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Introduction

We consider the Johnson equation which can be written in the form

(u t + 6uu x + u xxx + u 2t ) x -3 u yy t 2 = 0, (1) 
where subscripts x, y and t denote partial derivatives.

Johnson introduced this equation in a paper written in 1980 [START_REF] Johnson | Water waves and Kortewegde Vries equations[END_REF] to describe waves surfaces in shallow incompressible fluids [START_REF] Johnson | A Modern Introduction to the Mathematical Theory of Water Waves[END_REF][START_REF] Ablowitz | Nonlinear Dispersive Waves : Asymptotic Analysis and Solitons[END_REF]. This equation was widely accepted, and was later derived for internal waves in a stratified medium [START_REF] Lipovskii1 | On the nonlinear internal wave theory in fluid of finite depth[END_REF]. The physical model of this equation have the same degree of universality as the Kadomtsev-Petviashvili (KP) equation [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersing media[END_REF].

Johnson constructed the first solutions in 1980 [START_REF] Johnson | Water waves and Kortewegde Vries equations[END_REF]. Some time later in 1984, Golinko, Dryuma, and Stepanyants found other types of solutions [START_REF] Golinko | Nonlinear quasicylindrical waves: Exact solutions of the cylindrical Kadomtsev-Petviashvili equation[END_REF]. Another approach to study this equation was given in 1986 [START_REF] Lipovskii | Connection between the Kadomtsev-Petvishvili and Johnson equation[END_REF] by giving a connection between solutions of the (KP) equation and solutions of the Johnson equation. The use of Darboux transformation gave other type of solutions given in [START_REF] Klein | Cylindrical Kadomtsev-Petviashvili equation: Old and new results[END_REF]. More recently, the extension to the elliptic case has been considered [START_REF] Khusnutdinova | On the integrable elliptic cylindrical K-P equation Chaos[END_REF] in 2013.

In the following, we recall the representation of the solutions in terms of Fredholm determinants of order 2N depending on 2N -1 parameters. We also recall the expression in terms of wronskians of order 2N with 2N -1 parameters. These representations allow to obtain an infinite hierarchy of solutions to the Johnson equation, depending on 2N -1 real parameters and rational solutions to the equation, when a parameter tends towards 0.

Here we construct rational solutions of order 5 depending on 8 parameters, and the representations of their modulus in the plane of the coordinates (x, y) according to the real parameters a i and b i for 1 ≤ i ≤ 4 and time t.

The solutions are given without initial conditions nor boundary conditions. We give three methods to construct solutions to the Johnson equation. The more efficient method to construct solutions of the Johnson equation is that corresponding to the representation in terms of degenerate determinants (the third one in the text, without limit) followed by that given in terms of wronskians. The less efficient is that given in terms of Fredholm determinants.

The method used to construct the figures given in the third section is that using the degenerate determinants (without limit, the third one).

2 Rational solutions to the Johnson equation of order N depending on 2N -2 parameters 2.1 Families of rational solutions of order N depending on 2N -2 parameters

We define real numbers λ j such that -1 < λ ν < 1, ν = 1, . . . , 2N which depend on a parameter ǫ which will be intended to tend towards 0; they can be written as

λ j = 1 -2ǫ 2 j 2 , λ N +j = -λ j , 1 ≤ j ≤ N, (2) 
The terms κ ν , δ ν , γ ν and x r,ν are functions of λ ν , 1 ≤ ν ≤ 2N ; they are defined by the formulas :

κ j = 2 1 -λ 2 j , δ j = κ j λ j , γ j = 1-λj 1+λj ,; x r,j = (r -1) ln γj -i γj +i , r = 1, 3, τ j = -12iλ 2 j 1 -λ 2 j -4i(1 -λ 2 j ) 1 -λ 2 j , κ N +j = κ j , δ N +j = -δ j , γ N +j = γ -1 j , x r,N +j = -x r,j , , τ N +j = τ j j = 1, . . . , N. (3) 
e ν 1 ≤ ν ≤ 2N are defined in the following way :

e j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 -i 1/2 M -1 k=1 b K (je) 2 k+1 , e N +j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 + i 1/2 M -1 k=1 b k (je) 2 k+1 , 1 ≤ j ≤ N, a k , b k ∈ R, 1 ≤ k ≤ N. (4) 
ǫ ν , 1 ≤ ν ≤ 2N are real numbers defined by :

ǫ j = 1, ǫ N +j = 0 1 ≤ j ≤ N. (5) 
Let I be the unit matrix and D r = (d jk ) 1≤j,k≤2N the matrix defined by :

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(κ ν x + ( κ ν y 12 -2δ ν )yt + 4iτ ν t + x r,ν + e ν ). (6) 
Then we have the following result : 

Theorem 2.
and D r = (d jk ) 1≤j,k≤2N the matrix

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(κ ν x + ( κ ν y 12 -2δ ν )yt + 4iτ ν t + x r,ν + e ν ). ( 10 
)
is a solution to the Johnson equation ( 1), depending on 2N -

1 parameters a k , b h , 1 ≤ k ≤ N -1 and ǫ.
We give now the expressions of the solutions to the Johnson equation in terms of wronskians. For this, we define the following notations : [START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF] with the arguments

φ r,ν = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν = cos Θ r,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3,
Θ r,ν = -iκν x 2 + i( -κν y 24 + δ ν )yt -i xr,ν 2 + 2τ ν t + γ ν w -i eν 2 , 1 ≤ ν ≤ 2N. ( 12 
)
We denote W r (w) the wronskian of the functions φ r,1 , . . . , φ r,2N defined by

W r (w) = det[(∂ µ-1 w φ r,ν ) ν, µ∈[1,...,2N ] ]. (13) 
We consider the matrix D r = (d νµ ) ν, µ∈[1,...,2N ] defined in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF]. Then we have the following statement : 2) and ( 4).

φ r,ν = sin( -iκν x 2 + i( -κν y 24 + δ ν )yt -i xr,ν 2 + 2τ ν t + γ ν w -i eν 2 ), 1 ≤ ν ≤ N, φ r,ν = cos( -iκν x 2 + i( -κν y 24 + δ ν )yt -i xr,ν 2 + 2τ ν t + γ ν w -i eν 2 ), N + 1 ≤ ν ≤ 2N, r = 1, 3, κ ν , δ ν , x r,ν , γ ν , e ν being defined in(3), (
We can deduce rational solutions to the Johnson equation as a quotient of two determinants.

We use the following notations :

X ν = -iκ ν x 2 + i( -κ ν y 24 + δ ν )yt -i x 3,ν 2 + 2τ ν t + γ ν w -i e ν 2 , Y ν = -iκ ν x 2 + i( -κ ν y 24 + δ ν )yt -i x 1,ν 2 + 2τ ν t + γ ν w -i e ν 2 ,
for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in [START_REF] Ablowitz | Nonlinear Dispersive Waves : Asymptotic Analysis and Solitons[END_REF] and parameters e ν defined by (4). We define the following functions :

ϕ 4j+1,k = γ 4j-1 k sin X k , ϕ 4j+2,k = γ 4j k cos X k , ϕ 4j+3,k = -γ 4j+1 k sin X k , ϕ 4j+4,k = -γ 4j+2 k cos X k , (14) 
for 1 ≤ k ≤ N , and

ϕ 4j+1,N +k = γ 2N -4j-2 k cos X N +k , ϕ 4j+2,N +k = -γ 2N -4j-3 k sin X N +k , ϕ 4j+3,N +k = -γ 2N -4j-4 k cos X N +k , ϕ 4j+4,N +k = γ 2N -4j-5 k sin X N +k , (15) 
for 1 ≤ k ≤ N . We define the functions ψ j,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the term X k is only replaced by Y k .

ψ 4j+1,k = γ 4j-1 k sin Y k , ψ 4j+2,k = γ 4j k cos Y k , ψ 4j+3,k = -γ 4j+1 k sin Y k , ψ 4j+4,k = -γ 4j+2 k cos Y k , (16) 
for 1 ≤ k ≤ N , and

ψ 4j+1,N +k = γ 2N -4j-2 k cos Y N +k , ψ 4j+2,N +k = -γ 2N -4j-3 k sin Y N +k , ψ 4j+3,N +k = -γ 2N -4j-4 k cos Y N +k , ψ 4j+4,N +k = γ 2N -4j-5 k sin Y N +k , (17) 
for 1 ≤ k ≤ N .

The following ratio q(x, t)

:= W 3 (0) W 1 (0)
can be written as

q(x, t) = ∆ 3 ∆ 1 = det(ϕ j,k ) j, k∈[1,2N ] det(ψ j,k ) j, k∈[1,2N ] . (18) 
The terms λ j depending on ǫ are defined by λ j = 1 -2jǫ 2 . All the functions ϕ j,k and ψ j,k and their derivatives depend on ǫ. They can all be prolonged by continuity when ǫ = 0. We use the following expansions

ϕ j,k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ϕ j,1 [l] = ∂ 2l ϕ j,1 ∂ǫ 2l (x, y, t, 0), ϕ j,1 [0] = ϕ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ϕ j,N +k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,N +1 [l]k 2l ǫ 2l +O(ǫ 2N ), ϕ j,N +1 [l] = ∂ 2l ϕ j,N +1 ∂ǫ 2l (x, y, t, 0), ϕ j,N +1 [0] = ϕ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1.
We have the same expansions for the functions ψ j,k .

ψ j,k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ψ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ψ j,1 [l] = ∂ 2l ψ j,1 ∂ǫ 2l (x, y, t, 0), ψ j,1 [0] = ψ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ψ j,N +k (x, t, ǫ) = N -1 l=0 1 (2l)! ψ j,N +1 [l]k 2l ǫ 2l +O(ǫ 2N ), ψ j,N +1 [l] = ∂ 2l ψ j,N +1 ∂ǫ 2l (x, y, t, 0), ψ j,N +1 [0] = ψ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N..
Then we get the following result :

Theorem 2.3 The function v defined by v(x, y, t) = -2 | det((n jk) j,k∈[1,2N ] )| 2 det((d jk) j,k∈[1,2N ] ) 2 (19)
is a rational solution to the Johnson equation ( 1), where

n j1 = ϕ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N n jk = ∂ 2k-2 ϕj,1 ∂ǫ 2k-2 (x, y, t, 0), n jN +1 = ϕ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N n jN +k = ∂ 2k-2 ϕj,N+1 ∂ǫ 2k-2
(x, y, t, 0),

d j1 = ψ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N d jk = ∂ 2k-2 ψj,1 ∂ǫ 2k-2 (x, y, t, 0), d jN +1 = ψ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N d jN +k = ∂ 2k-2 ψj,N+1 ∂ǫ 2k-2 (x, y, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N (20)
The functions ϕ and ψ are defined in ( 14),( 15), ( 16), [START_REF] Gaillard | From finite-gap solutions of KdV in terms of theta functions to solitons and positons[END_REF].

3 Explicit expression of rational solutions of order 5 depending on 8 parameters

We construct rational solutions to the Johnson equation of order 5 depending on 8 parameters. We give patterns of the modulus of the solutions in the plane (x, y) of coordinates in function of the parameters a i and b i , for 1 ≤ i ≤ 4 and time t.

The (x; y) plane is the horizontal plane. To shorten the text, one cut certain characters of the figures and one made appear only the letter y of the (x; y) plane. In these constructions, we note that the initial rectilinear structure becomes deformed very quickly as time t increases. The heights of the peaks also decrease very quickly according to time t and of the various parameters. Because of the structure of the polynomials, one notices that the modulus of these solutions tend towards value 2 when time t and variables x and y tend towards the infinite.

The preceding solutions depends one parameters a j and b j for 1 ≤ j ≤ 4. The Johnson equation allows explaining the existence of the horseshoelike solitons and multisoliton solutions quite naturally. The horseshoe multisoliton solutions correspond very well to real waves observed in thin films of shallow water being cooled along an inclined plane. It should be relevant to give a physical meaning of these parameters and to give an explanation of the evolution of the figures according to time in the (x; y) plane.

Conclusion

We succeed in obtaining rational solutions to the Johnson equation depending on 2N -2 real parameters. These solutions can be expressed in terms of a ratio of two polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y. Here we have made the study of rational solutions of order 5 depending on 8 parameters and tried to describe the structure of those rational solutions. In the (x; y) plane of coordinates, various structures appear. But, contrary to the rational solutions of the NLS or KP equations, there are not well defined structures which appear according to the parameters a i or b i . Thus, one cannot carry out a classification of these solutions here, according to the parameters by means of their module in the plan (x, y). It would be important to better understand these structures.

Because of the length of the complete expression, we only give the explicit expression of the rational solution of order 5 to the Johnson equation without parameters. It can be written as a 24 = (47203240448193398475334248038400 y 12 +67503889236809538674795239125811200 y 10 + 43427502075680803214118270504271872000 y 8 +16064413551241765670934951498586647429120 y 6 +3602050732165268541791825828706326151168000 y 4 + 464406988490232177093856789952669714428723200 y 2 +26935605332433466271443693817254843436865945600)t 6 +(2636870673312872604484189028352000 y 8 + 2700155569472381546991809565032448000 y 6 +1480266824039674523777017569851788492800 y 4 +430695583758302336603247408773175705600000 y 2 + 50391383299721373382579946826461557555200000)t 4 +(-52737413466257452089683780567040000 y 4 -23179797042547521588021995958278553600 y 2 -282643976841385908395881112007396556800)t 2 +297925818843226713958952064987955200, a 23 = (13486640128055256707238356582400 y 14 + 21563742395091935965559590276300800 y 12 +15990921316986437383851494424025497600 y 10 +7114585906891388690537779186712696586240 y 8 + 2049000741184719942874880405773256616837120 y 6 +381989081582243441961459365809834811405107200 y 4 +42725442941101360292634824675645613727442534400 y 2 + 2216415524497382367478795376962684259947826380800)t 7 +(1054748269325149041793675611340800 y 10 +1068811579582817695684257952825344000 y 8 + 687418067132753382148007148956260761600 y 6 +293112272279955756854987819859522355200000 y 4 +68945749048029038043447845196409966952448000 y + 6733901333108366567860923454313710859216486400)t 5 +(-35158275644171634726455853711360000 y 6 -27198874755569874121429035580076851200 y 4 -3598102689314150770372962727459238707200 y 2 +586607385078807782453622970749065311027200)t 3 +(595851637686453427917904129975910400 y 2 + 149173209999620340542270586892792627200)t, a 22 = (3231174197346571919442522931200 y 16 +5647646817762173705265606977126400 y 14 + 4686520013866647416514950953382707200 y 12 +2404650543949324110489025926235296890880 y 10 +833085694235126170199619544787182461911040 y 8 + 199451334717332739020401766425660465317150720 y 6 +32241885182405193183793872324677014062838579200 y 4 +3222719124700216890644455346962983435441379737600 y 2 + 152932671190319383356036881010425213936400020275200)t 8 +(336933474923311499461868598067200 y 12 +301892393531287103517834263868211200 y 10 + 196581710671318116550030627909612339200 y 8 +111168910843332770889692278388190326292480 y 6 +41083477473926115485468299326328199656243200 y + 8284901595950744543924381066912050097789337600 y 2 +704969808528172444828474607148152626502801817600)t 6 +(-16846673746165574973093429903360000 y 8 -19944802966045033696145270267864678400 y 6 -5893276464220590045032108424037820006400 y 4 +61589468477437234134264379454564125900800 y 2 + 192215993466660266407336492556198132003635200)t 4 +(571024486116184535087991457893580800 y 4 +306384575425285386151355253029181849600 y 2 + 40148903948469245940233969386574472806400)t 2 -3220227600731935805291614231855104000, a 21 = (658202151311338724330884300800 y 18 + 1235422741385475498026851526246400 y 16 +1121999167795418509446100586122444800 y 14 +644681143306279233325551142681769410560 y 12 + 257668285559154848361096809724264421785600 y 10 +74208466241036596327995881200588153474252800 y 8 +15400060632114055121938900025835844412972728320 y 6 + 2223079396205242206972332623599465425373914726400 y 4 +203031304856113664110600686858667956432806923468800 y 2 + 8972050043165403823554163685944945884268801189478400)t 9 +(88244481527533964144775109017600 y 14 +59300291586502823905288873259827200 y 12 + 27296380373356376788403739814369689600 y 10 +21148715098677447212545092263680545914880 y 8 +12821383213576217196154466233952501256683520 y 6 + 4348178573295697999273444103720255249134387200 y 4 +780287095764088304318696253210989445573613977600 y 2 +59620303806954012476922423918815193555665525145600)t 7 + (-6177113706927377490134257631232000 y 10 -10318250736051491359520263947209932800 y 8 -4813733497118074422686729176787347046400 y 6 -664461593726228683993779429432160891699200 y 4 +120781685335675757462995083831896755824230400 y 2 +34457658910431505716776403073747844724896563200)t 5 + (348959408182112771442661446490521600 y 6 +299616012377579137408078668859913011200 y 4 +82170885045054025479758103285261454540800 y 2 + 8181708656864590337283589400759632291430400)t 3 +(-5903750601341882309701292758401024000 y 2 -1569052612510104362010170369558917939200)t, a 20 = (115185376479484276757904752640 y 20 +228781989145458425560528060416000 y 18 +223474246997283790087523809414348800 y 16 + 140676105054274432389719951071846072320 y 14 +63000101751078125517920820552925477601280 y 12 +20936039586792486291222563547568367135096832 y +

v(x, y, t) = -2 |n(x, y, t)| 2 (d(x, y, t)) 2 with n(x, y, t) = A( x, y, t) + iB(x, y, t), d(x, y, t) = C(x, y, t) + iD(x, y, t), A ( x, y, t) 
= 30 k=0 a k (y, t)x k , B ( x, y, t) = 30 k=0 b k (y, t)x k , C ( x, y, t) = 30 k=0 c k (y, t)x k , D ( x, y, t) = 0. 

Theorem 2 . 2 2 (W 1

 2221 The function v defined byv(x, y, t) = -2 |W 3 (φ 3,1 , . . . , φ 3,2N )(0)| (φ 1,1 , . . . , φ 1,2N )(0))2 is a solution to the Johnson equation depending on 2N -1 real parameters a k , b k and ǫ, with φ r ν defined in[START_REF] Gaillard | Degenerate determinant representation of solution of the NLS equation, higher Peregrine breathers and multi-rogue waves[END_REF] 

Figure 1 .

 1 Figure 1. Solution of order 5 to (1), on the left for t = 0; in the center for t = 0, a 1 = 10 3 ; on the right for t = 0, a 2 = 10 3 ; all other parameters not mentioned equal to 0.

Figure 2 .

 2 Figure 2. Solution of order 5 to (1), on the left for t = 0, a 3 = 10 3 ; in the center for t = 0, a 4 = 10 3 ; on the right for t = 0, b 1 = 10 3 ; all other parameters not mentioned equal to 0.

Figure 3 .

 3 Figure 3. Solution of order 5 to (1), on the left for t = 0, b 2 = 10 3 ; in the center for t = 0, b 3 = 10 3 ; on the right for t = 0, b 4 = 10 3 ; all other parameters not mentioned equal to 0.

Figure 4 .

 4 Figure 4. Solution of order 5 to (1), on the left for t = 0, 01, a 1 = 10 3 ; in the center for t = 0, 1, a 2 = 10 3 ; on the right for t = 1, b 1 = 10 3 ; all other parameters not mentioned equal to 0.

Figure 5 .

 5 Figure 5. Solution of order 5 to (1), on the left for t = 0, 01, a 2 = 10 3 ; in the center for t = 0, 1, a 2 = 10 3 ; on the right for t = 1, a 2 = 10; all the other parameters to equal to 0.

Figure 6 .

 6 Figure 6. Solution of order 5 to (1), on the left for t = 0, 01, a 3 = 10 3 ; in the center for t = 0, 1, a 3 = 10 3 ; on the right for t = 1, a 3 = 10; all the other parameters to equal to 0.

Figure 7 .

 7 Figure 7. Solution of order 5 to (1), on the left for t = 0, 01, a 4 = 10 3 ; in the center for t = 0, 1, a 4 = 10 3 ; on the right for t = 1, a 4 = 10; all the other parameters to equal to 0.

Figure 8 .

 8 Figure 8. Solution of order 5 to (1), on the left for t = 0, 01, b 1 = 10; in the center for t = 0, 1, b 4 = 10; on the right for t = 1, b 1 = 10; all the other parameters to equal to 0.

Figure 9 .

 9 Figure 9. Solution of order 5 to (1), on the left for t = 0, 01, b 2 = 10 3 ; in the center for t = 0, 1, b 2 = 10; on the right for t = 1, b 2 = 10; all the other parameters to equal to 0.

Figure 10 .

 10 Figure 10. Solution of order 5 to (1), on the left for t = 0, 01, b 3 = 10 3 ; in the center for t = 0, 1, b 3 = 10 3 ; on the right for t = 1, b 3 = 10 3 ; all the other parameters to equal to 0.

Figure 11 .

 11 Figure 11. Solution of order 5 to (1), on the left for t = 0, 01, b 4 = 10 3 ; in the center for t = 0, 1, b 4 = 10 3 ; on the right for t = 1, b 4 = 10; all the other parameters to equal to 0.

a

  30 = 237376313799769806328950291431424, a 29 = (593440784499424515822375728578560 y 2 +170910945935834260556844209830625280)t, a 28 = (717074281270137956618704005365760 y 4 +398792207183613274632636489604792320 y 2 +59477009185670322673781785021057597440)t 2 + 2670483530247410321200690778603520, a 27 = (557724440987885077370103115284480 y 6 +448641233081564933961716050805391360 y 4 + 129208675127490700980974222631952711680 y 2 +13322850057590152278927119844716901826560)t 3 +(6231128237243957416134945150074880 y 2 + 2592149346693486285112137182431150080)t, a 26 = (313719998055685356020683002347520 y 8 +324018668336685785639017147803893760 y 6 + 134991162131653093463147451731222200320 y 4 +26875404426518065804042638307446164029440 y 2 +2158301709329604669186193414844138095902720)t 4 + (7010019266899452093151813293834240 y 4 +5084600641591069251566115242461102080 y 2 +1098273738583670958338280892371598049280)t 2 -23366730889664840310506044312780800, a 25 = (135945332490796987608962634350592 y 10 +168759723092023846686988097814528000 y 8 + 90293202243156438931406111854685061120 y 6 +26004442246029054412244960214149297602560 y 4 +4031310663977709870606395746116924604416000 y 2 + 269356053324334662714436938172548434368659456)t 5 +(5062791692760715400609642934435840 y 6 +4698270690881943891765748643156459520 y 4 + 1884293178942572722639207413382643712000 y 2 +282191746478439690942447702228184722309120)t 3 +(-50627916927607154006096429344358400 y 2 -9197145278172081146215179041510522880)t,

d(x, y, t) 2[START_REF] Lipovskii | Connection between the Kadomtsev-Petvishvili and Johnson equation[END_REF]