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Crystal structure, X-ray diffraction and Oblique geometry

C. Tannous
Université de Brest, Lab-STICC, CNRS-UMR 6285, F-29200 Brest, FRANCE

The main mathematical difficulty in crystal geometry and X-ray diffraction stems from oblique
system of coordinates as soon as we move on from the simple cubic to the body-centered cubic
case without mentioning the non-cubic systems. We show in this work that there exists a simple
way for dealing with oblique geometry for all crystal systems by combining direct and reciprocal
space geometrical elements with the help of a small set of vector identities that are not usually
taught in a general physics curriculum. This allows us to derive for all crystalline systems compact
formulae describing directions, planes, moduli, angles and scalar products of vectors belonging to
either direct or reciprocal lattices. Interplanar distances and angles are derived as well with this

approach.
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I. INTRODUCTION

Solid State Physics at the graduate/undergraduate level usually starts & la Kittel (1), like many other books, with
crystallography (2) concepts and its geometry with a first emphasis on local symmetry (fixed point symmetry) and
afterwards on translational or space symmetry elements. Next, X-ray diffraction (3) is introduced as a tool for crystal
structure determination with the introduction of reciprocal lattice concepts. Ashcroft and Mermin book represents
an exception to this general scheme since it starts with the structureless electron gas (4).

While crystal structure requires knowledge of angles, distances, surfaces and volumes, directions and planes as
well as other geometrical notions, the calculations are lengthy and tedious (5) since they should be based on oblique
geometry as soon as we start dealing with the body-centered cubic lattice.

Traditionally, the Bravais conventional lattice approach is helpful in the sense it serves to visualize the different
non-simple-cubic as close as possible to the simple cubic. Nevertheless it might induce student errors during the
evaluation of geometrical quantities since it provides a false impression of orthogonality and normality.

While several books such as Cullity (3), Tilley (6), Phillips (7), Kittel (1), Ashcroft and Mermin (1), Busch et
al. (8), Patterson et al. (9) and many other authors such as Donnay (10) and Blake et al. (11) contributors to
the International Tables for X-ray crystallography series, present sets of tables containing formulas of cell volumes,
interplanar angles and distances for some or all systems, they fail however to indicate a general, powerful yet easy
method to obtain the desired results.

In this work, we show that by combining the original oblique lattice and its corresponding reciprocal version along
with a small set of simple vector identities (not usually taught in the general physics curriculum), a student will
be able to perform easily, quickly and flawlessly estimations of geometrical quantities that are generally required in
crystallography and X-ray diffraction. A word of caution is needed at this level since we use geometrical formulas
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involving explicitly the 27 scattering phase factor (3) originating from the scalar products between direct and reciprocal
basis vectors whereas this factor is taken as unity in many crystallography books.

This work is organized as follows: In section 2, we introduce geometrical concepts based on standard Linear
Algebra to describe crystallography in direct and reciprocal spaces. In section 3, we apply these notions to evaluate
geometrical quantities such as unit cell volumes, interplanar distances and angles, crystallographic directions and
planes and reticular density for all systems. The appendix covers derivations of cross and triple vector non-standard
combination identities.

Il. DIRECT AND RECIPROCAL LATTICES

Crystal systems are classified according to the lengths a, b, ¢ of the unit cell and the angles «, 3,y the basis vectors
a,b, c make among themselves (see table I and fig.1).

System Lengths and angles

triclinic a#b#c a#B#vy#90°
monoclinic  a #b# ¢, a =90° 5 #90°, v =90°
orthorhombic a #b# ¢, a ==~ =90°
tetragonal a=b#c,a=0F=~v=90°

cubic a=b=c,a=0=~v=90°
rhombohedral a =b=r¢c, a = = < 120°, # 90°
hexagonal a=b#c, a=0F=90° v=120°

TABLE I: Crystal systems characterized by the lengths and angles making the unit cell. We proceed from the most
general structure (triclinic) to the most symmetric (cubic) followed by the rhombohedral and finally the hexagonal.
The proximity of the cubic to the rhombohedral system highlights their similar characteristics.

The direct lattice is generated from nodes positioned at integer values ni,ns,n3 in terms of three basis vectors
a, b, c such that R,, = nia + nyb + nse.

a

FIG. 1: Crystal axes defining the direct basis.

An arbitrary position in the lattice is written as » = xa + yb + zc with z,y,z € R. The scalar product between
two arbitrary position vectors can be written in the form:

t
-T2 = (Jfla + y1b+ Z1C) : (an' + y2b+ ZQC) = (xla Y1, Zl) G<x27 Y2, 22) (1)

¢
where (x2, Y2, 22) is the transpose (column form) of the (line form) vector (ch, Y2, 22) and

a-a a-ba-c a® abcosy accosf
G=]|b-a b-b b-c|=|abcosy b2 becos o (2)
c-acbcec accos 3 becosa 2



is the metric matrix of the direct basis.
The modulus of any vector r is written as:

R (AR T 3)

wa+vb+we

Tuatvbtwel] where:

Applying this to any crystalline direction [u, v, w] or ua + vb + we, we define a unit vector n =

||ua—|—vb—|—wc|:\/(u7 v, w) G(u, v, w)t (4)

A. Reciprocal lattice

*

The reciprocal lattice is generated from a*, b*, c* chosen in a way such that:

a®-a=2m, a*-b=0, a*-c=0,
b*-a =0, b*-b=2r, b -c=0, (5)
c-a=0, ce=0, c-ec=27

This leads to the definitions:

._ (2 (2 (2
a—(Q>b><c, b—<Q>c><a7 C—<Q>a><b (6)

where €2 is the unit cell volume given by the triple product 2 = (a, b, ¢). The above definitions are easily verified
by simply taking the dot products as in the Appendix (eq. A2).
From the above definitions we get the moduli of a*, b*, c* as:

o (27, a2 a2
[la |—<Q)bcsmo¢7 [|b ||—<Q>casmﬂ, |c|—<Q>absln’y (7)

Reciprocal lattice basis vectors a*, b*, ¢* make the angles o*, 3*,v* such that: o* = (b*,c*), §* = (c*,a*), and
,7* — ((1,*7 b*)'

Angles a*, 3*,7* can be obtained in terms of «, 3, by deriving several interesting relations concerning dot and
cross products of reciprocal vectors. For instance, if we want to evaluate the angle v* = (a*,b*), we start from the
dot product:

a’ - b* = [[a”||||b"[| cos 7" (8)

and use the Appendix for the dot product (eq. A2) as:

21\ ” 2\ ”
a* bt = (5) (bxc) (cxa)= <5) (b-¢)(a-c)—c(a-b) (9)

Since we know from above, the moduli ||a*||, ||b*||, we are able to extract the value of cosy* and cyclically for all
other angles, obtaining;:

cos . cosy — cos 3 . cosacosf —cosy
, cosy" = . - (10)
sin asin 3

cos 3 cosy — cos a

, cosf* =

cosa’ =

sin Bsiny sin asin 7y

In reciprocal space, an arbitrary wavevector q is given by:

g =ua* +vb* +wc* (11)



Its modulus is:

gl = \/(u v, w) G* (u v, w)t (12)

where the reciprocal metric matrix G* is:

a*-b* a*-c*
G*=|b"a* b b b . (13)

c*-b* c*-c*

In order to express G* in terms of a, b, c and the angles «, 3,7y, we use eq. 7 for the moduli and eq. 10 for the angles,
obtaining, for instance, the expression:

o x|l . « (27 ) 27 . ,(cosacosfB—cosy) (2w 2 9
a™-b* =|la”||||b*|| cosvy* = (Q> besin o (Q) casin 8 oS =lq abe”(cos avcos f—cosy) (14)

Using cyclic symmetry, the rest of the G* elements are found, yielding:

9\ 2 b2c? sin? o abc?(cos acos 3 — cosy) ab?c(cos acosy — cos 3)
G* = <Q> abc?(cos acos 3 — cos ) c2a?sin? 8 a®be(cos 3 cosy — cos ) (15)
ab®c(cos acosy — cos B) a’be(cos B cosy — cos ) a?b?sin? v

Using standard crystallographic definitions (3; 6): S1; = b?c? sin® a, Sap = a?c?sin? 3, S53 = a?b®sin®y, Sip =
abc?(cos acos B — cosy), Sag = a?be(cos Bcosy — cosa), Siz = ab®c(cos acosy — cos 3), the reciprocal metric matrix
is written more compactly in terms of the S matrix elements as:

S11 S12 Sis

" 2\ 2 21\ 2
G" = o S12 Sop Saz | = O S (16)
S13 S23 S33

B. Reticular planes and Miller indices

A reticular plane goes through crystal nodes. Macroscopically it is noticeable as a shiny facet observable in table
salt, sugar grains or jewels made from properly cut (1) gem stones like diamond, emerald, ruby...

Let us suppose the plane cuts the crystal axes a, b, ¢ respectively at pia, pab, psc where py,p2, p3 € A". The plane
equation is obtained by taking z;11 = x;42 = 0 and verifying that the plane indeed intersects the z; axis at x; = p;a,
checking in a circular fashion (i.e. i =1,2,3):

g1 T2 T3
Bt STt Al A 17
pia  p2b  psc a7

Multiplying by p1pops leads to the plane Miller indices (h, k,1) defined as h = paps, k = paps,l = paps, leading to
the plane equation:

€2

1
h— +k
a + b

X
+ lf’ = p1p2p3 (18)

where 1, x2, x3 are the coordinates along the crystal basis set a, b, ¢ directions respectively.
Any vector r with its tip lying in that plane is written as:

X1 i) I3
1 Ep4 2 19
r aa+ b + _C (19)



FIG. 2: Miller plane cutting at pja, peb, psc crystal axes (21, z9, 23) defined from the (a, b, ¢) basis set.

11l. APPLICATIONS TO CRYSTALLOGRAPHY AND X-RAY DIFFRACTION
A. Unit cell volumes
The unit cell volume is given by the triple product Q = (a, b, ¢), whereas the reciprocal unit cell volume is rather

Q* = (a*,b*, c*)
Let us start by evaluating the unit cell volume € by taking its square:

a-a a-ba-c a®> abcoswy accosf3
Q% = (a,b,c)(a,b,c)=|b-a b-b b-c|= abcosy  b? bc cos a (20)
c-a cbc-c accos 3 bcceosa c?

The evaluation of the above determinant yields Q = abcy/1 — cos? a — cos? 3 — cos2y + 2cos a cos Bcosy in the
most general case (triclinic). In the rhombohedral case, we have a« = b = ¢, « = S = =, hence Q =
a®v/1 — 3 cos? a + 2cos3 « as in table I1.

Unit cell volumes for all crystal systems are displayed in table II.

Incidentally, another way to evaluate 2 is through a combination of direct and reciprocal angles. Using the cross
product a* x b* given by:

a*xb*:(?;)Q(bxc)x(cxa) (21)

From the Appendix (eq. A3), we have:

(bxec)x (exa)=(beca) c (22)

Taking the modulus:

(b x ) x (¢ x al|

Q= (a,b,c)= (23)

This can be rewritten as:
[[(bx ¢) x (¢ x a)|| = (besin a)(casin 3) siny* = abc? sin a sin §sin v* (24)
since v* is the angle (a*,b*) and a* x (b x ¢), b* x (¢ X a).

Thus the result:

Q = (a,b,c) = abcsin asin G siny* (25)



This might be viewed as a way to express the value of siny* as:

i~ & (26)
11n =
SRy abcsin asin

and cyclically:
Q Q

sina* = ————, sinfff=——— 27
abcsiny sin 8’ inp abcsin acsin 7y (27)

For instance, in the triclinic system we have Q = abc\/l — cos? a — cos? 3 — cos?y + 2cosacos Bcosy and conse-
quently:

- \/l—cos2 a—cos? 3—cos? y+2 cos a cos 3 cos ¥

. *
S o sin -y sin 3 ’
. 1—cos? a—cos? B—cos? y+2 cos a cos 3 cos
sin ﬂ* = \/ T : L E ) (28)
sin o sin y
. 1—cos? a—cos? B—cos? y+2 cos a cos 3 cos
sin '7* _ \/ 2l as

sin o sin (3

(29)

Moving on to the evaluation of the reciprocal unit cell volume Q* = (a*, b*, ¢*), we exploit scalar product properties
between a, b, c and a*, b*, ¢* bases. We infer that QQ* = (a, b, ¢)(a*, b*, c*). Product of triple products (see Appendix
eq. A7) yields QQ* = (27)3. Thus it suffices to calculate € since Q* = (27)3 /2.

Incidentally, note that using the Appendix double triple product formula A7, the determinant of G* can be written
as: det(G*G):(Sll*)z. The same can be written for det(G)=(Q)2. Consequently the relation Q* = (27)3/Q implies that
G* = (2m)°G~ .

System Unit cell volume €2

triclinic abc\/l — cos? a — cos? B — cos? v + 2 cos acos 3 cosy
monoclinic abcsin 3

orthorhombic abc
2

tetragonal a“c

cubic a®

rhombohedral a®v/1 — 3cos? a + 2 cos? «
hexagonal ?a%

TABLE II: Unit cell volumes for all crystal systems. We proceed from the most general structure (triclinic) to the
most symmetric (cubic) followed by the rhombohedral and finally the hexagonal.

B. Interplanar distances

In X-ray diffraction, Bragg’s law (1) 2dpy; sin @ = nA (with n € A47) requires the knowledge of interplanar distances
between (hkl) Miller planes whereas 6 and A are X-ray scattering angle and wavelength, respectively. Elastic X-ray
diffraction is based on electromagnetic wave scattering by the crystal. It is described by the scattering vector (1):

qnkl = ha* + kb* +lc* (30)
Let us suppose the normal to the Miller (hkl) plane is written as:

d
Thkl = %Qhkl (31)
7r
This can be verified by writing the Miller (hkl) plane eq. 18 as (see fig. 3):
T2

A
h— +k
a + b

+l% =p (32)



FIG. 3: Closest to origin (hkl) Miller plane is displayed. Its equation h%t + k%2 + (%2 = 1 confirms cutting the
(z1,22,23) axes at a/h,b/k,c/l respectively. The intersection between the normal nx; and the (hkl) Miller plane
yields dpg;, the interplanar distance. Note the rotation of the axes with respect to those in the previous fig. 2 in
order to reveal the normal nyy; angles with respect to the crystal axes.

When p = 1 the minimal integer value, the distance between the origin and the intersection (8) of the normal
npi to the (hkl) plane is dpg; (see fig. 3). Projecting mpy; onto the (z1,z9,x3) axes, we get: dpr = acosaq/h =
bcos aa/k = ccosag/l where oy, ag, oz are the direction cosine angles (8) of np;.

This allows us to write: npg = dQ’;’;l (ha™ + kb* + lc*) that can be verified immediately by evaluating the scalar
products npg; - @, Npk - by, npk - €. The values dppih = acosay and circularly dpgk = bcosas, dpril = ccosas are
obtained from the remarkable properties (see eq. 5) of the dot products between the (a,b,c¢) and (a*,b*, c*) sets.
Besides, they agree with the relations obtained previously from the n,x; projections.

Since the modulus of the normal mny; is unity, dpg; can be evaluated from: dpi; =

In order to evaluate the modulus of the elastic scattering vector we use:

lgnll = \/ (he k1) G (k1) (33)

with G* the reciprocal metric matrix.
Finally the interplanar distance is given by:

27
llanwll

27
dnkl = - (34)
\/(h k. 1) G (h k. z)
In the following table 111 we give rather the values of 1/d3,, for every system.
Since G* = (%)2 S we have:
Q
(35)

dpit = =
\/(h ko 1) S(h k1)

Consequently:

dl%kl - % (h k. z) S(h, k. z)t (36)



Lets us evaluate d% in the triclinic case from the above formula:
hkl

1 1

dT = RE (511h2 + 522]4}2 + 53312 + 2S19hk + 2S935kl + 2513hl) (37)
hkl

In the rhombohedral case, we have a = b = ¢, o = 3 = ~, thus S11 = Sao = S33 = a*sin® a, S1a = Sag = Si3 =
2 2 2 .2 2
a*(cos? a — cosa) and Q = a®v/1 — 3 cos? a + 2 cos? a obtaining: d21 — (hHk7+ >:;‘(‘1f;30($’“jf§tjj§<;§’s a—cos a)
table II1.

hkl
For the remaining systems, it is possible to easily calculate d% as displayed in table ITI.
hkl

as in

System -

hkl
triclinic [1/92]{S11h2 + Szgk2 + S33l2 + 2S12hk + 2S53kl + 2513hl}
monoclinic ﬁ ([h?]/a® + [k* sin® B] /b + [I?] /¢® — 2hl cos B/ ac)

orthorhombic [h?]/a® + [k?]/b? + [I?]/c?

tetragonal [h? + k%] /a® + [17]/ 2

cubic [h? + k% +1%]/a®

rhombohedral [(h? 4 k? + 1%) sin® a + 2(hk + kl + hl)(cos® a — cos a)]/[a*(1 — 3 cos® a + 2 cos® a)]
hexagonal 2[W* + hk + k%] /a® + [P/’

TABLE III: Interplanar spacing dpg; for all crystal systems.
Q = abey/1 — cos? o — cos? B — cos? y + 2 cos a cos (3 cos

C. Interplanar angles

The angle between two Miller planes (hikili), (hokalz) can be obtained from the dot product between normal
vectors to the respective planes n1 - ny = cos 1.
The normal to each plane is written as:

dth? 1,2)
ni2 = —3a; (38)
where:
1,2
d;kl) = dh1,2k1,2l1,2 (39)
and
(112) * * *
Q. = hi2a” + k120" + 11 2¢ (40)
Thus we have:
1) (2 1 2
0SB — Ezk)ldgzk)l L 2 _ qf(zk)l'q}(zk)l (41)
127 7% Qe Dokt = 1) )

llaniall gl

with the scalar product of the scattering vectors evaluated with the reciprocal metric matrix G*:

t
1 2 *
ahy - iy = (hl, k1, l1) G (hz, ko, lz) (42)
Finally we have the compact result:

t

(hs ks 1) G (B, ko, 1)

\/(hl, ki 1) G (b, ko zl)t\/(hz, koo 1) G (hay Fao 12)

cos 1o =




or in terms of the S matrix:

(s k1, 12) (o ko )’

\/(hl, ko 1) S(ha, zl)t\/(h2, koo 1) S(hay o, 1)

It is possible to substitute the respective interplanar distances dgk’lz) = dh, k1 1, » 0 the cos 012 formula through:

cos B9 = (44)

iy = e (45)

hkl t
\/ (ha ko tin) S (s kuo o)

to obtain in a compact way:

dids

cosfip = —= e (hl, k1, ll) S(hg, ko, lg)t (46)

This yields immediately for the triclinic system:

did
cos 2 = ;222 {S11h1hg + Saokiks + Sszlila + Sag(kils + kali) + S13(lihe + loh1) + S12(hiks + hoki)} (47)

In the rhombohedral case, we have S1; = Soy = S33 = a*sin®a, Sia = Sa3 = Si3 = a*(cos® a — cosa) and

Q = a1 — 3cos? a+ 2 cos3 o, thus:

dldg[(hlhg + k1ko + lllz) sin® a + hl(kg + lg) + kil(hg + 12) + Uy (ho + kz)(COS a — COS a)]

48
a?(1 —3cos? a+ 2cos? ) (48)

cos b0 =

For the remaining systems, the interplanar angles are given in table IV.

System cos 012

triclinic 1 32 {S11h1he + Saokika + Sazlila + Saz(kila + kal1) + S13(lihe + l2hi) + S12(hika + haki)}

hihg + kika + lilo _ (I1ha+lghy)cos B
a?sin2 g8 b2 cZsin2 acsin? 3

monoclinic d1 da (

2 2 2 2 2
orthorhombic [h1h2 + m + @ /\/ s % i%) (b + 35 -l- %)

P
tetragonal [fahathika 1112]/\/ M +k% + Z (h2+k% + Z)
cubic [h1h2 + kiko + l1lo /\/[h2 —+ k2 + lﬂ[h% + k% + l%]

4 L2 2
rhombohedral & dida[(h1ho+kika+l1l2)sin a+(k1l2+k§22l1+llh2+l2h1+h1k2+hzk1)(coa a—cos a)]

hexagonal  [hihs + kika + L (haks + hoky) + 220402 /\/ h2 4 k2 + haky + 22 ) (h2 + k2 + hoky + 22 lz)

TABLE IV: Interplanar angle 015 for all crystal systems. d; is the interplanar spacing for (h1, k1,{1) planes and ds is
the interplanar spacing for (hg, kg, l2) ones. Q = abcy/1 — cos? a — cos? f — cos2 y + 2 cos a cos 3 cos 7.

D. Reticular density

Any reticular (hkl) Miller plane is paved by cells whose surface is denoted S(h,k,1). Since reticular planes are
separated by the distance dpy;, the volume comprised between two S(h, k,1) cells on two neighbouring reticular (hkl)
Miller planes is given by S(h, k,1) X dpg; and this volume is equal to the unit cell Q.

The reticular density (7) ppx: is the number of nodes per unit surface in any reticular (hkl) Miller plane. Therefore
we have Phkl = 1/5(]7,,/6 l) = d/hkl/Q i.e.:
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1

\/(h, k. 1) S(h, k. z)t

Phkl = (49)

IV. CONCLUSION

The combined use of the geometrical properties of the direct and reciprocal lattices enables to derive a set of closed
analytical formulas for several crystallographical and X-ray scattering properties. Directions, planes, interplanar
distances and angles are derived in a straightforward manner without any mathematical difficulty and avoiding any
traps set up by the awkwardness of oblique geometry.

Note that we have accounted for the 27 scattering phase factor (3) explicitly in all derived formulae in contrast to
many crystallography books and papers since this work is aimed at Physics students.
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APPENDIX A: Cross products and triple products
Below are given several cross product and triple product identities:

1. Double cross product:

B &

AX(BXC):‘A-B A.C

‘ =(A-C)B-(A-B)C (A1)

This is obtained from the geometric assumption the result must belong to the (B, C) plane and finding the
components along axes B and C' by inspection.

2. Dot product of two cross products:

(AxB).(CxD)= ‘ggg ‘ (A-C)(B-D)—(A-D)B-C) (A2)

The calculation of the vector quantity (A x B)-(C x D) is done by transforming it in a triple product and later
exploiting double cross product expressions. Calling E = (A x B) the expression becomes the triple product:
(E,C, D). Exploiting circular symmetry of the triple product this becomes: (C,D,E) = C - (D x E) =
C-(D x[Ax B]). Using the double cross product expression above, this becomes: (A-C)(B-D)—(A-D)(B-C).

3. Cross product of two cross products:

C D

(Ax B)x (Cx D)= ‘(A,B,C) (A.B.D)

| — (A,B,D)C - (A,B,C)D (A3)

This can be shown by writing (A x B) x (C x D) as E x (C x D) with E = A x B and using the previous
double cross result.

4. Product of triple products:
A volume based on three non-coplanar vectors A, B, C is given by the triple product (A, B,C).

Let us consider the matrix M whose rows are given by the cartesian components of the vectors A, B, C.
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xr

I8

Y

M= (A4)

x

SRS
O W

A
B
C

x z

Y

Consider another triplet of vectors D, E, F and its associated volume (D, E, F') with the associated matrix N
whose columns are given by the Cartesian components of the vectors D, E, F

(A5)

=
I
SESES
<
SESHS
SEaks

[

The determinant of the product of two matrices is given by the product of the corresponding determinants
det(M)det(N) = det(M N), thus:

Ay, Ay AL||D, E, F, Ay Ay A, D, E, F,
(A,B,C)(D,E,F)=|B, By, B.||Dy, E, F,|=|| B: By B. D, E, F, (A6)
Cc, Cy C,||D, E, F, ¢, ¢, C, D, E, F,
Finally:
A-D A-E A F
(A,B,C)(D,E,F)=|B-D B-E B-F (A7)
C-DC-EC-F
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