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Figure VI. 2

Scatter plot showing relationship between the 𝐸 2 1 + along the 𝑥 axis and 𝐸 4 1 + along the 𝑦 axis for all even-even nuclei.

Figure VI. 3 Scatter plot showing relationship between the 𝐸 2 1 + along the 𝑥 axis and 𝐸 4 2 + along the 𝑦 axis for all even-even nuclei.

Figure VI. 4 Scatter plot showing relationship between the 𝐸 2 2 + along the 𝑥 axis and 𝐸 4 1 + along the 𝑦 axis for all even-even nuclei.

Figure VI. 5 Scatter plot showing relationship between the 𝐸 4 2 + along the 𝑥 axis and 𝐸 2 2 + along the 𝑦 axis for all even-even nuclei.

Figure VI. 6 Scatter plot showing relationship between the 𝐸 4 2 + along the 𝑥 axis and 𝐸 4 1 + along the 𝑦 axis for all even-even nuclei.

Introduction

The purpose of this introduction is to give short overview of some topics in theoretical nuclear structure. The topics selected are nuclear chart, nuclear shell model (NSM), geometrical collective model (GCM), interacting boson model (IBM), quantum shape phase transitions (QSPTs), shape coexistence, critical point symmetries (CPSs), energy ratios and energy correlations. These topics can be used to explain the existence of a few typical patterns of nuclear spectra as well as some of the systematic changes in these patterns over sequences of nuclei. So, the reader will be able to understand each specific type of nuclei occurring in the chart as well as the evolution of structure from one type to another. Since Rutherford's discovery of the nucleus in 1910 using collisions of alpha particles against thin gold sheets [1], the knowledge about the nucleus has been substantially improved. The atomic nucleus is a small dense region located at the center of an atom. It consists of a number of neutrons and protons bound together by the short-ranged attractive nuclear force [START_REF] Krane | Introductory Nuclear Physics[END_REF]. The chart of nuclides, or the Segré chart, figure 1, is a two-dimensional graph in which one axis represents the number of neutrons and the other represents the number of protons in an atomic nucleus. Each point plotted on the graph, thus, represents the nuclide of a real or hypothetical chemical element. This system of ordering nuclides can offer a greater insight into the characteristics of isotopes than the well-known periodic table, which shows only elements instead of each of their isotopes.

There are several thousand nuclides, or isotopes, that inhabit the nuclear landscape. The interplay between the nuclear force and the Coulomb repulsive force leads to nuclei, with certain combinations of neutrons and protons, which are stable. These are situated along the line of stability in the nuclear chart. Exactly 288 nuclei form the so-called valley of stability [START_REF] Erler | [END_REF]4]. For the lightest of the stable nuclei, equal numbers of neutrons and protons are energetically favored. Heavier stable nuclei, on the other hand, require a neutron excess to balance the Coulomb repulsion provided by the increasing number of protons. Nuclei which are removed from the line of stability are unstable and undergo radioactive decay. On the neutron-rich side, nuclei convert neutrons into protons via 𝛽 - decay in order to approach stability. Similarly, proton-rich nuclei decay through 𝛽 + emission or electron capture, converting protons into neutrons. The heaviest of nuclei can decay by emitting tightly-bound 𝛼 particles. The vast majority of our current knowledge, concerning the foundations of many nuclear models, is derived from nuclei near the line of stability. The neutron and proton drip lines represent the limits of the nuclear landscape. While the proton drip line is measured experimentally up to rather high Z-values, the location of the neutron drip line for absolute majority of elements is based on theoretical predictions [5,6].

Fundamentally, the behavior of the nuclear system is entirely determined by the interaction of its constituents, but it is largely impossible to deduce even the most basic structural behavior of the system directly from the intrinsic properties of these constituents. This limitation arises in part since the underlying interactions of protons and neutrons in the nuclear medium are not entirely understood, but, more importantly, the computational problem of describing a system of tens or hundreds of interacting protons and neutrons is intractable without the benefit of some additional simplifications. Consequently, there is a need for "phenomenological" models of nuclear structure. The theoretical nuclear structure landscape comprises a rich collection of nuclear models. The different models provide a basic understanding of the variety of phenomena observed in atomic nuclei which have not been explained under the framework of a single unifying model. However, it is not so that a model developed for one group of nuclei will necessarily be successful in describing the properties of a different group of nuclei. Graph of isotopes by type of nuclear decay. Orange and blue nuclides are unstable, with the black squares between these regions representing stable nuclides. The unbroken line passing below many of the nuclides represents the theoretical position on the graph of nuclides for which proton number is the same as neutron number. The chart shows the location of all nuclei as a function of their neutron number (N) and proton number (Z). Dashed lines represent magic numbers, which correspond to full shells of protons or neutrons. Doubly magic nuclei lie at the intersections of magic-number lines.

The available models can be grouped into roughly three categories: single particle, collective, and models combining both collective and single-particle degrees of freedom. Most nuclei exhibit the properties of both single-particle and collective excitations. In this regard, experimental studies, exploring the interplay of collective and single-particle degrees of freedom, help bridge the gap between the different types of models.

Early in the development of the theory of the nucleus there arose two very different models. The liquid drop model of Neils Bohr took a very classical view of the nucleus as a drop of some nuclear liquid, and using hydrodynamics with some quantum corrections, the binding energies of all known nuclei were reproduced quite well [7], along with a useful model for nuclear fission [8,9]. This model failed in many other respects. The second model is the NSM, developed by Mayer and Jensen, which has its foundation in the single-particle motion of the constituent nucleons in a mean-field potential, much like electrons in the atom [10][11][12][13]. The wave function of any quantum-mechanical state of a nucleus with 𝐴 nucleons satisfies the Schrodinger equation [START_REF] Heyde | Basic ideas and concepts in nuclear physics[END_REF][START_REF] Greiner | Nuclear Models[END_REF] 𝐻Ψ(𝜉 1 , 𝜉 2 , . . . , 𝜉 𝐴 ) = 𝐸Ψ(𝜉 1 , 𝜉 2 , . . . , 𝜉 𝐴 ),

(1) with the Hamiltonian 

The notation 𝜉 𝑖 is used to denote all coordinates of nucleon 𝑖, not only its position vector 𝒓 𝑖 . The term 𝑝 𝑖 2 /2𝑚 𝑖 is the kinetic energy of nucleon 𝑖 and acts on a single nucleon only. The operator 

where the independent-particle potential is 𝐻 ip = ∑ 𝑝 𝑖 2 /2𝑚 𝑖 + 𝑉 1 (𝜉 𝑖 ) 𝐴 𝑖=1

, and the residual interaction 𝑉 ri is given by 𝑉 ri = ∑ 𝑉 2 (𝜉 𝑖 , 𝜉 𝑗 ) 𝐴 𝑖<𝑗 -∑ 𝑉 1 (𝜉 𝑖 ) 𝐴 𝑖=1

. Moreover, if we choose 𝐻 ip such that a large part of the effect of the two-body interaction in (3) is included, the residual interaction 𝑉 ri will be sufficiently weak that, in some cases, it may even be adequate to ignore it. This gives us various independent particle models. Alternatively, we can make use of the energies of independent-particle potential to reduce the Hilbert space to a manageable size and solve the eigenvalue problem with the residual interaction in the truncated space. Hence, the first step in developing the NSM is the choice of the potential. Figure 2, panel A, depicts this situation, a nucleon well inside the nucleus feels the nucleonnucleon interaction from the surrounding nucleons within range of the interaction, which is about 1 fm. As the density of the nucleons is constant inside the nucleus, the mean effect from surrounding nucleons should be almost constant, and the mean potential should be almost flat. Figure 2, panel B, also indicates the effect from surrounding nucleons for a nucleon at the surface. The number of the surrounding nucleons becomes smaller, as this nucleon moves out, resulting in less binding. Therefore, the single-particle shell model treats each nucleon as an independent particle that acts within a mean field of all the rest. Popular choices of the independent-particle potential are harmonicoscillator potential, square-well potential and Woods-Saxon potential.

The NSM centers on the fact that the individual nucleon-nucleon collisions which occur within the nucleus in its ground-state, do not supply enough energy to move nucleons from one major shell to another. The energy required to remove a nucleon from a closed shell is on the order of a few MeV or more. Thus, the closed shell nucleons can be approximated as a closed system which is not open to interactions with external nucleons. The closed shell is often called the (inert) core. In general, there can be some protons (or neutrons) occupying the next shell just above the closed shell. This shell is called the valence shell, and its nucleons are referred to as valence nucleons. The valence shell is, by definition, only partially occupied. Generally, core nucleons are strongly bound and difficult to excite whereas valence nucleons are more loosely bound and easier to excite. An approximation usually (though not always) made in the NSM is to assume that the independent-particle Hamiltonian Hip suffices to describe the core nucleons and to include the residual interaction Vri between valence nucleons only. Given that in this approach the core must be in a unique state coupled to angular momentum 𝐽 = 0, this in effect corresponds to an inert-core assumption, that is, the contribution of the core to the total energy is constant for all quantum states of the nucleus and can be neglected unless one is interested in binding energies. The NSM is founded on the experimental observation that nuclei with proton or neutron numbers 𝑁 = 𝑍 = 2,8,20,28,50,82 and 126, known as the magic numbers, have unique properties compared to other nearby nuclei in the nuclear chart. The nuclear magic numbers are shown in the chart of nuclides in figure 1. Points at which the magic lines intersect are thought to correspond to doubly magic isotopes. Among the thousands of atomic nuclei studied to date, doubly magic nuclei form a very small and exclusive club. The doubly magic nuclei are the best examples of rigidly spherical nuclear systems. To date, six nuclei have had their membership in the doubly magic club confirmed through observation of their rigid sphericity. Five of them are among the stable isotopes found in nature. The sixth is radioactive and is proton rich, it would need two more neutrons to be stable [START_REF] Bazin | [END_REF]17].

The NSM holds up well near magic nuclei. However, the model cannot describe features such as rotations and vibrations in nuclei, observed in regions of the nuclear chart distanced from the magic nuclei. In other words, a major problem for both the liquid drop and NSM was the deviation of the nuclear distribution from spherical symmetry, in particular the large quadrupole moments observed in some elements. These types of nuclei are characterized by a series of low-lying excitations with large transition probabilities. This suggested that certain nuclei are themselves deformed, a situation that could not be satisfactorily explained by either model. The third model is GCM developed by Bohr and Mottelson [START_REF] Bohr | Nuclear Structure[END_REF]. The GCM, contrary to single particle ones, describes the motions exhibited by the nucleus as a whole, not considering the behavior of individual nucleons [START_REF] Rowe | Fundamentals of Nuclear Models: Foundational Models[END_REF][START_REF] Zelevinsky | Physics of Atomic Nuclei[END_REF]. Nuclei can be viewed as incompressible, charged liquid drops, which vibrate and, if deformed, also rotate. In other words, the GCM describes certain properties of the nucleus in terms of its surface that, under the influence of a restoring force, can perform quadrupole (or, more generally, multipole) oscillations around an equilibrium ellipsoidal shape that can be spherical or deformed. To calculate the restoring force, we must know the potential energy landscape as a function of shape variables. This is a very complicated problem of quantum dynamics. However, in the liquid drop model, it can be relatively easily solved if we assume that the mass formula is valid not only for ground state binding energies but also in the process of deformation. If the deformation is small, the change of the surface energy should be described by the same surface tension as in the global surface energy. Any deviation from the spherical shape at fixed volume increases the surface area and surface energy. Thus, the surface tension always provides us with the restoring force. In contrast to the surface energy, the electrostatic repulsion prefers the deformation that would increase distances between the charge elements. In heavy nuclei, the gain of Coulomb energy becomes comparable with the loss of surface energy. Their balance defines the stability of the drop. Too heavy nuclei cannot be stable because of too strong Coulomb repulsion.

With these assumptions, the moving nuclear surface may be described by an expansion in spherical harmonics 𝑌 𝜆,𝜇 (𝜃, 𝜙) with time-dependent shape parameters as coefficients [START_REF] Rowe | Fundamentals of Nuclear Models: Foundational Models[END_REF][START_REF] Zelevinsky | Physics of Atomic Nuclei[END_REF]:

𝑅(𝜃, 𝜙, 𝑡) = 𝑅 0 (1 + ∑ ∑ 𝛼 𝜆,𝜇 * (𝑡)𝑌 𝜆,𝜇 (𝜃, 𝜙) 𝜆 𝜇=-𝜆 ∞ 𝜆=0 ), (4) 
where 𝑅(𝜃, 𝜙, 𝑡) denotes the nuclear radius in the direction (𝜃, 𝜙) at time 𝑡. If all coefficients 𝛼 𝜆,𝜇 = 0 the nuclear surface becomes spherical with radius 𝑅 0 . The coefficients, 𝛼 𝜆,𝜇 , act as the collective coordinates of the nucleus, being the 𝑌 𝜆,𝜇 (𝜃, 𝜙) the directional vectors. Plain sections through nuclear shapes with deformation of order 𝜆 = 1,2,3,4 are presented in figure 3. Quadrupolar deformations, 𝜆 =2, are the most important multipole deformations because the associated excitation modes are the most common collective excitations of the nucleus. Following A. Bohr, each shape is uniquely defined by five quadrupole shape variables: two, 𝛽 and 𝛾, that encode the extent of quadrupole deformation and the asymmetry in the intrinsic frame of reference and three Euler angles, that govern the orientation in space of the intrinsic ellipsoid with respect to a laboratory frame. This transcription is suitable for a clear visual interpretation: the parameter 𝛽 controls the amplitude of the deformations and the "angle" 𝛾 is related to the direction where the deformation occurs. The angular dependence of the deformation parameters along all axes shows the same cosine behavior, except of the phase shift 2𝜋𝑘/3, 𝑘 = 0,1,2, figure 4.

In general, spherical nuclei are found around closed shells. This is easy to understand. The single-particle spectrum for nucleons is not uniform. Instead, the states are separated into groups, with energy differences between states within a group smaller than those between groups. This makes it more favorable for nucleons to fill up each group, or shells, before occupying those in the next one. A closed shell nucleus is formed when all the single-particle states in a group are fully occupied. When this condition is met, the total 𝑀-value, the projection of spin along the quantization axis, of the nuclear state is zero. Such an object is then invariant under a rotation of the coordinate system and must, therefore, be spherical in shape. At the same time, the interplay between short-range nuclear force and long-range repulsive Coulomb force may well favor a non-spherical or deformed equilibrium shape. The deformed nuclei are classified into prolate, oblate and triaxial. Prolate and oblate nuclei are axially symmetric. If the third axis of the nucleus is longer than the others, the nucleus is prolate and if it is shorter, the nucleus is oblate. For triaxial nuclei, the three axes are different. In nature, prolate nuclei dominate over oblate ones. It is found that 86 % of the even-even nuclei are prolate in the ground state and triaxial shapes are very rare for them. The effect of Coulomb repulsion between protons is to deform the nucleus more into an elongated shape than to a flattened shape. The spin-orbit potential (coupling) between nucleons plays a role favoring stable prolate shape for nuclei. The shell structure of nuclei is also responsible for the variety of shapes, depending on the number of valance nucleons between the two closed shells. Prolate shape occurs just after closed shells and towards the end of closed shells, oblate shape is observed.

Quantum mechanically, there cannot be a rotational degree of freedom associated with a spherical object. For a sphere, the square of its wave function is, by definition, independent of angles; it appears to be the same from all directions. As a result, there is no way to distinguish the wave functions before and after a rotation. Rotation is therefore not a quantity that can be observed in this case and, consequently, cannot correspond to a degree of freedom in the system with energy associated with it. In contrast, rotational motion of a deformed object, such as an ellipsoid, may be detected, for example, by observing the changes in the orientation of the axis of symmetry with time. In the historical development of the GCM, it was supposed that the nucleus should vibrate and rotate as an irrotational liquid drop. In this model, the internal degrees of freedom of the nucleus are suppressed and the nucleus is regarded as a homogeneous fluid characterized only by a set of shape coordinates. However, in the two-fluid model the nucleus is represented as a rotationally invariant super fluid core that does not participate in the rotational motion, plus a deformed normal fluid that rotates bodily about it [START_REF] Rowe | Fundamentals of Nuclear Models: Foundational Models[END_REF].

In the framework of GCM, a variety of models such as the anharmonic spherical vibrator, the deformed rotor-vibrator, or the γ-unstable rotor were derived. Figure 5, panel A, shows typical vibrational nuclei where the first excited state is a quadrupole phonon excitation of a basically spherical shape. At about twice and three times of this energy, there are groups of states that can be described as two-and three-phonon excitations of the basic spherical structure. Figure 5, panel B, shows typical even-even deformed nuclei. The lowest levels of spin 𝐽 = 0, 2, 4, 6, ... form a rotational structure whose energies closely follow the 𝐽(𝐽 + 1) law for a rotating symmetric top. Above these are groups of levels. On the other hand, since the birth of quantum mechanics, symmetry has acquired a central role in all branches of physics, and group theory provides the mathematical tool to formulate symmetry principles. Historically, symmetries have played an important role in nuclear physics. Examples are Wigner's spin-isospin 𝔰𝔲(4) symmetry [START_REF] Wigner | [END_REF], Elliott's rotational 𝔰𝔲(3) [22,23], Racah's pairing 𝔰𝔲(2) [24,25] and its extension to proton-neutron pairing with 𝑗-𝑗 coupling giving 𝔰𝔬(5) [26,27], Hecht and Arima's pseudospin [28,29], and Rowe's 𝑆𝑝(3, 𝑅) [30]. Modern developments in symmetry are putting more emphasis on the concept of dynamical symmetry (DS). The DS is a type of symmetry in which the Hamiltonian is expanded in elements of a Lie algebra, (𝐺 0 ), called the spectrum generating algebra (SGA) [31,32]. The DS occurs if the Hamiltonian can be written in terms of the Casimir operators (COs) of a chain of nested algebras, 𝐺 0 ⊃ 𝐺 1 ⊃ ⋯ ⊃ 𝐺 𝑛 . The main advantage of DS is that, whenever one such symmetry occurs, the following properties are then observed. (i) Analytic expressions are available for physical observables. (ii) All states are classified by quantum numbers 𝜆 0 , 𝜆 1 , … , 𝜆 𝑛 which are the labels of the irreducible representations of the subalgebras in SGA.

The notable application of DS and SGA in nuclear physics is the study of collective states for even-even nuclei using the IBM. In its simplest form, Arima and Iachello assumed that an even-even nucleus consists of an inert core plus some valence particles. Furthermore, they assume that the valence particles, which are those outside the major closed shells at 50, 82, 126, tend to pair together in states with angular momentum 𝑙 = 0 and 2, and treat these pairs as bosons [33][34][35][36][37][START_REF] Iachello | The Interacting Boson Model[END_REF]. The identical bosons with angular momentum 𝑙 are referred to as the 𝑙bosons. Hence, the nucleus is described in terms of interacting 𝑠-(𝑙 = 0) and 𝑑-(𝑙 = 2) bosons. The SGA of the IBM is the unitary algebra 𝔲 (6). The IBM is a model for collective behavior. It has become customary to refer to collective models of the Bohr-Mottelson type as "geometric" models and those of the IBM or other group theorybased approaches as "algebraic" models. The IBM quickly became a popular model for the interpretation of nuclear data and acquired the center stage of discussions within the nuclear-structure community. One of its strengths is that it offers a unified view of several descriptions which existed separately. The IBM includes the three descriptions (anharmonic spherical vibrator, the deformed rotor-vibrator, or the γ-unstable rotor) as special cases of its Hamiltonian. Not only do such cases turn out to be analytically solvable using DSs but, in addition, one may easily interpolate in the IBM between the different geometric solutions.

An appropriate formalism to describe the IBM is provided by second quantization. The most general Hamiltonian of the 𝑠𝑑-boson model with one-and two-body rotationally invariant interactions is written as [START_REF] Iachello | The Interacting Boson Model[END_REF] 

𝐻 = 𝐸 0 + 𝜀 𝑠 (𝑠 † ⋅ 𝑠) + 𝜀 𝑑 (𝑑 † ⋅ 𝑑 ̃) + ∑ 1 2 (2𝐿 + 1) 𝐿=0,2,4 𝑐 𝐿 [[𝑑 † ⨂𝑑 † ] 𝐿 ⨂[𝑑 ̃⨂𝑑 ̃]𝐿 ] 0 + 1 √2 𝑣 2 [[𝑑 † ⨂𝑑 † ] 2 ⨂[𝑑 ̃⨂𝑠] 2 + [𝑑 † ⨂𝑠 † ] 2 ⨂[𝑑 ̃⨂𝑑 ̃]2 ] 0 + 1 2 𝑣 0 [[𝑑 † ⨂𝑑 † ] 0 ⨂[𝑠⨂𝑠] 0 + [𝑠 † ⨂𝑠 † ] 0 ⨂[𝑑 ̃⨂𝑑 ̃]0 ] 0 + 𝑢 2 [[𝑑 † ⨂𝑠 † ] 2 ⨂[𝑑 ̃⨂𝑠] 2 ] 0 + 1 2 𝑢 0 [[𝑠 † ⨂𝑠 † ] 0 ⨂[𝑠⨂𝑠] 0 ] 0 , (5) 
where, as usual, (𝑠 † , 𝑑 † ) and (𝑠̃= 𝑠, 𝑑 ̃𝑚 = (-1) 𝑚 𝑑 -𝑚 ) are denoted to the 𝑠 and 𝑑 creation and modified annihilation operators, respectively. are the Clebsch-Gordan coefficients [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]. The matrix elements of the boson interaction are treated in IBM as parameters.

There are thus two one-body terms, specified by the parameters 𝜀 𝑠 , 𝜀 𝑑 , and seven two body terms, specified by the parameters 𝑐 𝐿 (𝐿 = 0,2,4), 𝑣 𝐿 (𝐿 = 0,2) and 𝑢 𝐿 (𝐿 = 0,2). Moreover, the multipole form of the Hamiltonian in the sd-boson space is

𝐻 = 𝜖𝑛 𝑑 + 𝜅𝑄 ⋅ 𝑄 + 𝜅Ĺ ⋅ 𝐿 + 𝑞 3 𝑇 3 ⋅ 𝑇 3 + 𝑞 4 𝑇 4 ⋅ 𝑇 4 , (6) 
where 𝑛 𝑑 , 𝑄, 𝐿, 𝑇 3 and 𝑇 4 terms are the d-boson number operator, the quadrupole operator, the angular momentum operator and the octupole and hexadecapole operators, respectively, and they are defined in terms of 𝑠 and 𝑑 bosons as;

𝑛 𝑑 = √5[𝑑 † ⨂𝑑 ̃]0 (0) , 𝑄 = [𝑑 † ⨂𝑠̃+ 𝑠 † ⨂𝑑 ̃](2) + 𝜒[𝑑 † ⨂𝑑 ̃](2) , 𝐿 = √10[𝑑 † ⨂𝑑 ̃](1) , 𝑇 3 = [𝑑 † ⨂𝑑 ̃](3) , 𝑇 4 = [𝑑 † ⨂𝑑 ̃](4) .
One of the most interesting aspects of the IBM is that of having suggested the occurrence of three types of DSs The Hamiltonians corresponding to these group chains are

𝐻 𝐼 = 𝑒 0 + 𝑒 1 𝐶 1 [𝔲(6)] + 𝑒 2 𝐶 2 [𝔲(6)] + 𝜀𝐶 1 [𝔲(5)] + 𝛼𝐶 2 [𝔲(5)] + 𝜌𝐶 2 [𝔬(5)] + 𝜔𝐶 2 [𝔬(3)], (8.a) 
𝐻 𝐼𝐼 = 𝑒 0 + 𝑒 1 𝐶 1 [𝔲(6)] + 𝑒 2 𝐶 2 [𝔲(6)] + 𝛿𝐶 2 [𝔰𝔲(3)] + 𝜔𝐶 2 [𝔬(3)], (8.b) 
𝐻 𝐼𝐼𝐼 = 𝑒 0 + 𝑒 1 𝐶 1 [𝔲(6)] + 𝑒 2 𝐶 2 [𝔲(6)] + 𝜂𝐶 2 [𝔬(6)] + 𝜌𝐶 2 [𝔬(5)] + 𝜔𝐶 2 [𝔬(3)]. (8.c) 
where 𝐶 1 [𝐺] and 𝐶 2 [𝐺] are the linear and quadratic COs of the algebra 𝐺. The irreducible representations corresponding to these group chains which label the states of a nucleus are

| 𝔲(6) ⊃ ↓ [𝑁] 𝔲(5) ⊃ ↓ 𝑛 𝑑 𝔬(5) ↓ 𝜈 ⊃ ↓ 𝑛 △ 𝔬(3) ⊃ ↓ 𝐿 𝔬(2) ↓ 𝑀 ⟩, (9.a) | 𝔲(6) ⊃ ↓ [𝑁] 𝔰𝔲(3) ↓ (𝜆, 𝜇) ⊃ ↓ 𝐾 𝔬(3) ⊃ ↓ 𝐿 𝔬(2) ↓ 𝑀 ⟩, (9.b) 
| 𝔲(6) ⊃ ↓ [𝑁] 𝔬(6) ⊃ ↓ 𝜎 𝔬(5) ↓ 𝜏 ⊃ ↓ 𝜈 △ 𝔬(3) ⊃ ↓ 𝐿 𝔬(2) ↓ 𝑀 ⟩. (9.c)
According to the spectrum generation principle and the branch rules of the irreducible representations of the groups which label the states of a nucleus, we have the energy spectrum of the states in each of the symmetries as: where 𝐸 0 = 𝑒 0 + 𝑒 1 𝑁 + 𝑒 2 𝑁(𝑁 + 5). This term contributes only to binding energies and not to excitation energies.

The 𝔲(6) ⊃ 𝔲(5) reduction rule takes the form 𝑛 𝑑 = 𝑁, 𝑁 -1, … ,0. The reduction 𝔲(5) ⊃ 𝔬( 5) is given by 𝜈 = 𝑛 𝑑 , 𝑛 𝑑 -2, … ,1 or 0 (𝑛 𝑑 odd or even). There is the following algorithm for the reduction 𝔬(5) ⊃ 𝔬 [START_REF] Erler | [END_REF]. First, partition 𝑛 𝑑 as 𝑛 𝑑 = 2𝑛 𝛽 + 3𝑛 △ + 𝜆 where 𝑛 𝛽 = (𝑛 𝑑 -𝜈)/ 2: 𝑛 𝛽 = 0,1, … , 𝑛 𝑑 /2 or (𝑛 𝑑 -1)/2 and 𝑛 △ = 0,1,2, … . The allowed angular momenta are 𝐿 = 𝜆, 𝜆 + 1, … ,2𝜆 -2,2𝜆. Note that 2𝜆 -1 is missing and 𝐿 = 1 will never occur. A typical 𝔲(5) DS spectrum exhibits 𝑛 𝑑 -multiplets of a spherical vibrator, with a two-phonon (𝑛 𝑑 = 2) triplet of states (𝐿 = 4, 2, 0) at an energy 𝐸(𝑛 𝑑 = 2) ≈ 2𝐸(𝑛 𝑑 = 1) above the ground state (𝑛 𝑑 = 𝐿 = 0), and a threephonon (𝑛 𝑑 =3) quintuplet of states (𝐿= 6, 4, 3, 2, 0) at 𝐸(𝑛 𝑑 = 3) ≈ 3𝐸(𝑛 𝑑 = 1). The spectrum of states corresponding to (10.a) is shown in figure 6.

The 𝔲(6) ⊃ 𝔰𝔲(3) reduction rule takes the form (𝜆, 𝜇) = (2𝑁, 0)⨁(2𝑁 -4,2)⨁(2𝑁 -8,4)⨁ … ⨁{(0, 𝑁), (2, 𝑁 -1)}{𝑁 = even or 𝑁 = odd}⨁ …. There is the following algorithm for the reduction 𝔰𝔲(3) ⊃ 𝔬(3). If 𝐾 ≠ 0, where 𝐾 = integer = min{𝜆, 𝜇}, min{𝜆, 𝜇} -2, … ,1 or 0, (min{𝜆, 𝜇} = odd or even). The allowed angular momenta are 𝐿 = 𝐾, 𝐾 + 1, 𝐾 + 2 … , 𝐾 + max{𝜆, 𝜇}. However, in the case of 𝐾 = 0, the allowed angular momenta are 𝐿 = max{𝜆, 𝜇} , max{𝜆, 𝜇} -2, … ,1 or 0, (max{𝜆, 𝜇} = odd or even). In the 𝔰𝔲(3) symmetry scheme the "ground" band appears as the representation (𝜆, 𝜇) = (2𝑁, 0), while the "𝛽" and "𝛾" bands appear as the representation (𝜆, 𝜇) = (2𝑁 -4,2) with 𝐾 = 0 and 𝐾 = 2. Because the 𝔰𝔲(3) eigenvalues, (10. b), do not depend on 𝐾, states of the "𝛽 " and "𝛾 " bands of identical angular momentum (𝐿 = 0,2,4, . ..) are degenerate in 𝔰𝔲(3). The spectrum of states corresponding to (10.b) is shown in figure 6.

The 𝔲(6) ⊃ 𝔬(6) reduction rule takes the form 𝜎 = 𝑁, 𝑁 -2, … ,1 or 0, (𝑁 = odd or even). The reduction 𝔬(6) ⊃ 𝔬( 5) is given by 𝜏 = 𝜎, 𝜎 -1, … ,1, 0. There is the following algorithm for the reduction 𝔬(5) ⊃ 𝔬 [START_REF] Erler | [END_REF]. First, partition 𝜏 as 𝜏 = 3𝜈 △ + 𝜆 and 𝜈 △ =0, 1, 2 …. The allowed angular momenta are 𝐿 = 𝜆, 𝜆 + 1,…,2𝜆 -2, 2𝜆. It is easy to see that the ground state and the lowest-energy states have an 𝔬 (6) quantum number 𝜎 = 𝑁 and 𝔬(5) symmetry. The 𝔬(6) symmetry then predicts a repetition of structural patterns with 𝔬(5) symmetry at higher excitation energies and 𝔬 (6) quantum number 𝜎 = 𝑁 -2, 𝑁 -4, etc. The spectrum of states corresponding to (10.c) is shown in figure 6.

The eigenvalue problem for Hamiltonian 𝐻 can be solved in closed form when 𝐻 can be written in terms only of COs of chain of groups 𝐺 ⊃ 𝐺 ́⊃ ⋯. Most nuclei are not in this ideal situation and thus one needs to treat the full Hamiltonian 𝐻. After that of the DSs in which all properties can be calculated analytically, the next situation, in order of complexity, arises when the Hamiltonian can be written in terms of operators of two chains. One can schematically depict the situation as in figure 7 Many extensions of IBM are developed to cover many situations. One remarkable extension is 𝑔-IBM in which the next even angular momentum is considered hence to include a 𝑔-(𝑙 = 4) boson [START_REF] Heyde | [END_REF][41][42][43][44][45]. The 𝔲( 15) is the SGA of the 𝑔-IBM. In addition to those mentioned above, more important versions of the IBM consist of additional angular momenta (𝑝, 𝑓 with 𝑙 = 1, 3, respectively) together with the 𝑠 and 𝑑 boson. In the extensions of IBM, the bosons with 𝑝, 𝑓 and 𝑔 angular momentum are useful mostly as supplements of dipole and octupole degrees of freedom, which are generated by the system of the 𝑠 and 𝑑 bosons [46][47][48]. Over the last few years, more attention has been paid to the development of the IBM in a more general form. The two-level boson model, or 𝑠-𝑎 boson model, is described in terms of interacting 𝑠and 𝑎boson where 𝑎 is the positive integer angular momentum [49,50]. The SGA of the 𝑠-𝑎 IBM is 𝔲(𝑛 𝑎 + 1), where 𝑛 𝑎 = 2𝑎 + 1 [START_REF] Kota | AIP Conf. Proc[END_REF][START_REF] Kota | [END_REF]. The generic three-level boson model or 𝑠-𝑎𝑏 boson model can be defined in terms of the 𝑠, 𝑎 and 𝑏bosons [53]. The SGA of the 𝑠-𝑎𝑏 IBM is 𝔲(𝑛 𝑎 + 𝑛 𝑏 + 1), where 𝑛 𝑎 = 2𝑎 + 1 and 𝑛 𝑏 = 2𝑏 + 1. Two versions of IBM in this class include the 𝔲(15) 𝑠𝑑𝑔-IBM and the 𝔲(9) 𝑠𝑝𝑑-IBM. Clearly, such an algebraic approach is preferable not only because it gives the opportunity to expand the model to other cases without having to develop a completely new model, but also because it provides the analytical expressions of physical observations. Since the beginning of the discussion of magnetic properties of collective even-even nuclei in the IBM the proton-neutron version (IBM-2) [54][55][56][57][58][59][60][START_REF] Frank | Algebraic Methods in Molecular and Nuclear Structure Physics[END_REF] has become increasingly important. Eveneven nuclei are modeled in the IBM-2 as a system of proton (𝜋) and neutron (𝜈) bosons that interact via two-body forces. The charge character of the bosons can be introduced in two different ways: 1-One considers two distinct systems for proton and neutron bosons and treats them exactly as in the IBM-1. 2-One considers the boson charge states as the components of a two-valued state vector and labels them with the quantum number called 𝐹 -spin, |𝐹 = 1/2, 𝑀 𝐹 = 1/2⟩ = |𝑁 𝜋 ⟩ and |𝐹 = 1/2, 𝑀 𝐹 = -1/2⟩ = |𝑁 𝜈 ⟩, where 𝑁 𝜋 and 𝑁 𝜈 are the numbers of proton and neutron bosons, respectively. Wave functions with good F-spin can be eigenstates of Hamiltonians that commute with the quadratic F-spin operator, [𝐻, 𝐹 2 ] = 0. The SGA of IBM-2 is 𝔲(12) as a single boson carries 12 degrees of freedom (6 from 𝑠 and 𝑑 and two from 𝜋 and 𝜈). Then there are the well-known 𝔲(6)⨂𝔰𝔲 𝐹 (2) with the 𝔰𝔲 𝐹 (2) algebra generating 𝐹 spin and the 𝔲 𝜋 (6)⨂𝔲 𝜈 (6) symmetry limits in this model.

In the interacting boson-fermion model (IBFM) odd-even nuclei are treated by coupling the single particle (fermion) degrees of freedom of the odd nucleon to the collective (boson) degrees of freedom of the even-even core nucleus. The structure of many odd-even nuclei has been successfully
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described in the framework of the IBFM, both in the IBFM-1 version where the IBM-1 core is built from one type of bosons, and in the IBFM-2 version where the IBM-2 core is based on the concept of two types of bosons: proton bosons and neutron bosons. For odd-odd nuclei only interacting bosonfermion-fermion model IBFFM-1, the version with one type of bosons, was extensively used. On the other hand, there have not been so many calculations in the proton-neutron interacting boson-fermionfermion model (IBFFM-2). The IBFFM-2, where proton, neutron, proton boson, and neutron boson degrees of freedom are present, gives the rare opportunity to analyses the full scale of boson-fermion interactions. Consequently, the concept of symmetry has been extended with the introduction of supersymmetries. The generators of supersymmetry transformations form a graded Lie algebra whose even subalgebra is an ordinary Lie algebra while the odd generators, which mix bosons and fermions, close under anti-commutation. The best studied examples of these supersymmetries are 𝔲(6/4), 𝔲(6/12) and 𝔲(6/20) graded Lie algebras in which the rotation group, 𝑠𝑜(3), is embedded [START_REF] Iachello | The Interacting Boson-Fermion Model[END_REF][START_REF] Bijker | [END_REF][64][65][66][67][68][69][70][71][72].

On the other hand, quantum algebras (QAs) are deformed versions of the Lie algebras, to which they are reduced when the deformation parameter 𝑞 is set equal to unity. The growing interest in the QAs is related to the correspondence of the properties of QAs and those of Lie algebras regarding the representation theory and their numerous physical applications. QAs have now become a significant and widely used concept in nuclear and molecular physics [73][74][75][76][77]. The QA 𝔰𝔲 𝑞 [START_REF] Krane | Introductory Nuclear Physics[END_REF], in particular, has been used for the description of rotational bands in the deformed and super-deformed nuclei. Deformed versions of the 𝔳(6) and 𝔲(5) DSs of the IBM have been discussed in Ref [78]. Recently [79], the 𝑞-deformed Hamiltonian for the 𝔰𝔳(6)-𝔲(5) transitional case in IBM is constructed by using affine 𝔰𝔲 𝑞 (1,1) Lie algebra in the both IBM-1 and 2 versions and IBFM. In addition, a deformed version of 𝑠𝑑𝑙and 𝑠𝑑𝑙𝑙′ -boson models are produced (where l and l′ are any two angular momenta) [80]. It is important to note that, the quantum algebraic treatment extends the applicability of the analytical solutions and it works in the near neighborhood of the exact DS. Thus, an equivalent of a large numerical problem is obtained in terms of a simple analytical expression [81][82][83][84].

A geometric shape visualization of the even-even nuclei is made by plotting the potential energy surface (PES), denoted by 𝐸(𝑁, 𝛽, 𝛾), in the (𝛽, 𝛾) plane. Based on the coherent state formalism and making use of results and an algorithm developed by Gilmore and Feng, [85][86][87] a technique for going from an IBM Hamiltonian to a PES in the variables 𝛽 and 𝛾, has been outlined in Ref. [88]. The 𝐸(𝑁, 𝛽, 𝛾) can be obtained by calculating the expectation value of the Hamiltonian (5) 

𝑥 2 = -2 √ 1 35 𝑣 2 , (12.b 
)

𝑥 3 = √ 1 5 (𝑣 0 + 𝑢 2 ), (12.c) 
where 𝑁 is number of bosons, 𝛽, 𝛾 are deformation parameters (usually, 𝛽 ≥ 0, 0 ≤ 𝛾 ≤ 60) and other terms are the same as in the Hamiltonian (5). Equation ( 11) can be used to analyze the shape structure of the three DSs. We have where 𝑘 = - The concept of QSPT refers to the sudden change of the atomic nucleus ground state structure as a function of a control parameter. Such control parameter can be, e.g., the neutron number and, therefore, a QSPT can appear in an isotopic chain where the ground state deformation varies in an abrupt way when passing from an isotope to its neighbor. The QSPT have been the subject of numerous theoretical and experimental studies and present a rapidly growing field of research. Theoretical analyses have typically been based on algebraic models of nuclear structure or phenomenological geometric models of nuclear shapes and potentials, but more recently several attempts have been made towards a fully microscopic description of QSPT starting from nucleonic degrees of freedom [88][89][90][91][92]. Generally, the form of the Hamiltonian used to describe the QSPT from phase A to phase B is often built as

𝐻 𝜆 = (1 -𝜆)𝐻 𝐴 + 𝜆𝐻 𝐵 , 𝜆 ∈ [0,1]. ( 14 
)
The terms 𝐻 𝐴 and 𝐻 𝐵 with [𝐻 𝐴 , 𝐻 𝐵 ] ≠ 0 represent two modes of motion-suppose that they are classified by two different DSs and 𝐻 𝜆 is intermediate between them for 𝜆 ∈ [0,1]. The parameter 𝜆 controls the transition between both DSs. The onset of a QSPT is denoted by the existence of a critical value of the control parameter, 𝜆, for which the structure of the system passes from one phase with symmetry A to another phase with symmetry B.

The simple consistent-Q formalism can be used for characterizing all situations of transitional patterns in the IBM-1 if only one-and two-body interactions are taken into consideration. The consistent-Q Hamiltonian [93][94][95][96][97][98] can be written as:

𝐻 = 𝛼 (𝜂𝑁 𝑑 + 𝜂 -1 𝑁 𝑄 𝜒 (𝜁) ⋅ 𝑄 𝜒 (𝜁)), (15) 
with

𝑄 𝜒 = [𝑑 † ⨂𝑠̃+ 𝑠 † ⨂𝑑 ̃](2) + 𝜒[𝑑 † ⨂𝑑 ̃](2) .
Here 𝜂 and 𝜒 play the role of the control parameters and 𝛼 is an overall energy scaling factor. 𝑁 is the number of bosons and equals half the number of valence nucleons. The parameter 𝜂 governs the transition between spherical and deformed, and 𝜒 the transition between prolate and oblate deformation. The Hamiltonian, [START_REF] Greiner | Nuclear Models[END_REF], contains the three DSs of the IBM: 𝔲(5) when 𝜂 = 1, 𝔬 (6) when 𝜂 = 0 and 𝜒 = 0 and 𝔰𝔲(3) when 𝜂 = 0 and 𝜒 = -√7/2 as well as the 𝔰𝔲(3) ̅̅̅̅̅̅̅ limit when 𝜂 = 0 and 𝜒 = +√7/2.

Various nuclear QSPT can be explored within the transitional patterns among different symmetries in the IBM. For example, the QSPT from spherical to axially deformed shape is characterized as the 𝔲(5)-𝔰𝔲(3) transition; the QSPT from spherical to the γ-soft motion is described by the 𝔲(5)-𝔬(6) transition; and the QSPT from prolate to oblate shape is often described by the 𝔰𝔲(3)-𝔬(6)-𝔰𝔲(3) ̅̅̅̅̅̅̅ transition, in which the prolate and oblate phase are described by the 𝔰𝔲(3) and 𝔰𝔲(3) ̅̅̅̅̅̅̅ symmetry limit respectively, and the 𝔬(6) symmetry limit emerges exactly at the critical point since the traditional Hamiltonian is designed to pass the 𝔬(6) limit via a nonlinear dependence on the control parameter. The extended Casten triangle maps also the QSPTs which occurs inside the triangle. They are the first order transition between oblate and prolate shapes occurring on the 𝔬(6)-𝔲(5) axis to the point where the nucleus changes from spherical to deformed. From there on the first order transition between spherical and deformed goes outwards to the legs. The central point itself represents the second order transition and can be seen as the triple point of nuclear deformation where spherical, prolate and oblate deformation coexist. Figure 9 illustrates the obtained phase diagram and indicates the position of the first and second order QSPTs. The two key differences between first-and second-order QSPTs are that, in a first-order QSPT, the order parameter (the quadrupole deformation) changes discontinuously at the phase transition and there is a coexistence of spherical and deformed phases. In a second-order QSPT, the deformation grows continuously and there is only a single phase.

Furthermore, there are several extensions of QSPT to 𝑠𝑑𝑔-IBM [99], proton-neutron IBM [100][101][102][103], and excited state QSPT [104]. More interestingly, QSPT are also studied in odd-A nuclei within the IBFM model [105][106][107][108].

Besides QSPTs atomic nuclei might also exhibit shape coexistence. Shape coexistence in nuclear physics was first proposed by Morinaga in the 1950's and since then it has given rise to a property of atomic nuclei that appears throughout the entire nuclear landscape, especially to those nuclei at or near shell or sub-shell closures [109]. Shape coexistence presents certain distinct experimental features: a U shape in the energy systematics of certain excited bands, lowering of certain excited 0+ states, a rapid change in the value of spectroscopic quadrupole moments, and the existence of strong E0 transitions. All of them are enhanced and present an almost symmetric behavior with respect to the corresponding mid-shell. Shape coexistence can be understood in terms of two major theoretical approaches, namely the spherical NSM and the mean field. The appearance of intruder configurations reflects the competition between the energy gap, that tends to maintain spherical shapes, and the residual interaction, that favors the deformation of the nucleus and lower, in some cases considerably, the excitation energy of the intruder states [109].

With QSPT, from the point of view of experiments, an important question arises: is it possible to obtain analytical predictions for observables at the phase transition point, i.e., are there solvable models or symmetries that describe the structure at the phase transition point? The introduction of CPSs concept, describing nuclei at points of QSPT between different limiting symmetries, was originally suggested by Iachello [110,111]. It is still one of the hot topics in nuclear structure physics . A much development, in this direction, has been mainly accomplished by both phenomenological models: the GCM as well as the IBM. The CPS of the QSPT between the 𝔲(5) and 𝔳(6) DSs defines the 𝐸(5) symmetry and it was experimentally identified for the first time in 134 Ba. It has been found that there are many nuclei in the transitional region with the 𝐸(5) CPS, such as 102 Pd, 104 Ru, 106 Mo, 106 Cd, 108 Cd, 124 Te and 128 Xe [114][115][116][117][118][119][120][121][122][123][124][125][126]. The critical-point description of the transition from a deformed rotor to a spherically vibrator, denoted as 𝑋 (5), is located on the 𝔲(5)-𝔰𝔲(3) leg of the Casten triangle and it was experimentally identified for the first time in the 152 Sm nucleus. There are many nuclei in the transitional region with the 𝑋(5) CPS, such as 150 Nd, 154 Gd, 156 Dy [127][128][129][130][131][132][133][134][135][136]. 

where 𝛽 and 𝛾 are the deformation variables, 𝐵 is the collective mass parameter, and 𝐿 ́𝑘 (𝑘 = 1,2,3) are the projections of the angular momentum on the body-fixed 𝑘-axis. In the 𝐸(5) case the potential is supposed to depend only on the collective variable 𝛽 and not on 𝛾. Then exact separation of variables is achieved and the equation containing 𝛽 can be solved exactly for an infinite square well potential in 𝛽, the eigenfunctions being Bessel functions of the first kind. In the 𝑋(5) case the potential is supposed to be of the form 𝑢(𝛽) + 𝑢(𝛾). Then approximate separation of variables is achieved in the special case of 𝛾 ≃ 0, the 𝛽-equation with an infinite square well potential leading to Bessel eigenfunctions, while the 𝛾-equation with a harmonic oscillator potential having a minimum at 𝛾 = 0 leads to a two-dimensional harmonic oscillator with Laguerre eigenfunctions. Even more, 𝑌(5) [137] and 𝑍(5) [138] CPSs describe the transitions from axial rotor to triaxial rotor and from prolate rotor to oblate rotor, respectively. A 𝛾-rigid version (with 𝛾 = 0) of the 𝑋(5) CPS was constructed [139].

The model was called 𝑋(3) since it was proved to contain three degrees of freedom. Experimental realizations of 𝑋(3) appear to occur in 172 Os and 186 Pt. Recently, the CPS called 𝑇(5) [140] has been introduced by approximately separating variables in the Bohr Hamiltonian for any given 𝛾 value. It was shown that the 𝑇( 5) model provides a dynamical connection between the original 𝑋(5) and 𝑍(5) CPSs, of which the two CPSs just correspond to the limiting cases of the 𝑇(5) model. It was also shown that the model provides a better description of the spectral patterns of 148 Ce, 160 Yb, 192 Pt, and 194 Pt, which in turn indicates that possible triaxial deformation may be involved to some extent in these transitional nuclei.

In Ref. [145] the 𝐸(5/4) model of critical-point symmetry for odd-mass systems was developed, based on the concept of dynamical supersymmetry. The 𝐸(5/4) model describes the coupling of an unpaired 𝑗 = 3/2 nucleon to the even-even boson core with 𝐸(5) symmetry. In fact, the first test of the 𝐸(5/4) Bose-Fermi symmetry considered the low-energy spectrum of 135 Ba [146] in terms of the neutron 2d3/2 orbital coupled to the 𝐸(5) boson core 134 Ba. If the odd nucleon lives in a system of levels with 𝑗 = 1/2,3/2,5/2, the 𝐸(5/12) model [147] is obtained. Similarly, the 𝑋(𝑛/2𝑗 + 1) scheme [148,149] with 𝑛 = 3 or 5 was proposed by coupling the 𝑋(𝑛) core with a particle in a single-𝑗 shell.

The easiest experimental signature for each type of behavior is the energy ratios. By analyzing the energy ratios, we can identify the shape phases. The energy ratio 𝑅 4 1 + /2 1 + is one of the most remarkable structural signatures and, furthermore, is one of the few whose absolute value is directly meaningful. This ratio has the limiting value 2 for a quadrupole vibrator, 2.5 for a non-axial 𝛾-soft rotor and 3.33 for an ideally symmetric rotor, figure 10. However, our understanding of the low-lying excitations is frequently complicated by coexisting shapes or intruder configurations. It would be useful to identify a clear signature for these coexisting structures which alter the low-lying level spectra. Such a signature could possibly point to a unified origin of the source for these intruders. It has been suggested [150] that plots of 𝑅(6/4) = 𝐸(6 1 + )/𝐸(4 1 + )

versus 𝑅(4/2) = 𝐸(4 1 + )/𝐸(2 1 + ) show a smooth systematic behavior, deviations from which indicate coexistence of collective and noncollective configurations. Consequently, the care should be taken in using only 𝑅(4/2) values as an indication of the collective shape, since frequently this value is affected by coexisting structures. For the safe determination of the character of a collective band, especially in nuclei where mixing of different bands occurs, in which case the 𝑅(4/2) ratio might be seriously affected, the series of ratios 𝑅(𝐽 + 2/𝐽), 𝐽 = 2, 4, 6, … used to construct a quantity showing distinctly different behavior in the vibrational, rotational, and 𝛾-unstable limits [151]. In the rotational limit the members of ground-state bands have excitation energies 𝐸(𝐽) = 𝐴𝐽(𝐽 + 𝐼), where 𝐴 is the rotational constant. Then, in this limit, the relevant ratio is 𝑅(𝐽 + 2/𝐽) 𝑟𝑜𝑡 = (𝐽 + 2)(𝐽 + 3)/𝐽(𝐽 + 1). In the vibrational limit, the members of the band are 𝐸(𝐽) = 𝐵𝐽, so that the relevant ratio is 𝑅(𝐽 + 2/𝐽) 𝑣𝑖𝑏 = (𝐽 + 2)/𝐽. For the ground band, the following ratio is constructed for each As we see from the previous discussion, the properties of the lowest excited states of atomic nuclei offer a very sensitive test for nuclear structure theories. During the last two decades a remarkable set of correlations has been discovered [153][154][155][156][157][158][159][160][161] among the excitation energies of quasiband structures in collective nuclei. These discoveries have been possible by exploiting the large body of data on stable and near-stable nuclei whose accumulation over the past decades now permits a global perspective and a synthesis of heretofore seemingly disparate behavior. The correlations found to apply to nuclei near stability offer benchmarks and challenges for confronting data soon to be obtained on exotic nuclei far from stability. They also draw attention to the value of a ''horizontal'' approach to structural evolution, as a complement to the usual ''vertical'' approach that focuses on individual level schemes. In this horizontal approach, instead of studying the yrast energies of eveneven nuclei, 𝐸(2 1 + ), 𝐸(4 1 + ), 𝐸(6 1 + ), . . . or their ratios, such as 𝑅(4/2), as functions of 𝑍, 𝐴 or other similar quantities, as usually done, the relationships between the energies themselves are studied.

Almost 60 years ago, Mallmann showed [162] that the data for the 𝑅(6/2) = 𝐸(6 + )/𝐸(2 + ) and 𝑅(8/2) = 𝐸(8 + )/𝐸(2 + ) energy ratios for the ground state band (GSB) of even-even nuclei represented as functions of 𝑅(4/2) = 𝐸(4 + )/𝐸(2 + ) lie on two universal curves, respectively. After that, it was found that Mallmann-type ratios for higher spin states in the GSB define also compact, unique patterns. The correlations between energy ratios within bands have a universal character: various bands in all collective nuclei (even-even, odd-even, and odd-odd), and even the superdeformed bands, display a similar behavior.

Such simple and almost universal correlations were not predicted in advance by any nuclear model and there is still no microscopic understanding of the observed behavior and its universality. Nevertheless, macroscopic approaches such as the IBM, as well as the IBFM, automatically reproduce, in a natural way, the observed behavior. The fact that the GSB structure in the even-even nuclei follows a simple systematic incited to the development of many theoretical and phenomenological approaches aiming at understanding this behavior. Among the early various approaches to the description of the yrast excitation energies, important steps are the variable moment of inertia model [163], the anharmonic vibrator [164] and the empirical relation of Ejiri [165]. It was shown that the anharmonic vibrator relations: 𝐸(𝐽) = 𝑛𝐸(2 1 + ) + 𝑛(𝑛 -1)𝜀 4 /2, where 𝑛 is the number of phonons, fit very well all the energies in the ground-state band of all even-even nuclei, where 𝐽 = 2𝑛. This expression is equivalent with the two-parameter formula proposed on purely empirical grounds by Ejiri, 𝐸(𝐽) = 𝑎𝐽 + 𝑏𝐽(𝐽 + 1) (𝑎, 𝑏 are parameters) and, in fact, is a seconddegree polynomial in 𝐽: 𝐸(𝐽) = 𝛼𝐽 + 𝛽𝐽 2 . In this case the Mallmann-type relations are: 𝑅(𝐽/2) = [𝑅(4/2)𝑛(𝑛 -1)]/2 -𝑛(𝑛 -2). In particular 𝑅(6/2) = 3𝑅(4/2) -3 and 𝑅(8/2) = 6𝑅(4/2) -8. It is found experimentally that with increasing 𝑛 (spin) the plots increase in scattering but with highly correlated deviations, a fact which indicates the need of additional anharmonicities. The second order anharmonic vibrator expression, 𝐸(𝐽) = 𝑛𝐸(2 1 + ) + 𝑛(𝑛 -1) 2 𝜀 4 + [𝑛(𝑛 -1)(𝑛 -2)𝜀 6 ]/6, describes quite well the experimental GSB's of all collective even-even nuclei. This formula, in fact, is equivalent to the third order polynomial in 𝐽: 𝐸(𝐽) = 𝛼𝐽 + 𝛽𝐽 2 + 𝛾𝐽 3 .Moreover, based on the spin dependence of the energy of the states, recurrence relations between energy ratios was obtained. These relations can be used to predict with high accuracy (if there is no perturbation of the band) the energy of higher members of the band.

Finally, we hope that, with the background provided in this introduction, reader can now begin to develop an understanding of each specific type of nuclei occurring in the chart as well as the evolution of structure from one type to another. Now, in this work, we present an atlas of 645 even-even nuclei containing the experimental data of four energy levels. Besides the usual 2 1 + and 4 1 + states, we consider the following excited states: 2 2 + and 4 2 + , which are experimentally known in many nuclei. The "non-collective" nuclei (that is, those with 𝑅(4/2) < 2.0) were also included, thus, covering the whole range of nuclear structures.

We visualized the values of energy levels and energy ratios, 𝐸 2 , in all even-even nuclei. The ENSDF database [START_REF]Evaluated Nuclear Structure Data File[END_REF] has been extensively used in extracting the relevant data. The atlas is organized as follows.

In chapter I, we provide three dimensional figures of the values of energy levels and energy ratios over all even-even nuclei. The experimental values of the energy levels and energy ratios plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The values of energy levels (keV) and energy ratios are indicated by the scale shown on the right of the graphs.

In chapter II, two dimensional figures of the values of energy level and energy ratios over all even-even nuclei for different isotopes are presented. The experimental values of the energy levels and energy ratios plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

In chapter III, two dimensional figures of the values of energy levels and energy ratios for each chain of isotopes are presented. Each figure consists of four panels. Panel A represents the comparison of the experimental values of energy levels of the In chapter IV, we provide two dimensional figures of the values of energy levels and energy ratios for different isotones. The experimental values of the energy levels and energy ratios plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graphs.

In chapter V, two dimensional figures of the values of energy levels and energy ratios for each chain of isotones are presented. Each figure consists of four panels. Panel A represents the comparison of the experimental values of energy levels of the lowest 2 In chapter VI, we provide scatter plots showing relationship between the values of energy levels 𝐸 2 1 + , 𝐸 2 2 + , 𝐸 4 1 + and 𝐸 4 2 + for all even-even nuclei.

In chapter VII, we provide a table of experimental data. In order are given: the nuclide, 𝑍, 𝑁,

𝐴, 𝐸 2,1 , 𝐸 2,2 , 𝐸 4,1 , 𝐸 4,2 , 𝐸 4,2 𝐸 2,1 , 𝐸 4,2 𝐸 2,2 , 𝐸 4,2 𝐸 4,1 , 𝐸 4,1 𝐸 2,1 , 𝐸 4,1 𝐸 2,2 , 𝐸 2,2 𝐸 2,1
, and reference. 
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Chapter I Three dimensional figures of the values of energy levels and energy ratios over all even-even nuclei

Chapter II Two dimensional figures of the values of energy levels and energy ratios over all even-even nuclei for different isotopes

Figure I. 1

 1 Figure I. 1The experimental values of the energy of the first-excited 2 + state (the interpolation surface of 𝐸 2 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. Figure I. 2 The same as in figure I. 1, but for 𝐸 2 1 + . Figure I. 3 The same as in figure I. 1, but for 𝐸 2 2 + . Figure I. 4 The same as in figure I. 1, but for 𝐸 4 1 + . Figure I. 5The experimental values of the energy ratio 𝐸 2 2 + /𝐸 2 1 + (the interpolation surface of 𝐸 2 2 + /𝐸 2 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis.

Figure II. 1

 1 Figure II. 1The experimental values of the energy of the first -excited 2 + state (𝐸 2 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. Figure II. 2 The same as in figure II. 1, but for 𝐸 2 2 + . Figure II. 3 The same as in figure II. 1, but for 𝐸 4 1 + . Figure II. 4 The same as in figure II. 1, but for 𝐸 4 2 + . Figure II. 5The experimental values of the energy ratio 𝐸 2 2 + /𝐸 2 1 + for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes.

Figure II. 6

 6 Figure II. 6

Figure III. 2 3 Figure IV. 1

 231 Figure III. 2The same as in figure III. 1, but for the chain of Be isotopes. FigureIII. 3 The same as in figure III. 1, but for the chain of C isotopes. FigureIII. 4 The same as in figure III. 1, but for the chain of O isotopes. Figure III. 5 The same as in figure III. 1, but for the chain of Ne isotopes. Figure III. 6 The same as in figure III. 1, but for the chain of Mg isotopes. Figure III. 7 The same as in figure III. 1, but for the chain of Si isotopes. Figure III. 8 The same as in figure III. 1, but for the chain of S isotopes. Figure III. 9 The same as in figure III. 1, but for the chain of Ar isotopes. Figure III. 10 The same as in figure III. 1, but for the chain of Ca isotopes. Figure III. 11 The same as in figure III. 1, but for the chain of Ti isotopes. Figure III. 12 The same as in figure III. 1, but for the chain of Cr isotopes. Figure III. 13 The same as in figure III. 1, but for the chain of Fe isotopes. Figure III. 14 The same as in figure III. 1, but for the chain of Ni isotopes. Figure III. 15 The same as in figure III. 1, but for the chain of Zn isotopes. Figure III. 16 The same as in figure III. 1, but for the chain of Ge isotopes. Figure III. 17 The same as in figure III. 1, but for the chain of Se isotopes. Figure III. 18 The same as in figure III. 1, but for the chain of Kr isotopes. Figure III. 19 The same as in figure III. 1, but for the chain of Sr isotopes. Figure III. 20 The same as in figure III. 1, but for the chain of Zr isotopes. Figure III. 21 The same as in figure III. 1, but for the chain of Mo isotopes. Figure III. 22 The same as in figure III. 1, but for the chain of Ru isotopes.

Figure

  Figure V. 1 Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=2 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 + ) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=2 isotones.

Figure V. 31 Figure VI. 1

 311 Figure V. 2The same as in figure V. 1, but for the chain of N=4 isotones. Figure V.[START_REF] Erler | [END_REF] The same as in figure V. 1, but for the chain of N=6 isotones. Figure V.4 The same as in figure V. 1, but for the chain of N=8 isotones. Figure V.5 The same as in figure V. 1, but for the chain of N=10 isotones. Figure V.6 The same as in figure V. 1, but for the chain of N=12 isotones. Figure V.7 The same as in figure V. 1, but for the chain of N=14 isotones. Figure V.8 The same as in figure V. 1, but for the chain of N=16 isotones. Figure V. 9The same as in figure V. 1, but for the chain of N=18 isotones.Figure V. 10The same as in figure V. 1, but for the chain of N=20 isotones.Figure V. 11The same as in figure V. 1, but for the chain of N=22 isotones. Figure V.12 The same as in figure V. 1, but for the chain of N=24 isotones. Figure V.13 The same as in figure V. 1, but for the chain of N=26 isotones. Figure V.[START_REF] Heyde | Basic ideas and concepts in nuclear physics[END_REF] The same as in figure V. 1, but for the chain of N=28 isotones. Figure V.[START_REF] Greiner | Nuclear Models[END_REF] The same as in figure V. 1, but for the chain of N=30 isotones. Figure V.[START_REF] Bazin | [END_REF] The same as in figure V. 1, but for the chain of N=32 isotones. Figure V. 17The same as in figure V. 1, but for the chain of N=34 isotones. Figure V.[START_REF] Bohr | Nuclear Structure[END_REF] The same as in figure V. 1, but for the chain of N=36 isotones. Figure V.[START_REF] Rowe | Fundamentals of Nuclear Models: Foundational Models[END_REF] The same as in figure V. 1, but for the chain of N=38 isotones. Figure V.[START_REF] Zelevinsky | Physics of Atomic Nuclei[END_REF] The same as in figure V. 1, but for the chain of N=40 isotones. FigureV.[START_REF] Wigner | [END_REF] The same as in figure V. 1, but for the chain of N=42 isotones. FigureV.22 The same as in figure V. 1, but for the chain of N=44 isotones. Figure V.23 The same as in figure V. 1, but for the chain of N=46 isotones. FigureV.24 The same as in figure V. 1, but for the chain of N=48 isotones. Figure V.25 The same as in figure V. 1, but for the chain of N=50 isotones. Figure V.26 The same as in figure V. 1, but for the chain of N=52 isotones. Figure V.27 The same as in figure V. 1, but for the chain of N=54 isotones. Figure V.28 The same as in figure V. 1, but for the chain of N=56 isotones. Figure V.29 The same as in figure V. 1, but for the chain of N=58 isotones. Figure V.30 The same as in figure V. 1, but for the chain of N=60 isotones. Figure V.31 The same as in figure V. 1, but for the chain of N=62 isotones. Figure V.32 The same as in figure V. 1, but for the chain of N=64 isotones.

Figure 1 .

 1 Figure 1. Graph of isotopes by type of nuclear decay. Orange and blue nuclides are unstable, with the black squares between these regions representing stable nuclides. The unbroken line passing below many of the nuclides represents the theoretical position on the graph of nuclides for which proton number is the same as neutron number. The chart shows the location of all nuclei as a function of their neutron number (N) and proton number (Z). Dashed lines represent magic numbers, which correspond to full shells of protons or neutrons. Doubly magic nuclei lie at the intersections of magic-number lines.

Figure 2 .

 2 Figure 2. Panels A and B are schematic illustration of the mean potential for a nucleon inside the nuclear surface and at the nuclear surface, respectively.

Figure 3 .

 3 Figure 3. Illustration of the multipole deformations for 𝜆 = 1,2,3,4.

Figure 4 .

 4 Figure 4. A polar diagram in the deformation plane (𝛽, 𝛾). Any quadrupole shape can be identified within a region 𝛽 ≥ 0 and 0 ≤ 𝛾 ≤ 𝜋 ∕ 3; on a full polar plane, symmetry, transformations allow for six equivalent representations as illustrated. Values of 𝛾 multiples of 60 correspond to restoration of axial symmetry along axis whose number is indicated and direction points toward prolate shape; the shapes are illustrated.

Figure 5 .

 5 Figure 5. Panels A and B are the energy spectra of the spherical vibrator and the deformed rotor, respectively.

I 𝔲( 6 )

 6 ⊃ 𝔲(5) ⊃ 𝔳(5) ⊃ 𝔳(3), anharmonic spherical vibrator, (7.a) II 𝔲(6) ⊃ 𝔰𝔲(3) ⊃ 𝔳(3), axially-deformed rotovibrator, (7.b) III 𝔲(6) ⊃ 𝔳(6) ⊃ 𝔳(5) ⊃ 𝔳(3), γ-unstable deformed rotovibrator. (7.c)

  𝐸 𝐼 (𝑁, 𝑛 𝑑 , 𝜈, 𝑛 △ , 𝐿, 𝑀) = 𝐸 0 + 𝜀𝑛 𝑑 + 𝛼𝑛 𝑑 (𝑛 𝑑 + 4) + 2𝜌𝜈(𝜈 + 3) + 2𝜔𝐿(𝐿 + 1), (10.a) 𝐸 𝐼𝐼 (𝑁, (𝜆, 𝜇), 𝐾, 𝐿, 𝑀) = 𝐸 0 + 2 3 𝛿(𝜆 2 + 𝜇 2 + 𝜆𝜇 + 3𝜆 + 3𝜇) + 2𝜔𝐿(𝐿 + 1), (10.b) 𝐸 𝐼𝐼𝐼 (𝑁, 𝜎, 𝜏, 𝜈 △ , 𝐿, 𝑀) = 𝐸 0 + 2𝜂𝜎(𝜎 + 4) + 2𝜌𝜏(𝜏 + 3) + 2𝜔𝐿(𝐿 + 1), (10.c)

CFigure 6 .

 6 , called Casten triangle. The three limits, DSs, are placed at the vertices of the triangle. Situations in which 𝐻 contains only COs of the two chains are placed along the sides of the triangle, and situations in which COs of all chains appear are placed inside the triangle. One can thus divide nuclei into four transitional classes. Class A, nuclei with properties intermediate between I and II; Class B, nuclei with properties intermediate between II and III; Class C, nuclei with properties intermediate between III and I; and Class D, nuclei with properties intermediate between all three limits. A B Panels A, B, and C represent spectra with 𝔲(5), 𝔰𝔲(3), and 𝔬(6) DSs, respectively, and 𝑁 = 6. The angular momentum 𝐿 of each state is shown to the left.

Figure 7 .

 7 Figure 7. Representation of the IBM phase diagram as a Casten triangle. The three DSs are located in the vertices. Critical points E(5) (second order) and X(5) (first order).

Figure 8 . 4 𝑘

 84 Figure 8. Panel A represents the PES 𝐸 𝐼 as a function of 𝛽 (𝐸 0 = 0, 𝑥 1 = 0) and 𝛽-𝛾 plot. Panel B illustrates the PES 𝐸 𝐼𝐼 as a function of 𝛽 (𝛾 = 0, 𝑘 ́= 3 4 𝑘, 𝐸 0 = 10𝑘𝑁) and the corresponding 𝛽-𝛾 plot. Panel C r explains the PES 𝐸 𝐼𝐼𝐼 in the case 𝐵 = 𝐶 = 0, 𝐸 0 = 0 and the corresponding 𝛽-𝛾 plot.

  , 𝐴 = -8𝜂, 𝐵 = 12𝜌 and 𝐶 = 2𝜔. From (13), we know that 𝐸 𝐼 and 𝐸 𝐼𝐼𝐼 are 𝛾 independent. Figure8represents PES, 𝐸 𝐼 , 𝐸 𝐼𝐼 , and 𝐸 𝐼𝐼𝐼 as a function of 𝛽.

Figure 9 .

 9 Figure 9. The extended Casten triangle. Dashed lines indicate the first order QSPTs and the filled dot the isolated second order transition. The open circles indicate the location of the different DSs. The three different phases are spherical (I), prolate deformed (II) and oblate deformed (III).

Figure 10 .

 10 Figure 10. Pictorial description of the quadrupole collective states of atomic nucleus.When departing from the closed shell (Near Magic) with the increase of the valence nucleon number N, the shape changes from spherical vibrator to deformed rotor, passing through the transitional nuclei in between.

Figure I. 1 (

 1 Figure I. 1 (color online) The experimental values of the energy of the first-excited 2 + state (the interpolation surface of 𝐸 2 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The value of 𝐸 2 1 + (Kev) is indicated by the scale shown on the right.

Figure I .

 I Figure I. (color online) The experimental values of the energy of the second-excited 2 + state (the interpolation surface of 𝐸 2 2 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The value of 𝐸 + (Kev) is indicated by the scale shown on the right.

Figure I. 3 (

 3 Figure I. 3 (color online) The experimental values of the energy of the first-excited 4 + state (the interpolation surface of 𝐸 4 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The value of 𝐸 4 1 + (Kev) is indicated by the scale shown on the right.

Figure I. 4 (

 4 Figure I. 4 (color online) The experimental values of the energy of the second-excited 4 + state (the interpolation surface of 𝐸 4 2 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The value of 𝐸 4 2 + (Kev) is indicated by the scale shown on the right.

Figure I. 5 (

 5 Figure I. 5 (color online) The experimental values of the energy ratio 𝐸 2 2 + /𝐸 2 1 + (the interpolation surface of 𝐸 2 2 + /𝐸 2 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The value of 𝐸 2 2 + /𝐸 2 1 + is indicated by the scale shown on the right.

Figure I. 6 (

 6 Figure I. 6 (color online) The experimental values of the energy ratio 𝐸 4 1 + /𝐸 2 2 + (the interpolation surface of 𝐸 4 1 + /𝐸 2 2 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The value of 𝐸 4 1 + /𝐸 2 2 + is indicated by the scale shown on the right.
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 I Figure I. (color online) The experimental values of the energy ratio 𝐸 4 1 + /𝐸 2 1 + (the interpolation surface of 𝐸 4 1 + /𝐸 2 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The value of 𝐸 4 1 + /𝐸 + is indicated by the scale shown on the right.
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 I Figure I. (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 2 1 + (the interpolation surface of 𝐸 4 2 + /𝐸 2 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The value of 𝐸 4 2 + /𝐸 + is indicated by the scale shown on the right.
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 I Figure I. (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 2 2 + (the interpolation surface of 𝐸 4 2 + /𝐸 2 2 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The value of 𝐸 4 2 + /𝐸 + is indicated by the scale shown on the right.

Figure I. 10 (

 10 Figure I. 10 (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 4 1 + (the interpolation surface of 𝐸 4 2 + /𝐸 4 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis and proton number 𝑍 along the 𝑦 axis. The dashed horizontal and vertical lines indicate the positions of magic numbers. The value of 𝐸 4 2 + /𝐸 4 1 + is indicated by the scale shown on the right.

Figure II. 1 (

 1 Figure II. 1 (color online) The experimental values of the energy of the first -excited 2 + state (𝐸 2 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

Figure II. 2 (

 2 Figure II. 2 (color online) The experimental values of the energy of the second-excited 2 + state (𝐸 2 2 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

Figure II. 3 (

 3 Figure II. 3 (color online) The experimental values of the energy of the first-excited 4 + state (𝐸 4 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

Figure II. 4 (

 4 Figure II. 4 (color online) The experimental values of the energy of the second-excited 4 + state (𝐸 4 2 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

Figure II. 5 (

 5 Figure II. 5 (color online) The experimental values of the energy ratio 𝐸 2 2 + /𝐸 2 1 + for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

Figure II. 6 (

 6 Figure II. 6 (color online) The experimental values of the energy ratio 𝐸 4 1 + /𝐸 2 2 + for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

Figure II. 7 (

 7 Figure II. 7 (color online) The experimental values of the energy ratio 𝐸 4 1 + /𝐸 2 1 + for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

Figure II. 8 (

 8 Figure II. 8 (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 2 1 + for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

Figure II. 9 (

 9 Figure II. 9 (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 2 2 + for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

Figure II. 10 (

 10 Figure II. 10 (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 4 1 + for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis for different isotopes. The proton numbers 𝑍 for different isotopes are indicated by legend below graph.

Figure II. 11 (Figure II. 12 (Figure II. 13 (Figure II. 14 (Figure II. 15 (Figure II. 16 (Figure II. 17 (Figure II. 18 (Figure II. 19 (Figure II. 20 ( 53 HeFigure III. 1 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 111213141516171819205311212 Figure II. 11 (color online) The experimental values of the energy of the first -excited 2 + state (𝐸 2 1 + ) for all even-even nuclei plotted as a function of neutron number 𝑁 along the 𝑥 axis (in general).

Figure III. 4 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 41212 Figure III. 4 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of O isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 + ) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of O isotopes.

Figure III. 5 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 51212 Figure III. 5 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Ne isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Ne isotopes.

Figure III. 9 (

 9 Figure III. 9 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Ar isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Ar isotopes.

  Figure III. 10 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Ca isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Ca isotopes.

  Figure III. 11 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Ti isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Ti isotopes.

  Figure III. 15 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Zn isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Zn isotopes.

  Figure III. 21 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Mo isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Mo isotopes.

  Figure III. 24 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Cd isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Cd isotopes.

1 + , 2 2 + , 4 1 + and 4 2 +

 1212 Figure III. 27 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Xe isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Xe isotopes.

Figure III. 28 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 281212 Figure III. 28 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Ba isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Ba isotopes.

Figure III. 29 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 291212 Figure III. 29 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Ce isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Ce isotopes.

Figure III. 30 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 301212 Figure III. 30 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Nd isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Nd isotopes.

Figure III. 31 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 311212 Figure III. 31 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Sm isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Sm isotopes.

Figure III. 32 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 321212 Figure III. 32 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Gd isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Gd isotopes.

Figure III. 36 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 361212 Figure III. 36 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Hf isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Hf isotopes.

Figure III. 39 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 391212 Figure III. 39 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Pt isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Pt isotopes.

Figure III. 40 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 401212 Figure III. 40 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Hg isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Hg isotopes.

Figure III. 41 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 411212 Figure III. 41 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Pb isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Pb isotopes.

Figure III. 42 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 421212 Figure III. 42 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Po isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Po isotopes.

Figure III. 43 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 431212 Figure III. 43 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Rn isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Rn isotopes.

Figure III. 44 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 441212 Figure III. 44 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Ra isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Ra isotopes.

Figure III. 46 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 461212 Figure III. 46 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of U isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of U isotopes.

Figure III. 49 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 491212 Figure III. 49 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of Cf isotopes. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of Cf isotopes.

Figure IV. 1 (

 1 Figure IV. 1 (color online) The experimental values of the energy of the first -excited 2 + state (𝐸 2 1 + ) for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graph.

Figure IV. 2 (

 2 Figure IV. 2 (color online) The experimental values of the energy of the second -excited 2 + state (𝐸 2 2 + ) for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graph.

Figure IV. 3 (

 3 Figure IV. 3 (color online) The experimental values of the energy of the first -excited 4 + state (𝐸 4 1 + ) for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graph.

  0

Figure IV. 4 (

 4 Figure IV. 4 (color online) The experimental values of the energy of the second -excited 4 + state (𝐸 4 2 + ) for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graph.

Figure IV. 5 (

 5 Figure IV. 5 (color online) The experimental values of the energy ratio 𝐸 2 2 + /𝐸 2 1 + for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graph.

Figure IV. 6 (

 6 Figure IV. 6 (color online) The experimental values of the energy ratio 𝐸 4 1 + /𝐸 2 1 + for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graph.

Figure IV. 7 (

 7 Figure IV. 7 (color online) The experimental values of the energy ratio 𝐸 4 1 + /𝐸 2 2 + for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graph.

Figure IV. 8 (

 8 Figure IV. 8 (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 2 1 + for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graph.
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Figure IV. 9 (

 9 Figure IV. 9 (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 2 2 + for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graph.

Figure IV. 10 (

 10 Figure IV. 10 (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 4 1 + for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis for different isotones. The neutron numbers 𝑁 for different isotones are indicated by legend below graph.

  0

Figure IV. 11 (

 11 Figure IV. 11 (color online) The experimental values of the energy of the first -excited 2 + state (𝐸 2 1 + ) for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis (in general ).

Figure IV. 12 (

 12 Figure IV. 12 (color online) The experimental values of the energy of the second -excited 2 + state (𝐸 2 2 + ) for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis (in general ).

Figure IV. 13 (

 13 Figure IV. 13 (color online) The experimental values of the energy of the first -excited 4 + state (𝐸 4 1 +) for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis (in general ).

Figure IV. 14 (

 14 Figure IV. 14 (color online) The experimental values of the energy of the second -excited 4 + state (𝐸 4 2 +) for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis (in general ).

Figure

  Figure IV. (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 2 1 + for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis (in general ).

1 Figure IV. 16 ( 2 Figure

 1162 Figure IV. 16 (color online) The experimental values of the energy ratio 𝐸 4 2 + /𝐸 2 2 + for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis (in general ).

123 Figure IV. 18 ( 1 Figure IV. 19 ( 2 Figure IV. 20 (Figure V. 1 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 1231811922011212 Figure IV. 18 (color online) The experimental values of the energy ratio 𝐸 4 1 + /𝐸 2 1 + for all even-even nuclei plotted as a function of proton number 𝑍 along the 𝑥 axis (in general ).

Figure V. 8 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 81212 Figure V. 8 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=16 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=16 isotones.

Figure V. 10 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 101212 Figure V. 10 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=20 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=20 isotones.

Figure V. 12 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 121212 Figure V. 12 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=24 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=24 isotones.

Figure V. 13 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 131212 Figure V. 13 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=26 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=26 isotones.

Figure V. 15 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 151212 Figure V. 15 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=30 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=30 isotones.

Figure V. 16 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 161212 Figure V. 16 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=32 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=32 isotones.

Figure V. 17 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 171212 Figure V. 17(color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=34 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=34 isotones.

Figure V. 18 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 181212 Figure V. 18 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=36 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=36 isotones.

Figure V. 19 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 191212 Figure V. 19 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=38 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=38 isotones.

Figure V. 20 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 201212 Figure V. 20 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=40 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=40 isotones.

Figure V. 21 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 211212 Figure V. 21 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=42 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=42 isotones.

Figure V. 22 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 221212 Figure V. 22 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=44 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=44 isotones.

Figure V. 23 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 231212 Figure V. 23 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=46 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=46 isotones.

Figure V. 24 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 241212 Figure V. 24 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=48 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=48 isotones.

Figure V. 28 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 281212 Figure V. 28 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=56 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=56 isotones.

Figure V. 33 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 331212 Figure V. 33 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=66 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=66 isotones.

Figure V. 40 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 401212 Figure V. 40 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=80 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=80 isotones.

Figure V. 41 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 411212 Figure V. 41 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=82 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=82 isotones.

Figure V. 42 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 421212 Figure V. 42 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=84 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=84 isotones.

Figure V. 43 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 431212 Figure V. 43 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=86 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=86 isotones.

Figure V. 44 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 441212 Figure V. 44 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=88 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=88 isotones.

Figure V. 45 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 451212 Figure V. 45 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=90 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=90 isotones.

Figure V. 46 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 461212 Figure V. 46 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=92 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=92 isotones.

Figure V. 48 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 481212 Figure V. 48 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=96 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=96 isotones.

Figure V. 49 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 491212 Figure V. 49 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=98 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=98 isotones.

Figure V. 50 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 501212 Figure V. 50 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=100 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=100 isotones.

Figure V. 60 ( 1 + , 2 2 + , 4 1 + and 4 2 +

 601212 Figure V. 60 (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=120 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=120 isotones.

Figure VI. 1 (

 1 Figure VI. 1 (color online) Scatter plot showing relationship between the 𝐸 2 1 + along the 𝑥 axis and 𝐸 2 2 + along the 𝑦 axis for all even-even nuclei.

Figure VI. 2 (

 2 Figure VI. 2 (color online) Scatter plot showing relationship between the 𝐸 2 1 + along the 𝑥 axis and 𝐸 4 1+ along the 𝑦 axis for all even-even nuclei.

Figure VI. 3 (Figure VI. 4 (Figure VI. 5 (Figure VI. 6 (

 3456 Figure VI. 3 (color online) Scatter plot showing relationship between the 𝐸 2 1 + along the 𝑥 axis and 𝐸 4 2+ along the 𝑦 axis for all even-even nuclei.

  

  

  

  

  

  

  , but for 𝐸 4 2 + /𝐸 2 2 + . Figure II. 17 The same as in figure II. 15, but for 𝐸 4 2 + /𝐸 4 1 + . Figure II. 18 The same as in figure II. 15, but for 𝐸 4 1 + /𝐸 2 1 + . Figure II. 19 The same as in figure II. 15, but for 𝐸 4 1 + /𝐸 2 2 + . Figure II. 20 The same as in figure II. 15, but for 𝐸 2 2 + /𝐸 2 1 + .

  . 12 The same as in figure IV. 11, but for 𝐸 2 2 + . Figure IV. 13 The same as in figure IV. 11, but for 𝐸 4 1 + . Figure IV. 14 The same as in figure IV. 11, but for 𝐸 4 2 + . Figure IV.

  , but for 𝐸 4 2 + /𝐸 2 2 + . Figure IV. 17 The same as in figure IV. 15, but for 𝐸 4 2 + /𝐸 4 1 + . Figure IV. 18 The same as in figure IV. 15, but for 𝐸 4 1 + /𝐸 2 1 + . Figure IV. 19 The same as in figure IV. 15, but for 𝐸 4 1 + /𝐸 2 2 + . Figure IV. 20 The same as in figure IV. 15, but for 𝐸 2 2 + /𝐸 2 1 + .

in the coherent state and is given in the following form

  

	𝐸(𝑁, 𝛽, 𝛾) =	𝑁 𝛽 2 + 1	(𝜀 𝑠 + 𝜀 𝑑 𝛽 2 ) +	𝑁(𝑁 -1) (𝛽 2 + 1) 2 {𝑥 1 𝛽 4 + 𝑥 2 𝛽 3 cos 3𝛾 + 𝑥 3 𝛽 2 +	1 2	𝑢 0 },	(11)
	with							
			𝑥 1 =	1 10	𝑐 0 +	1 7	𝑐 2 +	9 35	𝑐 4 ,	(12.a)

  All these CPSs have been constructed by considering the original Bohr equation, separating the collective 𝛽 and 𝛾 variables, and making different assumptions about the 𝑢(𝛽) and 𝑢(𝛾) potentials involved (𝑉(𝛽, 𝛾) = 𝑢(𝛽) + 𝑢(𝛾)). The original Bohr Hamiltonian is written as

	𝐻 = -	ℏ 2 2𝐵	{ 𝛽 4 1	𝜕 𝜕𝛽	𝛽 4 𝜕 𝜕𝛽	+	1 𝛽 2 ( sin 3𝛾 1	𝜕 𝜕𝛾	sin 3𝛾	𝜕 𝜕𝛾	-	1 4	∑ 𝑘	𝐿 ́𝑘 2 sin 2 (𝛾 -	3 𝑘𝜋) 2 )} + 𝑉(𝛽, 𝛾)

Table 1 .

 1 Energy ratios take different values in different shape phases.

		𝑅(6/2)	𝑅(4/0)	𝑅(6/0)
	Vibrational nuclei	3.00	1.00	1.50
	𝛾-unstable nuclei	4.50	5/9	1.00
	Rotational nuclei	7.00	0.00	0.00

  𝐽, 𝑟(𝐽 + 2/𝐽) = [𝑅(𝐽 + 2/𝐽) 𝑒𝑥𝑝 -𝑅(𝐽 + 2/𝐽) 𝑣𝑖𝑏 ]/[(𝐽 + 2/𝐽) 𝑟𝑜𝑡 -𝑅(𝐽 + 2/𝐽) 𝑣𝑖𝑏 ], where 𝑅(𝐽 + 2/ 𝐽) 𝑒𝑥𝑝 is the experimental value of the ratio. These ratios show distinctive different behaviors in the vibrational, rotational, and 𝛾-unstable limits. This ratio should be close to one for a rotational nucleus and close to zero for a vibrational nucleus, while it should have intermediate values for 𝛾-unstable nuclei (0.1 ≤ 𝑟 ≤ 0.35, 0.4 ≤ 𝑟 ≤ 0.6 and 0.6 ≤ 𝑟 ≤ 1.0 for vibrational, transitional and rotational nuclei, respectively). Moreover, table1shows clearly that other energy ratios between the states in the ground

	Near Magic	spherical	Transitional	deformed
		vibrator		rotor
	6 +			
	4 +			
	2 +			
	)			
	> 0 1			
	𝐵(𝐸2; 2 1			
	0 +			
	𝑅 4/2 < 2	𝑅 4/2 ≈ 2	𝑅 4/2 ≈ 3	𝑅 4/2 ≈ 3.3
		N		

state band (e.g., 𝑅(6/2)) and those in different bands (e.g., 𝑅(4/0) and 𝑅(6/0)) take different values in different shape phases

[152]

.

  Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 + ) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for each chain of isotopes.

	2 1 + , 2 2 + , 4 1 + and 4 2 + states for each chain
	of isotopes.

  4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=100 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=102 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=102 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=106 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=106 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=108 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=108 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=110 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=110 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=112 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=112 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=114 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=114 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=116 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=116 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=118 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=118 isotones.
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  4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸2 2 + ), respectively, for the chain of N=120 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=122 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸21 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=122 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=124 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=124 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=126 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=126 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=128 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=128 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=130 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=130 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=132 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=132 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=134 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=134 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=136 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=136 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=138 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=138 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=140 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=140 isotones. (color online) Panel A represents the comparison of the experimental energy levels of the lowest 2 1 + , 2 2 + , 4 1 + and 4 2 + states for the chain of N=142 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1
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+ /𝐸 2 2 + ), respectively, for the chain of N=142 isotones. + states for the chain of N=144 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=144 isotones. + states for the chain of N=146 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=146 isotones. + states for the chain of N=148 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=148 isotones. + states for the chain of N=150 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=150 isotones. + states for the chain of N=154 isotones. Panels B, C, D represent the comparison of the experimental energy ratios (𝐸 4 1 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 2 2 + ), (𝐸 2 2 + /𝐸 2 1 + and 𝐸 4 2 + /𝐸 4 1 +) and (𝐸 4 2 + /𝐸 2 1 + and 𝐸 4 1 + /𝐸 2 2 + ), respectively, for the chain of N=154 isotones.
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