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A B S T R A C T

Whey protein fractal aggregates reveal different texturizing properties depending on their size. This study
characterize the effect of three process parameters (flow regime, heating residence time (RTh) and heating
temperature) on the size and shape of aggregates formed at a semi-industrial scale using a dynamic tubular heat
exchanger, and identify the mechanisms involved in their formation. The study showed that physicochemical
parameters are not the unique levers to modulate agregates properties but process parameters are also efficient.
Asymetrical-Flow-Field-Flow-Fractionation was used to highlight the significant increase of aggregate size
produced under transient regime conditions compared to laminar and turbulent regimes. Even larger aggregates
were obtained while increasing the heating temperature from 80 to 85 °C since the unfolding aggregation of
protein was controlled by the aggregation step. Moreover, RTh showed no effect on aggregate formation. This
study paves the way to the control of aggregate properties obtained in a continuous dynamic mode.

1. Introduction

Whey protein (WP) has been extensively studied with regard to its
use in food products. Interest was expressed in the design of WP ag-
gregates (compact sphere, fibril or strand-like) (Jung et al., 2008) at the
laboratory scale by adjusting physicochemical conditions in order to
obtain new functional properties.

Among WP aggregates, fractal aggregates are soluble aggregates
obtained from pure β-lactoglobulin (Blg) (Bon et al., 1999; Nicolai
et al., 2011; Pouzot et al., 2005) or fromWP solutions (Mahmoudi et al.,
2007; Nicolai et al., 2011) at pH 7. A two-step nucleation-growth of this
aggregate mechanism has been proposed for static conditions by Nicolai
et al. (2011) (Fig. 1.). In a first step, primary aggregates are obtained
from the association of denatured monomers, and small oligomers form
under heating. Indeed, under heating, protein structure is modified,
exposing reactive groups (hydrophobic and thiol groups) at the protein
surface and creating bonds through the monomers. A second aggrega-
tion favored under high protein concentration then takes place, leading
to the association of primary aggregates into larger fractal aggregates.
Another way to promote this step is to screen electrostatic charges
between primary aggregates by adding salt and/or reducing them by
decreasing pH. Large aggregates are formed by nonspecific interactions,

not involving –SH groups (Wijayanti et al., 2014).
Fractal aggregates reveal exceptional functional properties de-

pending on their size, such as gel strengtening, thickening properties
and the stabilization of emulsions (Chevallier et al., 2016; Kharlamova
et al., 2018a; Loiseleux, 2018; Nicolai et al., 2011). For example,
Kharlamova et al. (2018a, 2018b) showed that small fractal aggregates
(hydrodynamic radius Rh < 35 nm) gelify slower and are less sensitive
to syneresis than larger aggregates (Rh > 77 nm); in contrast, large
aggregates exhibit better thickening properties (Inthavong et al., 2016).
Controlling aggregate size is therefore so a key point to control their
functional properties when used in food products.

To date, large fractal aggregate formation has been mainly proposed
at the static laboratory scale by indirect heating in a water bath by
using high concentrations of protein and salt. For example, Kharlamova
et al. (2018a) obtained fractal aggregates with Rh > 500 nm after
static heat treatment of a protein solution of 93 g.L−1, and Loiseleux
et al. (2018) obtained using a static heat treatment fractal aggregates
with a gyration radius (Rg) of 209 nm using an initial protein solution
at 50 g.L−1 with 45mM NaCl. It is easy to control aggregate size at
laboratory scale, but Erabit et al. (2014), working with microgel ag-
gregates, already showed that the control of aggregate size with phy-
sicochemical parameters was more difficult under dynamic conditions
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because of the contribution of shear forces. Several authors have stu-
died the impact of temperature, shear or flow regime on whey protein
aggregate size (Erabit et al., 2016; Kerche et al., 2016; Mahmoudi et al.,
2014; Simmons et al., 2007; Wolz et al., 2016) but only few authors
have produced fractal aggregates at the pilote scale under continuous
conditions involving variations of flow regimes and heating residence
times (Buggy et al., 2018; Mahmoudi et al., 2014; Nicorescu et al.,
2009).

Moreover, in any case, the results of these published studies remain
partial and sometimes controversial, especially concerning the influ-
ence of shear and flow regime on aggregate size and shape.

The aim of this study was therefore to investigate the influence of
process parameters, namely flow regime (assessed by the Reynolds
number Re) and residence time (RTh) in the heating zone, as well as
outlet heating temperature, on fractal aggregate formation under con-
tinuous conditions in order to control their size. For this reason, a
continuous process line was set up at the pilot scale. It consisted of heat-
treating a WP solution designed with regard to protein, salt con-
centration and pH in an indirect Joule effect tubular heat exchanger.
Aggregates were then characterized in terms of size, shape and struc-
ture by Asymmetrical Flow Field-Flow Fractionation (A4F), which is a
suitable method for polydisperse and non-spherical aggregates since it
provides higher resolution than SEC for WP components of high molar
mass and that can occur at lower concentrations (Kang et al., 2011).
Based on this knowledge, the supposed mechanisms involved in the
formation of such aggregates under continuous flow conditions were
then proposed.

2. Materials and methods

2.1. Protein solution

Whey protein isolate was purchased from a dairy company (con-
fidential information). The powder was composed of 86.5 w/w % of

protein that included 7.3 w/w % of casein as determined by SDS-PAGE
quantification under reducing conditions. Whey Protein Isolate (WPI)
powder was recombined in deionized water at 20 °C under mechanical
stirring overnight to reach a concentration of 47 g.L−1. Sodium chloride
was added to obtain the desired ionic strength of 10mM, and pH was
adjusted to 7.0 by the addition of sodium hydroxyde. These physico-
chemical conditions (protein and salt concentrations) were chosen to be
the closest to the ideal conditions described in the literature (Chevallier
et al., 2016; Kharlamova et al., 2018a; Loiseleux, 2018; Nicolai et al.,
2011) but were also adapted to the constraints of the pilot scale.

2.2. Continuous heat treatment

The heat treatment pilot included a feed tank, a first indirect Joule
effect Actijoule heat exchanger(Actini, France) (stainless steel: 316L;
thermal conductivity: 16.30W.m−1.K−1; tube thickness: 10−3 m; elec-
trical characteristics: U= 380V; P= 19 kW; I= 28,9A) to pre-heat
quickly the protein solution up to 50 °C, a second indirect Joule effect
Actijoule tubular heat exchanger (Actini, France) (stainless steel: 316L
thermal conductivity: 16.30W.m−1.K−1; tube thickness: 10−3 m; elec-
trical characteristics: U=380V; P= 30 kW; I= 45,6A) to control flow
conditions and achieve the target outlet heating temperature (70 °C,
80 °C, 85 °C or 90 °C) and a tubular dynamic holding zone to maintain
the product at outlet temperature during 15min (Mean holding time)
(Fig. 2).

First, the processing line was equilibrated on water in order to reach
the target temperatures. Temperature regulation was done at the end of
preheating zone and at the end of heating zone of the heat exchanger
using a thermocouple on exchanger outlet wall. A three-way valve then
made it possible to switch on the WP solution. The arrival of the pro-
duct at the outlet of the tube was determined by conductimetry, and the
solution was then run for at least 10min before samples were collected.
The experiments were conducted on a complete experimental plan (see
supplementary table) over a range from Re 2000 to 25000. The

Fig. 1. Scheme of the fractal aggregate formation mechanism. From Chevallier, M. (2017), adapted from Nicolai et al. (2011).

Fig. 2. Schematic representation of the heat treatment pilot.
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complete plan was used for the statistical analysis. Trials presented in
the paper (Table 1) are representative of this complete experimental
plan with regard to flow regime and RTh influence, and were repeated
in duplicate.

2.3. Moody diagram

The hydraulic performances of the heating section was previously
identified by experimental flow tests with a range of sucrose solutions
(from 42 w/w % to 66 w/w %) circulating at varying flow rates from 50
to 500 L h−1 and measuring pressure drop. From these measurements,
the Moody diagram was plotted, representing the friction factor evo-
lution as a function of Reynolds number. Analysis of Moody diagram,
allowed us to estimate the transition from laminar to turbulent flow by
estimating the change in slope. Reynolds number was calculated as:

=Re
D ρ v

μ
· ·

(1)

Where D is the inner diameter of the pipe (m), ρ is the density of the
fluid (kg.m−3), v is the flow velocity (m.s−1) and μ is the dynamic
viscosity (Pa.s). The friction factor f in the tube is given by the Darcy
equation:

=
⋅ ⋅ ⋅
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where L is the length of the tube (m) and ΔP is the pressure drop (bar).

2.4. Determining the Kolmogorov length

In order to compare the flow eddy scale to the aggregate size, the
Kolmogorov length was determined in turbulent regime using the fol-
lowing equation:
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Where lk is the Kolmogorov length (m), μ ρ/ is the cinematic visc-
osity (m2.s−1) and ED is the power dissipated per unit mass of fluid
(W.kg−1), which was calculated as:

= ⋅
⋅

E Q ΔP
ρ VD

(4)

where Q is the volumetric flow rate (m3.s−1) and ⋅ρ V is the mass of
fluid (kg). ΔP was estimated here using Darcy's equation:

=
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ΔP
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2

(5)

whereDa is the Darcy number that is obtained by applying the Blasius

relation if 2000 < Re < 105:

= ⋅ −Da Re0.316 0.25 (6)

2.5. Asymmetrical flow field-flow fractionation (A4F)

The radius of gyration (Rg), hydrodynamic radius (Rh), apparent
density (dapp), fractal dimension (Df) and shape factor (Rgi(z)/Rhi(z))
of aggregates were determined with an Asymmetrical Flow Field-Flow
Fractionation coupled with a Multi-Angle Laser Light Scattering and
Differential Refractometer and a Quasi-Elastic Light Scattering (As-
FlFFF-MALS-DRi-Qels) system. In an As-FlFFF system macromolecules
are separated as a function of their diffusion coefficient, i.e., their hy-
drodynamic diameter (Dh) during elution.

The As-FlFFF instrument was a DualTec separation system (Wyatt
Technology Europe, Dernbach, Germany) with a trapezoidal geometry
channel (length: 19.5 cm,; initial width: 1.65 cm; final width: 0.27 cm),
with a Mylar spacer of 350 μm and aregenerated cellulose membrane
of10 kDa MWCO (Wyatt Technology, Europe) regulated at 22 °C). The
mobile phase was aqueous with 45mM NaCl and 0.02% NaN3, filtered.
With a 100-nm pore size polyvinylidene fluoride membrane (Millipore
Corp, Darmstadt, Germany).

The flow method used is described in Table 2. 60 μL of sample with
a concentration of 1 g.L−1 was injected at a flow of 0.2mLmin−1 into
the channel.

The As-FlFFF was connected to a Dawn Heleos II multiangle light
scattering (MALS) detector (Wyatt Technology, Santa Barbara, CA,
USA) operating at a wavelength of 662 nm, and an OptilabRex differ-
ential refractive index (dRI) detector (Wyatt Technology, Santa
Barbara, CA, USA) operating at a wavelength of 658 nm. A DynaPro
NanoStar (Wyatt Technology Europe, Dernbach, Germany) was con-
nected online to the Dawn Heleos II at a 15° angle. Calibration of the
MALS unit was performed using toluene. Normalization of the MALS
unit and interdetector delays and band broadening calculations were
performed with BSA protein.

Processing of light scattering data was done with Astra software,
version 7.1.2 (Wyatt Technology). The molar mass and the Rg were
obtained with the Berry extrapolation (Berry, 1966) (second-order
polynomial fit; refractive index increment: 0.185ml g−1) This method
is adapted for large-size polymers (Aberle et al., 1994) Only seven an-
gles were used for extrapolation, between 57° and 117°. The error
percentage is calculated from the difference between the theoretical fit
of the Berry model and experimental values.

The apparent densities of each particle, i, di app( ), were obtained
from the molar mass Mwi and Rgi distributions and was calculated as
(Glantz et al., 2010; Loiseleux et al., 2018):

=
⋅ ⋅

di app Mwi
π Rgi Na

( ) 4
3 (7)

where Na is the Avogadro number.
Shape information was determined from the value of the shape

Table 1
Processing conditions applied to test the influence of residence time (RTh) and
Reynolds number (Re) in the heating section.

Processing conditions

1 2 3 4 5

Flow rate (L.h−1) 473 142 379 127 60
Heat exchanger 1

Inner diameter (m) 0.018 0.018 0.006 0.018 0.018
Number of tubes 12 12 6 12 12
Total length (m) 19.03 19.03 9.1 19.03 19.03
Pre heating temperature (°C) 50 50 50 50 50

Heat exchanger 2
Inner diameter (m) 0.0225 0.0025 0.018 0.006 0.006
Number of tubes 12 12 12 6 6
Total length (m) 22.82 22.82 19.03 9.1 9.1
Heating Residence Time RTh (s) 69 230 46 7 15
Reynolds value Re 6900 2000 6900 6900 3200

Table 2
Method used for the characterization of fractal aggregates by A4F, with Vx, the
cross flow and Vd, the eluent, laminar parabolic flow.

Time (min) Mode Vx start ml/min Vx end ml/min Vx/Vd

1 elution 0 0 0
2 focus 2 2 4
6 focus + injection 2 2 4
5 elution 2 2 4
10 elution 2 0.3 4
10 elution 0.3 0.12 0.6
58 elution 0.12 0.12 0.24
15 elution 0 0 0
2 elution + rinsing 0 0 0
6 elution 0 0 0
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factor Rgi(z)/Rhi(z), i.e., the ratio between the gyration radius Rgi and
the hydrodynamic radius Rhi for the class of particule i weighted by the
mass of particles squared (Adolphi and Kulicke, 1997; Brewer and
Striegel, 2011, 2010; Burchard, 1983). Theorical values of shape factor
may vary from 0.778 for ideal homogeneous spheres, up to 2.36 for a
stiff rod (Adolphi and Kulicke, 1997). This ratio provides information
about branched or linear structures (Ioan et al., 1999).

The conformation of an object can also be defined by its fractal
dimension (Ioan et al., 1999; Loiseleux et al., 2018). The fractal di-
mension Df for the class of particle i was obtained by the slope of the
log-log plot of Rg as a function of:

= ⋅Rgi
Dfi

Mw1
(8)

2.6. Statistical analysis

The influence of Re, RTh or the temperature (T) have been statis-
tically tested on different variables, namely, the mass fractions of the
first, second, third or fourth peak (respectively Mf1, Mf2, Mf3 and Mf4),
the gyration radius of the third or fourth peak (respectively Rg3 and Rg
4) and the hydrodynamic radius of the third peak (Rh3). Re, RTh and T
were considered as categorical variables. Analysis of variance (ANOVA)
was used to find significant effect of Re, RTh or T on the different
variables, using the Rcmdr package of R software version 3.5.3 (R de-
velopment Core Team, 2010).

The first model examined the influence of two different categorical
variables Re and RTh on one continuous dependent variable Y. The data
are hierarchically structured with RTh as a nested factor so it is possible
to describe the ANOVA model as follows:

= + + +α εY μ bijk i ji ijk (9)

With μ, the overall mean response, αi , the effect due to the i-th level
of factor Re, bji,the effect due to the j-th level of factor RTh nested
within Re and εijk called residual error.

The second model examined the influence of T on one continuous
dependent variable Y. The model for this one-way ANOVA can be
commonly described by:

= + α εY μijk i ijk (10)

With μ, the overall mean response, αi , the effect due to the i-th level
of factor Temperature and εijk called residual error.

Only effects significant at the p < 0.05 level have been considered
and will be discussed.

2.7. Determination of the level of βlg denaturation and kinetic parameters

The evolution of the βlg denaturation level with time and tem-
perature was performed using a HPLC chromatographic system
(Waters, Milford, MA, USA). The method used is described in a previous
study (Petit et al., 2011). Lyophilized βlg powder (purity≥ 90%) was
used as the standard and obtained from Sigma-Aldrich (St. Louis, MO,
USA).

3. Results and discussion

3.1. Characterization of aggregates formed under continuous processing
conditions

As mentioned above, each processing condition was tested in du-
plicate, showing satisfactory repeatability. Fig. 3 shows the re-
presentative concentration profile and gyration radius obtained for
fractal aggregates formed at 80 °C under different conditions of Rey-
nolds number and RTh, using As-FlFFF-MALS-DRi-Qels. The factogram
makes it possible to distinguish three distinct populations of protein and
aggregates. Table 3 represents the characteristics of each eluted

population.
The first population, eluted between 10 and 18min, represents non-

aggregated WPs and caseins present in the powder. Indeed, according
to the literature, βlg denatures and aggregates after heat treatment, but
other WPs do not necessarily do so. Table 3 shows that the rate of non-
aggregated species represented by the first peak varied slightly de-
pending on the conditions and was in the range of 23 w/w%. This value
was consistent with the sum of the non-denatured-aggregated whey
proteins revealed by quantitative analysis after precipitation at pH 4.6
(approx. 11 w/w% of the protein) and the casein present that were
eluted in the first peak as well (7.3 w/w%).

The second population eluted between 18 and 33min was attrib-
uted to primary aggregates, with an Rg of 60 nm.

Finally, the third population eluted between 33 and 60min was
assimilated to fractal aggregates with a mean Rg of 152–222 nm, de-
pending on process conditions (Table 3). Information about shape and
molecular architecture of these aggregates given by their shape factor
(Rg/Rh) was consistent with this assumption. The average shape factor
of the third eluted peak was comparable for the three samples - in be-
tween 1.0 and 1.2 - which implies a rather elongated fractal structure.
Moreover, their fractal dimension (Df) ranged from 2.1 to 2.4 for the
three process conditions. This was consistent with a branched mor-
phology in agreement with the results published by Loiseleux et al.
(2018) and Mahmoudi et al. (2014) who reported a Df value of 2.1 and
a range of 2.15–2.19 for fractal aggregates, respectively. It was not
possible to evaluate the shape factor or fractal dimension of the first
and second eluted peak because of the method that only apples to large
objects.

3.2. Influence of flow regime and heating residence time

In order to distinguish clearly the influence of the flow regime on
the formation of aggregates, the Moody diagram of the indirect Joule
effect Actijoule heat exchanger was established. Fig. 4 indicates that the
flow regime was laminar below Re 2500, transient at intermediate Re
values ranging from 2500 to 5000 and, finally, turbulent above Re
5000. Experiments conducted at Re 2000 (condition 2; Table 1), Re
3200 (condition 5; Table 1) and Re 6900 (conditions 1,3,4; Table 1)
therefore made it possible to scan the effect of the different flow re-
gimes.

As mentioned above, non-aggregated protein present in the first
peak represented a mass fraction of approximately 23 w/w%. This
means that the extent of denaturation aggregation was in the same
range, regardless of the processing conditions, and that the same pro-
portion of WP aggregated to form primary or secondary aggregates.
Indeed, there is no significant effect of Re or RTh on the mass fraction of
the first peak (p-value: 0.58 and 0.22 respectively). However, the dis-
tribution between primary and secondary quantitatively varied de-
pending on the process conditions. Indeed, the lower the Re value and
the longer the RTh were, the higher the mass fraction of the third eluted
population corresponding to secondary aggregates (Table 3).

On the other hand, fractal aggregates qualitatively varied according
to the process conditions. Indeed, aggregates were denser under tran-
sient or turbulent conditions. This was in agreement with the work of
Kolb and Jullien (1984) who suggested that aggregates formed by
chemical aggregation were denser than those formed by diffusive ag-
gregation since the encounter probability between two entities in-
creased with turbulence. Moreover, larger aggregates were produced at
intermediate Reynolds numbers and RTh (Rg=222 nm for Re 3200,
with RTh= 15 s) compared to those produced at extreme values of Re
and of RTh (Rg≤ 183.2 nm for Re 2000 with RTh= 230 s, or Re 6900
with RTh=7 s; Table 3). The shape factor and the value of the fractal
dimension of aggregates obtained for the intermediate flow regime are
consistent with a more open structure. These findings are in agreement
with previous studies (Simmons et al., 2007; Wolz et al., 2016). Indeed,
Simmons et al. (2007) and Wolz et al. (2016) reported that the
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aggregate size reached a maximum at the intermediate shear rate using
a Couette system. On the other hand, Kerche et al. (2016) did not ob-
serve any dependence between aggregate size and shear or flow regime
within a tubular exchanger. Erabit et al. (2014) observed no effect of
shear rate on denaturation rate and concluded that shear would not
affect the collision of monomers.

As shown in Eq. (1), the Re number is a function of the flow velocity
that simultaneously affected RTh. In order to determine the respective
influence of heating residence time and flow regime on the size of
fractal aggregates, experiments were conducted using different inner
tube diameter/flow rate ratios to obtain a constant Reynolds value with
short (7 s), medium (46 s) or long (69 s) RTh values (conditions 1.3 and
4; Table 1). The results are presented in Fig. 5 and Table 4.

Fig. 5 shows that the same three peaks and corresponding aggregate
populations were obtained as previously observed (Fig. 3) and regard-
less of the RTh conditions. Moreover, no shift of the third peak toward
the formation of larger aggregates could be obtained by varying the RTh

value, and Rg values remained in the same range regardless of the latter
(Rg≤ 196.3 nm; Table 4).

Similarly, Df and shape factor values did not significantly evolve
and remained in agreement with a fractal structure. Similar experi-
ments with varying RTh at a constant Reynolds number of 2000 led to
the same conclusion, i.e., no differences in the characteristics of the
formed aggregates (data not shown).

In order to obtain quantitative estimations of the effects of Re and
RTh, analysis of variance (ANOVA) was performed. The variation of the
distribution between primary and secondary aggregates was due to Re
only, indeed Re had a significant effect on Mf2 (p-value: 0.04), and Mf3
(p-value: 0.03) whereas RTh had no significant effect on Mf2 (p-value:
0.21) and Mf3 (p-value: 0.09). Moreover, the increase of aggregate size

producted at intermediate Re and RTh is only due to the effect of Re.
Indeed, Re had a significant effect on Rg3 (p-value: 0.01) and Rh3 (p-
value: 0.003) whereas RTh had no significant effect on Rg3 (p-value:
0.09) and Rh3 (p-value: 0.08). It can therefore be concluded that the
flow regime influenced the aggregate size in the range of tested con-
ditions since a significant increase of aggregate size could be obtained
under intermediate flow regime conditions. Conversely, aggregate size
was not affected by RTh.

3.3. Impact of heating temperature

Fig. 6 shows the concentration profile and the gyration radius ob-
tained for fractal aggregates formed at heating temperatures ranging
from 70 °C to 90 °C under constant flow regime and heating residence
time conditions (Re= 6900, RTh=7 s; condition 4, Table 1). Table 5
gives the characteristics of each population eluted.

At 70 °C, the factogram reveals the presence of only two peaks
corresponding to non-aggregated whey proteins for the first one, and to
primary aggregates for the second one, which is demonstrated by the
fact that secondary fractal aggregates were not formed at this tem-
perature.

Beyond 85 °C, a new fourth population of large aggregates
(Rg≥ 289.7 nm; Table 5) appears at elution time between 50 and
80min. At 85 °C, these aggregates present a shape factor close to that of
the aggregates of the third peak, compatible with a fractal structure. It
is important to note that the fractionation method did not make it
possible to separate the aggregates formed at 90 °C. Indeed the mem-
brane was clogged, the recovery rate was weak, and the Rh signal
presented many interferences, making it impossible to estimate the
shape factor at this temperature. This formation of larger aggregates at

Fig. 3. Typical A4F fractograms representing nor-
malized concentrations (left axis) and gyration ra-
dius distributions (right axis) of fractal aggregates
produced under different flow regime conditions,
characterized by the Reynolds number (Re) and
heating residence time (RTh). Experiments were
done in duplicate and gave the same trend and
mean values.

Table 3
Comparison of Kolmogorov scale (lk), rate of native protein, mass fraction, shape factor (Rg/Rh), fractal dimension (Df), gyration radius (Rg) and apparent density (d
(app)) of different populations of aggregates, corresponding to different peaks eluted by A4F under different process conditions.

Sample lk (μm) Native protein (w/w %) after
precipitation at pH 4.6

1st peak 2nd peak 3rd peak

Re RTh (s) Mass fraction (w/
w %)

Mass fraction (w/
w %)

Mass fraction (w/
w %)

Rg/Rh Df Rg (nm) d(app) (103 kgm−3)

2000 230 – 9.8 20.9 36.7 42.4 1.1 2.4 152.4 (± 1.9%) 0.39
3200 15 – 12.5 25.6 38 36.4 1.2 2.1 222.0

(±1.10%)
1.14

6900 7 21.8 11.1 22.6 51.1 26.3 1.0 2.3 183.2 (± 1.2%) 0.98
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a temperature above 80 °C is in agreement with the results of
Mahmoudi et al. (2014) who showed an increase of aggregate Rg from
35 nm at 70 °C to 100 nm at 100 °C, while the aggregate shape si-
multaneously evolved towards a spherical morphology. These Rg values
were smaller than those obtained in this study because of different in-
itial protein solution conditions (15 g.L−1 protein and 3mM NaCl).

The same influence of heating temperature was observed under a
transient flow regime (Re=3200, RTh=15 s) (data not shown).
Moreover, a statistical validation have been conducted that reveal a
significant effect of T on Mf3, Rg3, Mf4 and Rg4 with p-values of
0.0009; 0.0005; 0.0002 and 0.0003 respectively, confirming that tem-
perature is a key lever to drive aggregate characteristics beyond the
influence of the flow regime previously revealed in this study. This
conclusion is in agreement with the study of Simmons et al. (2007) who
showed that the dependence of aggregate size on shear rate decreased
with increasing temperature.

3.3.1. Mechanisms involved in the formation of fractal aggregates by
continuous processing

Simmons et al. (2007) suggested that the final size of aggregates
depended on particle collision or breakage, i.e., aggregates were built
either by assembly or by fragmentation. However, breakage would in-
duce aggregates with a spherical aspect and non-fractal shape
(Mahmoudi et al., 2014), which were not observed in this study.
Moreover, the size of the flow eddies was evaluated through the Kol-
mogorov length in turbulent regime (Tables 3 and 4). The values ob-
tained were 100–400 times greater than the maximum aggregate Rg
values. As evidence of this, the more turbulent flow conditions were
unable to induce fragmentation of the aggregates in the course of their
formation. It is thus possible to assume that fractal aggregates, within
the continuous processing conditions implemented in this study, should
form and grow through an association mechanism rather than a
breakage mechanism.

As previously mentioned, the aggregation step involves the asso-
ciation of reactive material, i.e., unfolded/denatured protein. Fig. 7,

Fig. 4. Moody diagram characterizing flow regime in the tubular heat exchanger Actini.

Fig. 5. Typical A4F fractograms representing nor-
malized concentration (left axis) and gyration ra-
dius distribution (right axis) of fractal aggregates
produced under different heating residence time
RTh for constant flow regime conditions
(Re=6900). Experiments were realized in dupli-
cate and gave the same trend and mean values.
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representing the Arrhenius plot of Blg denaturation in the WPI tested in
this study, provided information about unfolding and aggregation ki-
netics as a function of heating temperature. The transition between the
unfolding and aggregation curves occurred at a temperature of 78 °C, in
accordance with the results published by Petit et al. (2011). Using this
Arrhenius representation, it was possible to estimate the level of de-
naturation of βlg (that is to say the mass fraction of unfolded βlg)
within the processing time-temperature conditions and for the different
RTh tested (Fig. 8). It is shown that regardless of RTh, 100% of βlg was
unfolded at the exit of the heating zone and no additional reactive
material should be expected while increasing heating residence time. As
the amount of reactive material was limited, it explains why RTh was
shown to have no influence on the final size of the aggregates. Con-
versely, the larger aggregates formed above 80 °C would result from the
instantaneous unfolding of βlg within this range of temperature,

enhancing the encounter of reactive species.
Regarding the influence of flow conditions, it was shown that the

aggregate size was positively and significantly influenced under inter-
mediate flow regime. Given the fact that to date and to the best of
author knowledge, no studies dealt with the impact of flow regime on
denaturation-aggregation of protein, an analogy was sought with well
studied processes involving two nucleation-growth steps such as crys-
tallisation. Indeed, recent studies (Forsyth et al. (2015) and Nappo et al.
(2018)) showed a strong increase of nucleation rate with shear rate,
namely in the frame of their study with increasing Re value. This
support the idea that the nucleation rate of protein aggregates would be
minimal in laminar regime compared to turbulent conditions, leading
to a more limited number of available nucleation points at low Re va-
lues. As underlined above, βlg unfolding is complete regardless of the
process conditions. However, limiting the nucleation points would lead

Table 4
Comparison of Kolmogorov scale (lk), mass fraction, shape factor (Rg/Rh), fractal dimension (Df) and gyration radius (Rg) of different population of aggregates,
corresponding to different peaks eluted by A4F. Aggregates were produced under the same flow regime conditions (Re= 6900) and different conditions of heating
residence time (RTh).

Sample lk(μm) 1st peak 2nd peak 3rd peak

Re RTh (s) Mass fraction (w/w %) Mass fraction (w/w %) Mass fraction (w/w %) Df Rg/Rh Rg (nm)

6900 7 21.84 2.6 51.1 26.3 2.3 1.0 183.2 (± 1.2%)
6900 46 65.72 31.3 49.3 19.4 2.2 1.3 196.3 (± 1.4%)
6900 69 82.18 21.5 41.1 37.4 2.1 1.3 193.9 (± 1.5%)

Fig. 6. Typical A4F fractograms representing nor-
malized concentration (left axis) and gyration ra-
dius distribution (right axis) of fractal aggregates
produced at heating temperature ranging from 70 °C
to 90 °C with constant flow regime and heating re-
sidence time conditions (Re=6900, RTh= 7s).
Experiments were realized in duplicate and gave the
same trend and mean values.

Table 5
Comparison of mass fraction, shape factor (Rg/Rh), fractal dimension (Df) and gyration radius (Rg) for different populations of aggregates, corresponding to different
peaks eluted by A4F. Aggregates were produced under the same flow regime and RTh (Re 6900, RTh 7s) conditions, but at different heating temperatures ranging
from 70 °C to 90 °C.

Sample 1st peak 2nd peak 3rd peak 4th peak

Heating temperature
(°C)

Mass fraction (w/
w %)

Mass fraction (w/
w %)

Mass fraction (w/
w %)

Df Rg/Rh
moy

Rg (nm) Mass fraction (w/
w %)

Df Rg/Rh Rg (nm)

70 54.4 45.6 0 – – – 0 – – –
80 22.6 51.1 26.3 2.3 1.0 183.2 (± 1.2%) 0 – – –
85 16.8 40.4 20.2 2.6 1.3 219.4 (± 4.1%) 22.6 – 1.4 331.1 (± 3.8%)
90 21 41.2 14.6 – – 171.5 (± 5.7%) 23.2 – – 289.7 (± 5.1%)
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to preferential secondary aggregate formation (higher mass fraction
collected in 3rd peak, Table 3). Moreover and as the flow is distributed
into distinct streamlines in laminar conditions, the reactive protein
species able to aggregate together is expected to be limited to the one
present in each streamline. This local depletion of the reactive protein
species would explain the smaller Rg value of the third peak, despite the
limited number of nucleation points.

Conversely, the high nucleation rate expected in a turbulent flow
regime would first favor the creation of numerous nucleation points and
then the growth of aggregates. This would lead to a consumption of
denatured protein into a large number of primary aggregates, and to the
consumption of the available reactive species before obtaining large-
size secondary aggregates. In fact, the mass fraction of primary ag-
gregates represented 51% instead of less than 40% in the laminar re-
gime (Table 3).

The transient flow regime was shown to maximize aggregate size:
the aggregate nucleation would be here favored compared to a laminar
regime, but not as much as for a turbulent flow regime. Consequently,
the reactive species would be directed towards a smaller number of

nucleation points than in a turbulent regime, favoring the growth of
secondary aggregates. Indeed, the Rg of the third peak was approxi-
mately 220 nm, i.e., larger than the aggregates obtained under laminar
or turbulent flow regime conditions (Table 3).

To sum up and for better understanding, Fig. 9 provides a schematic
representation of the possible mechanisms involved in the formation of
aggregates depending on the flow regime conditions.

4. Conclusions

To conclude, the scale-up of the continuous production process of
fractal aggregates was conducted in a pilot line composed of indirect
Joule effect heat exchangers. Process parameters were studied as levers
to modulate the size and shape of WP aggregates. Flow regime and
heating temperature as well were shown to have a significant impact on
aggregate size. Indeed, a transient regime led to larger aggregates
compared to laminar and turbulent flow, which would be due to the
encounter between optimal reactive species. Even larger fractal ag-
gregates were obtained when increasing the heating temperature

Fig. 7. Arrhenius plot of β-lactoglobulin denaturation in the whey protein isolate used in this study. Plot lines are a guide for the eyes.

Fig. 8. Impact of heating residence time (RTh) on the
generation of unfolded species at 80 °C. Temperature
profile: Bold line/Re= 6900, RTh= 7 s; dotted line/
Re= 6900, RTh=46 s; point line/Re=6900,
RTh=69 s. Unfolded species (%): white square/
Re= 6900, RTh= 7 s; white triangle/Re=6900,
RTh=46 s; white circle/Re= 6900, RTh=69 s.
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beyond 85 °C since the unfolding-aggregation of WP was controlled by
the aggregation step under such conditions. Moreover, residence time
in the heating section showed no effect on the size and shape of the
aggregates formed. This study is a first approach to control aggregate
properties obtained in a continuous dynamic mode.
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