a consumption scheduling
framework in small residential areas.

3.2.2. MAS for Electricity Markets

MAS of the electricity markets concern market players and markets modeling, strategic bidding
and decision support [37]. Multi-agent-based simulation of the electricity markets usually combines
with artificial intelligence techniques and game theories and is not only simulation platforms but also
provides opportunities for the scenario comparison, future evolution study and sensitive analysis [38].

Several studies have applied MASs to model and simulate electricity markets [14]. For instance,
Li et al. [39] discuss the potential for developing Open Source Software (OSS) for power market
research. The Agent-based Modelling of Electricity Systems (AMES) is an agent-based OSS laboratory,
specifically designed for the experimental study of reconstructed wholesale power markets. The AMES
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simulation includes an independent system operator, load-serving entities, and generation companies
distributed across the transmission grid.

Another electricity market model is the Electricity Market Complex Adaptive System (EMCAS)
model [40] utilized by Koritarov [1]. The model is used to capture and investigate the complex
interactions between the physical infrastructures (generation, transmission, and distribution) and
the economic behavior of market participants [41]. Furthermore, the model applies an agent-based
approach where agents’ strategies are based on learning and adaption. This approach enables
simulations in different time periods, from real-time to decades including both pools and bilateral
contract markets. This approach also makes it possible to see the evolution of an electricity market
over time and stakeholders’ reaction towards changes in economy, finance, and regulation. The study
describes two methods of how the agents learn: observation-based and exploration-based learning.
In observation-based learning, the learning process is based on a structured process of past market
performance evaluation, future market status prediction, and investigation of other agents’ actions.
Agents decide either to keep or adjust their current market strategy or use a new strategy. Agents
based on exploration-based learning explore new market strategies, and these strategies are simulated
in a simulation tool. The results are observed, and the strategies are either accepted or rejected based
on the results and the agents’ goals.

Praca et al. [42] develop the Multi-Agent Simulation of Competitive Electricity Markets
(MASCEM) [43]. The model is developed to study the behavior and evolution of an electricity
market. The MASCEM is a modeling and simulation tool aiming to study the operation of complex
and competitive electricity markets [44]. The agents in the system represent the market entities, such
as generators and customers. The MASCEM allows agents to establish their own decision rules and
adapt their strategies as the simulation progresses based on previous events. As a decision-supporting
tool, the simulator includes different possibilities regarding electricity market negotiations [45,46].
The MASCEM is a flexible tool which makes it easy for users to define models including strategies,
types of agents and market types. For example, this flexibility is utilized by Santos et al. [3,47,48] for
modeling and simulating the EPEX (central European electricity market) and Nord Pool spot market
(Scandinavian electricity market). The MASCEM can also be used for modeling and simulation of
other electricity markets such as MIBEL (the Iberian electricity market), GME (the Italian electricity
market), and even markets outside Europe [48].

3.2.3. MAS for Demand-Side and Building Systems

MAS provides a flexible and reliable solution to manage and optimal loads at demand-side
with the consideration of energy cost minimization and user’s comfort maximizations [49,50].
MAS has been applied in automated building management systems (BMS) for energy-related building
research [16,51–53].

The automated BMS research in energy-related building systems mainly focuses on control
mechanisms of building loads and investigate possibilities and potentials of energy efficiency and
flexibility in buildings [54,55], and especially much equipment in buildings can be controlled and
deliver demand flexibility, e.g., lighting and HVAC, and can respond to the grid signals [56]. Although
complex control systems are important in building systems, these processes need to be optimal, flexible,
and automated.

Multi-agent-based modeling techniques have been used to integrate real-time intelligent
decision-making in building control. For instance, an indoor environment that actively supports
its inhabitants can be created with these techniques [57]. These modeling techniques also include
unpredictable user-behavior, fluctuating weather conditions, and grid imbalances [52,58]. For instance,
the study by Anvari-Moghaddam et al. [52] demonstrates how MAS is used to optimize management
strategies for a building through computer simulations in combination with third-party software
such as MATLAB and GAMS. Hence, studies show that energy consumption can be reduced without
compromising the inhabitants’ comfort level in residential buildings.
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In the study [52], a smart grid is simulated with several residential buildings, conventional
and RES. The residential buildings include underfloor heating, heat pumps, and energy storages.
The simulation incorporates meteorological data for the examined location together with technical
data, to estimate the power production from RES. The simulation result shows that it is possible to
reduce domestic energy consumption and meet the system’s objectives and constraints at the same time.
However, the study does not take fault-tolerant and uncertainty handling capabilities into account.

The study by Zeiler and Boxem [16] analyses how smart grid and building optimization can work
together and presents an ontology of a software system which acts as a bridge between BMS and a smart
grid. Several experiments are conducted in this study to test a HVAC system in a building environment,
including the interaction with a smart grid. The study also includes the dynamic behavior of the
occupants towards the systems in combination with an overall goal of energy efficiency. The study
finds that different elements depend on each other, e.g., changes in required heating affect the available
energy. The automated equipment, controlled and managed by the building, responds to demand
response requests from the grid to balance the grid condition [59]. The experiment also shows that the
comfort level increases while the energy consumption decreases in their MAS modeling.

Meanwhile, the study by Mousavi et al. [53] includes the unpredictable nature of the business
process in an office building in a simple model with only a few devices to control. This study does not
include a response to the grid conditions. Instead, the study investigates an energy automatic model
for office buildings to reduce energy consumption and increase the indoor comfort level. The model
is a MAS with the ontology based on the standard IEC 61499 (automation system standard) [60].
The goal of this study is to optimize the energy consumption in an office building where the ontology
provides the communication logic and allows agents in the model to share knowledge and data [61].
In the MAS model, agents communicate and collaborate towards a common goal. The method has
been applied to an office meeting room, where meeting activities and equipment can be automatically
controlled, including measurements of energy consumption. Based on the data gathered as a result
of the simulation, the study shows that it is possible to reduce 50 % of the room’s monthly energy
consumption by controlling the operation and preparation of the room automatically. The duration of
the meeting room simulation is 20 working days (1 working month). The simulated BMS automatically
acknowledges the meeting schedules and needs for shading, screen, and blackboard usage, etc.
The business process is combined with automated processes to overcome the inefficient use of energy
in buildings and lower the number of system failures.

3.2.4. MAS Tools for the Energy Domain

In a MAS of the energy system, agents can represent market players, network components,
or part of/a whole system [9]. Therefore, the multi-agent architecture of energy and power systems is
designed for dealing with the system complexity [9,23]. Meanwhile, multi-agent simulations allow
investigating the statics and changes of the physical systems, electricity market and market players’
behaviors. There are multi-agent simulators in the various domain for different purposes, e.g., CoABS
(https://www.cs.cmu.edu/~{}softagents/project_grants_coabs.html) grid [62]. The selected literature
shows that the multi-agent simulators in the energy system can be divided into three main areas:

1. Multi-agent simulators for smart grid:

• Mosaik (https://mosaik.offis.de/): [49,50] is a flexible smart grid co-simulation framework, and
allows to reuse and combine existing simulation models and simulators to create large-scale
smart grid scenarios [63]

• MASGriP (Multi-Agents Smart Grid Simulation Platform): models the internal operation of
a smart grid with the consideration of all involved players [21].

2. Multi-agent simulators for the grid communication, monitoring, and control:

https://www.cs.cmu.edu/~{}softagents/project_grants_coabs.html
https://mosaik.offis.de/
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• Electric Power and Communication Synchronizing Simulator (EPOCHS) (http://www.cs.
cornell.edu/hopkik/epochs.htm): aims to solve network communication problems and avoid
potential costs and damages by the combination of the results of several simulators [64].

• Global Event-Driven Co-Simulation framework (GECO): models and simulates the control,
monitoring, and protection of the power systems and communication network [65].

3. Multi-agent simulators for electricity markets:

• Multi-Agent Simulator for Electricity Markets (MASCEM) (http://www.mascem.gecad.isep.
ipp.pt/overview.php/): can simulate many market models and player types, and enable
decision-support [21].

• Agent-based Modeling of Electricity Systems (AMES) (http://www2.econ.iastate.edu/tesfatsi/
AMESMarketHome.htm): simulates wholesale power market operation including load,
market participants, grid [66].

• Power Trading Agent Competition (Power TAC) (https://powertac.org/): is an open-source
platform that simulates future electricity market including broker types of energy retailers,
commercial or municipal utilities, or cooperatives [67].

• Electricity Market Complex Adaptive System (EMCAS) (https://ceeesa.es.anl.gov/projects/
emcas.html): simulates diverse participants’ strategies and behaviors in the electricity
market [68]

• Multi-Agent Negotiation and Risk Management in Electricity Markets (MAN-REM): simulates
electricity markets, and emphases the bilateral contracting and risk management [37].

• Adaptive Learning strategic Bidding System (ALBidS): aims to integrate market strategies,
evaluate performances under different contexts of negotiation, and provides decision support
to electricity markets negotiating players [69].

3.3. Ontology and Defined Ontologies in the Energy Domain

3.3.1. Definition of Ontology

The term ‘ontology’ is originally introduced by the Greek philosopher Aristotle [70] as a theory
about the nature of existence. Since the beginning of the 1990s, ontology has been adopted by
information scientists in the field of artificial intelligence and web and system modeling [71].
In computer science, the ontology is defined as: “a formal, explicit specification of a shared
conceptualization.” [72]. This explicit formal specification is domain-specific [73]. Ontology provides
a model to support the process in agreement with all parties that all parties commonly agree to refer to
the ‘specification’ of a conceptualization [74]. Uschold [75] identified different categories of ontologies:

• Communication between people. Here, an unambiguous but informal ontology may be sufficient.
• Inter-operability among systems achieved by translating between different modeling methods,

paradigms, languages and software tools;

In the Artificial Intelligence community, ontologies describe entities and their properties,
relationships, constraints and behavior that are not only machine-readable but also
machine-understandable [14,24]. According to [13], the functions of ontology are:

• Communication: ontology can provide common glossaries to communication among different
individuals.

• Interoperation: ontology can freely interpret and map among various modeling methods,
languages and software tools.

• Reuse: the ontology’s analyses clarify the structure of the field’s knowledge in order to lay a good
foundation for knowledge representation. Ontology can be reused, so the repetitious knowledge
analyses can be avoided.

http://www.cs.cornell.edu/hopkik/epochs.htm
http://www.cs.cornell.edu/hopkik/epochs.htm
http://www.mascem.gecad.isep.ipp.pt/overview.php/
http://www.mascem.gecad.isep.ipp.pt/overview.php/
http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
https://powertac.org/
https://ceeesa.es.anl.gov/projects/emcas.html
https://ceeesa.es.anl.gov/projects/emcas.html
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• Knowledge acquisition and sharing: to construct the system based on knowledge, the available
ontology can be used as origination and foundation to supervise the acquisition of knowledge,
which can improve its velocity and reliability.

To build an ontology, knowledge engineers need to talk with domain experts to analyze the
system and to make everything explicit, e.g., concept description with existing defined concepts and
the knowledge rules (i.e., the decision-making rules) in these formalized concepts [76]. There are seven
recommended steps to design an appropriate ontology. The developed ontologies provide the means
to exchange information that can be interpreted by software agents, knowledge representation and
sharing among the software agents [38]. Ontologies are also useful for sharing between modelers,
domain, experts, and users [14]. Meanwhile, ontologies also enable to infer knowledge from the
gathered information using a reasoner [38].

Many languages have been developed to build an ontology for different purposes. The Ontology
Web Language (OWL)(https://www.w3.org/OWL/) by W3C is one of the most popular standard
ontology languages. It possible to use OWL in a variety of applications such as knowledge sharing
and representation [77], semantic web [78], information system [79], ontology-based reasoning [80],
etc. An important requirement for the system interoperability is to reuse existing ontologies. There are
some libraries of reusable ontologies available online, such as Ontolingua (http://www.ksl.stanford.
edu/software/ontolingua/) and DAML ontology libraries (http://www.daml.org/ontologies/) [48].

3.3.2. Defined Ontologies in the Energy Domain

There are some ontologies already developed for specific energy domains [81,82]. For instance,
Kofler et al developed an ontology that focuses on energy consumption and energy provision [83].
Ma et al. [84] proposes 6 basal ontologies for energy management system:

• Cognitive ontology: the activity that agents analyze power systems.
• Physical entity ontology: the equipment that is used for transmitting electric energy and its

connecting topology.
• Data ontology: the magnitude that cognitive agent has apperceived to respond to physical entities.
• State ontology: the generalization of the current operation mode in an electric power grid.
• Event ontology: all aspects that create changes of state.
• Operation Ontology: the combination of all actual actions that a cognitive agent does on

physical entities.

The well-described ontologies in the energy domain are mainly found in the electricity market
domain. For instance, [85] develops an ontology for the electricity market named Electricity Market
Ontology (ELMO). It provides a shared, common understanding of concepts and procedures in the
electricity market operation. The ELMO ontology uses a multi-layered architecture divided into
highly maintainable, extendible, and reusable modules that can be used by organizations such as the
Hellenic Transmission System Operator (HTSO). The ontology is primarily developed specifically for
the electricity market of Greece, and the adaptation to other markets are thereby difficult.

Other examples are the studies of Santos et al. [3,47,48] that develop an Electricity Market Ontology
(EMO). The EMO is an upper ontology for the electricity market, from which other low-level ontologies
can be extended. It defines the main concepts of the electricity market, and the specific ontologies
extended from the EMO define requests, responses, and notifications. Ontologies for the EPEX [3] and
Nord Pool spot market [47] are developed as extensions of EMO. The research in [48] states that the
aims of EMO are to be extendable and reusable in the development of other low-level ontologies for
specific markets, such as MIBEL or IPEX (The Belgian and Dutch electricity market).

https://www.w3.org/OWL/
http://www.ksl.stanford.edu/software/ontolingua/
http://www.ksl.stanford.edu/software/ontolingua/
http://www.daml.org/ontologies/
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3.3.3. Ontology Design

Gruber provides five design principles [86] for the development of ontologies: clarity, coherence,
extendibility, minimal encoding bias, and minimal ontological commitment. For ontology design, it is
necessary to consider the ontology representation languages including tools to create and manage
ontologies. Some standard ontology languages have been established with stable tools for the Semantic
Web community, e.g., the Resource Description Framework (RDF) [87], RDF schema (RDFS) [88] and
the Web Ontology Language (OWL) [88].

Several features of the Semantic Web languages are important for the ontology development, e.g.,
Open World Assumption (OWA), Description Logics (DL), and service representation. OWA assumes
that knowledge is always incomplete. It is very important because incomplete information is common,
and fragments of knowledge are often distributed within multiple ontologies [89]. Comparatively,
the Closed World Assumption (CWA) assumes that if a statement cannot be proved to be true then it
is false. DLs are formal languages designed for knowledge description and standard reasoning and
provide the underlying formal framework for OWL and RDF [90]. DLs are known as the basis for
ontology languages and are used to define, integrate, and maintain ontologies [89]. DLs are discussed
in [24,48,91].

Together with the introduction of the ontology design. Semantic web services are an integral part
of the Semantic Web and aim to be automatically discovered and invoked by computer programs [92].
Therefore, semantic web services must be able to describe the provided information and how this
information can be retrieved [93]. A number of languages are available to describe services, e.g.,
OWL-S [94], Web Service Modeling Ontology (WSMO) [95], WSDL-S [96], and FLOW [97].

• Categories of ontologies

Ontologies can be categorized into three levels: upper ontologies, domain ontologies, and
application ontology (shown in Figure 2) [98]. Upper ontologies provide common and consistent
concepts that are referenced by other ontologies. Several upper ontologies exist, e.g., Suggested Upper
Merged Ontology (SUMO) [99] and DOLCE [98]. Domain ontologies reuse or specialize concepts
from the upper ontologies, and specify terms, relationships that are relevant in a particular domain.
For instance, the domain ontology in [15] describes the concepts of the process dynamics, control,
automation and the services provided by the agents, and defines relevant classes of entities and
relations between entities. Application ontologies re-use and extend terms from one or more domain
ontologies to apply for a specific application, and generally cannot be reused for other applications.

Figure 2. Three ontology levels [98].

In the energy domain, ontologies for complex systems are often separated into a hierarchy
consisting of an upper ontology that is connected to several lower-level ontologies representing
specific subdomains [100]. The three MASs (MASCEM, ALBidS, and MASGriP) developed by
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Santos et al. [21,101,102]. Are all framed by an upper ontology, which allows communication between
the simulations. However, this approach requires universal acceptance from all entities involved,
and the low-level ontology for each layer still needs to be extended. Dam, Nikolic, and Lukszo [103]
propose the generic ontology and the case-specific ontology, where the case-specific ontology is
a specialization of the generic one and the generic ontology is a generalization of all underlying
case-specific classes shown in Figure 3. Dam, Nikolic, and Lukszo [103] also suggest how to decide on
the borders of the generic and domain-specific class in ontology. In [85], the ontology is divided into
smaller building blocks, which makes it easier to modify and reuse in other models. [16] proposes
a hierarchical ontology for the energy supply structure of buildings (shown in Figure 4). This proposed
hierarchical ontology aims to investigate the interaction between energy flows on different aggregation
levels within a building.

Figure 3. The border between generic and domain-specific class in an ontology [103].

Figure 4. A hierarchical ontology for the energy supply structure of buildings [16].

• Ontology mapping

MASs are usually developed independently and may not use the same upper ontologies. Therefore,
ontology mapping is needed when an application requires access to multiple individually created
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ontologies. The mapping between ontologies can take much work [104], and there are several ontology
mapping tools available [105]. Among the selected literature, ontology mapping is discussed and
presented in [9,21,49,91].

• Ontology development tools

There are many tools for developing ontologies [106], e.g., Protégé (https://protege.stanford.edu/)
and SWOOP [107]. Protege is well established and used by a large user community. For instance,
Protege is used in the selected literature [23,24,48,50].

• Ontology development process

Ontology development processes is a relatively new field of study, including ontology life cycles,
methods, and methodologies for building ontologies [89]. [108] introduces a methodology for ontology
development including three phases: specification, conceptualization, and implementation. Noy and
McGuinness [76] propose a more detail and practical ontology development process with seven steps
which have been popularly used:

Step 1. Determine the domain and scope of the ontology
Step 2. Consider reusing existing ontologies
Step 3. Enumerate important terms in the ontology
Step 4. Define the classes and the class hierarchy
Step 5. Define the properties of classes—slots
Step 6. Define the facets of the slots
Step 7. Create instances

3.4. MAS Design and Architectures

3.4.1. MAS Design Methodologies

According to [109], the MAS design usually consists of

(1) A conceptualization phase where the problem to be solved is specified;
(2) An analysis phase;
(3) A design phase that uses the results of the analysis phase to produce agent designs of varying detail

Although the majority of the selected literature not specifically present their phases of the MAS
design methodology, the introduction of the MAS architecture/structure in their cases is more or less
according to the Gaia methodology (shown in Figure 5). The Gaia methodology is popularly adopted
for the analysis and design of the agent-based system, it is used in [23,24,50]. Some other similar
methodologies are also used for the agent-based system design, e.g., High-Level and Intermediate
Models for Agent-oriented Methodology (HLIM), Modelling Agents and their environment (AUML),
MASE [24].

Another MAS design methodology proposed by the IEEE PES MAS working group(http://sites.
ieee.org/pes-mas/agent-technology/design/) is mentioned in [17]. This MAS design methodology is
proposed by [110] with six stages, and each stage of the methodology produces material that is input
to the next stage (shown in Figure 6):

• Requirements and knowledge capture stage: the MAS design usually begins with a particular
problem. To solve this problem, this stage specifies the system requirements and capture the
knowledge needed to fulfill those requirements. The system requirements and captured knowledge
is the input to the next stage.

https://protege.stanford.edu/
http://sites.ieee.org/pes-mas/agent-technology/design/
http://sites.ieee.org/pes-mas/agent-technology/design/
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• Task decomposition stage: it transforms the requirements specification and captured knowledge
from the previous stage into a hierarchy of tasks and subtasks. These tasks may include the
functions performed by legacy systems.

• Ontology design
• Agent modeling stage: based on the task hierarchy and ontology design, it identifies a group of

autonomous agents performing the tasks in the task hierarchy. Each task in the hierarchy must be
attributed to at least one agent and one agent can encapsulate one or more tasks. The outcome is
a set of agent models that specify the tasks the agents perform. The tasks attributed to legacy
systems and generated new codes are also identified at this stage.

• Agent interaction modeling stage: it defines the interactions the identified agents support.
The output usually is the interaction diagrams.

• Specification of agent behaviors stage: it specifies the interaction functionality of the agent and
the control functionality of the agent.

Figure 5. The conceptual framework of the Gaia methodology [111].

Figure 6. Agent design methodology stages and their output used during the design of the PEDA
(Protection Engineering Diagnostic Agents) system [110].

Some MAS design also defines layers of the MAS architecture, e.g., [23] that the MAS
system architecture includes two layers: the management layer and the subjacent execution layer.
The management layer is responsible for functionalities that can be considered general in the frame
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and are covered by the agent control systems. The subjacent execution layer employs the automation
agents’ tasks.

• MAS Development environment

The MAS development environment in the selected literature is usually performed using JADE
(Java Agent Development Environment) [21], e.g., in [17,23,24]. JADE is one of the agent platforms
compliant with FIPA standards. JADE provides services such as agent management system, directory
facilitator, agent communication channel, etc., and supports the paradigm of avoiding SPOFs (Single
Point of Failures). JADE has limited support for Semantic Web technologies. Therefore, some extensions
are usually used to compensate for this issue. For instance, AgentOWL provides support for OWL
ontologies using JADE agents [112] and AgentScape attempts to deal with scalability issues [113].

3.4.2. MAS Architectures

The MAS architectures (sometimes also called MAS structure, or MAS organizational structure) in
the selected literature includes agent types and agent management framework/ system architecture,
followed by the agent communication and ontology design that are usually introduced together,
sometimes with agent interaction/activity diagrams.

• Agent types

The agent types are defined based on the system requirements, captured knowledge, and
decomposed tasks. For example, agent types represent the devices and units in a power system, e.g.,
building management agent and RES (Renewable Energy Resources) agent [8], distributed voting
agent and monitoring/resurrection agent [20], bus agent and switch agent [23]. In some MAS, the
agents control the corresponding equipment according to their objectives, the measured and collected
data, etc.

Agent types represent market players that especially for the electricity market, e.g., user agents and
energy market control agent [17], system operator agent and VPP (Virtual Power Player) agents [37].
Some agent types are also ontology related agents, e.g., translator agent and ontology Agent [53].
In [53], the translator agent communicates with the main controller function blocks, and the ontology
agent extracts knowledge from the ontology-based on requests.

Sometimes, the agent goals are also introduced together with the agent types. For instance, in [8],
the agents act to achieve three goals of system load supplying, energy cost minimization, and residents’
comfort maintenance.

• Agent management framework/ system architecture

The structure of a MAS usually is illustrated in the agent management framework/ system architecture.
For instance, the proposed agent management framework [8] including several components, e.g., the
agent platform, agent container, and directory facilitator, etc. The system architecture also can visualize
the multi-layered structure, e.g., [20], and the relations of agents and environment, e.g., [17], and relations
of agents and physical systems, e.g., [23].

3.5. The Application of Ontology in MAS Development

3.5.1. MAS Interoperability and Ontology

In a MAS, it is important to set up a communication language for meaningful conversations
between agents. The agents communicate through message exchange so-called Agent Communication
Language (ACL). ACL is the existing interaction language standard for exchanging knowledge between
agents. For a given Communication act «F(P)», the «F» part refers to the MAS and is regulated by the
ACL standard, and the «P» refers to the domain knowledge. In our case, «P» refers to the «Energy
Domain» or the «Energy Ontology» [114].
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However, even an agent development environment supporting the same Agent Communication
Language (ACL) and content language are implemented in two MASs, it does not mean that the agents
in the two MASs can share any useful information because different ontologies are used in the two
MASs [91].

As more applications of MAS in the energy domain for advanced functions and MASs are
not expected to operate in isolation from each other, the interoperability challenge raises due to
an increasing requirement for data and information exchange between systems. Therefore, there is
a need for full interoperability and open standards for the MASs in the energy domain [91]. The
interoperation issues of existing multi-agent systems have highlighted in the literature, particularly the
issues of the use of different ontologies. Meanwhile, it is important to establish the same language,
especially a common ontology for the communication between agents.

3.5.2. Agent Communication and Ontology

Agent communication in MAS can be accomplished in two ways: immediate communication
among agents and interaction in a unitive environment [13]. MAS usually implements higher-level
communication and supports reasoning abilities based on the Agent Communication Language (ACL)
and a common vocabulary defined in an ontology [115]. The agent communication and ontology
design in the selected literature is similar to the combined stages of ontology design, agent modeling,
agent interaction, and specification of agent behaviors stages proposed in [110], and usually consist of
standards for agent communication, interoperability, and ontology design.

• Standards for agent communication and interoperability

A standard for the communication between agents has been proposed by the Foundation
for the Intelligent Physical Agent (FIPA [116]. The FIPA standards have been popularly used
by MAS developers in the computer science community and FIPA was formally accepted as
a standards committee of the IEEE Computer Society In 2005 [109]. Such standardization promotes
open specifications for the interoperability between agents and MAS [117]. The FIPA standards
include specifications for the agent communication language, communicative acts, content languages,
and message transport protocols. It also includes a standard that proscribes the agents that a MAS
must implement to be FIPA compliant

The FIPA-ACL specifies the syntax, the content of the message provides the semantics of the
message including the content language and the ontology [118]. The messages built under the
ACL structure allow the definition of various elements (e.g., performative, sender, receiver, content,
language, and ontology, among others) and various communicative acts (e.g., agree, cancel, confirm,
not-understood, etc.) [9]. Meanwhile, the correct interpretation of the meaning of the message is
assured, the ambiguity is removed about the content [21]. The MASs in [3,47,48,52] all apply the
FIPA-ACL. There are other ACL investigated in the literature as well [119,120], e.g., Open Agent
Architecture (OAA) in the work of Praca et al. [42].

MASs developed by different platforms can interoperate with these FIPA standards, but it
doesn’t mean that useful information can be shared between agents if the MASs employ different
ontologies [21,91]. It requires MASs share a common vocabulary, so the messages may be interpreted
correctly among agents [47]. Therefore, ontologies are used to enabling the standardization of
communications and interpretation of concepts between MASs [48].

The IEEE standards committee has identified the challenge of interoperable protocols, data formats
and meaning and stated that open communication between smart devices using common protocols
is crucial to interoperability [121]. Some standards in the power systems promote interoperability
between devices within substations and open interfaces between energy management systems [91,109].
The most widely applied standard in the power system is the IEC 61970 Common Information Model
(CIM), and its distribution management extension IEC 61968 [122].
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IEC 61970 Standard is proposed by the International Electrotechnical Commission (IEC) to discuss
and plan a variety of electrician and electron standards in order to procure international cooperation.
IEC 61970 Standard defines the application program interface (API) of the energy management system
is promulgated by IEC No.57 technical commission (Group 13) [13]. There are five main parts in the
IEC 61970 standard: introduction and basic request, glossary, common information model (CIM), and
two levels of component interface specification (CIS).

The CIM is a three-layer domain model, it defines a common vocabulary to describe the basic
components used in electricity transportation and distribution [38], and CIM aims to facilitate power
management processes (e.g., outage management, asset management, and customer information
management) [50].

To achieve coherent and advantageous cooperation between different power systems, some
reference models and frameworks are also popular used, e.g., SGAM (https://sgam-toolbox.org/) (the
Smart Grid Architectural Model), USEF (https://www.usef.energy/) (the Universal Smart Energy
Framework), and SEAS knowledge model (https://www.the-smart-energy.com/) (Smart Energy
Aware Systems).

The Open Automated Demand Response (OpenADR) (https://www.openadr.org/) and
energy@home (http://www.energy-home.it/SitePages/Home.aspx) models are also highly discussed in
the literature. However, [50] states that ‘none of these standards cover the whole semantics involved
in a flexible urban energy network on its own, and they are not formally aligned with each other’.
For example, the term ‘equipment’ could refer to transmission system equipment, or domestic appliance
equipment [50].

• Ontology-based agent communication design

According to FIPA [107], semantic MAS interaction can be specified with three dimensions: 1)
Internal agent behavior: action selection and execution; 2) External (agent) interaction to exchange: a)
content of the interaction including both information and tasks; b) context of the Interaction and its
relation to an agent organization; 3) System, or platform, services: message transport, discovery, action
execution, management, and inter-platform interaction.

The FIPA (agent interaction) model (often referred to as the FIPA-ACL) is an Agent Interaction
Protocol Suite (AIPS). The AIPS contains several distinct semantic protocols for agent communication
including interaction process, communicative acts, content logic, and content ontologies (shown in
Figure 7) [107].

Figure 7. Foundation for the Intelligent Physical Agent (FIPA) specifies multi-agent systems (MAS)
interaction using specifications for an Agent Interaction Protocol Suite (AIPS) and MAS platform [107].

https://sgam-toolbox.org/
https://www.usef.energy/
https://www.the-smart-energy.com/
https://www.openadr.org/
http://www.energy-home.it/SitePages/Home.aspx
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The design of internal agent behavior and interaction in a MAS mainly concerns the agent
communication models as in the majority of the selected literature. The design of agent communication
usually includes messages (message content) and message exchange (protocol). Messages and protocol
are usually described in the UML diagrams as class diagrams and sequence diagrams, e.g., in [20],
the communication sequence and communication parameters are introduced. The content of a message
comprises two parts: content language (provides the syntax or grammar of the content) and ontology
(consists of the semantics or lexicon of a message) [91]. The ontology-based agent communication
model can be shown in Figure 8.

MAS developers usually use JADE to create agents because JADE agents communicate by
exchanging message in compliance with the FIPA ACL. The FIPA Semantic Language (FIPA-SL) is
popularly adopted as the standard content language [123]. In FIPA-SL, an ontology comprises a list of
concepts, predicates, and actions specific to the domain of communication. However, the structures
of ontologies in the selected literature are different. For instance, the ontology in [124] is defined in
the form of EBNF and includes seven parts (policy, modality, trigger, subject, behavior, target, and
constraint), and the ontology in [20] contains four parts (ID, type, parameter, and value).

When designing a MAS, developers usually introduce the syntax and semantics of the domain
ontologies and application-specific ontologies applied in the MAS and describe the purposes and
functions of the ontologies. For instance, [124] applies a policy ontology in their MAS. In [124], the policy
ontology regulates behaviors of agents including application activity, authorization activity, monitoring
activity, requesting-monitoring activity, discovery activity, and negotiation activity. This research
designs a policy engine within each agent who is the subject of obligation policies or the target
of authorization policies and the policy engine interprets and enforces the policy when the policy
is enabled.

Figure 8. The illustration of the ontology-based agent communication model [125].

The FIPA agent standards focus on specifying protocols for external interaction and platform
services rather than on the internal agent behavior [111]. It is because the internal agent behavior is are
often problem-specific or application specific, and not easily accessible and observable. In the FIPA
Ontology Service, an ontology agent is recommended to provide a number of ontology-related services
for solving the problem of using multiple ontologies [91].

However, this solution is difficult to be implemented due to challenges of the system integration
including between-ontology mapping, translation mappings, etc. Therefore, [91] recommends defining
a common upper ontology that represents the general concepts used in the domain of power system.
Meanwhile, related common standards in a domain can serve as a foundation for an upper ontology,
e.g., The power systems Common Information Model (CIM) [126]. The upper ontology for the MAS
interoperability of the electricity markets and demand side is well discussed by Santos et al. [3,47,48].

4. Discussion

The literature shows that there is an increase in MAS application in energy domain since the
distributed nature of MAS allows the energy system design to deal with complex systems [127].
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In a MAS, complete knowledge about the system is not required, but each agent in the system acts
autonomously toward some predefined objectives to optimize the system performance [128]. Therefore,
agents have possibilities to represent different market participants, network components, or systems [9].
The agents’ individual goals decide the agents’ behaviors, e.g., either cooperate or compete with other
agents [127]. The behavior of the overall system is a result of the agents’ behaviors.

MAS is not necessarily a simulation tool, but simulations may be important for the study of
the energy domain, e.g., scenario comparisons, evolution studies, and sensitivity analyses. Several
MAS studies are found in the literature dedicated to the energy domain. For instance, the study of
Koritarov [1] demonstrates the application of the EMCAS in electricity markets. The model enables the
investigation of the physical infrastructure and the economic behaviors of the market participants.
The study of Li et al. [39] demonstrates the AMES simulation for the wholesale operations and market
participates strategies. In the building sector, the simulations of electricity consumption in an office
building are simulated by Mousavi et al. [53]. The study considers the unpredictable nature of business
processes. Meanwhile, the research by Zeiler and Boxem [16] simulate the grid conditions in their
study of building control.

All these simulations aim to solve problems in specific domains and are limited to an existing
system (do not allow for connections to external systems) or do not take advantage of the formal
exchange of knowledge. It is possible to solve problems that cover more complex domains if these
systems can communicate and exchange knowledge with each other.

The combination of different systems can simulate a complex system such as the energy system.
In such a system, stakeholders work together, interact, and negotiate with each other, while the
demand and supply of resources need to be managed. The heterogeneity among these systems
makes the interoperability complex, and the system may have different domains, concepts definitions,
programming languages, etc. In order for the MAS to be able to communicate with each other and
overcome their individual limitations, a mechanism for communication is important. This mechanism
should allow information and knowledge sharing. At the same time, the system should be flexible to
deal with several processes. Therefore, a communication standard should be defined, ensuring that
agents in the system use terms with the same meanings [129].

The FIPA is the de facto standard for agent development [9]. FIPA provides different interoperability
standards, e.g., the standard agent communication language (FIPA-ACL), which make it possible
to integrate different MASs [130]. However, it does not mean that agents belonging to different
MASs can share any useful information if the MASs use different ontologies. The ACL provides
a framework for the communication standardization between agents, but the standard only defines the
structure of messages and interactions. Therefore, agents speak the same language but do not share
the same vocabulary.

In an ACL, the content of messages must be understood by agents for the messages to be
meaningful. Catterson et al. [91] describe it as “ . . . the structure and meaning of the content are in
a format expected by the receiving agent so it can decode the sender’s intentions”. Agents exchange
information to achieve their goals and therefore must apply the same language to interact with each
other. But it also needs a common representation of concepts for agents, which ontology can provide.

The ontology describes the concepts and the relations among agents and therefore must be a part
of each agents’ knowledge base [131]. Ontology is described as a form of knowledge representation
of the world or some parts of it and “provides a shared vocabulary, which can be used to model
a domain that is, the type of objects, and/or concepts that exist, and their properties and relations” [132].
Meanwhile, Luncean et al. [131] states that “An ontology is used to represent knowledge that is shared
between different entities. It provides terms and vocabulary used to represent knowledge so that both
sender and receiver can understand” Several ontologies already exist in the energy field. In [16,52], the
main goal of ontologies is to support the interactions between energy management of buildings and
the smart grid.
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It is important to mention that the design of an ontology itself does not contribute to energy
savings or energy-neutral building environments. However, it brings several benefits to the design of
the software process of a MAS. First, it gives a deeper insight into the modeled domain and system
functionality. Secondly, it reflects upon the data types and required communication between agents.
These factors are useful when concepts are shared between different teams and systems, e.g., when
different domains need to be connected to a smart grid.

However, MASs in the energy domain are developed with their own ontology, which cannot be
directly integrated into other systems. A standard to solve the problem of multiple ontologies would
lower the cost and human effort when different systems need to be connected. In the literature [91],
several solutions for MAS integration are investigated. The FIPA ontology services the integration of
existing MASs by introducing an ontology agent. This agent provides ontology-related services, e.g.,
translating expressions between ontologies and identifying a common ontology to two agents [16].
However, ontology designers still need to identify the similarities and differences between ontologies
manually to translate the ontologies. This likely introduces more complexity and potential errors.

An upper ontology, as discussed in [21,103] could be an alternative to represent the general
concepts of the domain. Such ontologies provide the framework in which the low-level ontologies can
work. The upper ontology allows communication between different systems and each system with
separated low-level ontologies. An upper ontology can be defined through multi-layered architecture
or smaller reusable modules. The development and maintenance of MAS are easier and more efficient
by composing a large-scale ontology out of smaller ones. This makes the ontologies simpler to modify,
e.g., if legislation changes. The independent parts of an ontology must be well defined and separated.
Thus, it is possible to reuse the parts in similar applications. The layered architecture also makes the
ontology easier to be extended for other application domains and not just the intended domain [91].

An upper ontology for the energy sector can serve as an open standard that can assist the
development of multi-agent solutions. It should not be a standard for all applications, but a tool from
which the low-level ontologies can be extracted. Upper ontologies for the electricity domain are found
in the literature, but the integration with the entire energy sector is still missing. This integration is
necessary to fully understand and control the energy sector because the energy sector becomes more
complex and consists of multiple hybrid systems.

The literature reviewed in this study presents different energy domains and includes different
agents, data, and terms. This heterogeneity hinders the full adoption of these MASs and ontologies in
a real scenario. Hence, there is a need for developing a unified ontology that represents all energy
domains and provides a common terminology. In the literature, business models are separated from the
MASs in the energy domain. For a deeper understanding of the domain and related agents, business
models should be considered as part of MASs.

The combination of MASs, ontologies, and business models will enable simulations of the energy
sector for exploring the interplay of policy, economy, and technology. Furthermore, a standardization
of communication between agent will provide better knowledge- and data exchange between agent
and domains. However, better simulation tools which can be used for scenario comparison, prediction
of future evolution and sensitivity analysis are important, and it will make simulations easier to predict
future events, identify unmet needs and act deliberated to changes in the energy sector.

5. Conclusions

This study contributes a scoping review of literature on the application of ontology in the MAS
for the energy domain. It is evident from the literature highlighted in this study that multi-agent
ontology approaches are of emerging interests in the energy sector and that complex system modeling
is an essential tool in assessing control strategies and new policies for designing more efficient systems.

The selected publications show that the application of ontologies in the field of MAS for the energy
domain was mainly conducted after the year 2004, focuses on the sub-domain of grid control between
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2004 to 2014, and mushrooms into the sub-domain of electricity market since 2014. The discussion of
ontology and MAS in the selected publications can be divided into five categories:

• Definition of agent and MAS. The definitions of agent, intelligent agent and MAS and the
introduction of an agent structure are given in some selected publication. However, some
publications do not differentiate the agent-based system and multi-agent-based systems.

• MAS applied energy domains. The applied energy domains include grid control (also, microgrids),
electricity markets, demand-side and building systems. The applied MAS tools are also introduced
in some selected publication.

• Defined ontologies in the energy domain. Definition of ontology, functions of ontology and the
defined ontologies in the energy domain are introduced. The ontology design is introduced
usually together with the agent communication model. Although generic ontology and the
case-specific ontology, upper-level, and lower-level ontology, and ontology hierarchical are
introduced, a systematic discussion on the categories of ontologies (upper ontologies, domain
ontologies, and application ontology) is missing. Meanwhile, although ontology mapping
for inter-MAS communication and ontology development tools are introduced, the ontology
development process is not yet discussed in the selected literature.

• MAS Design and architectures. The MAS design methodology-Gaia methodology is introduced
and applied in some selected publication, and MAS design methodology proposed by the IEEE PES
MAS working group is introduced but not well discussed or applied in the selected publication.
The MAS Development environment, JADE, and its extensions are introduced but the design
detail with JADE is missing. The MAS architecture is commonly introduced with the description
of agent types and agent management framework/ system architecture.

• Ontology in the MAS development. The importance of ontology for the MAS interoperability
is emphasized and the application of ontology in the agent communication design is well
discussed in the majority of the selected publication. The standards for agent communication and
interoperability are discussed with two dimensions: standards for domain-specific, e.g., the SGAM
reference model, the power systems CIM and SEAS knowledge model in the energy domain are
discussed; The FIPA-ACL is applied for almost all MAS design in the selected publication.

5.1. Recommendation of the Ontology-Driven MAS Development for the Energy Domain

Based on the review result, this paper finds out the following aspects in the ontology-driven MAS
development for the energy domain should be further discussed, developed or emphasized:

• The ontology development process in MAS design

Although the importance of ontology in the energy domain has been emphasized, especially
for the MAS interoperability. However, from the ontology engineering perspective, the ontology
development process has not been addressed well in the MAS design, especially with the consideration
of the ontology categories. This paper recommends the further work can combine the categories
of ontology [98] and the ontology development process [76] into the MAS design with two aspects:
multi-agent communication and MAS interoperability.

• The detail design process and realization of the ontology-driven MAS development

The selected publications well discuss the ‘what’ and ‘why’ of their designed/developed MASs.
However, the ‘how’ is missing in the majority of the selected publication. Therefore, it is difficult for
readers to re-produce their methodologies of MAS development. Therefore, this paper recommends
the further work can focus on this aspect, and it is especially important for the MAS interoperability.

• Open standard implementation and adoption
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Open standards for both MAS design, agent communication and energy domain are discussed in
the selected publication, especially regarding the MAS interoperability. This paper finds that the MAS
interoperability issue is not solely due to the inter-MAS communication barriers, and upper ontology
design cannot solve this issue if the designed upper ontology or the selected open standard is not
adopted by other MASs. Therefore, further work on the open standard implementation and adoption
for the ontology-driven MAS development is recommended.

• Higher intelligent MAS development

The MAS interoperability is important for the distributed energy systems, and ontology
improvement (upper ontology or generic ontology) seems like the only solution in the majority
of the selected publications. This paper recommends the future work can consider developing higher
intelligent MASs that allow the ‘fuzzy communication’ between MASs.

• Inter-domain MAS development

Although this paper tries to search literature in the energy domain for both electricity and heating.
However, the search result only shows in the electricity domain, and the literature on MAS and
ontologies for the heating sector is missing. Heating is an important subdomain in the energy sector
and is also strongly connected to the electricity sector through combined heat and power generation,
and electrical heating. Hence, heating should be equally addressed in the studies of MAS and ontologies
for the entire energy sector. The priority for future work in this field should focus on the interoperability
with further external systems and cover the simulation of other areas in the energy system, including
heating. However, the inter-domain ontology design will be more complex and difficult compared to
only under the electricity-related domain.

• Agent listing

Agent types, roles, and interactions are well introduced in the selected publication. Meanwhile, the
domain analysis in the MAS design methodologies is introduced. Some studies have done illustrations
of agents in smaller scales, e.g., [3,47,48,52]. However, a systematic approach to list all related agents
with a clear MAS boundary is missing. In a MAS, agents are specialized to perform tasks based on
their individual goals [133]. Meanwhile, a MAS with stakeholder listing can give a good overview
of the whole system. The literature shows that there are different ways to illustrate the identified
agents together with their relationships. Some authors [53,81] introduce agents with descriptions, and
others [18,52] use diagrams to graphically present agents. One example of the graphical illustration
is the Harmonised Electricity Market Role Model by ENTSO-E [134]. This Harmonised Electricity
Market Role Model represents agents, their roles, and information flow between them. This role model
provides a common definition of roles and domains employed in the electricity market. It enables
a common language in the development of information interchange.

Another way to present and describe stakeholders is by using business models. The research by
Xia et al. [135] investigates the Swedish mobile phone business ecosystem. The stakeholder listing is
represented by the Osterwalder and Pigneur business model canvas. An overview of the agents, their
interrelations, and information flows can be illustrated in the business model canvas. The homogenous
setup provided by the business model canvas highlights and organizes the identified information.
This simplifies the information search. Furthermore, the business model canvas can easily be extended
with new stakeholders by following the canvas approach. Both stakeholder listing by diagrams and
the business model canvas provide well-organized information about complex systems. The canvas
approach makes it possible to include supplementary information about the stakeholders.

5.2. Limitations and Future Work

This paper applies a transparent scoping review methodology through the entire process. To ensure
a broad search of the literature, the search strategy includes four online databases, resulting in over
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1400 articles. However, the search result may still not identify all relevant articles in the literature
despite this paper attempts to be as comprehensive as possible. Ontology is a recently established
word in information science [71], therefore, an extension of the literature search including the terms
“domain knowledge” and “knowledge representation” may result in additional literature in the field
of MAS and ontology.

Furthermore, the fields of organizational theory and business ecosystem are not included in this
paper because the literature search only focuses on the energy domain. The energy domain consists of
multiple agents and can be considered as an ecosystem in which a community of organisms interacts
with each other and the surrounding inorganic environment. This biological definition of an ecosystem
is first introduced in [136] and is later adopted in the business domain [137–141]. A business ecosystem
is a network of players that are bound together through collective activities to produce an entity that
offers value for customers and meet their requirements. MAS in the smart energy domain is similar
to this since all types of stakeholders, e.g., electricity traders, building managers, and commercial
heat pump providers are connected and interact with each other to offer value for the entire system.
Meanwhile, the economic globalization, increasing number of transnational organizations, and rapidly
information technology changes increase the complexity of the energy domain, and computational
models provide opportunities to understand and respond to these changes [142]. Therefore, a review
of the organizational research and business ecosystem in the MAS-orientated energy domain should
be considered for future work.
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Appendix A

Table A1. Selected publication and their focus aspects.

Year Title Reference
Focused Aspect

Energy Domain Ontology MAS Design

2004 A policy-driven multi-agent system for
OGSA-compliant grid control [124] Grid control Policy ontology

Application-specific ontology
Agent type

Agent logics

2005 Issues in integrating existing multi-agent
systems for power engineering applications [91] Grid control Upper ontology

Ontology mapping
Inter-MAS communication,

Interoperability

2006
Modeling energy and transport

infrastructures as a multi-agent system using
a generic ontology

[14] Grid control Generic and case-specific ontologies ABM

2007 Multi-agent architecture of energy
management system based on IEC 61970 CIM [13] Management system IEC 61970 Standard

Agent structure
MAS architecture

Multi-agent communication

2009
Multi-agents for energy efficient comfort
agents for the energy infrastructure of the

built environment: Flexergy
[51] Buildings/demand side Ontology for the design process Agent type

2011 Intelligent multi-agent framework for power
system control and protection [20] Grid control Ontology structure

Agent type
Agent logics

MAS architecture
UML diagrams

2011 Multi-agent system for self-optimizing power
distribution grids [15] Grid control Domain ontology in the world model Agent type

World model

2013 An architecture for a microgrid-based eco
industrial park using a Multi-Agent System [17] Microgrid Ontology in the agent design process

Agent types
Agent logics

MAS architecture, Negotiation
methodology

2013
Demonstration of a multi-agent-based control

system for active electric power
distribution grids

[23] Grid control An ontology with four levels Agent type
MAS architecture

2013
Power transformer condition monitoring and
fault diagnosis with multi-agent system based

on ontology reasoning
[24] Grid control Ontology reasoning MAS architecture

2013 Upper ontology for multi-agent energy
systems’ applications [21] Power system Upper ontology and standards Agent types

MAS interoperability

2013
Smart grid - building energy management

system: an ontology multi-agent approach to
optimize comfort demand and energy supply

[16] Buildings/demand side Ontology hierarchical Agent UML diagrams
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Table A1. Cont.

Year Title Reference
Focused Aspect

Energy Domain Ontology MAS Design

2014
Energy efficient automation model for office
buildings based on ontology, agents and IEC

61499 function blocks
[53] Buildings/demand side Translator agent and ontology agent Agent type

Agent logics

2014 Realistic multi-agent simulation of
competitive electricity markets [37] Electricity market Upper ontology Agent types

MAS interoperability

2015
Multi-agent simulation of competitive

electricity markets: Autonomous systems
cooperation for European market modeling

[49] Electricity market Upper ontology MAS interoperability and UML
diagrams

2016
Optimal real-time dispatch for integrated

energy systems: an ontology-based
multi-agent approach

[52] Grid control Ontology-based FIPA-ACL Agent type
Communication architecture

2016
Ontology-based demand-side flexibility

management in smart grids using a
multi-agent system

[50] Buildings/demand side Standard of data models in the
power system Gaia methodology

2016 An ontology-driven approach for modeling a
multi-agent-based electricity market [81] Electricity market Ontology-Driven Conceptual

Modelling
Model-driven development

MAS organizational structure

2016
Enabling communications in heterogeneous

multi-agent systems: electricity markets
ontology

[48] Electricity market Electricity Markets
OntologyDescription logic MAS interoperability

2017
A multi-agent-based energy management

solution for integrated buildings and
microgrid system

[8]
Management

systemMicrogrid
Buildings/demand side

Ontology for message content Agent types
Agent goals, MAS architecture

2017 EPEX ontology: enhancing agent-based
electricity market simulation [3] Electricity market Lower ontology MAS interoperability

2017 Nord Pool ontology to enhance electricity
markets simulation in MASCEM [47] Electricity market Lower ontology MAS interoperability

2018
Power systems simulation using ontologies to

enable the interoperability of multi-agent
systems

[38] Power system SEAS knowledge model MAS interoperability

2018
Multi-agent decision support tool to enable

interoperability among heterogeneous energy
systems

[9] Power
systemMicrogrid

Ontology in Tools Control Center
(TOOCC) framework MAS interoperability
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