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LEAP nets for power grid perturbations
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Abstract. We propose a novel neural network embedding approach
to model power transmission grids, in which high voltage lines are dis-
connected and re-connected with one-another from time to time, either
accidentally or willfully. We call our architecture LEAP net, for Latent
Encoding of Atypical Perturbation. Our method implements a form of
transfer learning, permitting to train on a few source domains, then gen-
eralize to new target domains, without learning on any example of that
domain. We evaluate the viability of this technique to rapidly assess cu-
rative actions that human operators take in emergency situations, using
real historical data, from the French high voltage power grid.

Fig. 1: Electricity is transported from production nodes (top) to consumption nodes (bot-
tom), through lines (green and red edges) connected at substations (black circles), forming a
transmission grid of a given topology τ . Injections x = (x1, x2, x3, x4) (production or con-
sumption) add up to zero. Grid operators (a.k.a. dispatchers) should maintain current flows
y = S(x, τ ) below thermal limits. Left: Line y4 goes over its thermal limit 100. Right: A
change in topology (splitting of node 6) brings y4 back to its thermal limit.

1 Background and motivations

We address the problem of accelerating the computation of current flows in power
transmission grids, using artificial neural networks, to emulate slower physical
simulators, following other pioneering work [6, 5, 3, 2]. Key to our approach
is the possibility of simulating the effect of planned coordinated actions on the
grid topology (as opposed to accidental suffered changes). Our neural network
models may then be used as part of an overall computer-assisted decision process
in which human operators (dispatchers) ensure that the power grid is operated
in security at all times, namely that the currents flowing in all lines are below
certain thresholds (line thermal limits). Figure 1 illustrates the problem setting
on a toy example. If one line goes over its thermal limits, it may be damaged,
melt and/or cause fire or break, thus circuit breakers usually put it out of service
before this happens. Hence, the grid must be reconfigured quickly to re-balance
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current flows and avoid that more lines go over their thermal limit, which might
result in a cascading effect (black-out). The space of possible grid topologies
grows exponentially with the number of substations. For example, the French
high-voltage transmission grid includes N ≈ 6200 substations, with more than
a dozen possible configurations per substation and thus ' 10N possible grid
topologies. Even if only a small number of those are achievable, the search space
is still humongous. In practice, Transmission System Operators (TSOs) limit
dispatchers to a very limited set of candidate operations. However, operating the
grid is becoming increasingly complex because of the advent of less predictable
renewable energies, the globalization of energy markets, growth in consumption
and concurrent limitations on new line construction. Therefore, it is becoming
urgent to optimize more tightly the grid operation, considering a broader range
of topological changes operated more frequently, without compromising security.

2 Proposed methodology

Our objective is to approximate a function y = S(x, τ ) that maps input data x
(e.g. power production and consumption) to output data y (e.g. power flows),
parameterized by a discrete “grid topology vector” τ , taking values in an action
space (all possible power-grid topologies e.g. line interconnections). For any
fixed topology τ , training data pairs {x,y} are drawn i.i.d. according to an
unknown probability distribution. In our application setting, x is drawn ran-
domly, but S(x, τ ) is a deterministic function implementing Kirchhoff’s circuit
laws, calculated by a physical simulator that we wish to approximate.

We call simple generalization the capability of a neural net ŷ = NN(x, τ )
to approximate y = S(x, τ ) for test inputs x not pertaining to the training set,
when τ values are drawn i.i.d. from a distribution that remains the same in
training and test data (this includes the case of a fixed τ ). Conversely, if values
of τ are drawn according to a source domain distribution in training data and
from a different target domain distribution in test data, then we will talk about
super-generalization. This setting is a particular case of transfer learning [7].

One particularity of our application domain in terms of transfer learning
is that we have one primary “reference” source domain (corresponding in the
power grid to a reference grid topology τ ∅ = (0, 0, 0, . . . ), around which small
variations are made. This is a generic scenario in the industry for systems that
operate around nominal conditions, thus we anticipate that our method could be
extended to other similar situations. In our application setting, we can easily get
a lot of training data in the reference topology (corresponding to the typical way
in which the grid is operated). We have comparably very little data available for
training from other secondary source domains, corresponding to unary changes
in grid topology τ i = (0, 0, 1, . . . ) (a single 1 at position i). Finally, we have
extremely scarce data or no data at all available for training from domains
corresponding to double changes τ ij , or higher order changes (considered target
domains). This motivates our architectural design.

Our proposed Latent Encoding of Atypical Perturbations network, or LEAP



Fig. 2: Baseline and LEAP architectures: Top: ResNet [4] architecture, with τ as input.
Bottom: Proposed LEAP net: τ intervenes in the latent embedding space. The effect is to
make a “leap” in latent space.

net (Figure 2), is composed of three parts: An EncoderE, learning an embedding
of the input data x; a Decoder D, learning how to perform the required task
within this latent representation; and a Latent module Lτ , placed between the
E and D where τ intervenes. The overall arhitecture is given by:

Lτ : h → d(e(h)� τ ) (1)

ŷ = D ◦ (I +Lτ ) ◦E(x) (2)

where E and e (encoders) andD and d (decoders) are all differentiable functions
(typically implemented as artificial neural networks). The � operation denotes
the component-wise multiplication and ◦ the function composition. If the system
is in the reference topology τ ∅, predictions are made according to ŷ = D◦E(x).
A typical way in which we train LEAP nets is to use a lot of training data in the
reference topology τ ∅ (primary source domain), very few examples for each of
the unary changes τ i (secondary source domains), and we expect the network to
generalize to target domains corresponding to double τ ij or higher level changes.

While our architecture draws inspiration from both Dropout [8] and Residual
Neural Networks [4], in its mathematical formulation, the underlying concept is
quite different. Here we first embed x in a latent space by applying E(x). Then,
based on τ and the location of E(x) within the latent space, we compute the
corresponding leap Lτ ◦E(x). Then we decode the signal by applying D. Those
latent leaps contain information about how much the system actually deviates
from the reference state, and in which direction. Hence, our architecture only
needs to learn to modulate the system response around its nominal value.

3 Predicting flows in power grids

We present results for our target application on simulated and real data. Syn-
thetic data allows us to perform controlled systematic experiments and com-
pare neural network approaches with a standard baseline (DC approximation)
in power systems. Real data allows us to check whether our method scales com-
putationally while providing prediction accuracies that are acceptable for our
application domain.



3.1 Case 118 synthetic data benchmark

We conducted controlled experiments on a standard medium-size benchmark
from ”Matpower” [9], a library commonly used to test power system algorithms
[1]: case118, a simplified version of the Californian power grid (dim x = 153
injections and dim y = 186 power lines). Topology changes consist in reconfig-
uring line connections in one or more substations (see Figure 1). Such changes
are more complex than simple line disconnections considered in [3]. There are
11 558 possible unary actions (corresponding to single node splitting or merging,
compared to the reference topology). To build the Source domain training and
test sets, we sampled randomly 100 τ (i) ∈ T Source. In the reference topology
(τ ∅), we sampled 50000 input vectors x. But for each τ (i), we sampled only 1000
input vectors x. We used Hades21 to compute the flows y in all cases. This
resulted in a training set of 150 000 rows (each row being one triplet (x, τ (i),y)).
We created an independent test set of the same size in a similar manner.

We proceeded differently for the Target dataset. We sampled 1500 (Target
domains: τ (ij) ∈ T Target) among the 4950 possible double actions τ (ij) = τ (i)∨
τ (j), τ (i) and τ (j) ∈ T train. Then, for each of these 1500 τ (ij), we sampled 100
inputs x (with the same distribution as the one used for the training and regular
test set). We used the same physical simulator to compute the y from the x and
the τ . The super-generalization set counts then 150 000 rows, corresponding to
150 000 different triplets (x, τ (ij),y).

We compare the proposed LEAP net with two benchmarks: the DC approxi-
mation, a standard baseline in power systems, which is a linearization of the AC
(Alternative Current) non-linear powerflow equations, and the baseline neural
network architecture (Figure 2) in which τ is simply an input. The mean-square
error was optimized using the Tensorflow Adam optimizer. To make the compar-
ison least favorable to LEAP net, all hyper-parameters (learning rates, number
of units) were optimized by cross-validation for the baseline network.

Figure 3 indicates that the LEAP net (blue curves) performs better than
the DC approximation (black line) both for regular and super generalization.
Figure 3b shows that the baseline neural network architecture (green curve) is
not viable: not only does it perform worse than the DC approximation, but its
variance is quite high. While it is improving in regular generalization with the
number of training epochs, its super-generalization performances get worse.

3.2 Real French ultra-high voltage power grid data

We now present results on a part of the French ultra-high voltage power grid:
the ”Toulouse” area with 246 consumption nodes, 122 production nodes, 387
lines and 192 substations often split in a variable number of nodes. The inputs
x representing injections (production and consumption) are of dim x = 368)
and the outputs y (flows) of dim y = 387. In this study, x and y come from real
historical data from the company RTE2. One important difference when using

1Freeware available at http://www.rte.itesla-pst.org/.
2Even in real records, flows are estimated, not measured.

http://www.rte.itesla-pst.org/
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Fig. 3: Synthetic data (case 118). Neu-
ral nets trained with 15000 injections, for
τ∅ and unary changes τ (i). (a) Regular
generalization. Test injections for unary
changes τ (i). (b) Super-generalization.
Test injections for double changes τ (ij).
Error bars are [20%, 80%] intervals, com-
puted over 30 repeat experiments.
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Fig. 4: Real data from the ultra high
voltage power grid. The neural net in
both cases is trained from data until
May 2017. (a) Regular generalization.
Test set made of randomly sampled data
in same time period as training data. (b)
Super-generalization. Test set made of the
months of June and July 2017.

played-back data, compared to simulation, is that we cannot intervene (this is
strictly observational data). To place ourselves in a realistic transfer learning
setting, we used data from 2012 to May 2017 for T Source and data from June
and July 2017 for T Target. This favored changes in τ distribution. Another
key difference in real data is “actions space”. In real data actual grid topologies
(specifying line interconnections) are not precisely recorded. Only information
on line outages is available to us as surrogate information on topology. This
makes the neural net task harder: it must learn the effects of latent topological
changes. This unfortunate loss of information on exact grid topology interven-
tions makes it impossible for us to compare our method to the DC approxima-
tion: computing this approximation requires a full description of the topology.
The results of Fig. 4 yield the same conclusions as in the previous section: the
LEAP model generalizes not only to data drawn from a similar distribution it
was trained on (Fig. 4a) but also to unseen grid states (Fig. 4b), better than
the reference architecture, which is a critical property for our application.

4 Discussion and conclusion

The LEAP net architecture has been evaluated on a number of real and arti-
ficial test cases. Training was performed on data triplets (x, τ ,y), for which
τ ∈ T Source belong to source domains. The LEAP net generalizes not only by
approximating well y for new values of x when τ ∈ T Source, but also when
τ ∈ T Target (super-generalization). In our experiments, we achieved a speed-up
of ≈ 300 times using the LEAP net, compared to running the physical simu-
lator, on the synthetic dataset (power grid of 118 nodes). With data stored
in computer memory, our experiments on the Toulouse area attain a speed of
' 2000 times compared to running the physical simulator. These computational



evaluations were carried out using a single high-end Graphical Processing Unit
(GPU) Nvidia Titan X. Further work includes scaling up our method compu-
tationally to the entire French extra high voltage power grid. We also need to
improve prediction accuracy before our system could be deployed to production.
However, the fact that the regular generalization performance is already within
an acceptable accuracy range shows great promises. We anticipate several de-
velopments. From the theoretical point of view, we could seek mathematical
guarantees of super-generalization in the form of performance bounds. It can
easily be proved that a LEAP net architecture with linear submodules d and D
exhibits super-generalization with respect to linear superposition of perturba-
tions. However, we have demonstrated experimentally that super-generalization
extends to combinations of non-linear perturbations. We are hopeful that more
powerful theoretical results could be derived. From the practical point of view,
the LEAP net architecture could be used in other application domains, lending
themselves to transfer learning.
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