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Abstract

The analysis of systems’ dynamics lies on the collection and the description of events.
In order to scale-up classical analysis methods, this report is interested in the reduction of
descriptional complexity by aggregating events’ properties. Shannon entropy appears to be
an adequate complexity measure regarding the aggregation process. Some other informa-
tional measures are proposed to evaluate the qualities of aggregations: entropy gain, infor-
mation loss, divergence, etc. These measures are applied to the evaluation of geographic
aggregations in the context of news analysis. They allow determining which abstractions
one should prefer depending on the task to perform.

Keywords: Data aggregation, macroscopic descriptions, news analysis, Shannon entropy,
information loss, Kullback-Leibler divergence.

1 Introduction

This paper is interested in the analysis of distributed systems, either natural or artificial. The
analysis of systems’ dynamics can fulfill various purposes (e.g representation, explanation, pre-
diction). It relies on a specific knowledge regarding the systems’ events and it benefits from a
precise amount of resources (either computational or cognitive). The difficulty of an analysis
depends on the adequacy between (1) the task to perform [3], (2) the knowledge to handle and
(3) the available resources. For example, in case of large-scale complex systems, an analysis
based on the complete knowledge of system’s entities requires a very large amount of resources.
Therefore, classical analysis methods may be hard to scale-up.

In order to maintain the adequacy between data and resources, this paper proposes a formal
process of data aggregation in order to produce scalable macroscopic descriptions out of mi-
croscopic knowledge. Aggregation thus avoids the analysis to become ressource-greedy while
the size and the complexity of the studied system increase. Our data account of complexity so
focuses on the difficulty of description of a system [12]. As for other relativist accounts [7, 3, 6],
it never directly deals with the system’s inner complexity (size, heterogeneity, openness, in-
teractions number, etc.), but with its descriptions complexity (depending on the properties the
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analyst wants to address and the expected level of details [13]). (Note that system’s complexity
is necessary for descriptions complexity, but not sufficient.)

Section 2 of this report generally defines descriptions as distributions of observed events
regarding some selected properties. Appropriate complexity measures for such descriptions are
discussed. Among measures from information theory, we retain Shannon entropy for its inter-
pretation (in term of order) and its mathematical properties [16, 13] which make it coherent
regarding the aggregation process. Section 3 defines aggregations as simplifications of descrip-
tional properties. We are not interested in a decrease of the system’s own entropy over time,
but in a decrease of entropy between two descriptions of the same system’s state. Henceforth,
contrary to many works on complexity reduction (e.g. [3, 6, 13]), we actually measure a shift
between two abstraction levels. An aggregation can be evaluated according to the amount of
reduced complexity (entropy gain), the amount of information lost during the process (infor-
mation loss) and the accuracy of the generated description regarding the source description
(divergence). These measures are used to evaluate aggregations and select the best one accord-
ing to the analysis context (available resources, expected accuracy, etc.). Section 4 evaluates
two spatial aggregations borrowed from geography and applied to news analysis. Informational
measures allow determining which abstractions one should prefer in order to describe and ex-
plain the social dynamics related in newspapers articles.

2 The Notion of Description

2.1 Designing Descriptions

We call description any formal feature that represents the system’s events according to one or
several properties. They are the description’s dimensions. Any system analysis is driven by one
or another kind of such descriptions. Its purposes, its difficulty, its results thus depend on a set
of grounding descriptions.

Unidimensional Descriptions

Let E be a set of observed events of the system’s dynamics. An unidimensional description
classifies these events according to a set V of descriptional values. We note E1, . . . ,E∣V ∣ the
subsets of events associated to these values. They form the events distribution of the description.

Several dimensions of great interest can be generically identified for systems analyses:

Space Where does the events took place?

Time When did they occurs?

Agents Which system’s entities were involved?

Topic What kind of events were they?

Source Where does the information come from?
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The design of descriptions consists in extracting data regarding systems’ events and orga-
nizing them according to these possible dimensions. One can thus build the spatial distribution
of events, their temporal distribution, their topical distribution, etc.

Multidimensional Descriptions

Multidimensional descriptions present relations between properties’ values. For example:

(Space × Time) The 2-dimensional distribution of events’ locations over time.

(Space × Topic) The 2-dimensional distribution of locations regarding the type of related events.

As events can take several values of the same property, multidimensional descriptions can
also present relations between values of the same property. For example:

(Space × Space) The distribution of events which take place in two different locations.

(Time × Time) The distribution of events which occur at two different dates.

As we work with a fixed set of events, adding a dimension to such descriptions consists in
disaggregating the current distribution to introduce a discriminatory property. For example:

(Space × Space × Time) The distribution of events’ spatial relations over time.

(Space × Space × Topic) The distribution of events’ spatial relations according to events cate-
gories.

(Space × Time × Topic) The description of punctual events: Something happened somewhere
sometime.

(Agent × Time × Time) The description of agents’ temporal relations: Two dates in the history
of an agent are related by an event.

(Agent × Time × Topic × Topic) The distribution of agents’ topical relations over time: etc.

Remarks on Dimensions

We do not pretend that the above-mentioned list of possible dimensions is sealed or complete.
The notion of descriptions we build is meant to be generic. In particuler, new properties can
easily be added from the moment that a set of precise values can be identified and observed.

These dimensions are not a priori independent. For example, an agent can also be character-
ized by places (e.g. main location) and dates (e.g. birth, death). Values of different dimensions
can thus be a priori related. It may be important to distinguish a priori inter-dependences (re-
sulting from the mere definitions of values) from a posteriori inter-dependences (resulting from
the observation of events).
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2.2 Analyzing Descriptions

The purposes of analysis consist in explaining the designed events distributions, in revealing
particularities and eventually in providing models for statistical inference. The analysis of multi-
dimensional descriptions thus allow to answers the question: how the observed events occurred?

To that end, analysis methods from multivariate statistics appropriately reveal important
correlations between events’ properties: e.g., multivariate regressions, dimension reductions,
Principal Components Analysis (PCA), Correspondence Analysis (CA), etc. However, in case
of complex systems, these tools can be very expensive to use. It can be interesting to first provide
abstractions in order to simplify such analyses.

This report does not propose a multivariate analysis method for dimension reduction. In
order to scale such methods, it focuses on a preliminary step of the analysis process: the aggre-
gation of properties’ values (see section 3). This step is designated to reduce the difficulty of
classical statistical analyses. It does not reveal inter-dimensional correlations, but simplifies the
intra-dimensional representations of events by reducing the descriptional precision.

2.3 Measuring Descriptions Complexity

This subsection discusses some measures to define the complexity of descriptions. Afterwards,
section 3 presents an aggregation process in order to reduce such measures.

Complexity Measures from Information Theory

The complexity of a description loosely designates the number of parameters one should deal
with to process to its analysis. As pointed out in [7], the size ∣E∣ and the variety ∣V ∣ of the
observed system’s dynamics cannot constitute good complexity measures. They are necessary
for complexity, but yet not sufficient. Indeed, millions of events classified under one value
among millions do not make a complex description.

Information theory proposes measures which also consider the particular distribution of
events. A description can be coded as an ordered string of ∣E∣ characters taken among ∣V ∣ pos-
sible values. In algorithmic information theory, the Kolmogorov complexity measures the size
of the best lossless compression of such a string [10]. Bennett’s logical depth measures the
time needed to decompress such a lossless compression [2]. They really evaluate the computa-
tional resources needed to handle a description: the minimal memory space and its associated
computation time. More theoretically, Kolmogorov complexity measures the incompressible
“randomness” of a distribution (deterministic complexity) and logical depth measures its struc-
tural complexity (statistical complexity) [12]. These are interesting properties conveying the fact
that a fully ordered description is easy to grasp, while it is more difficult to handle a complex
algorithmic structure or a totally random distribution.

These complexity measures are yet not computable in general and finding the algorithmic
complexity of a given description is a NP-complete problem [9]. Therefore, they are not suitable
for direct application [12].
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Shannon Entropy

In Shannon’s probabilistic information theory [16], entropy gives a good approximation of the
expected Kolmogorov complexity for a fixed distribution [9]. Beside the description size ∣E∣
and its variety ∣V ∣, the entropy H of a description depends mostly on the events’ distribution (as
for algorithmic complexity):

H = −∑
k∈V

∣Ek∣
∣E∣

log2
∣Ek∣
∣E∣

(1)

As for Kolmogorov complexity, entropy is interesting for its interpretation in term of quan-
tity of information. It gives the minimum quantity of information (in bits per event) needed
to encode the properties’ values: The lower the entropy, the less memory we need. (Note that
entropy really gives an average measure. The actual quantity of information needed to encode
the complete description is ∣E∣ ×H .)

It is generally used as a measure of disorder or randomness: The higher the entropy, the more
uncertain we are about the properties of a random event. Entropy is then maximum when events
are equally distributed (H = log2 ∣V ∣) and minimum when all the events are classified under the
same value (H = 0). This constitutes an important feature of macroscopic (i.e. low-complexity)
descriptions: They introduce order in our representations of systems.

Entropy has good mathematical properties regarding the aggregation process. In particular,
the sum property [4] shows that entropy can be defined as the sum of a local function on values’
probabilities. Thus, the entropy of an aggregated description is the sum of the entropies of its ag-
gregates (see subsection 3.4). This useful property characterizes other informational measures,
as Kullback-Leibler divergence [11] and information loss (see subsection 3.4). Shannon entropy
is also recursive [16, 4]: It can be defined according to hierarchical partitions of the distribution.
The entropy of a description is then equal to the entropy of the aggregated distribution, plus the
wighted sum of local aggregates’ entropies.

Shannon’s entropy is thus coherent with the aggregation process. Generalized entropies
[4, 5], based on parametric information measures such as the Rényi entropy [15], do not have
such mathematical properties [4]. Henceforth, even if they may be adapted to evaluate the
randomness or the diversity of descriptions, their are not suitable to capture the notion of
aggregation.

3 Aggregation of Descriptions

Entropy of descriptions depends on represented properties and their accuracy [13]. When en-
tropy increases, the computational resources needed to handle a description increases as well.
Adjusting the accuracy of descriptions thus allow to reduce their complexity and to scale-up the
analysis process. The following section presents tools for such an entropy reduction.
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3.1 Reducing the Entropy

By looking at formula (1), we identify three ways of reducing the entropy of a description:

1. Suppress specific events, i.e. describe a much ordered subset of system’s events.

2. Reorganize events distribution, i.e. distort the description to order it.

3. Aggregate specific events or specific values, i.e. reduce the accuracy of the description.

Thus, if one wants to describe the whole system without biasing events’ properties, aggre-
gation of values or events is the only way for entropy reduction. In order to preserve the size ∣E∣
of the observed system’ dynamics, this report focuses on aggregation of values.

3.2 Aggregation of Values

An aggregation is defined according to a source description (basically the most precise de-
scription of events one can perform) and induces a shift in the abstraction level. It consists in
partitioning the set of source values V in a set of aggregated values V ′, thus inducing a simpler
distribution of events (and so an increase of order). We note E′

1, . . . ,E
′
∣V ′∣ the subset of events

associated to aggregated values.
(Note that entropy can also be reduced (1) by suppressing specific events or (2) by reorga-

nizing the events distribution. However, such transformations either bias the size ∣E∣ of observed
dynamics or the original values of events.)

In opposition to algorithmic complexity (subsection 2.3), aggregations are not lossless com-
pressions. Since entropy gives the size of the best lossless compression, an entropy reduction
necessarily implies an information loss and an accuracy loss. The analyst can then be interested
in monitoring their informational qualities according to several criterion: amount of reduced
complexity, information and accuracy lost during the process, etc. In the rest of this section,
measures from probabilistic information theory are exploited to do so.

3.3 Evaluating Aggregations

Entropy Gain

We note H ′ the entropy of the aggregated description. The entropy gain G of an aggregation
measures the quantity of information (in bits per event) that is saved by encoding the aggregated
description instead of the source description. It evaluates the amount of complexity reduced
during an aggregation.

G =H −H ′ (2)

The entropy gain is maximum when all (non-empty) values are aggregated together (G =
H). In case of full-aggregation however, we loose all information about the original distribution:
The aggregated description indeed represents only one very imprecise value.

Note that, if the entropy of the source description is very low, the entropy gain cannot be
very high. Thereby, no aggregation can really improve an already ordered description.
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Information Loss

The more a description is aggregated, the less it contains information about the original events
distribution. We define the information loss L as the minimum quantity of information necessary
to recover the source description from the aggregated one (i.e., the cost of disaggregation). It
represents the uncertainty induced by an aggregation regarding the precise values of events.

L = − ∑
i∈V ′

∣E′
i ∣
∣E∣

log2
1

∣V ′
i ∣

(3)

Information loss thus depends on the size ∣V ′
k ∣ of the aggregated values and their number of

events ∣E′
k∣.

Divergence

In information theory, the Kullback-Leibler divergence measures the difference between two
distributions [11]. The divergence thus represents the accuracy of an aggregation: The closer is
the aggregated description from the source description, the lower is the divergence.

D = −∑
i∈V

∣Ei∣
∣E∣

log2
∣E′

i ∣
∣Ei∣∣V ′

i ∣
(4)

Divergence evaluates the similarity of events distribution within the aggregates. It is max-
imum when events are equally distributed. A low-divergence aggregation thus indicates that
aggregated values have similar events distributions. This property is very interesting to build se-
mantically coherent abstractions. In section 4.4, low-divergences are interpreted as behavioral
similarities.

Statistical Complexity

A simple calculus shows that D = L − G. The divergence can thus be interpreted as a com-
promise between information loss and entropy gain. The statistical complexity of a description
(as opposed to entropy, which is a deterministic complexity [12]) can then be defined as the di-
vergence of the best aggregations in term of entropy gain: A description is then complex when
it is hard to compress it without making very rough approximations. As for Bennett’s logical
depth [2], this account based on divergence locates complexity between order and randomness.
Indeed, in case of homogeneous distributions (maximal randomness), the entropy gain of any
aggregation offsets the information loss (D = 0). In case of ordered distributions, aggregations
cannot reduce much the entropy, so the best aggregations have low divergences.

This account of complexity is yet not semantically equivalent to logical depth since it fo-
cuses on the difficulty of description instead of the difficulty of creation [12].

Log-likelihood

If we consider the source description as a set of independent and identically distributed obser-
vations of a random variable representing events’ values, then An aggregated description can be
interpreted as a statistical model. The goodness of fit of such a model is given by its likelihood,
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that is the probability of generating the source description using the aggregated description as a
random variable distribution.

L = ∏
i∈V ′
(
∣E′

i ∣
∣E∣∣Vi∣

)
∣E′i∣

(5)

A simple calculus show that D = l̂og2L− l̂og2L′ where l̂og2L is the average log-likelihood.
Divergence then measures the “loss of fit” induced by an aggregation. A low divergence means
that the analyst is likely to accurately estimate the source description from the aggregated one.

Simple calculus show that:

• The opposite of the average log-likelihood of the source distribution (the probability
of generating the exact distribution from the model) is equal to the entropy: −l̂ogL =
− log2 L
∣E∣ = H . Indeed, the higher is the entropy, the more the statistical model will have a

important variance.

• The opposite of the average log-likelihood of an aggregated distribution is the sum of the
divergence and the entropy of the source description: −l̂ogL′ =D +H .

• So we have: D = l̂ogL − l̂ogL′.

Information Criteria

The Akaike Information Criterion (AIC) is a well-known measure for statistical models selection
[1]. It describes a tradeoff between the model’s complexity and its goodness of fit. A low-AIC
model is thus a simple model with a good accuracy. In our case: AIC = 2∣V ∣ − logL.

The average relative log-likelihood evaluates an aggregated description by the mean be-
tween the average AICs of source and aggregated descriptions. A simple calculus gives:

relative logL = ÂIC − ÂIC ′

2
= ∣V ∣ − ∣V

′∣
∣E∣

−D (6)

Although AIC represents a good compromise between complexity, defined as number of
parameters ∣V ∣, and accuracy D, one may want to use a more adequate notion of complexity.
Indeed, as we showed in subsection 2.3, the variety ∣V ∣ of a description does not implies its
complexity. We propose to use a refined information criterion using the entropy H to represent
complexity: IC = 2∣H ∣ × ∣E∣ − logL. We thus define a Relative Information Criterion (RIC)
expressing the tradeoff between entropy gain and divergence:

RIC = ÎC − ÎC ′

2
= G −D (7)

If RIC > 0, then we consider that the complexity gain offset the accuracy loss. The aggrega-
tion thus constitutes a good abstraction. In section 4, we use this composite measure to evaluate
and compare spatial aggregations. Other criteria for model selection, such as the Bayesian In-
formation Criterion (BIC), or the more general Deviance Information Criterion (DIC), can be
expressed and exploited according to these informational measures.
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3.4 Remarks on Aggregation Measures

The Sum Property

As subsection 2.3 points out, the sum property [4] shows that Shannon entropy can be defined
as the sum of aggregates’ local entropies. Entropy gain, information loss, divergence and RIC
can also be defined as sums of aggregates’ local measures:

G = ∑
k∈V ′

gk L = ∑
k∈V ′

lk D = ∑
k∈V ′

dk RIC = ∑
k∈V ′

rick

where:

gk =
∣E′

k∣
∣E∣

log2
∣E′

k∣
∣E∣
− ∑

i∈Vk

∣Ei∣
∣E∣

log2
∣Ei∣
∣E∣

lk = −
∣E′

k∣
∣E∣

log2
1

∣Vk∣
dk = lk − gk rick = gk − dk

These decompositions allow to evaluate specific aggregates instead of the whole aggregation
(see sections 4.3 and 4.4).

Distributions of Reference

Entropy can be defined as the Kullback-Leibler divergence regarding the homogeneous distri-
bution [11]. All above-mentioned measures of aggregation are defined relatively to this distri-
bution of reference. However, one may want to work with other bases to define and evaluate
aggregations.

For example, if a metric is available, one may want to work with normal distributions.

• Entropy is then defined as the Kullback-Leibler divergence from such normal distribution.

• Divergence is defined as the Kullback-Leibler divergence between the aggregated dis-
tribution, where aggregates are approximated with Gaussian functions, and the source
distribution.

• Information loss is still defined as the sum of entropy gain and divergence. If the analyst
knows that events follow a normal law within the aggregates, she needs less information
to recover the source distribution than if they follow an homogeneous law.

4 Evaluation of Spatial Aggregations for News Analysis

This section presents an application of the informational measures presented in the previous
section to the context of news analysis. Two descriptions are elaborated from the content of
articles published by the French newspaper Le Monde. Two geographic hierarchies (UNEP and
WUTS) are then evaluated for aggregating such descriptions.
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4.1 Purposes of Media Information Analysis

Three classes of objects should be distinguished: (1) the observable dynamics: the social activ-
ities that are covered by news media, (2) the observation devices: the media themselves, and
(3) the generated descriptions: the content of produced news. Artificial Intelligence works on
the third class which contains informational objects. Yet, the analysis of class (3) can help the
social sciences analyst in fulfilling three objectives:

Analysis of class (1) Representation, explanation and prediction of the observed dynamics.

Analysis of class (2) Evaluation of the observation devices (the media themselves): specific
orientations, bias, extent of covered news, etc. The analysis focus on the influence of
social dynamics on news media.

Analysis of class (1+2) Evaluation of the perturbations induced by the observation devices on
the observed systems, also known as probe effect. The analysis focus on the impact of
news media on social dynamics.

4.2 The Data

Sources

The GEOMEDIA project aims for an analysis platform to design, process and visualize me-
dia information. It results from a collaboration of computer sciences and social sciences:
the CIST (Collège International des Sciences du Territoire, Paris) and the LIG (Laboratoire
d’Informatique de Grenoble). The GEOMEDIA project currently builds its own database of ar-
ticles’ abstracts extracted from on-line newspapers in the RSS format. Within 11 months, from
May 2011 to March 2012, we collected 392,000 abstracts (400 characters on average) from 40
different newspapers. The average number of daily-collected articles for the 10 most prolific
newspapers is close to 60 articles per day. So, as an example, an analyst working on a 5-years
basis, from these 10 newspapers, will need to cover 1,090,000 articles. The representation,
organization and displaying of such an amount of data constitute a real challenge.

The experimentations presented in this section have been conducted on a subset of these
data. They focus on the “International Section” of the well-known French newspaper Le Monde,
consisting in 7076 abstracts.

Spatial and Temporal Dimensions

Each abstract relates an event which can be described according to the generic properties pre-
sented in section 2.1. They correspond to the famous 5 Ws of journalism (Who, What, Where,
When, Why). For each dimension, one can be interested in the indirect occurrences of values
(within the content of abstracts) or in their direct occurrences (regarding the articles themselves:
places and dates of publication, authors, sources, etc.). Here, we focus on two dimensions:

Space Where does the events related in the articles took place? Spatial tokens are extracted from
the abstracts. In our experiments, we focused on the names and demonyms of 162 states,
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146 of which were actually mentioned at least once (see [8] for a geographical justification
of the micro-states elimination). 7132 occurrences have been found.

Time When did the events occur? Publication dates of articles simply distribute them over time.
We used a preliminary aggregation to the week-level in order to work with less temporal
values. Our temporal dimension thus contains 47 weeks, from May 2nd 2011 to March
25th 2012. (Note that more temporal tokens may be found within the content of abstracts.
We are currently working with specialized temporal tagging applications to thus enhance
our temporal dimension.)

Two Descriptions from Le Monde

The co-occurrence of several values within the same abstract induce inter-dimensional relations
that may be important for the analyst. For example, the very frequent co-citation of United
States and Afghanistan in May 2011 supposes that their mutual relations should be taken into
consideration for the analysis of international relations during this period. The extracted rela-
tions are presented to the analyst in the form of multidimensional descriptions. The hereafter-
presented experiences use two 2-dimensional descriptions, designed from the dataset, which are
commonly exploited by geographers to explain social dynamics:

(Space × Space) is interpreted as the weights of territorial relations. The description generated
from Le Monde is a 162×162 distribution of states co-citations. It is only filled at 5.1%
(most of the observed states pairs were never co-cited within the abstracts), but the analyst
still has to deal with ∣E1∣ = 4408 events. The entropy of this description is H1 ≈ 9.2 bits
per events, meaning that we need at least ∣E1∣ ×H1 ≈ 40,600 bits to encode the whole
description.

(Space × Time) is interpreted as the variation of territorial weights over time. The generated
description is a 162-states×47-weeks distribution filled at 26.1% and containing ∣E2∣ =
7069 events. Its entropy is H2 ≈ 10.3 bits per events, that is only 2.6 bits less than the
maximum entropy (Hmax = log2(162 × 47) ≈ 12.9 bits per events).

Hence, (Space × Time) is in average a little more complex than (Space × Space) (H1 <
H2) and globally more difficult to handle (∣E2∣ ×H2 ≈ 72,500). Depending on the available
resources, its analysis can be easy or difficult. In the case of a human analysis, no expert has the
cognitive skills to easily integrate and handle such an heterogeneous description.

Two Aggregation from Geographic Analysis

The purpose of our experiments is to evaluate two ad hoc spatial aggregation used by geogra-
phers to understand world’s dynamics:

The UNEP hierarchy is used by the United Nations Environment Programme in the Global
Environment Outlook report (GEO) [14]. It divides the world into 6 regions (see
figure 1a).
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The WUTS hierarchy is proposed by the Europe in the world project of the ESPON 2013
Programme [8]. This World Unified Territorial System proposes a uniform breakdown of
states “for the production and analysis of regional statistics”. WUTS2 divides the world
territories into 7 regions and WUTS3 into 17 regions (see figures 1b and 1c).

Figure 1: Spatial Aggregations Borrowed from Geography [14; 8]

(a) The UNEP Aggregation (b) The WUTS2 Aggregation

(c) The WUTS3 Aggregation
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4.3 Evaluating the WUTS3 Aggregation

By applying the WUTS3 aggregation to the first dimension of the (Space × Space) description,
we generate a 17-regions×162-states distribution.

• The overall entropy gain of such a process is G ≈ 1.33 bits per event: We saved ∣E1∣×G ≈
5,900 bits out of the ∣E1∣ ×H ≈ 40,600 needed to encode the source description.

• D = L −G ≈ 2.00 bits per event: The entropy gain does not offset the information loss.
The saved bits are not sufficient for disaggregation, which cost ∣E1∣ × L ≈ 14,800 bits.
(Indeed, we need L = 3.33 bits per event to recover the source description.)

• RIC = G −D < 0: The entropy gain does not offset the accuracy loss.

Globally, WUTS3 has bad results. However, by looking at local measures, we can refine
this evaluation.

(a) On the (Space × Space) Description (b) On the (Space × Time) Description

Figure 2: Evaluation of WUTS3 Aggregates

Figures 2a and 2b present the WUTS3 aggregates positioned with respect to their entropy
gains gk (abscissa) and their divergences dk (ordinates) on logarithmic scales. The area of circles
is proportional to the number of aggregated events ∣E′

k∣. The diagonal axis dk = gk represents the
limit beneath which an aggregate become RIC-positive. The more a circle is below this axis, the
more its entropy gain offset its divergence (beware of the distances induced by the logarithmic
scale). In case of international relations (figure 2a), this is the case for three aggregates of very
different sizes:
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Aggregates ∣E′
k∣ rick

W121 S.-E. Mediterranea 801 0.0507
W133 W. Africa 234 0.0363
W313 S.-E. Asia 43 0.00336

These abstractions are thus interesting for the analysis of world’s territorial relations as they
are related by Le Monde. In other words, aggregated countries behave similarly in term of
international relations .

The biggest aggregate “Western Europe” (W111) has very poor results (ricW111 = −0.1032).
This can be explained by the fact that, as the observed media is French, France is over-mentioned.
Indeed, it is co-cited 934 times out of 4408 states couples! Any aggregation including France
then induces an important divergence. By disaggregating France from W111, its interest for
the analysis increases (ricW111 = 0.03107). The analyst is thus informed that the “Western
Europe” abstraction can be used, on condition that we keep local information about France’s
special behavior.

4.4 Comparison of UNEP and WUTS2

The aggregates of WUTS2 are globally similar those of UNEP (see figures 1a and 1b). They
yet present some interesting particularities, two of which are hereafter evaluated:

1. In WUTS2, Mexico is located in North America (not in Latin America).

2. Israel is not located in Europe (contrary to UNEP).

3. Northern African countries (Morocco, Algeria, Tunisia, Libya and Egypt) are not aggre-
gated with other African countries.

4. Some countries of Central Asia (Iran, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan
and Uzbekistan) are not aggregated with Eastern Asian countries.

5. The aggregate “W. Asia & N. Africa” (W12) contains Western Asian countries (as for
U12), but also the 5 previous Northern African countries and the 6 previous Central Asian
countries.

6. Eastern Asia and Western Pacific form two different regions.

In the following, we use aggregation measures two evaluate these choices for the analysis
of territorial relations (Space × Space) and weights variations (Space × Time) over the last 11
months.

Figures 3a and 3b present the compared RIC-plots of UNEP and WUTS2 aggregates. The
size of the blue and red circles represent the number of aggregated events for both aggregations.
Each one is positioned according to its rick value within the WUTS2 aggregation (blue abscissa)
and its rick value within the UNEP aggregation (red ordinates). In that way, one can easily spot
the RIC-positive aggregates (on the left of the vertical red axis or/and above the horizontal blue
axis). One can also tell which aggregation better defined particular aggregates: Those below
the diagonal line are better defined by the WUTS2 aggregation; Those above the line are better
defined by the UNEP aggregation.
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(a) On the (Space × Space) Description (b) On the (Space × Time) Description

Figure 3: Comparison of UNEP and WUTS2 Aggregates

The Place of Mexico

Should Mexico rather be aggregated with Northern America (W21 and U21) or with Latin
America (W22 and U22)? We directly see that, in both descriptions, these aggregates are slightly
better defined within the UNEP aggregation (ricW21 < ricU21 and ricW22 < ricU22, see fig. 3a
and 3b). Henceforth, within the news from Le Monde, the Mexican international relations are
closer to those of Latin American countries, than to those of USA and Canada. UNEP is then
better than WUTS2 regarding the place of Mexico: An analyst should use U21 and U22 rather
than W21 and W22.

The “Western Asia & Northern Africa” Aggregate

In case of international relations (fig. 3a), W12 is the only RIC-positive aggregate of both
WUTS2 and UNEP aggregations (ricW12 = 0.0537, on the left of the red axis). It thus consti-
tutes the only abstraction whose accuracy loss is compensated by its entropy gain. In case of
weight variations (fig. 3b), W12 is event better (ricW12 = 0.340), but it is not the only RIC-
positive aggregate (U11, W11, U3 and W3 also are). However, for both descriptions, U12 is
RIC-negative (below the blue axis).

Henceforth, the behavior of Northern African and Western Asian countries, both in term of
international relations and weights variations, are quite similar. This can obviously be explained
by the Arab Spring that took place in these countries since early 2011 and which take an im-
portant place in news media. This WUTS aggregate is thus interesting to represent the world’s
global behavior over the observed period.
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5 Discussion and Perspectives

The very generic notions of description and aggregation presented in sections 2 and 3 are ex-
ploited for news analysis in section 4. It shows that compositions of informational measures,
among the entropy gain, the information loss and the divergence, can be used to easily evaluate
and compare aggregations (see figures 2 and 3). They allow to answer questions such as: What
are the most interesting abstractions for a given description? Does a value should be integrated
to a given aggregate? On what periods, or within which regions, does an abstraction can be used
the more interestingly?

The experiments presented in this report have been conducted on a rather small dataset.
They illustrate some possible uses of the informational measures, but not yet constitute strong
affirmations about news content. Indeed, given the small observed period and the source unique-
ness (Le Monde), these experiments mostly capture short-term phenomena (as the Arab Spring
in subsection 4.4). An important work is on-going to indicate which properties a dataset should
verify to adequately use such aggregation measures.

We also work on informational measures specific to given analysis methods. For example,
in case of Principal Component Analysis (PCA), one may want to guarantee that an aggregation
preserves the information regarding the variances of events. A survey of the computational
complexities of such statistical methods will also allow to adapt our informational measures to
specific performed tasks.

Acknowledgments

We would like to thank Claude Grasland, Marta Severo and Timothée Giraud from the CIST
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