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Introduction

Materials response under cyclic loading is an important parameter for estimating the reliability and service life of a structure. In n experiment, service life is measured as the number of cycles until failure under repeated loading cycles. This measure is used to compare various designs. In order to estimate the number of cycles until failure, we aim to develop an accurate numerical analysis, for example by using the finite element method (FEM) as demonstrated in Abali (2017b). For a successful computation, the characteristics of the inelastic deformation in hazardous zones requires the formulation of governing equations of thermal plasticity accounting realistic properties of materials as proposed in [START_REF] Mitenkov | Metody obosnovaniya resursa yaeu (in Russian)[END_REF].

Currently, special attention is given to experimental study of cyclic deformation processes since an experiment is of utmost importance to validate any model describing this complex phenomenon. A repetitive loading pattern causes a stationary cyclic deformation meaning that the same amount of energy dissipates in each cycle. Interestingly, it has been detected that preceded by a transition stage the energy dissipation in each cycle starts deviating from the mean value. We may say that there occurs a cyclic hardening, softening or relaxation in the response. We need parameters defining a plastic hysteresis loop.

In the process of non-symmetric cyclic deformation of the material, unilateral accumulation of plastic deformation may be observed. Under cyclic loading with initial anisotropy of the stress amplitude at half-cycles of tension and compression, relaxation is observed in average stresses up to zero in a finite number of loading cycles. Under a combined effect of mechanical and thermal loading, the process of cyclic variation generates a multiaxial and non-proportional response leading to additional effects in materials response. The results of an experimental investigation of such processes show that the behavior of structural materials under cyclic proportional loading substantially differ in the case of monotonous deformation processes-modeling a cyclic hardening has to be reconsidered. Analogously, multiaxial non-proportional cyclic processes substantially deviate from proportional cyclic processes as in [START_REF] Lemba | Sisebottom plastichnost pri cyklicheskim nagruzhenii po neproportsionalnym traektoriyam (in Russian)[END_REF]; [START_REF] Makdauel | Eksperimentalnoye izuchenie struktury opredelyayushih uravneniy dlya neproportsionalnoy cyklicheskoy plastichnosti (in Russian)[END_REF]; [START_REF] Ohasi | Neuprugoye povedeniye stali 316 pri mnogoosnykh neproportsionalnykh zyklicheskikh nagruzheniyakh pri povyshennoy temperature (in Russian)[END_REF]; Tanaka et al (1985a,b); [START_REF] Hassan | Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models[END_REF]; [START_REF] Huang | Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel[END_REF]; [START_REF] Jiang | Benchmark experiments and characteristic cyclic plasticity deformation[END_REF]; [START_REF] Taleb | Experimental and numerical analysis about the cyclic behavior of the 304L and 316L stainless steels at 350 •[END_REF].

Governing equations are often developed on the basis of monotonous loading processes. They fail to model the specific features of cyclic deformation under both proportional and non-proportional loading phenomena. Hence, it is challenging to expect a good estimation of fatigue related damage by using these equations. We suggest to model materials response by evaluating service life characteristics of materials with the aid of experimental studies under proportional as well as nonproportional loading, see [START_REF] Bodner | Kriteriy prirasheniya povrezhdeniya dlya zavisyashego ot vremeni razrusheniya materialov (in Russian)[END_REF]; [START_REF] Lemaitre | Kontinualnaya model povrezhdeniya, ispolzuemaya dlya rascheta razrusheniya plastichnykh materialov (in Russian)[END_REF]; [START_REF] Chaboche | Constitutive equations for cyclic plasticity and cyclic viscoplasticity[END_REF]; [START_REF] Bondar | Plastichnost. proportsyonalnye i neproportsyonalalnye nagruzheniya[END_REF]; [START_REF] Volkov | Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami[END_REF]; [START_REF] Mitenkov | Prikladnaya teoriya plastichnosti[END_REF]. Classical methods for predicting fatigue life of materials utilize semiempirical formulas based on the assumption that the energy dissipation remains constant through the service life. These methods not only require large bulks of experimental information, they also hold only for a small class of loading regimes within the limits of available basic experimental data as in [START_REF] Collins | Povrezhdeniye materialov v konstruktziyah[END_REF].

A novel scientific approach is proposed to overcome the aforementioned difficulties, see [START_REF] Murakami | Sushnost mehaniki povrezhdennoy sredy i eyo prilozheniye k teorii anizotropnykh povrerzhdeniy pri polzuchesti (in Russian)[END_REF]; [START_REF] Volkov | Vvedenie v kontinualnuyu mehaniku povrezhdennoy sredy[END_REF]. This so-called mechanics of damaged materials (MDM) studies the processes of growth of microdefects, mechanical behavior of damaged materials by describing the effect of distributed microdefects, using certain mechanical parameters, and the formation of macroscopic cracks (processes of damage accumulation), trying to combine the viewpoints of materials science and continuum mechanics. The current practice of using this approach for various mechanisms of exhausting the service life allows us to state that such an approach is effective enough for the practical purposes of evaluating service life characteristics of materials and can accurately evaluate the process of exhausting the service life of structural elements and parts of load-carrying structures.

Ample studies consider novel developments in plasticity. Governing equations in coupled examples has been studied in several works, for example see [START_REF] Papadopoulos | A general framework for the numerical solution of problems in finite elasto-plasticity[END_REF]; [START_REF] Miehe | Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space[END_REF]; [START_REF] Soyarslan | A damage coupled orthotropic finite plasticity model for sheet metal forming: Cdm approach[END_REF]; Altenbach and Eremeyev (2014b); Abali (2017a). Especially models involving porosity as well as viscoelasticity is challenging, among others, see Altenbach and Eremeyev (2014a); [START_REF] Misra | Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics[END_REF]; [START_REF] Placidi | A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model[END_REF]. Complex phenomena and their numerical implementation in 3D depends on the success of the accurate modeling of the material behavior as presented in [START_REF] Papadopoulos | On the formulation and numerical solution of problems in anisotropic finite plasticity[END_REF]; [START_REF] Schröder | A simple orthotropic finite elasto-plasticity model based on generalized stress-strain measures[END_REF]; [START_REF] Montáns | Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin[END_REF]; [START_REF] Mazière | Strain gradient plasticity modeling and finite element simulation of lüders band formation and propagation[END_REF]; [START_REF] Eremeyev | On FEM evaluation of stress concentration in micropolar elastic materials[END_REF]; Giorgio et al (2016).

The present paper proposes a mathematical model of MDM describing processes of complex plastic deformation and damage accumulation in structural materials (metals and their alloys) under monotonous and cyclic proportional and non-proportional thermal-mechanical loading regimes. To assess the reliability and the scope of applicability of the developed defining relations of MDM, the processes of plastic deformation and fatigue damage accumulation in stainless steels (X10CrNiTi18-10, X10CrNiTi18-9) under block-type, nonstationary, non-symmetric, low-cycle loading were numerically analyzed. The obtained numerical results are compared with the data from full-scale experiments.

Defining Relations of Mechanics of Damaged Media

A model as in [START_REF] Volkov | Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami[END_REF]; [START_REF] Volkov | Vvedenie v kontinualnuyu mehaniku povrezhdennoy sredy[END_REF] describing the damage in a body consists of the following:

• relations defining the elastoplastic behavior of the material, accounting for its dependence on the failure process; • evolutionary equations describing damage accumulation kinetics;

• a strength criterion of the damaged material.

Defining Relations in Plasticity

The definition of relations modeling plasticity is based on the following assumptions:

• Components of strain tensors e ij and strain rates e • ij include elastic, e e ij , e e • ij , and plastic strains, p e ij , p e • ij , in other words, the reversible and irreversible components.

• For various temperatures, the initial yield surface is described by a Mises type surface. The evolution of the yield surface is described by the variation of its radius p C and the motion of its center, so-called back stress, ρ ij . • The volume change is reversible, in other words, plastic deformation is deviatoric. • Continuum body is isotropic at the reference frame; but anisotropy may be caused by plasticity.

For the elastic regime, the spherical and deviatoric parts of the stress and elastic strain tensors, (6.1) are modeled by Hooke's law with the Duhamel-Neumann extension as follows:

σ ij = σδ ij + σ |ij| , e e ij = eδ ij + e |ij| ,
σ = 3K e e -α(T -T ref. ) , σ |ij| = 2G e e |ij| , (6.2) 
with the material parameters, K, α, G, depending on the temperature. Usually, the initial temperature of the simulation is assumed to be the reference temperature, T ref.

, in order to achieve the natural state initially. As a consequence, their rates read

σ • = 3K e e • -α • T -αT • + K • K σ , σ • |ij| = 2G e e • |ij| + G • G σ |ij| . (6.3)
In classical or so-called Prandtl-Reuss plasticity, a yield surface is introduced, (6.4) by using an isotropic hardening with the center, p C, and a kinematic hardening with its motion, ρ ij . For modeling complex cyclic deformation modes in the stress space, we introduce the following yield surface:

F S = S ij S ij -p C , S ij = σ |ij| -ρ ij ,
F ρ = ρ ij ρ ij -ρ 2 max , (6.5)
providing a "memory" with the aid of the maximal modulus, ρ max . We consider such a temperature range, where annealing effects fail to be significant. Then the isotropic hardening, modeling the evolution of p C, consists of three parts: effected by monotonous, cyclic, and temperature related phenomena. We follow [START_REF] Volkov | Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami[END_REF]; [START_REF] Mitenkov | Prikladnaya teoriya plastichnosti[END_REF] and implement the following evolution law:

p C • = q χ H(F ρ) + a(Q S -p C)Γ (F ρ ) χ • + q 3 T • , p C = p C 0 + t 0 p C • dt , χ • = 2 3 p e • ij p e • ij , χ m = t 0 χ • H(F ρ ) dt , χ= t 0 χ • dt , q χ = q 2 Aψ 1 + (1 -A)q 1 Aψ 1 + (1 -A) , Q S = Q 2 Aψ 2 + (1 -A)Q 1 Aψ 2 + (1 -A) , 0 ≤ ψ ≤ 1 , i = 1, 2 , A = 1 -cos 2 θ , cos θ = n e ij n s ij , n e ij = e • |ij| e • |ij| e • |ij| , n s ij = S ij S ij S ij , Γ (F ρ ) = 1 -H(F ρ ) , H(F ρ ) = 1 , F ρ = 0 ∧ ρ ij ρ • ij ≥ 0 0 , F ρ < 0 ∨ ρ ij ρ • ij < 0 , ( 6 
.6) where q 1 , q 2 , q 3 denote moduli of monotonous isotropic hardening; Q 1 , Q 2 indicate moduli of cyclic isotropic hardening; a is a constant defining evolution of the hysteresis loop of cyclic deformation; Q S is the corresponding yield surface radius for the known ρ max and T ; p C 0 is the initial value of the yield surface radius. Evolution of the back-stress is obtained by introducing it as an internal variable and postulated to have the following form:

ρ • ij = f (χ m ) g 1 p e • ij -g 2 ρ ij χ • + g T ρ ij T • + ρ• ij , ρ ij = t 0 ρ • ij dt , (6.7) with f (χ m ) = 1 + k 1 1 -exp(-k 2 χ m ) , ρ• ij = g 3 p e • ij H(F ρ ) -g 4 ρij χ • Γ (F ρ ) cos(γ) , cos(γ) = ρ • ij ρij √ ρ • kl ρ • kl √ ρmn ρmn , ( 6.8) 
where g 1 , g 2 , g 3 , g 4 , g T , as well as k 1 , k 2 are material parameters to be determined experimentally.

Equations (6.7) 1,2 describe the anisotropic part of deformation hardening. Equation (6.7) 3 models the evolution of ρ ij by including the effect of the temperature rate as well. Equation (6.7) 4 indicates an anisotropic hardening due to the unilaterally accumulated plastic deformation. Weighting factor f (χ m ) allows to describe the evolution of ρ ij under cyclic deformation regimes [START_REF] Korotkikh | Opisaniye protsessov nakopleniya povrezhdeniy materiala pri neizotermicheskom vyazkoplasticheskom deformirovanii[END_REF]. For a nonsymmetric cyclic loading, ρ• ij models the cyclic plastic hysteresis loop differently for various loading strengths. In the case of vanishing g T = g 3 = g 4 = k 1 = 0, Eqs. (6.7) reduce to the special case of Armstrong-Frederik-Kadashevich equations as follows:

ρ • ij = g 1 p e • ij -g 2 ρ ij χ • . (6.9)
In order to include a memory effect for the yield surface, it is necessary to generate an evolution equation for ρ max as well,

ρ • max = ρ ij ρ • ij H(F ρ ) √ ρ mn ρ mn -g 2 ρ max χ • -g T ρ max T • . (6.10)
The plastic strain rate tensor components fulfill the orthogonality restriction at the yield surface (6.11) where λ is proportionality coefficient determined from the condition that a new yield surface passes through the end of the stress deviator vector at the end of the loading stage.

p e • ij = λS ij ,
As damage is modeled by a field function, ω, we can easily introduce the effect of damage on the material properties by introducing effective stresses as in [START_REF] Volkov | Vvedenie v kontinualnuyu mehaniku povrezhdennoy sredy[END_REF],

σ|ij| = F 1 (ω)σ |ij| = G G σ |ij| = σ |ij| (1 -ω) 1 -6K+12G 9K+8G , σ = F 2 (ω)σ = K K σ = σ (1 -ω) 4G 4G+3Kω , (6.12)
where G, K are effective elastic moduli determined by the Mackenzie formulas [START_REF] Mackenzie | The elastic constants of a solid containing spherical holes[END_REF]. Analogously, we propose to obtain

ρij = F 1 (ω)ρ ij .
(6.13)

Evolutionary equations of fatigue damage accumulation

Rate of damage is modeled by an evolution equation, for low-cycle fatigue (LCF), we define this relation by the following model as in [START_REF] Bodner | Kriteriy prirasheniya povrezhdeniya dlya zavisyashego ot vremeni razrusheniya materialov (in Russian)[END_REF]; [START_REF] Lemaitre | Kontinualnaya model povrezhdeniya, ispolzuemaya dlya rascheta razrusheniya plastichnykh materialov (in Russian)[END_REF]; [START_REF] Volkov | Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami[END_REF]; [START_REF] Volkov | Vvedenie v kontinualnuyu mehaniku povrezhdennoy sredy[END_REF]: (6.14) where the function f 1 (β) denotes the effects of volume change with β = σ/σ u , the function f 2 (ω) incorporates the degree of the present damage accumulated over the time, the function f 3 (W ) models the effect of the dissipated work (energy) on damage for creating a fracture, the function f 4 (W • ) embodies the effects of the rate of damage energy. We model these functions in the following way: (6.15) where β = σ/σ u gives the voluminosity of stressed state, W a is the corresponding energy used for damage at the end of the stage of nucleation of microcracks under low cycle fatigue, and W f is the energy used for macroscopic crack formation process. The duration of the microcracks nucleation phase will be related with the value of parameter W a . When microcracks reach the dimensions in the length scale of the mean distance between microcracks, the process of merging (agglomeration) starts. We circumvent introducing a detailed micromechanical model of this agglomeration and model this phenomenon via kinetic equation by introducing term f 2 (ω) in such a way that relation ω • = f 1 (ω) considers for the avalanche-like increase of the damage when damage reaches the value of ω = 1/3.

ω • = f 1 (β)f 2 (ω)f 3 (W )f 4 (W • ) ,
f 1 (β) = exp(β) , f 2 (ω) = ⎧ ⎪ ⎨ ⎪ ⎩ 0 , W ≤ W a ω 1/3 (1 -ω) 2/3 W > W a ∧ ω ≤ 1 3 16 1/3 9 ω -1/3 (1 -ω) -2/3 W > W a ∧ ω > 1 3 f 3 (W ) = W -W a W f , f 4 (W • ) = W • W f ,

Strength Criterion of the Damaged Material

We implement a simple approach and terminate accumulation of microcracks in the case of damage approaching its critical value (6.16) where this critical value has to be smaller than 1, otherwise numerical instabilities occur. For engineering alloys ω f = 0.3 and for pure materials ω f = 0.7 [START_REF] Lemaitre | Kontinualnaya model povrezhdeniya, ispolzuemaya dlya rascheta razrusheniya plastichnykh materialov (in Russian)[END_REF]. [START_REF] Volkov | Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami[END_REF]; [START_REF] Mitenkov | Prikladnaya teoriya plastichnosti[END_REF]; [START_REF] Volkov | Vvedenie v kontinualnuyu mehaniku povrezhdennoy sredy[END_REF] and used for the following computations.

ω = ω f ,

Numerical Results

Specimens

In order to present the results, we use dots for experiments and a continuous line for the computation in the following figures for the aforementioned 5 subsequent loading scenarios I-V demonstrated in We emphasize the quantitative and qualitative agreement between the experimental data and its computation. Moreover, another set of experiments were conducted for stainless steel X10CrBiTi18-9 under non-stationary, non-symmetric cyclic loading as follows:

VI. The specimen is compressed up to e 11 = 0.01 and then in pulled in tensile up to e 11 = 0.05 VII. Non-symmetric cyclic loading is applied with a strain interval of 1% up to the failure, N f = 850. Plastic hysteresis loop occurs and after 500 th loading cycle, the loop becomes nearly symmetric. For calculations, we used the parameters as compiled in Tables 6.4-6.6 for the steel X10CrNiTi18-9 obtained from the results of experiment in [START_REF] Volkov | Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami[END_REF]; [START_REF] Mitenkov | Prikladnaya teoriya plastichnosti[END_REF]. Analogously, the experiments VI-VII are utilized to validate the accuracy of the proposed model as demonstrated in Fig. 6.4. Two different models for the evolution equation show significant discrepancies in Fig. 6.4 Right: mean stress for various cycles during the experiment VII, model in Eq. (6.7) 1 as the continuous line and model in Eq. (6.9) as the dash line. (right). By using the model in Eq. (6.9), we observe that cyclic hysteresis loop is immediately stated in the first loading cycle such that the physically-important relations of plasticity fail to be described accurately. By employing the model in Eq. (6.7), material behavior during the process is perfectly modeled. In Fig. 6.5, a fatigue curve is shown for the same material, X10CrNiTi18-9, experimented as in VII. The experimental data is quantitatively well represented by the numerical results acquired by the models in Eqs. (6.7), (6.9). In general, the comparison of the numerical and experimental results demonstrate the strength of the proposed MDM model. It describes the processes of fatigue life of polycrystalline structural alloys under non-symmetric low-cycle loading.

Conclusion

A novel model has been proposed for modeling fatigue life of polycrystalline structural alloys under non-symmetric cyclic loading. The model is verified by utilizing experiments of block-type, transient, non-symmetric, low-cycle loading for two stainless steels (X10CrNiTi18-10, X10CrNiTi18-9). We have demonstrated that even different conditions are perfectly captured by this model, all material parameters are compiled in Tables 6.1-6.6. Two different versions have been implemented and their differences have been discussed. Fatigue life estimation is equally accurate in both versions for the case of non-symmetric low-cycle loading. We recommend to use the simpler version given in Eq. (6.9).

  of stainless steel 12X18H10T were experimentally studied under a uniaxial tension-compression test at the ambient temperature in the Laboratory for Testing Physical-Mechanical Properties of Structural Materials, Research Institute for Mechanics, Nizhniy Novgorod Lobachevski State University. The testing procedure consisted of five subsequent tests including monotonous and cyclic loading as in Korotkikh (1985): I. 20 cycles of symmetric cyclic loading with a deformation amplitude of e 11 = 0.08% II. Monotonous tension up to the deformation of e 11 = 5% III. 200 cycles of non-symmetric cyclic loading with the deformation amplitude of Δe 11 = 1.2% and the mean deformation of e (m) 11 = 4.4% (during this test, plastic hysteresis loop occurs) IV. Monotonous tension up to deformation e 11 = 1% V. Non-symmetric cyclic loading with the deformation amplitude of Δe 11 = 1.2% and the mean deformation of e (m) 11 = 9.4% up to failure (the number of cycles to failure is N f = 2800, again, plastic hysteresis loop takes place)We compile in Tables 6.1-6.3 the properties of the presented MDM model for steel X10CrNiTi18-10 determined from the results of experiments inVolkov and 

Fig. 6 . 1

 61 Fig. 6.1 Comparison of the numerical results with the proposed model (continuous line) with the experimental data (dots). One single symmetric loading cycle as in I.

Fig. 6 . 2

 62 Fig. 6.2 Comparison of the numerical results with the proposed model (continuous line) with the experimental data (dots). Left: 20 th cycle of symmetric loading in II followed by a monotonous tensile test until e 11 = 0.05 and a subsequent non-symmetric cyclic loading. Right: 200 th cycle of III is followed by one cycle of V.

Fig. 6 . 3

 63 Fig. 6.3 Comparison of the numerical results with the proposed model (continuous line) with the experimental data (dots). The dissipated energy density given as the maximum stress amplitude by III (left) and V (right) loading scenarios.

Fig. 6 . 4

 64 Fig. 6.4 Comparison of the numerical results with the proposed model (continuous line) with the experimental data (dots) for X10CrNiTi18-9. Left: at the 500 th cycle during the experiment VII.Right: mean stress for various cycles during the experiment VII, model in Eq. (6.7) 1 as the continuous line and model in Eq. (6.9) as the dash line.

Fig. 6 . 5

 65 Fig. 6.5 Comparison of the fatigue curves obtained by the two proposed models (dots and squares) with the experimental data (continuous line). Circles denote the thermal plasticity model with th evolution equation as in Eq. (6.7) 1 and squares indicate the model with Eq. (6.9).

Table 6 .

 6 1 Obtained parameters of the MDM model for X10CrNiTi18-10 C 0 in MPa g 1 in MPa g 2 g 3 in MPa g 4 k 1 k 2 a Table 6.2 Modulus of cyclic hardening Q S (ρmax) in MPa for X10CrNiTi18-10

	165 277 76 282	203	20 850 297	660	3 0.48 0.2 5
	Q S in MPa 203 210 232 232 232 232 232	
	ρmax in MPa 0 30 60 90 100 110 120	
	Table 6.3 Modulus of monotonous hardening qχ in MPa for X10CrNiTi18-10
	qχ in MPa -17 000 -4 634 -811 371 737 849 897 900 900 900 900 900 900
	χ	0	0.002 0.004 0.006 0.008 0.01 0.015 0.02 0.03 0.04 0.05 0.09 0.15

K G

p

Table 6 .

 6 Modulus of cyclic hardening Q S (ρmax) in MPa for X10CrNiTi18-9

	165 277 76 282	190	24 090 286	800	2 0.415 0.2 5 0 800
	Table 6.5 Q S in MPa 190 205 210 215 220 225 225		
	ρmax in MPa 0 20 40 60 80 100 120		

4 Obtained parameters of the MDM model for X10CrNiTi18-10

K G p C 0 in MPa g 1 in MPa g 2 g 3 in MPa g 4 k 1 k 2 a Wa W f

Table 6 .

 6 6 Modulus of monotonous hardening qχ in MPa for X10CrNiTi18-9

	qχ in MPa -5 000 -4 471 -4 188 -3 859 -2 460 -182 888 1 531 1 274 913 913 913
	χ	0	0.002 0.004 0.006 0.008 0.01 0.015 0.02 0.03 0.04 0.05 0.06
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