
HAL Id: hal-02268953
https://hal.science/hal-02268953

Submitted on 21 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Algorithmic Framework to Solve Special
Versions of the Set Partitioning Problem

Robin Lamarche-Perrin, Yves Demazeau, Jean-Marc Vincent

To cite this version:
Robin Lamarche-Perrin, Yves Demazeau, Jean-Marc Vincent. A Generic Algorithmic Framework to
Solve Special Versions of the Set Partitioning Problem. [Technical Report] 105/2014, Max-Planck-
Institute for Mathematics in the Sciences, Leipzig, Germany. 2014. �hal-02268953�

https://hal.science/hal-02268953
https://hal.archives-ouvertes.fr

Max-Planck-Institut

für Mathematik

in den Naturwissenschaften

Leipzig

A Generic Algorithmic Framework to Solve

Special Versions of the Set Partitioning Problem

(revised version: October 2014)

by

Robin Lamarche-Perrin, Yves Demazeau, and Jean-Marc Vincent

Preprint no.: 105 2014

A Generic Algorithmic Framework to Solve
Special Versions of the Set Partitioning Problem

Preprint� of the Max-Planck-Institute for Mathematics in the Sciences
October 6th, 2014

Robin Lamarche-Perrin
MPI for Mathematics in the Sciences, Leipzig, Germany

Robin.Lamarche-Perrin@mis.mpg.de

Yves Demazeau
CNRS, Laboratoire d’Informatique de Grenoble, France

Yves.Demazeau@imag.fr

Jean-Marc Vincent
Univ. Grenoble Alpes, Laboratoire d’Informatique de Grenoble, France

Jean-Marc.Vincent@imag.fr

Abstract
Given a set of individuals, a collection of admissible subsets, and a cost

associated to each of these subsets, the Set Partitioning Problem (SPP) con-
sists in selecting admissible subsets to build a partition of the individuals that
minimizes the total cost. This combinatorial optimization problem has been
used to model dozens of problems arising in specific domains of Artificial In-
telligence and Operational Research, such as coalition structures generation,
community detection, multilevel data analysis, workload balancing, image
processing, and database optimization. All these applications are actually in-
terested in special versions of the SPP: the admissible subsets are assumed
to satisfy global algebraic constraints derived from topological or semantic
properties of the individuals. For example, admissible subsets might form
a hierarchy when modeling nested structures, they might be intervals in the
case of ordered individuals, or rectangular tiles in the case of bidimensional
arrays. Such constraints structure the search space and – if strong enough –
they allow to design tractable algorithms for the corresponding optimization
problems. However, there is a major lack of unity regarding the identifica-
tion, the formalization, and the resolution of these strongly-related combi-
natorial problems. To fill the gap, this article proposes a generic framework
to design specialized dynamic-programming algorithms that fit with the alge-
braic structures of any special versions of the SPP. We show how to apply this

�An early and shorter version of this paper has been published in the Proceedings of the 2014
IEEE International Conference on Tools with Artificial Intelligence (ICTAI’14) [27] and the full
document has been submitted in October 2014 to the Artificial Intelligence journal.

1

framework to two well-known cases, namely the Hierarchical SPP and the
Ordered SPP, thus opening a unified approach to solve versions that might
arise in the future.

Keywords: Combinatorial Optimization, Set Partitioning Problem, Structural and
Semantical Constraints, Algebraic Structure of Partition Lattices, Dynamic Pro-
gramming, Specialized Optimization Algorithms, Artificial Intelligence, Opera-
tional Research.

1 Introduction

The Set Partitioning Problem (SPP) is a deeply-studied combinatorial optimization
problem that naturally arises as soon as one wants to organize a set of objets into
covering and pairwise disjoint subsets such that an additive objective is optimized.
Within this setting, the population designates the finite set of individuals that needs
to be partitioned. The set of admissible parts is the collection of nonempty subsets
of the population that can be used to do so. It fully determines the set of admissible
partitions, that is the set of all partitions of the population that can be built from
these admissible parts, thus constituting the search space of the SPP. Finally, the
cost function, associating a real value to each admissible part, is the objective that
one wants to minimize. It is additively extended to the search space by associating
to each partition the sum of the costs of its parts. For further details, the SPP will
be fully formalized in Subsection 3.1.

This optimization problem has been used to model a colossal amount of prob-
lems in the neighboring fields of Artificial Intelligence and Operational Research.
In each of these applications, the admissibility constraints are used to express the
structural or semantic properties of the population that needs to be partitioned.
This is for example the case in algorithmic game theory for coalition structure
generation [4, 5, 44, 45, 49]. A population of self-motivated agents must be parti-
tioned into coalitions that optimally exploit the interagent synergies to achieve a
given task. Because of compatibility constraints and the agent spatiotemporal lo-
cations, all coalitions are not necessarily feasible in practice. The set of admissible
parts allows to express which coalitions can be actually considered to organize the
agents depending on the system’s structures and functions. Moreover, because of
communication costs and (dys)synergies, some coalitions might be more effective
than the others to perform the task. The cost function then expresses the social
welfare of admissible coalitions. For another example, in data analysis, multilevel
aggregation consists in partitioning a set of data points into homogeneous classes.
In order to be meaningfully interpreted by the analyst, the classes often need to
preserve the system’s semantic or topological structure, expressed by the set of

2

admissible parts [28, 30, 38]. In this context, the cost function is usually defined
according to a compression rate that should be maximized, leading to numerous
applications such as time series analysis [26, 28, 40], database optimization and
image processing [35,38], multilevel community detection [43], performance anal-
ysis of distributed systems [20, 30], resource and task allocations for multiagent
systems [50]. Subsection 2.1 will present in further details the whole range of
application of the SPP.

The SPP is NP-complete in the general case [12]. This still holds when all
admissible parts have the same cost [46], when they do not contain more than
three individuals [46], when every individual is contained in exactly two admis-
sible parts [31], or when admissible partitions consist in exactly two admissible
parts [2]. Hence, even with these very restrictive additional constraints, one can-
not hope for a general-purpose algorithm that can efficiently solve every instance
of the SPP. Among the strategies that have been proposed to tackle this compu-
tational challenge (see Subsection 2.2), this paper is interested in approaches that
consider global constraints regarding the set of admissible parts in order to reduce
and structure the search space. Such constraints, arising from global (semantic,
structural, functional, or topological) properties of the modeled population, thus
define tractable special versions of the SPP. For example, in data aggregation, the
dataset’s topological properties may allow to define a class of search spaces that
are meaningful for the domain expert: e.g., assuming that admissible parts are in-
tervals in the case of time series analysis [26, 28,40], that they form a hierarchy in
the case of spatial analysis of nested structures [28, 30, 43], or that they are rect-
angular tiles in the case of image processing, where the two-dimensional structure
of the dataset implies very strong constraints for compression [38]. In this paper,
we thus assume that the expert provides such global constraints to reduce the SPP
computational complexity and provide tractable optimization algorithms.

Although many such special versions of the SPP have been addressed in the
past (see Section 3), there is a major lack of unity regarding the identification,
the formalization, and the resolution of these however strongly-related problems.
Many of the articles herein referenced deal with special versions of the SPP with
domain specific objectives and do not benefit from the research that have been ex-
tensively done by the combinatorial optimization community. Consequently, some
results have been proven several times by independent work, such as the Ordered
Set Partitioning Problem (see Subsection 3.4) that has been solved in quadratic
time at least five times in 30 years [2,12,26,46,53]. Rothkopf et al. have addressed
several versions of the SPP in an integrating work [46], leading to deep results re-
garding their tractability in a unified applicative context, but without proposing any
unified algorithmic framework to solve them. Some other work characterized the
tractability of special versions of the SPP by identifying general algebraic prop-

3

erties of the corresponding sets of admissible parts [36, 37, 39]. However, such
models are often too general, and thus too weak in practice (meaning that more
specific combinatorial algorithms might perform better on a special version than
these general models) or, in some cases, they do not provide any practical algo-
rithm [37]. In order to fill the gap, this paper proposes to look more carefully at
some particular classes of admissibility constraints and at the combinatorial algo-
rithms that optimally exploit their algebraic structure. Then, we propose a generic
algorithmic framework that can be applied to any special version of the SPP in
order to design a specialized optimization algorithm.

This paper is organized as follows. Section 2 presents in further details the
broad range of applications and methods of the SPP. Section 3 identifies several
special versions that have been addressed in the past, along with the specialized al-
gorithm that have been proposed. Section 4 presents our generic algorithmic frame-
work that can be used to design such specialized algorithms. It relies on a proper
understanding of the search space’s algebraic properties and on dynamic program-
ming to efficiently exploit them. Section 5 applies this framework to two special
versions of the SPP, namely the Hierarchical Set Partitioning Problem (HSPP) and
the Ordered Set Partitioning Problem (OSPP). We show that the computational
complexity of the resulting optimization algorithms meets the one of past algo-
rithms dedicated to the same problems [2,12,28,43,46,53], thus opening a unified
approach to solve new versions of the SPP that might arise in the future. Section 6
discusses the limitation and possible generalizations of our framework when the
admissibility constraints and the cost function are defined “at the partition level”.
Lastly, Section 7 summarizes the results and gives some research perspectives.

2 Related Work

This section introduces to related work regarding the SPP in two steps. Subsec-
tion 2.1 presents some major applications in Operational Research and in Artificial
Intelligence. Subsection 2.2 then identifies three main categories of approaches
that aim at solving the SPP. It also justifies the positioning of this paper regarding
the third approach, detailed in Section 3. Table 2 provides a double entry sum-
mary of the articles making the connexion between the presented applications and
approaches.

4

2.1 Applying the SPP

2.1.1 Relation to Other Combinatorial Optimization Problems

The prolific applicability of the SPP is partly explained by its closeness to the
extensively-studied Set Packing (SP) and Set Covering (SC) problems [6], respec-
tively corresponding to the relaxation of the “covering” and the “pairwise disjoint”
constraints regarding the concept of admissible partitioning. The SPP also general-
izes numerous combinatorial optimization problems, in particular in computational
graph theory where individuals are vertices of a graph and admissible parts are de-
fined according to a specific subgraph structure: e.g., graph coloring, graph parti-
tioning, domatic partitioning, weighted multiway cut, minimum set cover, partition
into Hamiltonian subgraphs, forests, or perfect matching [9, 13, 36], thus leading
to a tremendous amount of other possible applications. However, since this paper
focuses on applications where cost functions and sets of admissible parts are pro-
vided by expert knowledge regarding the analyzed population and its semantical or
structural properties, this subsection only presents in further details applications in
specialized fields of Artificial Intelligence and Operational Research.

2.1.2 The airline crew scheduling problem and other operational problems

Historically, the best-known application of the SPP in Operational Research is the
airline crew scheduling problem [3, 6]: given a set of flight legs (individuals), a
set of sequences of legs that are feasible by airline crews according to work poli-
cies (admissible parts), and a cost associated to each feasible sequence, the airline
company would like to find a collection of feasible sequences minimizing the to-
tal cost such that each flight leg is covered by exactly one crew. This setting is
easily generalizable to a broader class of transportation, delivery, routing, and lo-
cation problems [6,10,24,25], and to other well-known operational problems such
as the circuit partitioning problem, where a set of electronic components should
be divided into clusters such that the number of intercluster connections is mini-
mized [1, 13], or the political districting problem, where regions must be divided
into voting districts such that every citizen is assigned to exactly one district [6,24].
Many other examples of such applications can be found in more exhaustive sur-
veys: e.g., stock cutting, line and capacity balancing, facility location, capital
investment, switching current design, marketing [2, 6].

2.1.3 The winner determination problem in combinatorial auctions

Given a set of assets (individuals) and a set of bids associating a price to groups
of asset (admissible parts), the auctioneer wants to find an allocation of the assets

5

to the bidders that maximizes her revenue [31, 37, 39, 46, 48, 50]. Due to the fact
that several bidders may give a price to the same collection of assets, the winner
determination problem is strictly-speaking more general than the SPP. However,
Rothkopf et al. [46] have shown that, when considering the classical OR bidding
language1 to express the bidder objectives, the winner determination problem is
equivalent to the Set Packing problem [46]. Moreover, since the bids are always
positive, and by interpreting the absence of bid on single assets as null prices [48],
there is always an optimal packing that is also an optimal partition. Hence, in this
context, the winner determination problem is equivalent to the SPP.

2.1.4 The coalition structure generation problem in algorithmic game theory

A population of self-motivated agents (individuals) must collaborate with one an-
other to perform a given task. Coalition structure generation consists in partitioning
the agents into feasible teams (admissible parts) so as to achieve better result by
maximizing the social welfare (expressed by the cost function) [4, 5, 44, 45, 49].
This field itself leads to many applications in e-commerce (buyers form coalitions
to purchase a product in bulk and take advantage of price discounts), e-business
(groups form to satisfy particular market niches), distributed sensor network (sen-
sors work together to track targets), distributed vehicle routing (coalition of deliv-
ery companies to reduce transportation costs), and information gathering (servers
form coalitions to answer queries) [45].

2.1.5 The clustering problem for multilevel data analysis

The SPP can also be seen as a general formulation of the classical clustering prob-
lem: data points have to be partitioned into classes such that the intra-class sim-
ilarity and/or the inter-class dissimilarity are maximized [9, 11, 42]. Finding the
optimal partition thus arises as soon as one wants to organize, to classify, or to
abstract data. In this context, the SPP also relates to data aggregation problems,
where data points are partitioned into homogeneous classes preserving the sys-
tem’s structure and optimizing a given compression rate, leading to applications in
time series analysis [26,28,40], spacial analysis [20,28,30], multilevel community
detection [43], database optimization, and image processing [35, 38].

1In this context, the bidders are willing to pay for any combination of pairwise disjoint collections
a price equal to the sum of the bid prices they expressed for these collections [31].

6

2.2 Solving the SPP

The SPP is usually tackled by one of the following strategies or by mixing several
of them in a portfolio approach (for more detailed surveys regarding optimization
algorithms for the SPP over the last forty years, see [6, 8, 10, 14, 24, 25]).

2.2.1 Exploiting the Algebraic Structure of the General SPP

The set of parts and the set of partitions have several useful algebraic properties
when one tries to directly tackle the general problem by going through the whole
search space of admissible partitions. Strategies formalizing and exploiting such
properties to efficiently run through the search space are usually based on integer
programming [6,21,24,25], dynamic programming [2,26,44,46,48,54], exhaustive
enumeration [48], implicit enumeration [6, 18, 25, 34], and/or automatic reformu-
lation of the linear description [25, 47, 52]. Again, since the SPP is NP-complete,
one should not expect any worst-case polynomial algorithm to emerge from such
strategies, unless P = NP.

Heuristics limiting the search space in some way have also been proposed to
find suboptimal solutions in reasonable time, including genetic algorithms [14],
dual ascent [10], simulated annealing, and neural networks [24], and other meta-
heuristic algorithms [8]. However, such approaches do not provide any worst-
case guarantee regarding the closeness to optimality [45]. On the contrary, ap-
proximation algorithms provide provable solution quality and run-time bounds
[4, 5, 9, 13, 31, 38], but are still limited by severe inapproximability results [48]
and the absence of any polynomial-time approximation scheme [31].

2.2.2 Exploiting Properties of the Cost Function

Much work has focused on special versions of the SPP by making additional as-
sumptions regarding the cost function. For example, the SPP has been proved to
be polynomially solvable when costs are defined by some aggregative measures
(e.g., max-sum, min-sum, sum-max, sum-avg) applied to the attributes of the indi-
viduals [2, 35, 38]. More constrained settings have been studied, such as aggrega-
tive measures applied to the edges of a weighted graph expressing the synergies,
dissimilarities, communication costs, or interests in grouping couples of individu-
als [4, 5, 11, 36, 42]. However, in each of these cases, the considered cost function
requires a dedicated treatment that can hardly be generalized to a broader context.

Other work has hence focused on more general properties of the cost function
such as concavity [2, 12], symmetry [13], submodularity [2, 13, 31, 36, 37], super-
additivity [38, 49], subadditivity [49], and additivity with convex discounts [37].
These approaches all assume that the costs are somehow monotonously defined

7

with respect to the set inclusion. For example, superadditivity in coalition games
implies that the synergies between agents cannot decrease when new agents join a
coalition. Hence, applying additional cuts will never degrade the quality of a par-
titioning, and one usually search for a partition of a given fixed size that optimizes
the superadditive cost function [38]. Subadditivity implies, on the contrary, that
the agents are usually best of by operating alone. Although considerable results
have been achieved for such settings, Sandholm et al. [49] argue that, when some
cost penalizes the coalition formation process itself (because of communication or
anti-trust penalties), many applications of the coalition generation problem are nei-
ther superadditive nor subadditive. This is also the case in multilevel data analysis,
where the information-theoretic measures are usually non-monotonous regarding
the set inclusion, meaning that data points might be relatively homogeneous at
some level, but heterogeneous at lower or higher levels [20, 28, 30, 40, 43].

2.2.3 Exploiting Structures of the Admissible Parts

This paper focuses on a third category of strategies exploiting global constraints
on the set of admissible parts to define easier versions of the SPP. Indeed, by as-
suming that admissible parts belong to a restraint and structured portion of the
population power set, one can reduce the search space and thus provide tractable
optimization algorithms. In this case, one should guarantee that the constraints do
not exclude solutions that would be optimal otherwise. For example, in the winner
determination problem, if the assets are known to be more valuable in given com-
binations, the auctioneer may anticipate the bids of greatest economic significance
and only allow such valuable combinations. For example, in the presence of a topo-
logical structure, groups of neighboring assets may be more valuable than random
groups [31, 46]. The auctioneer thus assumes that no bidder will prefer forbidden
combinations during the auction process. Reducing the search space thus consists
in “introducing patterns that have a meaningful auction interpretation” [37]. How-
ever, constraints might also arise from semantics considerations when some subsets
are not meaningful for the partition purposes. In data aggregation, for example, the
partitioning should be consistent with the dataset’s structural and topological prop-
erties so that the compressed data is usable by the domain expert [20, 28, 30, 40].
In particularly, in image processing, the two-dimensional structure implies very
strong constraints for compression [38].

Some work has also been dedicated to the characterization of tractability by
studying general algebraic properties of the sets of admissible parts. For example,
it has been shown that, if the coefficient matrix of the corresponding integer pro-
gramming problem is totally unimodular, then the linear relaxation of the SPP has
an integral optimal solution [36, 37, 39]. In this case, a linear programming solver

8

provides an optimal solution in polynomial time (see for example the column gen-
erator algorithm proposed in [36]). Another characterization of tractability is based
on the concept of maximal cliques of perfect graphs: if the intersection graph of
admissible parts is perfect and if all maximal cliques in this graph are induced by
the population individuals, then a maximum weighted stable set can be computed
in polynomial time [37]. However, such models of tractability might be too gen-
eral, and thus too weak in practice. Even if they allow to show that some special
versions of the SPP can be solved in polynomial type, they do not imply that lin-
ear programming solvers will provide the best possible algorithm. Indeed, in the
presence of more specific combinatorial structures, dedicated algorithms might per-
form better by exploiting the structure more precisely than the general models [37].
Moreover, it has been argued that in some cases such models do not provide any
practical algorithm [37].

In order to overcome these limitations, this paper proposes to look more care-
fully at some particular classes of admissibility constraints to derive specialized
combinatorial algorithms that optimally exploit such structures. In Section 4, we
thus propose a generic framework based on dynamic programming to provide such
optimal algorithms. Note that other mixed strategies have been proposed, such
as assuming global admissibility constraints to design specialized approximation
algorithms (2.2.1) [48], or by making assumptions regarding the set of admissi-
ble parts and the cost function (2.2.2) to design optimal algorithms [36]. On the
contrary, the framework proposed in this paper both allows to design optimal algo-
rithms and to stay fully general regarding the optimized cost function.

3 The General SPP and Some Special Versions

This section formalizes the general SPP (3.1) and presents some special versions
that have been addressed in previous work (3.2, 3.3, 3.4, 3.5, and 3.6). For each ver-
sion, we identify applications in Artificial Intelligence and Operational Research
by indicating possible semantical and structural interpretations of global admis-
sibility constraints. The third part of Table 2 summarizes the links between the
applications and these special versions. We also identify algorithms that have been
proposed in previous work to optimally solve these versions (see Table 1).

3.1 The General Set Partitioning Problem (SPP)

Preliminary Notations. This paper uses a consistent system of letter cases to
properly formalize the SPP and its search space:

• individuals are designated by lowercase letters: x, y, z;

9

• sets of individuals and parts by uppercase letters: Ω, X , Y , Z;
• sets of parts and partitions by calligraphic letters: P , X , Y , Z;
• sets of partitions by Gothic letters. For example: P, R, and C.

A population Ω � tx1, . . . , xnu is a finite set of individuals and a part is
a nonempty subset X � Ω. A set of admissible parts P � tX1, . . . , Xmu is
a subset of the power set 2Ω. The size of a population or a part, resp. marked
|Ω| and |X|, is the number of individuals it contains. An admissible partition
X � tX1, . . . , Xku � P is a set of covering and pairwise disjoint admissible
parts: Xi P P ,

�
iXi � Ω and Xi X Xj � H. The set of admissible partitions

P is the set of all partitions that can be generated from the set of admissible parts:
P � tX � P z X is a partition of Ωu. We assume that P is such that P � H,
so that the SPP is indeed an optimization problem, and not an existence problem.
This is for example the case when the population is admissible, so that the maximal
partition is admissible: Ω P P ñ tΩu P P, or when all singletons are admissibles,
so that the minimal partition is admissible: @x P Ω, txu P P ñ ttxuuxPΩ P P.
The size of a partition, marked |X |, is the number of parts it contains. A cost
function c is an application that associates to each admissible part X P P a real
value cpXq P R. We also define the additive extension of the cost function c on
the set of admissible partitions: @X P P, cpX q �

°
XPX cpXq. Lastly, we mark

P� � P the set of admissible partitions that minimizes c.

The Set Partitioning Problem. Given a population Ω, a set of admissible
parts P , and a cost function c, the weighted Set Partition Problem (SPP) with
an additive objective consists in finding a subset X � � P that partitions Ω and
minimizes c:

X � P arg min
XPP

cpX q. (1)

Tractability of the SPP and its Special Versions. With no further assump-
tion regarding the cost function and the set of admissible parts, the SPP is NP-
complet [12]. However, the rest of this section presents special versions of the
problem where global admissibility constraints allow to define tractable algorithms.
In the following, we thus indicate the worst-case time complexity of optimization
algorithms proposed by previous work according to the size |Ω| � n of the popu-
lation. The algorithmic complexity is thus given relatively to the problem size and
we consider a special version tractable if there exists an algorithm that optimally

10

solves any instance of this special version by requiring a number operations that is
polynomially bounded in the size of the population.

Note however that the input size of the problem is actually the number of ad-
missible parts |P| � m. Indeed, the encoding length of any instance of the SPP
is in general the number of cost values that have to be specified. In that case,
the SPP can easily become intractable because the feeding of the input is itself
intractable [46]. However, in many work, the costs of admissible parts are actu-
ally derived from attributes of the individuals [3, 7, 20, 26, 28, 30, 35, 38, 40, 43]
or from relations between individuals [4, 5, 7, 11, 42]. This is the case for exam-
ple in multilevel data analysis when the cost of admissible parts are computed in
linear time from the individual attributes according to some information-theoretic
measure [20, 28, 30]. In such cases, the size of the input thus linearly depends
on the number of individual, and not on the number of admissible parts. Hence,
most of the special versions presented hereafter are linearly solvable with respect
to the input size |P| � m, but polynomially solvable with respect to the problem
size |Ω| � n (see Table 1 for a detailed list of the input sizes of the following
problems).

3.2 The Complete Set Partitioning Problem (CSPP)

The Complete Set Partitioning Problem arises when all subsets of the popu-
lation are admissible, i.e., when the set of admissible parts is the population’s
power set: P � 2Ω.

Applications. The CSPP has been extensively used to model coalition structure
generation problems assuming that every possible group of agents is an adequate
candidate to constitute a coalition [44,45,49]. It has also been applied to corporate
tax structuring to find an optimal aggregation of corporate subsidiaries to pay state
unemployment compensation tax [54].

Combinatorics. Sandholm et al. [48] have shown that the number of admis-
sible partitions grows considerably faster than the number of admissible parts:
|P| � Θp2nq and |P| � ωpnn{2q.

Algorithmic Results. The CSPP is NP-complete [48,49]. However, exponential
algorithms have been provided to solve small instances of the CSPP: a Op2n

n{2
q

enumeration approach [32], a Op3nq dynamic programming algorithm [31, 54],
and a Opnnq anytime algorithm that quickly generates a suboptimal solution with

11

bound guarantees, then slowly improves this solution by establishing better bounds
[44,45,49]. Note that, since any instance of the SPP can be modeled as an instance
of the CSPP with infinite cost on non-admissible parts, these algorithms can also
be exploited to solve instances of the general problem. However, as it is shown
in what follows, when assuming stronger admissibility constraints, more efficient
algorithms can be designed.

3.3 The Hierarchical Set Partitioning Problem (HSPP)

The Hierarchical Set Partitioning Problem arises when the set of admissible
parts is a hierarchy, i.e., when every two admissible parts are either disjoint or
one is included in the other: @pX1, X2q P P2, X1 X X2 � H or X1 � X2

or X1 � X2. If one also assumes that the population and the singletons are
admissible: Ω P P and @x P Ω, txu P P , then the hierarchy can be described
as a rooted tree2 where the leaves represent the singletons, the nodes represent
the admissible parts the root represents the whole population, and the tree-
order is the subset relation (see Fig. 1).

Applications. The HSPP has been mainly applied in data aggregation to model
systems with multilevel nested structures. This include community representation
of networks (individuals are nodes of a graph representing a social structure and ad-
missible parts are highly-connected groups of nodes resulting from a hierarchical
community detection algorithm) [43], aggregation of geographical data for geo-
graphical analysis (individuals are territorial units and admissible parts are defined
according to nested geographical partitions of the world into regions, countries,
subcontinents, continents, etc.) [28], and analysis of distributed systems for perfor-
mance analysis (individuals are the computational resources of a distributed system
and admissible parts are defined according to the system’s hierarchical communi-
cation network: processes, machines, clusters, sites, etc.) [20, 30].

Combinatorics. For a population of size n, the minimal number of admissible
parts is n�1 (singletons and population) and the maximum number is reached for a
hierarchy corresponding to a complete binary tree. Thus, |P| � Opnq. The number
of admissible partitions however depends on the number of levels and branches

2Note that, if the population or the singletons are not admissible, but if the union of all admissible
parts is:

�
XPP X P P , then the hierarchy can still be represented as a rooted tree. In any case,

the hierarchy can be represented as a forest of rooted trees and the algorithms solving the HSPP can
easily be generalized by a sequential execution to each tree of the forest.

12

in the hierarchy. Since an admissible partition of X P P is either the maximal
partition tXu or the union of admissible partitions of subparts of X , this number
can be recursively defined as |PpXq| � 1 �

±
Y�X |PpY q|, where � pXq is the

set of children of X in the tree representing the hierarchy. For a complete binary
tree, at each level, the number of admissible partitions is squared. Assuming that
n � 2k, where k is the depth of the tree, we thus have |P| � Uk � 1 � pUk�1q2

with U0 � 1. The sequence pUkqkPN is asymptotically bounded by an exponential
function αn, with α � 1.226 [15]. Similar results are found for complete ternary
trees (with α � 1.084 [33]), complete quaternary trees, and so on. Henceforth,
for any bounded number of children per node, the number of admissible partitions
exponentially grows with the population size.

Results. All algorithms that have been proposed to solve the HSPP consist in
a Opnq depth-first search of the tree representing the hierarchy [28, 30, 43]. A
Opn|P|q dynamic algorithm has also been proposed [46].

h i e r a r c h y

h i e r a r c h y

h i e r a r c h y

Figure 1: A 3-levels hierarchy de-
fined on a population of size 9

1 2 3 4 5

1 2 2 3 3 4 4 5

1 2 3 2 3 4 3 4 5

1 2 3 4 2 3 4 5

1 2 3 4 5

Figure 2: The “pyramid of intervals”
of an ordered population of size 5

3.4 The Ordered Set Partitioning Problem (OSPP)

The Ordered Set Partitioning Problem arises when a total order is defined
on Ω and when the admissible parts are the intervals induced by this order:
P � ttxi . . . xju � Ω z i ¤ ju. This set can be represented as a
“pyramid of intervals” (see Fig. 2) and the resulting admissible partitions are
sometimes called consecutive partitions [2].

Applications. The OSPP very naturally applies to model any population that has
a temporal component (e.g., sets of dates, events, or time periods are naturally or-

13

dered by the “arrow of time”). For example, the OSPP has been addressed for the
aggregation of time series [26,28,40] (individuals are time periods and admissible
parts are consecutive sequences of such periods) and for the allocation of con-
secutive processing time to different tasks [37]. This setting might also receive a
unidimensional-space interpretation, such as the North-South geographical order-
ing of the cities on the East Coast or the mineral rights on tracks forming a single
swath of offshore state waters [46]. It has also been applied to inventory control
and production planing [2, 12, 53].

Combinatorics. The number of intervals of an ordered population of size n is
npn�1q

2 . An admissible partition of size k consists in cutting the population in k�1

places. Hence, the number of partitions of size k is
�
n�1
k�1

�
and the total number of

partitions is: |P| �
°n�1

k�0

�
n�1
k

�
� 2n�1.

Results. Chakravarty et al. [12] have shown that, when the optimal partition is
a sequence of intervals, solving the SPP is equivalent to solving the shortest path
problem, resulting in aOpn2q optimization algorithm. AOpn2q dynamic program-
ming algorithm has also been proposed in independent work [2, 26, 46, 53].

Extensions. Some other order-related structures have been addressed, such as
monotone partitions (when the size of intervals increases with the order) [2], ex-
tremal partitions (the last individual of each interval can be associated to the next
interval without losing optimality) [2], and cyclic orders defining intervals on a
circle and leading to a Opn3q dynamic algorithm [46].

3.5 The Array Partitioning Problem (APP)

The Array Partitioning Problem consists in partitioning a two-dimensional ar-
ray into rectangular tiles. It naturally arises when one considers the Cartesian
product Ω1 � Ω2 of two ordered populations. In that sense, we write APP =
OSPP�OSPP. The set of admissible parts is thenP � tX � Ω1�Ω2 z DX1 P
P1, DX2 P P2, X � X1 �X2u, where P1 and P2 are respectively the sets of
intervals of Ω1 and Ω2 (see the OSPP above).

Applications. As for the OSPP, the APP may be used to model spatial structures
such as the rectangular partitioning of geographic locations on a two-dimensional
grid [7, 46]. This includes the distribution of individual units of a manufacturing

14

plant among supervisors, the balanced subdivision of a rectangular mining area
among mining companies [7], the clustering of points with fairly uniform color or
similar frequencies in image processing, computer graphics, and video compres-
sion [35, 38], the building of histograms based on rectangular regions to approx-
imate multi-dimensional data distributions in database systems [38]. Moreover,
the APP has been used to model load balancing problems in parallel computation
when the computational space corresponds to a matrix. In this case, the tiles are
rectangular in order to respect the computation space topology [38] and to reduce
the communication costs between subproblems that is proportional to the number
of adjacent pairs in the grid [35].

Combinatorics. Given the Cartesian product Ω1 �Ω2 of a population of size n1

and a population of size n2, the number of rectangular tiles is |P| � |P1| � |P2| �
Θpn2

1n
2
2q. To get a lower bound estimate of |P|, we recall that the number of

interval partitions of Ω1 is 2n1�1 (see combinatorics of OSPP above). Thus, by
only considering “stacks” of n2 partitions of Ω1, the total number of admissible
partitions of the APP is necessarily greater than 2pn1�1qn2 .

Results. Rothkopf et al. [46] have shown that the APP is NP-complet even if one
only considers singletons and 2�2 rectangles as admissible parts. To the best of
our knowledge, no optimal algorithm has yet been proposed.

Extensions. The APP is manageable if one only considers rows, columns, and
singletons, for example to represent assets that have two different properties of
interest for a collector, as the year and denomination of a coin [46]. Other mul-
tidimensional versions of the SPP has been addressed, such as the partition of d-
dimensional hypercubes [46] or the Cartesian product of a hierarchy and a total
order (HSPP � OSPP), leading to a Opn1pn2q3q dynamic algorithm [20], where
n1 and n2 are respectively the sizes of the hierarchical and the ordered populations.

3.6 Bounds on the Size of Admissible Parts

Some versions of the SPP assume that the size of admissible parts is bounded:
P � tX � Ω z |X| ¤ ku or P � tX � Ω z |X| � 1 or |X| ¡ n{ku for a
given k P N.

15

Applications. Such assumptions are very generic and might apply to any prob-
lem bringing in only small groups (or only large groups) of individuals. It has been
proposed for example to model slot auctions of airline take-off and landing [37].

Results. Rothkopf et al. [46] have shown that, when admissible parts are limited
to size k � 3, the SPP is still NP-complete, when limited to size k � 2, solving
the SPP is equivalent to solving the maximum-weight matching problem, leading
to a Opn3q optimization algorithm, and when only large parts and singletons are
admissible, the SPP can be solved in Opn|P|kq time.

|P| |P|
Best Known
Algorithm

CSPP
(3.2)

Θp2nq ωpnn{2q NP-complet

HSPP
(3.3)

Binary Tree Θpnq Θpαnq Opnq [28, 43]

OSPP
(3.4)

Total Order Θpn2q Θp2nq Opn2q [26, 46]

Cyclic Order Θpn2q Θp2nq Opn3q [46]

APP (3.5) OSPP � OSPP Θpn21n
2
2q Ωp2n1n2q NP-complet

HSPP � OSPP Θpn1n
2
2q Ωp2n1n2q Opn1n

3
2q [20]

Rows &
Columns

Θpn1n2q Θp2n1 � 2n2q Opn1n2q [46]

Table 1: Combinatorics and optimal algorithms of special versions of the SPP

16

Operational Research Artificial Intelligence
Scheduling, Delivery,
Transportation (2.1.2)

Winner Determination
Problem (2.1.3)

Coalition Structure
Generation (2.1.4)

Multilevel Data
Clustering (2.1.5)

Solving the General Problem (2.2.1)
Optimal Algorithms [2] [6] [24] [25] [46] [48]

Heuristics/Approximation [24] [10] [31] [48] [45] [4] [5] [38]

Exploiting Algebraic Properties of the Cost Function (2.2.2)
Specific Measures [2] [4] [5] [38] [35] [11] [42]

General Properties [12] [2] [31] [37] [49] [38]

Exploiting Algebraic Properties of the Admissible Parts (2.2.3)
CSPP (3.2) [54] [31] [48] [49] [44] [45]

HSPP (3.3) [46] [30] [28] [43]

OSPP (3.4) [12] [2] [53] [46] [37] [28] [26] [40]

APP (3.5) [7] [46] [38] [35] [20]

SPP with Bounds (3.6) [46] [37]

Table 2: Summary of previous work regarding application and resolution of the Set Partitioning Problem

17

4 A Generic Algorithmic Framework to Solve Special Ver-
sions of the SPP

If dynamic programming has been used to solve the general SPP, leading to a Ωp2nq
and Op3nq optimization algorithm [46,48], we have shown in previous section that
more efficient algorithms are possible when dealing with special versions of the
problem. Dynamic programming has thus been used on many occasions to solve
such tractable versions (see for example [2, 26, 44, 46, 54]). However, these re-
sults are very independent from each other and no unified framework have been
proposed for their generalization. To fill the gap, the framework proposed in this
paper aims at being generic – in the sense that it can be applied to any special ver-
sion of the SPP to derive a specialized algorithm – but not at being general – in the
sense that it would not be efficient to deal with the general unstructured problem.
Hence, this framework should be considered as an abstract tool to build optimiza-
tion algorithms for tractable versions of the SPP. Section 5 gives two examples of
such specialized implementations (for the HSPP and the OSPP).

The key principle regarding the application of dynamic programming to the
SPP is the following: one needs to compute the optimal partition of an admissible
part only once to evaluate all the partitions that are coarser than this part. This
principle has been used to straightforwardly solve the general SPP [46, 48]. In
this section, in order to also exploit the particular structure of special versions,
we provide a better understanding of the search space that allows to identify and
suppress numerous redundant computations when applying this key principle. The
search space is first broken down into smaller covering subspaces. Then, thanks
to a principle of optimality that fits with the algebraic structure of the partition
set, these subproblems are recursively solved. Locally-optimal solutions are then
compared to globally solve the initial problem.

The rest of this section is organized as follows. We first formalize the algebraic
structure of the search space and we provide a corresponding principle of opti-
mality (4.1). Then, we propose a decomposition of the search space based on this
principle (4.2) and we derive a recursive algorithm (4.3). Finally, we propose two
improvements based on memoization and non-redundant decomposition to fully
exploit the algebraic structures of special versions (4.4). The final algorithm is
given at the end of this section.

4.1 Algebraic Structure and Principle of Optimality

Rothkopf et al. have argued that the computational complexity of the SPP does
not actually depend on the size of the search space, but rather on its structure [46].
Indeed, as shown in Table 1, restricting the number of admissible parts |P| is not

18

sufficient to restrict the size of the search space |P|. For example, in the case of
the OSPP, we have |P| � Θpn2q and |P| � Θp2nq. Since the number of admis-
sible partitions grows exponentially with the population size in most of the special
versions reported in Section 3, the introduction of strong constraints is often not
sufficient to make a brute-force search algorithm tractable. Hence, in this sub-
section, we carefully examine the algebraic structure of the search space and we
propose a principle of optimality that exploits this structure to evaluate partitions
in a computationally-efficient fashion.

4.1.1 The Algebraic Structure of the Search Space

The set of admissible partitions P is structured by an essential algebraic relation,
usually referred to as the refinement relation � [17]. A partition X refines a parti-
tion Y (X � Y), if and only if each part in X is a subset of a part in Y:

X � Y ô @X P X , DY P Y, X � Y

As this binary relation is reflexive, antisymmetric, and transitive, it defines a partial
order on the partition set P that consequently forms a poset and can be represented
as a Hasse diagram [17].

The covering relation � is the transitive reduction of the refinement relation,
that is the binary relation which holds between immediate “neighbors” regard-
ing �. Hence, a partition X is covered by a partition Y (X � Y), if and only
if X � Y , X refines Y , and there is no other partition “between” them:

X � Y ô X � Y and EZ P P, X � Z � Y

As it is shown in the rest of this section, these two relations give essential
algebraic tools to search for optimal partitions. For a given admissible partition
X P P, we define RpX q as the set of admissible partitions refining X , CpX q
as the set of admissible partitions covered by X and, respectively, R�pX q and
C�pX q as the sets of optimal partitions among RpX q and CpX q. Note that if
the minimal partition ttxuuxPΩ is admissible, it refines all admissible partitions:
X P P, ttxuuxPΩ P RpX q, and if the maximal partition tΩu is admissible, it is
refined by all admissible partitions: RptΩuq � P.

4.1.2 A Principle of Optimality for the SPP

In dynamic programming, finding a principle of optimality consists in showing that
the search space has an optimal substructure: the solution to the optimization prob-
lem can be obtained by recursively combining locally-optimal solutions to several

19

subproblems. Intuitively, in the case of the SPP, one can rely on the fact that the
union of optimal partitions on subsets of the population is an interesting candi-
date to form an optimal partition of the whole population. Hence, by appropriately
decomposing the population, one might provide a computationally efficient proce-
dure to build such an optimal solution.

Theorem 1. Let Ω be a population and c be an additive cost function defining par-
tition optimality. For any partition Y of Ω, the union of locally-optimal partitions
of the parts of Y is optimal among the refinements of Y:

@Y P Y, Y�Y P P�pY q ñ

�¤
Y PY
Y�Y

�
P R�pYq (2)

Proof. The proof of this theorem is given in annexe.

4.2 Branching the Search Space

Given a admissible part X P P for which one wants to compute a locally-optimal
admissible partition X � P P�pXq, a branching consists in building subspaces
P1, . . . ,Pk that cover the search space: P1Y. . .YPk � PpXq. Then, if one finds
locally-optimal partitionsX �

1 P P�
1 , . . . ,X �

k P P�
k for each of these subspaces, one

can easily solve the optimization problem the following way:

arg min
X P tX�

1 ,...,X�
k u

cpX q � P�pXq (3)

For that purpose, the covering relation indicates “atomic disaggregations” of a
given part. For example, in the case of the OSPP, it consists in dividing the part
into two intervals (see Fig. 3). The covering relation can thus be used to branch
the search space. First, assuming that the maximal partition tXu is admissible3,
we know that all admissible partitions of X refine the maximal partition tXu:
PpXq � RptXuq. Second, for any partition X P PpXq, a refining partition of X
is either the partition X itself, or a partition that refines a partition covered by X .
Hence, the search space can be branched the following way:

PpXq � ttXuu Y

�
� ¤

Y PCptXuq

RpYq

�
 (4)

3If not, the following approach can easily be generalized by sequentially applying the algorithm
to all maximal partitions, i.e. maximal elements in the poset of partitions induced by the refinement
relation.

20

1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Figure 3: Decomposition of the search space according to the covering relation in
the case of an ordered population of 5 individuals

4.3 A Recursive Algorithm

The computation of an optimal partition thus consists in computing locally-optimal
partitions refining the partitions covered by the maximal partition. Thanks to the
principle of optimality, such a computation can be recursively performed by recur-
sively applying the algorithm on admissible parts (see Eq. 2 and Fig. 4). Hence,
the three branching and recursion equations 2, 3, and 4 allow to define a divide and
conquer algorithm that computes a locally-optimal partition X � P P�pXq for any
X P P according to the following recursive formula:

arg min

X P ttXuuY

�
��

¤
Y PCptXuq

#¤
Y PY
Y�Y

+�
�

cpX q � P�pXq (5)

where Y�Y designates a partition in P�pY q. Here are the steps of the resulting
algorithm:

(step 1) Compute the set CptXuq of admissible partitions covered by the max-
imal partition tXu.

(step 2) For each partition Y P CptXuq, do the following:

(step 2.a) for each part Y P Y , recursively compute a locally-optimal
admissible partition Y�Y P P�pY q;

(step 2.b) compute the union Y� �
�

Y PY Y�Y of these partitions. The
principle of optimality ensures that Y� P R�pYq.

(step 3) Return a partition that minimizes c among tXu and the Y� P R�pYq
computed for each Y P CptXuq.

21

Fig. 5 gives an example of execution of this algorithm in the case of the OSPP
with an ordered population of size 4. The starting point is the maximal partition at
the top 1 2 3 4 . The plain numbered arrows represent the sequence of branch-
ings executed by the algorithm (step 2): for example branching 1 evaluates the
covering partition 1 2 3 4 . The dashed arrows represent the recursive calls on
an admissible part (step 2.a): for example 1 2 3 4 corresponds to the execution
of the algorithm on the first part of the partition 1 2 3 4 . Crosses and stars are
explained in the next subsection.

4.4 Dynamic Programming Improvements

This first algorithm is not computationally-optimal in terms of execution steps.
In the rest of this subsection, we thus propose two improvements to reduce its
time complexity. The fist one, simply consisting in the recording of intermediary
results (see stars), is actually a key principle of dynamic programming [46, 48].
The second one, consisting in avoiding redundant evaluations in the execution tree
(see crosses), is an entirely new feature derived from the algebraic analysis of the
search space.

4.4.1 Recording Intermediary Results

According to the dynamic programming paradigm, recursive algorithms can be
easily improved by recording the results of time-consuming recursive calls. For
each part on which the algorithm is once applied, by keeping trace of the resulting
locally-optimal partition, one can immediately return this result when posterior
calls occur on the same part. This way, the algorithm is applied only once to each
admissible part X P P . For example, in Fig. 5, the algorithm is initially applied
twice on parts 1 2 , 2 3 , and 3 4 . Thanks to this memoization procedure, one
can avoid the second calls (see stars on dashed lines).

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5

Figure 4: Recursive application of the algorithm

22

9

12

13

10

11

6

7 8

1

4

5

2

3

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 41 2 3 41 2 3 4

1 2 3 4

Figure 5: Execution trace of the recursive algorithm (Subsection 4.3) for an or-
dered population of size 4. Plain numbered arrows represent branchings (step 2).
Dashed arrows represent recursive calls (step 2.a). Crosses and stars give the cut-
tings of branches that may improve the algorithm (Subsection 4.4).

4.4.2 Avoiding Redundant Evaluations

The branching of the search space proposed in Eq. 4 is redundant, i.e., subspaces
are not disjoints. For example, in Fig. 5, branches 2 and 3 allow the evaluation
of partitions 1 2 3 4 and 1 2 3 4 , and branches 4 and 5 the evaluation of
partitions 1 2 3 4 and 1 2 3 4 . Hence, 1 2 3 4 is evaluated twice and 5 is
useless. In order to avoid such redundant branches, one can keep trace of the cov-
ered partitions X1, . . . ,Xk that have already been evaluated during step 2. When
the algorithm is recursively applied to a part X P Xk�1 (step 2.a), one also retains
the complementary partition X � Xk�1ztXu. Hence, within the “lower” calls,
when a covered partition Y P CptXuq is considered for branching, one first checks
if X Y Y does not refine any of the previously-evaluated partitions X1, . . . ,Xk. If
it does (Di ¤ k, X Y Y P RpXiq), one deduces that the branch has already been
evaluated, and steps 2.a and 2.b may be avoided. Fig. 5 indicates the result of this
improvement by crosses cutting the plain arrows.

Note however that this improvement should be implemented with the greatest
care in order to be computationally efficient. In Section 5, where this generic algo-
rithmic framework is applied to special versions of the SPP, the specific algebraic

23

structures resulting from the covering relation are fully known. We then show how
one can directly generate, during step 2, the covered partitions that have not been
evaluated yet, without actually recording them into memory. This way, the avoid-
ance of redundant evaluations does not require additional ressources.

The branching method and the two improvements directly lead to the following
algorithm:

A Generic Algorithm to Solve the SPP
Global Inputs:
c a cost function;
P a set of admissible parts defining admissible partitions;
L a set of locally-optimal admissible partitions of parts on which the algo-

rithm has already been applied.

Local Inputs:
X an admissible part;
X the complementary partition of X inherited from the “higher” call (X is

a partition of ΩzX);
D the set of admissible partitions which refinements have already been

evaluated during “higher” calls.

Local Output:
X � a locally-optimal admissible partition of X .

• If the algorithm has already been applied to part X , return the locally-optimal
partition recorded in L.
• Initialization: X � Ð ttXuu and D1 Ð D.
• For each Y P CptXuq such that X YY does not refine any partition in D, do the

following:
– For each part Y P Y , call the algorithm with local inputsX Ð Y , X Ð X Y
YztY u, and DÐ D1 to compute a locally-optimal partition Y�Y P P�pY q.

– Y� Ð
�

Y PY Y�Y .
– If cpY�q ¡ cpX �q, then X � Ð Y�.
– D1 Ð D1 Y tYu.

• Return X � and record this result in L.

24

5 From the Generic Framework to Specialized Implemen-
tations

The above algorithm can in theory be applied to any set of admissible parts
P � 2Ω. In that sense, it provides a dynamic algorithm to solve the general
SPP. However, a generic implementation would not be computationally-optimal
for special versions of the SPP. Indeed, assuming that one explicitly knows the
global structure of the partition set that is meant to be searched, one can adapt
the algorithm and the data structures to the problem’s specific algebraic structure.
That is what we call deriving a specialized implementation of the algorithm. For
example, in the general case, there are 2n possible admissible parts (where n is
the size of Ω), so one needs at least n bits to identify one of them (e.g., a binary
string of size n indicating which individuals are contained in the identified part).
In the case of the OSPP, the admissible parts are the 1

2 n pn� 1q intervals of Ω, so
one roughly needs 2 log n bits to identify one of them (e.g., two integers indicating
the indexes of the interval extrema). This need for dedicated data structures also
holds when representing admissible partitions, computing covered partitions, and
avoiding redundant evaluations.

Hence, the generic algorithm should be used as a starting point to build spe-
cialized ones. This section makes the specialization process explicit for the HSPP
and the OSPP by presenting, in both cases, the execution of the generic algorithm,
the data structures used for the implementation, the pseudocode of the specialized
algorithm, and the resulting computational complexity: linear in case of the HSPP
and quadratic in case of the OSPP, thus meeting the results presented in Section 3.
These two algorithms have been implemented in C++ within the visualization tool
PajeNG for the spatial aggregation of execution traces of distributed computing
systems [30] and within the Ocelotl module of the FrameSoC platform for the
temporal aggregation of traces of embedded systems [20, 40]. Please refer to the
GitHub repositories of Schnorr [51] and Dosimont [19] for more details regarding
the implementation of the two specialized algorithms presented in this section.

5.1 Solving the HSPP

As it has been previously defined, the HSPP arises when the set of admissible
parts P forms a hierarchy (see Subsection 3.3 for the formal definition). A Opnq
optimal algorithm, based on a depth-first search of the tree representing the hierar-
chy, has been proposed in independent work [28, 30, 43]. We show in this subsec-
tion how this result can be recovered as a special case of our generic framework.

25

Execution of the Generic Algorithm. An example of execution of the generic
algorithm in the case of a 3-levels hierarchy is presented in Fig 6. For each ad-
missible part X P P , the corresponding maximal partition tXu covers only one
admissible partition, that is the set of children of the node X in the tree repre-
senting the hierarchy: CpXq � tY P P z Y � X, EZ P P, Y � Z � Xu.
Hence, the branching of the search space proposed in Eq. 4 is not redundant:
PpXq � ttXuu Y RpCpXqq. The resulting algorithm is then a simple recursive
procedure consisting in a depth-first search of the tree (see Fig. 6): a recursive ex-
ecution on each Y P CpXq (step 2.a), the building of the resulting locally-optimal
partition

�
Y PCpXq Y�Y (step 2.b), and the comparison of its cost with the one of the

maximal partition tXu (step 3). The algorithm is naturally called only once per
admissible part (no need for memoization, no stars on dashed lines in Fig. 6) and
the branching of the partition set is never redundant (no crosses on plain arrows).

1

2 3 4

h i e r a r c h y h i e r a r c h y h i e r a r c h y

h i e r a r c h y h i e r a r c h y h i e r a r c h y

h i e r a r c h y

h i e r a r c h y

Figure 6: Execution trace of the optimal partitioning algorithm in the case of a
hierarchical population of size 9 (see Fig. 1). Plain numbered arrows represent
branchings (step 2). Dashed arrows represent recursive calls (step 2.a).

Data Structures and Implementation. The hierarchy P is implemented by a
tree data structure. Each node represents an admissible part X P P and has three
labels instantiated by the algorithm:

• cost stores the cost cpXq of the corresponding part;
• optimalCost stores the cost cpX �q of a locally-optimal partition of X;
• optimalCut is a Boolean value that is true if and only if the maximal parti-

tion tXu is optimal among the admissible partitions of X . It thus provides a
cut of the tree which represents an optimal admissible partition.

26

The pseudocode of the algorithm is given below (see Algorithm 1). The depth-
first search computes the optimalCost and the optimalCut of each node accord-
ing to its cost and to the sum of the optimalCost of its children. After the execu-
tion, the optimal partition of Ω is the union of the higher nodes in the tree such that
optimalCut � true.

Algorithm 1 for the HSPP
Require: A tree with a label cost on each node representing the cost of the corre-

sponding admissible part.
Ensure: Each node of the tree has a Boolean label optimalCut representing an

optimal partition (optimalCut � true if and only if the maximal partition is
optimal for this node).

procedure SOLVEHSPP(node)
if node has no child then

node.optimalCostÐ node.cost
node.optimalCutÐ true

else
MCostÐ node.cost
µCostÐ 0
for each child of node do

SOLVEHSPPpchildq
µCostÐ µCost� child.optimalCost

end for
node.optimalCostÐ maxpµCost,MCostq
node.optimalCutÐ pµCost MCostq

end if
end procedure

Linear Complexity. Since the recording of the three labels needs a constant
memory space for each node, the space complexity of this algorithm is bounded
by the size of the data tree representing the hierarchy. As it contains between n�1
(only the root and the leaves) and 2n � 1 nodes (in the case of a complete bi-
nary tree), the space complexity is linear. The operations needed to instantiate and
exploit these labels are all achieved in constant time. Henceforth, the time com-
plexity is the one of a depth-first search and is also linear, meeting the results of
past algorithms dedicated to the HSPP (see Subsection 3.3).

27

5.2 Solving the OSPP

As it has been previously defined, the OSPP arises when the admissible parts are
the intervals of Ω induced by a total order (see Subsection 3.4 for the formal
definition). A Opn2q dynamic programming algorithm has been proposed in inde-
pendent work to solve this problem [2, 26, 46, 53]. Here again, we show how this
result can be recovered as a special case of our generic framework.

Execution of the Generic Algorithm. An example of execution of the generic
algorithm for an ordered population of size 4 has been given in Fig. 5. Given a
population Ω of n ordered individuals x1 . . . xn, for each interval Jxi, xjK �
txi, . . . , xju with 1 ¤ i ¤ j ¤ n, the admissible partitions covered by the maxi-
mal partition tJxi, xjKu are the couples of subintervals tJxi, xkK, Jxk�1, xjKu with
i ¤ k j. In the following, for the sake of conciseness, we simply mark such an
interval ri, js and its covered partitions ri, ksrk� 1, js. We thus have the following
branching: Cpri, jsq � trisri� 1, js, . . . , ri, j � 1srjsu.

The generic algorithm is applied to Ω � r1, ns. Let us assume that the covered
partitions are evaluated (step 2) in the following order: r1, n � 1srns,
r1, n�2srn�1, ns, . . . , r1sr2, ns (see for example arrows 1 , 6 and 9 in Fig. 5).
The covered partition r1, n � 1srns is evaluated first (1). The algorithm is thus
recursively applied (step 2.a) on part r1, n � 1s (2), then on part r1, n � 2s (3),
and so on, until locally-optimal partitions of parts r1s, r1, 2s, . . . , r1, n � 1s have
been computed and recorded. All that remains is the computation of an optimal
partition of part r1, ns. For the kth evaluation, with 1 k n, the covered par-
tition r1, n � ksrn � k � 1, ns has to be evaluated (for example 6) knowing that
the covered partitions tr1, n� isrn� i� 1, nsu1¤i k have already been evaluated
along with their refined partitions. The algorithm is recursively applied to parts
r1, n� ks and rn� k � 1, ns (step 2.a):

• Since the algorithm has already been applied to part r1, n � ks during the
first evaluation, the optimal partition is simply read from memory (see cross
below 1 2 in Fig. 5).

• Regarding part rn � k � 1, ns, all covered partitions are now considered
for evaluation. However, since rn � k � 1, n � isrn � i � 1, ns refines
r1, n� isrn� i� 1, ns for all 1 ¤ i k, each covered partition has already
been evaluated during the previous evaluations. Hence, steps 2.a and 2.b
may be avoided (see star on arrow 8 in Fig. 5) and the algorithm uses the
maximal partition rn� k � 1, ns.

To sum up, in order to compute an optimal partition X �
r1,ns, the generic algorithm

recursively computes locally-optimal partitions X �
r1s,X

�
r1,2s, . . . ,X

�
r1,n�1s. Then, it

28

exploits the results to compare partitions X �
r1sYtr2, nsu, . . . ,X

�
r1,n�1sYtrnsu and

it returns one that has the highest cost.

Data Structures and Implementation. Given the population Ω � r1, ns, each
admissible part ri, js P P is represented by a couple of integer pi, jq, with
1 ¤ i ¤ j ¤ n. The costs of admissible parts are recorded in a n � n up-
per triangular matrix cost. Each cell costri, js, with 1 ¤ i ¤ j ¤ n, gives the
cost cpri, jsq of the corresponding part. Optimal partitions are encoded in a vector
optimalCut containing n integers such that, for all 1 ¤ j ¤ n, optimalCutrjs
is the indice of the first individual of the last part of an optimal partition of r1, js.
Hence, optimalCutrns � k indicates that part rk, ns is in the optimal partition
of r1, ns and, if k ¡ 1, then optimalCutrk � 1s again indicates the first indi-
vidual of the last part of an optimal partition of r1, k � 1s, and so on. The opti-
mal partition of r1, ns thus consists in a sequence of indices k1, . . . , km recorded
in optimalCut and indicating the m individuals where the population is divided:
r1, k1�1srk1, k2�1s . . . rkm, ns. The costs of these optimal partitions are recorded
in a vector optimalCost of size n. Each cell optimalCostrjs, with 1 ¤ j ¤ n,
gives the cost of the optimal partitions of part r1, js. The algorithm iteratively runs
through the triangular matrix to build the two vectors and thus computes an op-
timal admissible partition of Ω. The pseudocode of the algorithm is given below
(see Algorithm 2).

Algorithm 2 for the OSPP
Require: A matrix cost recording the costs of intervals.
Ensure: The vector optimalCut represents an optimal partition (see text above).

procedure SOLVEOSPP(j)
if j ¡ 1 then

SOLVEOSPPpj � 1q
end if
optimalCostrjs Ð costr1, js
optimalCutrjs Ð 1
for cut P J2, jK do

µCostÐ optimalCostrcut� 1s � costrcut, js
if µCost ¡ optimalCostrjs then

optimalCostrjs Ð µCost
optimalCutrjs Ð cut

end if
end for

end procedure

29

Quadratic Complexity. For a population of size n, the upper triangular matrix
contains 1

2npn � 1q values and the two vectors each contains n integers. Hence,
the space complexity is quadratic. In the proposed implementation, for each part
r1, js with 1 ¤ j ¤ n, the algorithm performs j � 1 comparisons to identify the
optimal partitions among the covering ones. Hence, overall, pn � 1qpn � 2q{2
comparisons are performed and the time complexity is also quadratic. This result
meets the ones of the previous algorithms that have been developed for the OSPP
(see Subsection 3.4).

6 Generalization and Limitation of the Framework

The SPP, as formalized in Subsection 3.1 and in most of the work herein referenced,
is usually defined “at the part level”. The set of admissible parts is an input of
the problem from which the set of admissible partitions (i.e., the search space)
is straightforwardly generated; and a cost is associated to each parts from which
the cost of partitions (i.e., the objective function) is simply derived by summation.
However, the expression of costs and admissibility constraints “at the partition
level” might be required to model more complex problems where the feasibility
and the quality of partitions cannot be simply derived from the feasibility and the
quality of their parts. In this section, we present such cases where “the part level”
is not longer sufficient to model the problem. Because the principle of optimality
we introduced in Subsection 4.1 does not stand in these cases, we also discuss the
strong limitations of the dynamic programming approach when dealing with this
more general class of optimization problems (6.1 and 6.2). We also show in the
last subsection how the algorithmic framework proposed in this paper can easily
be improved to find not one, but all optimal partitions of a given instance (6.3).

6.1 Generalization to Decomposable Cost Functions

Most of the work related to the SPP – including this one – is interested in the opti-
mization of an additively decomposable objective: @X P P, cpX q �

°
XPX cpXq.

This property is also referred to in the literature as the sum property [16], block-
additivity [26], or simply additivity [43], and it has been proved to be satisfied by
numerous objective functions such as measures based on distances between indi-
viduals (e.g., sum/max of diameters/splits clustering [42]), quality measures for
graph clustering (e.g., modularity and performance [43]), classical measures from
information theory (e.g., Shannon entropy, Kullback-Leibler divergence [28]), and
other probabilistic measures for model selection [26]. To go further, the annexe
of this paper shows that the principle of optimality (Subsection 4.1) and its con-

30

verse (Subsection 6.3 below) actually hold for any objective that is decomposable
by a monotone operator: D op : R� Ñ R, @X P P, cpX q � opppcpXqqXPX q
and xi x1i ñ oppx1, . . . , xi, . . . , xnq oppx1, . . . , x

1
i, . . . , xnq. Hence, our

framework can be straightforwardly applied to minimize, for example, the product
of positive costs: @X P P, cpXq ¥ 0 and cpX q �

±
XPX cpXq.

However, a more general version of the SPP could be interested in optimiz-
ing an objective c : P Ñ R that is defined at the partition level and that might
not be decomposable at all: the cost of a partition is not entirely determined by
the cost of its parts. This is for example the case with the lumping problem [41],
where the state space of a dynamical process needs to be partitioned and aggre-
gated such that the resulting macro-dynamics satisfy some closure property (e.g.,
informational closure, observational commutativity, Markovianity). In this setting,
the quality of an aggregate strongly depends on the way other parts of the system
are themselves aggregated. Hence, parts cannot be evaluated independently from
the partition in which they appear and, as a consequence, the principle of optimal-
ity might not hold. Hence, no optimal substructure possibly helps to exploit the
feasibility constraints and to design tractable algorithms. In this case, one surely
needs to cling to heuristic or approximation algorithms to solve this more general
SPP (see Subsection 2.2.1).

6.2 Defining Structural Constraints at the Partition Level

The classical SPP allows to model all kinds of constraints related to the structure
of admissible parts, but it cannot express constraints regarding the structure of ad-
missible partitions. Yet, much work is interested in computing optimal partitions
with bounded size, thus imposing a constraint on the search space that cannot be
expressed as constraints on the set of admissible parts: @X P P, |X | k [12] or
|X | � k [9,11,22,35,36,38,42]. For another example, in the case of the APP (see
Subsection 3.5), constraints are sometimes related to partition properties in addi-
tion to the rectangular shape of admissible parts [7, 35]: hierarchical partitioning
requires a nested partitioning where each rectangular subset, beginning from the
whole array, can only be partitioned into two subsets (no complex intertwined pat-
terns can arise this way); p � q partitioning is even more specific since it requires
that the sides of all rectangles are aligned with each others (the grid is actually
partitioned by complete guillotine cuts in the vertical and horizontal axes).

Such constraints cannot be expressed within the classical SPP since, in this
more general case, the set of admissible partitions does not fit with the set of parti-
tions that are generated from the set of admissible parts. One problem when deal-
ing with such partition constraints is that the branching scheme that is proposed in
Section 4 cannot be used properly. Indeed, this scheme assumes that the admis-

31

sibility of a part is defined independently from the way the rest of the population
is partitioned. On the contrary, the partition constraints cannot be preserved while
independently looking for locally-optimal admissible partitions in each branch of
the search space. As for the generalization to objectives defined at the partition
level, one also needs to cling in this case to heuristic or approximation algorithms
to solve this more general SPP.

6.3 Computing the Whole Set of Optimal Partitions

One might be interested in computing not only one, but all optimal partitions:

P� � arg min
XPP

cpX q.

Our generic algorithmic framework can easily be adapted by considering the con-
verse of the principle of optimality. Intuitively, a partition is potentially optimal
only if its subpartitions also are.

Theorem 2. Let Ω be a population and c be an additive cost function defining
partition optimality. For any partition Y of Ω, if a partition is optimal among the
refinements of Y , then it is the the union of locally-optimal partitions of the parts
of Y: �¤

Y PY
Y�Y

�
P R�pYq ñ @Y P Y, Y�Y P P�pY q (6)

Proof. The proof of this theorem is given in annexe.

Hence, the set of optimal partitions that refine a given partition is the Cartesian
product of the sets of locally-optimal partitions of the parts of that given partition:
R�pYq �

�
Y PY P�pY q, and Eq. 5 can be replaced by the following formula:

P�pXq � arg min

X P ttXuuY

�
��

¤
Y PCptXuq

#¡
Y PY

P�pY q

+�
�

cpX q (7)

This leads to an algorithm very similar to the one presented in Section 4, except
that one needs to record sets of partitions and compute their Cartesian product,
instead of simply recording partitions and computing their union. Note that, in this
setting, the time and space complexity of the resulting specialized implementations
may no longer be tractable since, in the worst case, all partitions are optimal and the
output set P�pXq hence has an exponential size. However, in practice, one might
often assume that – except in extremal cases – the number of optimal partitions is
bounded and very small (see for example [28]).

32

7 Conclusion and Perspectives

By exploiting strong assumptions regarding the global structure of the search space,
dozens of problems have been modeled as tractable versions of the SPP. The algo-
rithmic framework that we propose in this paper provides a unified dynamic pro-
gramming approach to design such computationally-efficient optimal algorithms
by exploiting the algebraic properties of such structures. This last section gives
some application and research perspectives for this framework.

7.1 Applying the Generic Framework to Other Versions of the SPP

We have shown how the algorithmic framework might be easily applied to solve
two well-known versions of the SPP, that is the HSPP and the OSPP. Section 5
made the specialization steps explicit: (1) formalization of the admissible parts
and the resulting admissible partitions, (2) analysis of the generic algorithm exe-
cution, (3) design of data structures that fits with the induced algebraic structure,
and (4) dynamic programing of the corresponding specialized algorithm. By fol-
lowing these steps, our programming method can be applied to numerous other
versions of the SPP that might model interesting spatiotemporal structures: e.g.,
partitioning graphs into connected components [7] or into spanning trees [31], par-
titioning partially ordered sets such as interaction diagrams representing causal
relations [29], partitioning the state space of dynamical processes, also known as
the lumping problem [41], partitioning multidimensional populations mixing spa-
tial and temporal constraints, such as the Cartesian product of a total order and a
hierarchy structure [20]. To the best of our knowledge, these special versions of
the SPP have not been solved yet, and we believe that they might all benefit from
the generic approach presented in this paper.

Another interesting research perspective is the following. For any such new
version of the SPP, the computational complexity of the corresponding specialized
implementation will be bounded from below by the number of admissible parts.
Indeed, any algorithm should at least scan the input, that is the costs associated to
each admissible part (or at least compute such costs from individual attributes). For
both versions addressed in Section 5, the resulting specialized algorithms achieve
such lower bounds: Opnq for the HSPP and Opn2q for the OSPP. However, this
is not always the case. E.g., for a cyclic order, the number of admissible parts is
Opn2q, but dynamic programming only provides a Opn3q algorithm (see [46] and
Table 1). This leads to interesting the following research questions: For which
versions of the SPP does the framework provide an optimization algorithm which
complexity is bounded from below by the number of admissible parts? Such version
are hence linearly solvable with respect to the size of the instance |P|. If not, is

33

it possible to do better, or does the generic framework provide a computationally-
optimal algorithm? In that case, which algebraic properties of the search space
allow to identify problems that can be linearly solved regarding the size of the
input?

7.2 Enhancement Perspectives for the Generic Algorithmic Frame-
work

Future work may build on the large literature regarding algorithms for special ver-
sions the SPP to enhance the generic framework proposed in this paper. Here are
some research perspectives in that direction.

• In many real-world applications, costs are actually sparsely defined within
the set of admissible parts. This is for example the case in the winner de-
termination problem when no bid has been provided for many however-
authorized combinations of assets, thus resulting in “holes” in the algebraic
structure [48, 50]. Algorithms exploiting this sparsity of the cost function
have been proposed to provide more efficient optimization procedures (for
example in the case of the OSPP [48]). Generalizing this strategy to enhance
our framework would consist in assuming infinite cost for such “holes” and
in avoiding branches of the decomposition where they appear, thus speeding
up the resulting specialized algorithms.

• Pruning consists in identifying subspaces of the search space that have no
potential of containing any optimal solution. An adapted search space repre-
sentation have been proposed in the case of the CSPP to identify independent
subspaces for which one can easily identify upper and lower bounds [45,49].
Branches of the decomposition that lies outside of such bounds are then sa-
fully avoided. One could build on the ideas and results of Sandholm et al. in
the case of the CSPP [49] to generalize this pruning approach to the generic
framework.

• An anytime algorithm based on integer-partition has also been proposed in
the case of the CSPP for the coalition structure generation problem [44,45].
It consists in quickly generating a suboptimal solution with bound guaran-
tees by evaluating a reasonable subspace of the search space, then slowly
improving this solution and establishing better bounds by evaluating other
branches of the decomposition. The algorithm thus always provides a so-
lution if stopped before termination, but it might, in the worst case, search
the entire space, resulting in a Opnnq time complexity in the case of the
CSPP. Once again, by building on the results of Sandholm et al. [49], one

34

might identify in a general way to identify subspaces that provide reasonable
bounds and to provide a generic framework to build specialized anytime al-
gorithms.

• Because of the optimal substructure of the SPP and the branching we pro-
posed in Section 4, the computational approach presented in this paper is
easily parallelizable. For example, the depth-first search of the hierarchy
that solves the HSPP (see Subsection 5.1) can be performed in sublinear
time with a linear number of processors [23]. In the case of the coalition
structure generation problem [49] and the interaction-analysis of multiagent
executions [29], it has also been proposed to distribute the optimization pro-
cess among agents and coalitions, so that they share the burden of computa-
tion. These examples encourage us to generalize our algorithmic framework,
exploiting the dynamic approach as well as classical distributed computation
tools in order to build specialized parallel algorithms for versions of the SPP.

Annexe

In this annexe, we prove the principle of optimality (Theorem 1 in Subsection 4.1)
and its converse (Theorem 2 in Subsection 6.3). As mentioned in Subsection 6.1,
these two principles hold for any cost function that is decomposable according to
a monotone operator. Hence, this proof is more general than the classical SPP
considering only additive objectives.

Let c be a cost function which is decomposable by a monotone operator op
(see 6.1 for details). The proof is given for any partition Y � tY1, Y2u of Ω and
can easily be generalized to any partition Y � tY1, . . . , Yku. Because of decom-
posability, for any couple of partitions Y1 P PpY1q and Y2 P PpY2q, we have
cpY1 Y Y2q � oppcpY1q, cpY2qq, and because of monotonicity, if cpY1q cpY 11q,
then oppcpY1q, cpY2qq oppcpY 11q, cpY2qq.

Proof of the Principle of Optimality (Th. 1). Let Y1 P P�pY1q and Y2 P P�pY2q.
Since op is monotone, for any partition Y 11 Y Y 12 P RptY1, Y2uq, we have:

cpY1 Y Y2q � oppcpY1q, cpY2qq

¤ oppcpY 11q, cpY 12qq � cpY 11 Y Y 12q

Therefore, Y1 Y Y2 P R�ptY1, Y2uq.

Proof of its Converse (Th. 2). Let Y1 Y Y2 P R�ptY1, Y2uq. For any partition
Y 11 Y Y 12 P RptY1, Y2uq, we have cpY1 Y Y2q ¤ cpY 11 Y Y 12q. By contradiction,

35

let us assume that Y1 R P�pY1q. Hence, there is a partition Y 11 P PpY1q such that
cpY 11q cpY1q. Hence, since op is monotone, we have:

cpY 11 Y Y2q � oppcpY 11q, cpY2qq

 oppcpY1q, cpY2qq � cpY1 Y Y2q

Since Y 11 Y Y2 P RptY1, Y2uq, there is a contradiction. This also holds for
Y2 R P�pY2q. Therefore, Y1 P P�pY1q and Y2 P P�pY2q.

Acknowledgment

This work was partially supported by the French Agence Nationale de la Recherche
under grant agreement ANR-12-CORP-0009 (GEOMEDIA project) and by the Eu-
ropean Commission’s 7th Framework Programme under grant agreement #318723
(MatheMACS project).

References

[1] C. J. Alpert and A. B. Kahng. Recent developments in netlist partitioning: a
survey. Integration: the VLSI Journal, 19:1–81, 1995.

[2] S. Anily and A. Federgruen. Structured Partitioning Problems. Operations
Research, 39(1):130–149, January/February 1991.

[3] J. P. Arabeyre, J. Fearnley, F. C. Steiger, and W. Teather. The Airline Crew
Scheduling Problem: A Survey. Transportation Science, 3(2):140–163, 1969.

[4] Y. Bachrach, P. Kohli, V. Kolmogorov, and M. Zadimoghaddam. Optimal
Coalition Structure Generation in Cooperative Graph Games. In M. des-
Jardins and M. L. Littman, editors, Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, pages 81–87. AAAI Press, July 2013.

[5] Y. Bachrach, O. Lev, S. Lovett, J. S. Rosenschein, and M. Zadimoghaddam.
Cooperative Weakest Link Games. In A. Lomuscio, P. Scerri, A. Bazzam, and
M. Huhns, editors, Proceedings of the Thirteen International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’14), pages 589–596.
IFAAMAS, May 2014.

[6] E. Balas and M. W. Padberg. Set Partitioning: A Survey. SIAM Review,
18(4):710–760, 1976.

36

[7] R. Becker, I. Lari, M. Lucertini, and B. Simeone. Max-Min Partitioning of
Grid Graphs into Connected Components. Networks, 32(2):115–125, 1998.

[8] N. Bilal, P. Galinier, and F. Guibault. A New Formulation of the Set Covering
Problem for Metaheuristic Approaches. ISRN Operations Research, 2013,
2013.

[9] A. Björklund, T. Husfeldt, and M. Koivisto. Set Partitioning via Inclusion-
Exclusion. SIAM Journal on Computing, 39(2):546–563, 2009.

[10] M. Boschetti, A. Mingozzi, and S. Ricciardelli. A dual ascent procedure for
the set partitioning problem. Discrete Optimization, 5(4):735–747, 2008.

[11] P. Brucker. On the Complexity of Clustering Problems. Optimization and
Operations Research, 157:45–54, 1978.

[12] A. K. Chakravarty, J. B. Orlin, and U. G. Rothblum. A partitioning problem
with additive objective with an application to optimal inventory groupings for
joint replenishment. Operations Research, 30(5):1018–1022, 1982.

[13] C. Chekuri and A. Ene. Approximation Algorithms for Submodular Multiway
Partition. In Proceedings of the 2011 IEEE Fifty-second Annual Symposium
on Foundations of Computer Science (FOCS’11), pages 807–816, October
2011.

[14] P. Chu and J. Beasley. Constraint Handling in Genetic Algorithms: The Set
Partitioning Problem. Journal of Heuristics, 4(4):323–357, 1998.

[15] B. Cloitre. Sequence A003095. In The On-Line Encyclopedia of Integer
Sequences. http://oeis.org/A003095, 2002.

[16] I. Csiszár. Axiomatic Characterizations of Information Measures. Entropy,
10(3):261–273, 2008.

[17] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 2nd edition, (2002).

[18] M. Dom. Set Cover with Almost Consecutive Ones. In M.-Y. Kao, editor,
Encyclopedia of Algorithms, pages 832–834. Springer US, 2008.

[19] D. Dosimont. lpaggreg. In GitHub Repository.
https://github.com/dosimont/lpaggreg, 2013.

37

http://oeis.org/A003095
https://github.com/dosimont/lpaggreg

[20] D. Dosimont, R. Lamarche-Perrin, L. M. Schnorr, G. Huard, and J.-M. Vin-
cent. A Spatiotemporal Data Aggregation Technique for Performance Analy-
sis of Large-scale Execution Traces. In Proceedings of the 2014 IEEE Inter-
national Conference on Cluster Computing (CLUSTER’14). IEEE, Septem-
ber 2014.

[21] F. Eisenbrand, N. Kakimura, T. Rothvoß, and L. Sanità. Set Covering with
Ordered Replacement: Additive and Multiplicative Gaps. Integer Program-
ming and Combinatoral Optimization, 6655:170–182, 2011.

[22] A. H. Farrahi, D.-T. Lee, and M. Sarrafzadeh. Two-Way and Multiway Par-
titioning of a Set of Intervals for Clique-Width Maximization. Algorithmica,
23(3):187–210, 1999.

[23] J. Freeman. Parallel Algorithms for Depth-First Search. Technical Report
MS-CIS-91-71, University of Pennsylvania, Department of Computer and In-
formation Science, 1991.

[24] K. Hoffman and M. Padberg. Set Covering, Packing and Partitioning Prob-
lems. In C. A. Floudas and P. M. Pardalos, editors, Encyclopedia of Opti-
mization, pages 2348–2352. Springer US, 2001.

[25] K. L. Hoffman and T. K. Ralphs. Integer and Combinatorial Optimization. In
S. I. Gass and M. C. Fu, editors, Encyclopedia of Operations Research and
Management Science, pages 771–783. Springer US, 2013.

[26] B. Jackson, J.D. Scargle, D. Barnes, S. Arabhi, A. Alt, et al. An algorithm for
optimal partitioning of data on an interval. IEEE Signal Processing Letters,
12(2):105–108, 2005.

[27] R. Lamarche-Perrin, Y. Demazeau, and J.-M. Vincent. A Generic Algorith-
mic Framework to Solve Special Versions of the Set Partitioning Problem. In
A. Andreou and G. A. Papadopoulos, editors, Proceedings of the 2014 IEEE
International Conference on Tools with Artificial Intelligence (ICTAI’14).
IEEE Computer Society, 2014.

[28] R. Lamarche-Perrin, Y. Demazeau, and J.-M. Vincent. Building the Best
Macroscopic Representations of Complex Multi-Agent Systems. In Trans-
actions on Computational Collective Intelligence, volume 15 of LNCS 8670,
pages 1–27. Springer-Verlag Berlin, Heidelberg, 2014.

[29] R. Lamarche-Perrin, Y. Demazeau, and J.-M. Vincent. Macroscopic Obser-
vation of Large-scale Multi-agent Systems. In R. Prudencio and P. E. Santos,

38

editors, Proceedings of the 2014 Brazilian Conference on Intelligent Systems
(BRACIS’14), October 2014.

[30] R. Lamarche-Perrin, L. M. Schnorr, J.-M. Vincent, and Y. Demazeau. Evalu-
ating Trace Aggregation for Performance Visualization of Large Distributed
Systems. In T. M. Aamodt and B. C. Lee, editors, Proceedings of the 2014
IEEE International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS’14), pages 139–140. IEEE Computer Society, March 2014.

[31] D. Lehmann, R. Müller, and T. Sandholm. The Winner Determination Prob-
lem. In P. Cramton, Y. Shoham, and R. Steinberg, editors, Combinatorial
Auctions, pages 297–317. MIT Press, 2006.

[32] C.-H. M. Lin and H. M. Salkin. An Efficient Algorithm for the Complete Set
Partitioning Problem. Discrete Applied Mathematics, 6(2):149–156, 1983.

[33] G. McGarvey. Sequence A135361. In The On-Line Encyclopedia of Integer
Sequences. http://oeis.org/A135361, 2007.

[34] S. Mecke and D. Wagner. Solving Geometric Covering Problems by Data
Reduction. In S. Albers and T. Radzik, editors, Algorithms – ESA 2004,
volume 3221 of Lecture Notes in Computer Science, pages 760–771. Springer
Berlin Heidelberg, 2004.

[35] A. Mingozzi and S. Morigi. Partitioning a matrix with non-guillotine cuts
to minimize the maximum cost. Discrete Applied Mathematics, 116(3):243–
260, 2002.

[36] M. Minoux. A class of combinatorial problems with polynomially solv-
able large scale set covering/partitioning relaxations. Revue française
d’automatique, d’informatique et de recherche oprationnelle, 21(2):105–136,
1987.

[37] R. Müller. Tractable Cases of the Winner Determination Problem. In P. Cram-
ton, Y. Shoham, and R. Steinberg, editors, Combinatorial Auctions, pages
319–336. MIT Press, 2006.

[38] S. Muthukrishnan and T. Suel. Approximation algorithms for array partition-
ing problems. Journal of Algorithms, 54(1):85–104, 2005.

[39] N. Nisan. Bidding and Allocation in Combinatorial Auctions. In Proceedings
of the Second ACM Conference on Electronic Commerce (EC’00), pages 1–
12, New York, NY, USA, 2000. ACM.

39

http://oeis.org/A135361

[40] G. Pagano, D. Dosimont, G. Huard, V. Marangozova-Martin, and J.-M. Vin-
cent. Trace Management and Analysis for Embedded Systems. In Proceed-
ings of the 7th International Symposium on Embedded Multicore SoCs (MC-
SoC’13), pages 119–122. IEEE Computer Society Press, 2013.

[41] O. Pfante, N. Bertschinger, E. Olbricht, N. Ay, and J. Jost. Comparision
between Different Methods of Level Identification. Advances in Complex
Systems, 2013.

[42] J. Pintér and G. Pesti. Set partition by globally optimized cluster seed points.
European J. of Operational Research, 51:127–135, 1991.

[43] P. Pons and M. Latapy. Post-processing hierarchical community structures:
Quality improvements and multi-scale view. Theoretical Computer Science,
412(8-10):892–900, 2011.

[44] T. Rahwan and N. R. Jennings. Coalition Structure Generation: Dynamic
Programming Meets Anytime Optimisation. In Proceedings of the Twenty-
third Conference on Artificial Intelligence, pages 156–161. AAAI, 2008.

[45] T. Rahwan, S. D. Ramchurn, N. R. Jennings, and A. Giovannucci. An Any-
time Algorithm for Optimal Coalition Structure Generation. Journal of Arti-
ficial Intelligence Research, 34(1):521–567, January 2009.

[46] M. H. Rothkopf, A. Pekeč, and R. M. Harstad. Computationally Manageable
Combinational Auctions. Management Science, 44(8):1131–1147, August
1998.

[47] N. Ruf and A. Schöbel. Set covering with almost consecutive ones property.
Discrete Optimization, 1(2):215–228, 2004.

[48] T. Sandholm. Algorithm for optimal winner determination in combinatorial
auctions. Artificial Intelligence, 135:1–54, 2002.

[49] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé. Coali-
tion structure generation with worst case guarantees. Artificial Intelligence,
111(1-2):209–238, 1999.

[50] T. Sandholm and S. Suri. BOB: Improved winner determination in combina-
torial auctions and generalizations. Artificial Intelligence, 145:33–58, 2003.

[51] L. Schnorr. PajeNG – Trace Visualization Tool. In GitHub Repository.
https://github.com/schnorr/pajeng, 2012.

40

https://github.com/schnorr/pajeng

[52] A. Schöbel. Set covering problems with consecutive ones property. Technical
report, Universität Kaiserslautern, 2004.

[53] R. Vidal. Optimal Partition of an Interval – The Discrete Version. In Ap-
plied Simulated Annealing, volume 396 of LNEMS, pages 291–312. Springer
Berlin, Heidelberg, 1993.

[54] D. Yun Yeh. A Dynamic Programming Approach to the Complete Set Parti-
tioning Problem. BIT Numerical Mathematics, 26(4):467–474, 1986.

41

	Introduction
	Related Work
	Applying the SPP
	Relation to Other Combinatorial Optimization Problems
	The airline crew scheduling problem and other operational problems
	The winner determination problem in combinatorial auctions
	The coalition structure generation problem in algorithmic game theory
	The clustering problem for multilevel data analysis

	Solving the SPP
	Exploiting the Algebraic Structure of the General SPP
	Exploiting Properties of the Cost Function
	Exploiting Structures of the Admissible Parts

	The General SPP and Some Special Versions
	The General Set Partitioning Problem (SPP)
	The Complete Set Partitioning Problem (CSPP)
	The Hierarchical Set Partitioning Problem (HSPP)
	The Ordered Set Partitioning Problem (OSPP)
	The Array Partitioning Problem (APP)
	Bounds on the Size of Admissible Parts

	A Generic Algorithmic Framework to Solve Special Versions of the SPP
	Algebraic Structure and Principle of Optimality
	The Algebraic Structure of the Search Space
	A Principle of Optimality for the SPP

	Branching the Search Space
	A Recursive Algorithm
	Dynamic Programming Improvements
	Recording Intermediary Results
	Avoiding Redundant Evaluations

	From the Generic Framework to Specialized Implementations
	Solving the HSPP
	Solving the OSPP

	Generalization and Limitation of the Framework
	Generalization to Decomposable Cost Functions
	Defining Structural Constraints at the Partition Level
	Computing the Whole Set of Optimal Partitions

	Conclusion and Perspectives
	Applying the Generic Framework to Other Versions of the SPP
	Enhancement Perspectives for the Generic Algorithmic Framework

