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TWO-DIMENSIONAL PARTIAL CUBES

VICTOR CHEPOI, KOLJA KNAUER, AND MANON PHILIBERT

Abstract. We investigate the structure of two-dimensional partial cubes, i.e., of isometric

subgraphs of hypercubes whose vertex set defines a set family of VC-dimension at most 2.

Equivalently, those are the partial cubes which are not contractible to the 3-cube Q3 (here

contraction means contracting the edges corresponding to the same coordinate of the hyper-

cube). We show that our graphs can be obtained from two types of combinatorial cells (gated

cycles and gated full subdivisions of complete graphs) via amalgams. The cell structure of

two-dimensional partial cubes enables us to establish a variety of results. In particular, we

prove that all partial cubes of VC-dimension 2 can be extended to ample aka lopsided partial

cubes of VC-dimension 2, yielding that the set families defined by such graphs satisfy the sam-

ple compression conjecture by Littlestone and Warmuth (1986) in a strong sense. The latter

is a central conjecture of the area of computational machine learning, that is far from being

solved even for general set systems of VC-dimension 2. Moreover, we point out relations to

tope graphs of COMs of low rank and region graphs of pseudoline arrangements.
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1. Introduction

Set families are fundamental objects in combinatorics, algorithmics, machine learning, dis-

crete geometry, and combinatorial optimization. The Vapnik-Chervonenkis dimension (the

VC-dimension for short) VC-dim(S) of a set family S ⊆ 2U is the size of a largest subset of

X ⊆ U which can be shattered by S [51], i.e., 2X = {X ∩ S : S ∈ S}. Introduced in statistical

learning by Vapnik and Chervonenkis [51], the VC-dimension was adopted in the above areas as

complexity measure and as a combinatorial dimension of S. Two important inequalities relate

a set family S ⊆ 2U with its VC-dimension. The first one, the Sauer-Shelah lemma [49, 50]

establishes that if |U | = m, then the number of sets in a set family S ⊆ 2U with VC-dimension

d is upper bounded by
(
m
≤d
)
. The second stronger inequality, called the sandwich lemma, proves

that |S| is sandwiched between the number of strongly shattered sets (i.e., sets X such that S
contains an X-cube, see Section 2.3) and the number of shattered sets [2, 11, 21, 44]. The set

families for which the Sauer-Shelah bounds are tight are called maximum families [27, 25] and

the set families for which the upper bounds in the sandwich lemma are tight are called ample,

lopsided, and extremal families [5, 11,35]. Every maximum family is ample, but not vice versa.

To take a graph-theoretical point of view on set families, one considers the subgraph G(S) of

the hypercube Qm induced by the subsets of S ⊆ 2U . (Sometimes G(S) is called the 1-inclusion

graph of S [30, 31].) Each edge of G(S) corresponds to an element of U . Then analogously to

edge-contraction and minors in graph theory, one can consider the operation of simultaneous

contraction of all edges of G(S) defined by the same element e ∈ U . The resulting graph is

the 1-inclusion graph G(Se) of the set family Se ⊆ 2U\{e} obtained by identifying all pairs of

sets of S differing only in e. Given Y ⊆ U , we call the set family SY and its 1-inclusion graph

G(SY ) obtained from S and G(S) by successively contracting the edges labeled by the elements

of Y the Q-minors of S and G(S). Then X ⊆ U is shattered by S if and only if the Q-minor

G(SU\X) is a full cube. Thus, the cubes play the same role for Q-minors as the complete graphs

for classical graph minors.

To take a metric point of view on set families, one restricts to set families whose 1-inclusion

graph satisfies further properties. The typical property here is that the 1-inclusion graph G(S)

of S is an isometric (distance-preserving) subgraph of the hypercube Qm. Such graphs are

called partial cubes. Partial cubes can be characterized in a pretty and efficient way [20] and

can be recognized in quadratic time [24]. Partial cubes comprise many important and complex

graph classes occurring in metric graph theory and initially arising in completely different

areas of research such as geometric group theory, combinatorics, discrete geometry, and media

theory (for a comprehensive presentation of partial cubes and their classes, see the survey [4]

and the books [19, 29, 43]). For example, 1-inclusion graphs of ample families (and thus of

maximum families) are partial cubes [5, 35] (in view of this, we will call such graphs ample

partial cubes and maximum partial cubes, respectively). Other important examples comprise

median graphs (aka 1-skeletons of CAT(0) cube complexes [17, 48]) and, more generally, 1-

skeletons of CAT(0) Coxeter zonotopal complexes [28], the tope graphs of oriented matroids

(OMs) [8], of affine oriented matroids (AOMs) [34], and of lopsided sets (LOPs) [34,35], where

the latter coincide with ample partial cubes (AMPs). More generally, tope graphs of complexes

of oriented matroids (COMs) [6, 34] capture all of the above. Other classes of graphs defined

by distance or convexity properties turn out to be partial cubes: bipartite cellular graphs (aka

bipartite graphs with totally decomposable metrics) [3], bipartite Pasch [14, 16] and bipartite

Peano [46] graphs, netlike graphs [45], and hypercellular graphs [18].

Many mentioned classes of partial cubes can be characterized via forbidden Q-minors; in case

of partial cubes, Q-minors are endowed with a second operation called restriction and are called

partial cube minors, or pc-minors [18]. The class of partial cubes is closed under pc-minors.
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Thus, given a set G1, G2, . . . , Gn of partial cubes, one considers the set F(G1, . . . , Gn) of all

partial cubes not having any of G1, G2, . . . , Gn as a pc-minor. Then F(Q2) is the class of trees,

F(P3) is the class of hypercubes, and F(K2�P3) consists of bipartite cacti [37, page 12]. Other

obstructions lead to more interesting classes, e.g., almost-median graphs (F(C6) [37, Theorem

4.4.4]), hypercellular graphs (F(Q−3 ) [18]), median graphs (F(Q−3 , C6) [18]), bipartite cellular

graphs (F(Q−3 , Q3) [18]), rank two COMs (F(SK4, Q3) [34]), and two-dimensional ample graphs

(F(C6, Q3) [34]). Here Q−3 denotes the 3-cube Q3 with one vertex removed and SK4 the full

subdivision of K4, see Figure 3. Bipartite Pasch graphs have been characterized in [14, 16] as

partial cubes excluding 7 isometric subgraphs of Q4 as pc-minors.

Littlestone and Warmuth [36] introduced the sample compression technique for deriving gen-

eralization bounds in machine learning. Floyd and Warmuth [25] asked whether any set family

S of VC-dimension d has a sample compression scheme of size O(d). This question remains one

of the oldest open problems in computational machine learning. It was recently shown in [40]

that labeled compression schemes of size O(2d) exist. Moran and Warmuth [39] designed la-

beled compression schemes of size d for ample families. Chalopin et al. [13] designed (stronger)

unlabeled compression schemes of size d for maximum families and characterized such schemes

for ample families via unique sink orientations of their 1-inclusion graphs. For ample families of

VC-dimension 2 such unlabeled compression schemes exist because they admit corner peelings

[13, 41]. In view of this, it was noticed in [47] and [39] that the original sample compression

conjecture of [25] would be solved if one can show that any set family S of VC-dimension d can

be extended to an ample (or maximum) partial cube of VC-dimension O(d) or can be covered by

exp(d) ample partial cubes of VC-dimension O(d). These questions are already nontrivial for

set families of VC-dimension 2.

In this paper, we investigate the first question for partial cubes of VC-dimension 2, i.e.,

the class F(Q3), that we will simply call two-dimensional partial cubes. We show that two-

dimensional partial cubes can be extended to ample partial cubes of VC-dimension 2 – a property

that is not shared by general set families of VC-dimension 2. In relation to this result, we

establish that all two-dimensional partial cubes can be obtained via amalgams from two types

of combinatorial cells: maximal full subdivisions of complete graphs and convex cycles not

included in such subdivisions. We show that all such cells are gated subgraphs. On the way,

we detect a variety of other structural properties of two-dimensional partial cubes. Since two-

dimensional partial cubes are very natural from the point of view of pc-minors and generalize

previously studied classes such as bipartite cellular graphs [18], we consider these results of

independent interest also from this point of view. In particular, we point out relations to tope

graphs of COMs of low rank and region graphs of pseudoline arrangements. See Theorem 4 for

a full statement of our results on two-dimensional partial cubes. Figure 1 presents an example

of a two-dimensional partial cube which we further use as a running example. We also provide

two characterizations of partial cubes of VC-dimension ≤ d for any d (i.e., of the class F(Qd+1))

via hyperplanes and isometric expansions. However, understanding the structure of graphs from

F(Qd+1) with d ≥ 3 remains a challenging open question.

2. Preliminaries

2.1. Metric subgraphs and partial cubes. All graphs G = (V,E) in this paper are finite,

connected, and simple. The distance d(u, v) := dG(u, v) between two vertices u and v is the

length of a shortest (u, v)-path, and the interval I(u, v) between u and v consists of all vertices

on shortest (u, v)-paths: I(u, v) := {x ∈ V : d(u, x) + d(x, v) = d(u, v)}. An induced subgraph

H of G is isometric if the distance between any pair of vertices in H is the same as that in G.

An induced subgraph of G (or the corresponding vertex set A) is called convex if it includes
3



Figure 1. A two-dimensional partial cube M

the interval of G between any two of its vertices. Since the intersection of convex subgraphs

is convex, for every subset S ⊆ V there exists the smallest convex set conv(S) containing S,

referred to as the convex hull of S. A subset S ⊆ V or the subgraph H of G induced by S is

called gated (in G) [23] if for every vertex x outside H there exists a vertex x′ (the gate of x)

in H such that each vertex y of H is connected with x by a shortest path passing through the

gate x′. It is easy to see that if x has a gate in H, then it is unique and that gated sets are

convex. Since the intersection of gated subgraphs is gated, for every subset S ⊆ V there exists

the smallest gated set gate(S) containing S, referred to as the gated hull of S.

A graph G = (V,E) is isometrically embeddable into a graph H = (W,F ) if there exists a

mapping ϕ : V →W such that dH(ϕ(u), ϕ(v)) = dG(u, v) for all vertices u, v ∈ V , i.e., ϕ(G) is an

isometric subgraph of H. A graph G is called a partial cube if it admits an isometric embedding

into some hypercube Qm. For an edge e = uv of G, let W (u, v) = {x ∈ V : d(x, u) < d(x, v)}.
For an edge uv, the sets W (u, v) and W (v, u) are called complementary halfspaces of G.

Theorem 1. [20] A graph G is a partial cube if and only if G is bipartite and for any edge

e = uv the sets W (u, v) and W (v, u) are convex.

To establish an isometric embedding of G into a hypercube, Djoković [20] introduced the

following binary relation Θ (called Djoković-Winkler relation) on the edges of G: for two edges

e = uv and e′ = u′v′ we set eΘe′ if and only if u′ ∈ W (u, v) and v′ ∈ W (v, u). Under the

conditions of the theorem, eΘe′ if and only if W (u, v) = W (u′, v′) and W (v, u) = W (v′, u′),

i.e. Θ is an equivalence relation. Let E1, . . . , Em be the equivalence classes of Θ and let b be

an arbitrary vertex taken as the basepoint of G. For a Θ-class Ei, let {G−i , G
+
i } be the pair

of complementary convex halfspaces of G defined by setting G−i := G(W (u, v)) and G+
i :=

G(W (v, u)) for an arbitrary edge uv ∈ Ei such that b ∈ G−i . Then the isometric embedding ϕ

of G into the m-dimensional hypercube Qm is obtained by setting ϕ(v) := {i : v ∈ G+
i } for any

vertex v ∈ V . Then ϕ(b) = ∅ and for any two vertices u, v of G, dG(u, v) = |ϕ(u)∆ϕ(v)|.
The bipartitions {G−i , G

+
i }, i = 1, . . . ,m, can be canonically defined for all subgraphs G of

the hypercube Qm, not only for partial cubes. Namely, if Ei is a class of parallel edges of Qm,

then removing the edges of Ei from Qm but leaving their end-vertices, Qm will be divided into

two (m− 1)-cubes Q′ and Q′′. Then G−i and G+
i are the intersections of G with Q′ and Q′′.

For a Θ-class Ei, the boundary ∂G−i of the halfspace G−i consists of all vertices of G−i having

a neighbor in G+
i (∂G+

i is defined analogously). Note that ∂G−i and ∂G+
i induce isomorphic

subgraphs (but not necessarily isometric) of G. Figure 2(a) illustrates a Θ-class Ei of the

two-dimensional partial cube M , the halfspaces M−i ,M
+
i and their boundaries ∂M−i , ∂M

+
i .

An antipode of a vertex v in a partial cube G is a vertex −v such that G = conv(v,−v).

Note that in partial cubes the antipode is unique and conv(v,−v) coincides with the interval
4



Ei

M+
i

M−
i

∂M+
i

∂M−
i

M M∗

(a) (b)

Figure 2. (a) The halfspaces and their boundaries defined by a Θ-class Ei of

M . (b) The two-dimensional partial cube M∗ = πi(M) obtained from M by

contracting Ei.

I(v,−v). A partial cube G is antipodal if all its vertices have antipodes. A partial cube G is

said to be affine if there is an antipodal partial cube G′, such that G is a halfspace of G′.

2.2. Partial cube minors. Let G be a partial cube, isometrically embedded in the hypercube

Qm. For a Θ-class Ei of G, an elementary restriction consists of taking one of the complemen-

tary halfspaces G−i and G+
i . More generally, a restriction is a subgraph of G induced by the

intersection of a set of (non-complementary) halfspaces of G. Such an intersection is a convex

subgraph of G, thus a partial cube. Since any convex subgraph of a partial cube G is the

intersection of halfspaces [1,14], the restrictions of G coincide with the convex subgraphs of G.

For a Θ-class Ei, we say that the graph πi(G) obtained from G by contracting the edges of Ei

is an (i-)contraction of G; for an illustration, see Figure 2(b). For a vertex v of G, we will denote

by πi(v) the image of v under the i-contraction, i.e., if uv is an edge of Ei, then πi(u) = πi(v),

otherwise πi(u) 6= πi(v). We will apply πi to subsets S ⊂ V , by setting πi(S) := {πi(v) : v ∈ S}.
In particular we denote the i-contraction of G by πi(G). From the proof of the first part

of [15, Theorem 3] it easily follows that πi(G) is an isometric subgraph of Qm−1, thus the class

of partial cubes is closed under contractions. Since edge contractions in graphs commute, if

Ei, Ej are two distinct Θ-classes, then πj(πi(G)) = πi(πj(G)). Consequently, for a set A of

k Θ-classes, we can denote by πA(G) the isometric subgraph of Qm−k obtained from G by

contracting the equivalence classes of edges from A.

Contractions and restrictions commute in partial cubes [18]. Consequently, any set of restric-

tions and any set of contractions of a partial cube G provide the same result, independently of

the order in which we perform them. The resulting graph G′ is a partial cube, and G′ is called

a partial cube minor (or pc-minor) of G. For a partial cube H we denote by F(H) the class of

all partial cubes not having H as a pc-minor. In this paper we investigate the class F(Q3).

X1
4 = SK4 X2

4 X3
4 X4

4 X5
4

Figure 3. The excluded pc-minors of isometric dimension ≤ 4 for COMs.
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With the observation that a convex subcube of a partial cube can be obtained by contractions

as well, the proof of the following lemma is straightforward.

Lemma 1. A partial cube G belongs to F(Qd+1) if and only if G has VC-dimension ≤ d.

Let G be a partial cube and Ei be a Θ-class of G. Then Ei crosses a convex subgraph H of

G if H contains an edge uv of Ei and Ei osculates H if Ei does not cross H and there exists an

edge uv of Ei with u ∈ H and v /∈ H. Otherwise, Ei is disjoint from H. The following results

summarize the properties of contractions of partial cubes established in [18] and [34]:

Lemma 2. Let G be a partial cube and Ei be a Θ-class of G.

(i) [18, Lemma 5] If H is a convex subgraph of G and Ei crosses or is disjoint from H,

then πi(H) is also a convex subgraph of πi(G);

(ii) [18, Lemma 7] If S is a subset of vertices of G, then πi(conv(S)) ⊆ conv(πi(S)). If Ei

crosses S, then πi(conv(S)) = conv(πi(S));

(iii) [18, Lemma 10] If S is a gated subgraph of G, then πi(S) is a gated subgraph of πi(G).

Lemma 3. [34] Affine and antipodal partial cubes are closed under contractions.

2.3. OMs, COMs, and AMPs. In this subsection, we recall the definitions of oriented ma-

troids, complexes of oriented matroids, and ample set families.

2.3.1. OMs: oriented matroids. Co-invented by Bland & Las Vergnas [10] and Folkman &

Lawrence [26], and further investigated by many other authors, oriented matroids represent a

unified combinatorial theory of orientations of (orientable) ordinary matroids. OMs capture the

basic properties of sign vectors representing the circuits in a directed graph or more generally

the regions in a central hyperplane arrangement in Rd. OMs obtained from a hyperplane

arrangement are called realizable. Just as ordinary matroids, oriented matroids may be defined

in a multitude of distinct but equivalent ways, see the book by Björner et al. [8].

Let U be a finite set and let L be a system of sign vectors, i.e., maps from U to {±1, 0} =

{−1, 0,+1}. The elements of L are also referred to as covectors and denoted by capital letters

X,Y, Z, etc. We denote by ≤ the product ordering on {±1, 0}U relative to the standard ordering

of signs with 0 ≤ −1 and 0 ≤ +1. The composition of X and Y is the sign vector X ◦ Y , where

for all e ∈ U one defines (X ◦ Y )e = Xe if Xe 6= 0 and (X ◦ Y )e = Ye if Xe = 0. The topes of L
are the maximal elements of L with respect to ≤. A system of sign vectors (U,L) is called an

oriented matroid (OM) if L satisfies the following three axioms:

(C) (Composition) X ◦ Y ∈ L for all X,Y ∈ L.

(SE) (Strong elimination) for each pair X,Y ∈ L and for each e ∈ U such that XeYe = −1,

there exists Z ∈ L such that Ze = 0 and Zf = (X ◦ Y )f for all f ∈ U with XfYf 6= −1.

(Sym) (Symmetry) −L = {−X : X ∈ L} = L, that is, L is closed under sign reversal.

Furthermore, a system of sign-vectors (U,L) is simple if it has no “redundant” elements, i.e.,

for each e ∈ U , {Xe : X ∈ L} = {+,−, 0} and for each pair e 6= f in U , there exist X,Y ∈ L
with {XeXf , YeYf} = {+,−}. From (C), (Sym), and (SE) it easily follows that the set T of

topes of any simple OM L are {−1,+1}-vectors. Therefore T can be viewed as a set family

(where −1 means that the corresponding element does not belong to the set and +1 that it

belongs). We will only consider simple OMs, without explicitly stating it every time. The tope

graph of an OM L is the 1-inclusion graph G(T ) of T viewed as a set family. The Topological

Representation Theorem of Oriented Matroids of [26] characterizes tope graphs of OMs as region

graphs of pseudo-sphere arrangements in a sphere Sd [8]. See the bottom part of Figure 5 for

an arrangement of pseudo-circles in S2. It is also well-known (see for example [8]) that tope

graphs of OMs are partial cubes and that L can be recovered from its tope graph G(T ) (up to
6



isomorphism). Therefore, we can define all terms in the language of tope graphs. In particular,

the isometric dimension of G(T ) is |U | and its VC-dimension coincides with the dimension d of

the sphere Sd hosting a representing pseudo-sphere arrangement.

Moreover a graph G is the tope graph of an affine oriented matroid (AOM) if G is a halfspace

of a tope graph of an OM. In particular, tope graphs of AOMs are partial cubes as well.

2.3.2. COMs: complexes of oriented matroids. Complexes of oriented matroids (COMs) have

been introduced and investigated in [6] as a far-reaching natural common generalization of

oriented matroids, affine oriented matroids, and ample systems of sign-vectors (to be defined

below). Some research has been connected to COMs quite quickly, see e.g. [7, 32, 38] and the

tope graphs of COMs have been investigated in depth in [34], see Subsection 2.3.4. COMs

are defined in a similar way as OMs, simply replacing the global axiom (Sym) by a weaker

local axiom (FS) of face symmetry: a complex of oriented matroids (COMs) is a system of sign

vectors (U,L) satisfying (SE), and the following axiom:

(FS) (Face symmetry) X ◦ −Y ∈ L for all X,Y ∈ L.

As for OMs we generally restrict ourselves to simple COMs, i.e., COMs defining simple systems

of sign-vectors. It is easy to see that (FS) implies (C), yielding that OMs are exactly the COMs

containing the zero sign vector 0, see [6]. Also, AOMs are COMs, see [6] or [7]. In analogy

with realizable OMs, a COM is realizable if it is the systems of sign vectors of the regions in an

arrangement U of (oriented) hyperplanes restricted to a convex set of Rd. See Figure 4 for an

example in R2. For other examples of COMs, see [6].

2

1

3 4
5

(− + − + +)

(+ + − + +)

(+ + − + −) (+ + + + −)

(− + + + −)

(− + + + +)

(− − + + +)

(− − + − +)

(− − + − −)(− − + + −)

(− + + − −)

(0 + − + +)

(+ + − + 0)

(+ + 0 + −)

(− + 0 + +)

(0 + 0 + 0)

(−0 + ++)

(−0 + +−)

(−0 + −−)

(− − +0+)

(− − +0−)

(− + +0−)

(− − + − 0)

(− − + + 0)

(− + + + 0)

(0 + + + −)

(−0 + +0)

(− − +00)

(−0 + 0−)

1

2 3 4
5

Figure 4. The system of sign-vectors associated to an arrangement of hyper-

planes restricted to a convex set and the tope graph of the resulting realizable

COM.

The simple twist between (Sym) and (FS) leads to a rich combinatorial and geometric struc-

ture that is build from OM cells but is quite different from OMs. Let (U,L) be a COM and X

be a covector of L. The face of X is F (X) := {X ◦ Y : Y ∈ L}. By [6, Lemma 4], each face

F (X) of L is an OM. Moreover, it is shown in [6, Section 11] that replacing each combinatorial

face F (X) of L by a PL-ball, we obtain a contractible cell complex associated to each COM.

The topes and the tope graphs of COMs are defined in the same way as for OMs. Again, the

topes T are {−1,+1}-vectors, the tope graph G(T ) is a partial cubes, and the COM L can be

recovered from its tope graph, see [6] or [34]. As for OMs, the isometric dimension of G(T ) is

|U |. If a COM is realizable in Rd, then the VC-dimension of G(T ) is at most d.

For each covector X ∈ L, the tope graph of its face F (X) is a gated subgraph of the tope

graph of L [34]: the gate of any tope Y in F (X) is the covector X ◦ Y (which is obviously a

tope). All this implies that the tope graph of any COM L is obtained by amalgamating gated

tope subgraphs of its faces, which are all OMs.
7



Let ↑L := {Y ∈ {±1, 0}U : X ≤ Y for some X ∈ L}. Then the ample systems (AMPs)1 of

sign vectors are those COMs such that ↑L = L [6]. From the definition it follows that any face

F (X) consists of the sign vectors of all faces of the subcube of [−1,+1]U with barycenter X.

2.3.3. AMPs: ample set families. Just above we defined ample systems as COMs satisfying

↑L = L. This is not the first definition of ample systems; all previous definitions define them as

families of sets and not as systems of sign vectors. Ample sets have been introduced by Lawrence

[35] as asymmetric counterparts of oriented matroids and have been re-discovered independently

by several works in different contexts [5, 11, 52]. Consequently, they received different names:

lopsided [35], simple [52], extremal [11], and ample [5,21]. Lawrence [35] defined ample sets for

the investigation of the possible sign patterns realized by points of a convex set of Rd. Ample

set families admit a multitude of combinatorial and geometric characterizations [5, 11, 35] and

comprise many natural examples arising from discrete geometry, combinatorics, graph theory,

and geometry of groups [5, 35] (for applications in machine learning, see [13,39]).

Let X be a subset of a set U with m elements and let Qm = Q(U). A X-cube of Qm is the

1-inclusion graph of the set family {Y ∪X ′ : X ′ ⊆ X}, where Y is a subset of U \X. If |X| = m′,

then any X-cube is a m′-dimensional subcube of Qm and Qm contains 2m−m
′
X-cubes. We

call any two X-cubes parallel cubes. Recall that X ⊆ U is shattered by a set family S ⊆ 2U

if {X ∩ S : S ∈ S} = 2X . Furthermore, X is strongly shattered by S if the 1-inclusion graph

G(S) of S contains a X-cube. Denote by X (S) and X (S) the families consisting of all shattered

and of all strongly shattered sets of S, respectively. Clearly, X (S) ⊆ X (S) and both X (S) and

X (S) are closed by taking subsets, i.e., X (S) and X (S) are abstract simplicial complexes. The

VC-dimension [51] VC-dim(S) of S is the size of a largest set shattered by S, i.e., the dimension

of the simplicial complex X (S). The fundamental sandwich lemma (rediscovered independently

in [2,11,21,44]) asserts that |X (S)| ≤ |S| ≤ |X (S)|. If d = VC-dim(S) and m = |U |, then X (S)

cannot contain more than Φd(m) :=
∑d

i=0

(
m
i

)
simplices. Thus, the sandwich lemma yields the

well-known Sauer-Shelah lemma [49, 50,51] that |S| ≤ Φd(m).

A set family S is called ample if |S| = |X (S)| [11, 5]. As shown in those papers this is

equivalent to the equality X (S) = X (S), i.e., S is ample if and only if any set shattered by S is

strongly shattered. Consequently, the VC-dimension of an ample family is the dimension of the

largest cube in its 1-inclusion graph. A nice characterization of ample set families was provided

in [35]: S is ample if and only if for any cube Q of Qm if Q ∩ S is closed by taking antipodes,

then either Q ∩ S = ∅ or Q is included in G(S). The paper [5] provides metric and recursive

characterizations of ample families. For example, it is shown in [5] that S is ample if and

only if any two parallel X-cubes of the 1-inclusion graph G(S) of S can be connected in G(S)

by a shortest path of X-cubes. This implies that 1-inclusion graphs of ample set families are

partial cubes; therefore further we will speak about ample partial cubes. Note that maximum

set families (i.e., those which the Sauer-Shelah lemma is tight) are ample.

2.3.4. Characterizing tope graphs of OMs, COMS, and AMPs. In this subsection we recall the

characterizations of [34] of tope graphs of COMs, OMs, and AMPs. We say that a partial cube

G is a COM, an OM, an AOM, or an AMP if G is the tope graph of a COM, OM, AOM,

or AMP, respectively. Tope graphs of COMs and AMPs are closed under pc-minors and tope

graphs of OMs and AOMs are closed under contractions but not under restrictions. Convex

subgraphs of OMs are COMs and convex subgraphs of tope graphs of uniform OMs are ample.

The reverse implications are conjectured in [6, Conjecture 1] and [35, Conjecture], respectively.

As shown in [34], a partial cube is the tope graph of a COM if and only if all its antipodal

subgraphs are gated. Another characterization from the same paper is by an infinite family of

1In the papers on COMs, these systems of sign-vectors are called lopsided (LOPs).
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excluded pc-minors. This family is denoted by Q− and defined as follows. For every m ≥ 4

there are partial cubes X1
m, . . . , X

m+1
m ∈ Q−. Here, Xm+1

m := Qm \ {(0, . . . , 0), (0, . . . , 1, 0)},
Xm

m = Xm+1
m \ {(0, . . . , 0, 1)}, and Xm−i

m = Xm−i+1
m \ {eim}. Here eim denotes the vector

with all zeroes except positions, i and m, where it is one. See Figure 3 for the members of

Q− of isometric dimension at most 4. Note in particular that X1
4 = SK4. Ample partial

cubes can be characterized by the excluding set Q−− = {Q−−m : m ≥ 4}, where Q−−m =

Qm \{(0, . . . , 0), (1, . . . , 1)} [34]. Further characterizations from [34] yield that OMs are exactly

the antipodal COMs, and (as mentioned at the end of Subsection 2.3.1) AOMs are exactly the

halfspaces of OMs. On the other hand, ample partial cubes are exactly the partial cubes in

which all antipodal subgraphs are hypercubes.

A central notion in COMs and OMs is the one of the rank of G, which is the largest d such

that G ∈ F(Qd+1). Hence this notion fits well with the topic of the present paper and combining

the families of excluded pc-minors Q−− and Q−, respectively, with Q3 one gets:

Proposition 1. [34, Corollary 7.5] The class of two-dimensional ample partial cubes coincides

with F(Q3, C6). The class of two-dimensional COMs coincides with F(Q3, SK4).

Figure 5. From upper left to bottom right: a disk G, a pseudoline arrangement

U whose region graph is G, adding a line `∞ to U , the pseudocircle arrangement

U ′ obtained from U ∪ {`∞} with a centrally mirrored copy, the pseudocircle

arrangement U ′ with region graph G′, the OM G′ with halfspace G.

2.3.5. Disks. A pseudoline arrangement U is a family of simple non-closed curves where every

pair of curves intersects exactly once and crosses in that point. Moreover, the curves must

be extendable to infinity without introducing further crossings. Note that several curves are

allowed to cross in the same point. Figure 5 for an example. We say that a partial cube G is

a disk if it is the region graph of a pseudoline arrangement U . The Θ-classes of G correspond

to the elements of U . Contrary to a convention sometimes made in the literature, we allow a

pseudoline arrangement U to be empty, consisting of only one element, or all pseudolines to

cross in a single point. These situations yield the simplest examples of disks, namely: K1, K2,

and the even cycles. Disks are closed under contraction, since contracting a Θ-class correspond
9



to removing a line from the pseudoline arrangement. It is well-known that disks are tope graphs

of AOMs of rank at most 2. A quick explanation can be found around [8, Theorem 6.2.3]. The

idea is to first add a line `∞ at infinity to the pseudoline arrangement U representing G. Then

embed the disk enclosed by `∞ on a hemisphere of S2, such that `∞ maps on the equator. Now,

mirror the arrangement through the origin of S2 in order to obtain a pseudocircle arrangement

U ′. The region graph of U ′ is an OM G′, and the regions on one side of `∞ correspond to a

halfspace of G′ isomorphic to G. See Figure 5 for an illustration.

3. Hyperplanes and isometric expansions

In this section we characterize the graphs from F(Qd+1) (i.e., partial cubes of VC-dimension

≤ d) via the hyperplanes of their Θ-classes and via the operation of isometric expansion.

3.1. Hyperplanes. Let G be isometrically embedded in the hypercube Qm. For a Θ-class Ei of

G, recall that G−i , G
+
i denote the complementary halfspaces defined by Ei and ∂G−i , G

+
i denote

their boundaries. The hyperplane Hi of Ei has the middles of edges of Ei as the vertex-set and

two such middles are adjacent in Hi if and only if the corresponding edges belong to a common

square of G, i.e., Hi is isomorphic to ∂G−i and ∂G+
i . Combinatorially, Hi is the 1-inclusion

graph of the set family defined by ∂H−i ∪ ∂H
+
i by removing from each set the element i.

Proposition 2. A partial cube G has VC-dimension ≤ d (i.e., G belongs to F(Qd+1)) if and

only if each hyperplane Hi of G has VC-dimension ≤ d− 1.

Proof. If some hyperplane Hi of G ∈ F(Qd+1) has VC-dimension d, then ∂G−i and ∂G+
i also

have VC-dimension d and their union ∂H−i ∪ ∂H
+
i has VC-dimension d + 1. Consequently, G

has VC-dimension ≥ d+ 1, contrary to Lemma 1. To prove the converse implication, denote by

Hd−1 the set of all partial cubes of G in which the hyperplanes have VC-dimension ≤ d−1. We

assert thatHd−1 is closed under taking pc-minors. First, Hd−1 is closed under taking restrictions

because the hyperplanes H ′i of any convex subgraph G′ of a graph G ∈ Hd−1 are subgraphs of

the respective hyperplanes Hi of G. Next we show thatHd−1 is closed under taking contractions.

Let G ∈ Hd−1 and let Ei and Ej be two different Θ-classes of G. Since πj(G) is a partial cube,

to show that πj(G) belongs to Hd−1 it suffices to show that ∂πj(G)−i = πj(∂G
−
i ). Indeed, this

would imply that the ith hyperplane of πj(G) coincides with the jth contraction of the ith

hyperplane of G. Consequently, this would imply that the VC-dimension of all hyperplanes of

πj(G) is at most d− 1.

Pick v ∈ πj(∂G−i ). Then v is the image of the edge v′v′′ of the hypercube Qm such that at

least one of the vertices v′, v′′, say v′, belongs to ∂G−i . This implies that the ith neighbor u′ of

v′ in Qm belongs to ∂G+
i . Let u′′ be the common neighbor of u′ and v′′ in Qm and u be the

image of the edge u′u′′ by the j-contraction. Since u′ ∈ ∂G+
i , the ith edge vu belongs to πj(G),

whence v ∈ ∂πj(G)−i and u ∈ ∂πj(G)+i . This shows πj(∂G
−
i ) ⊆ ∂πj(G)−i . To prove the converse

inclusion, pick a vertex v ∈ ∂πj(G)−i . This implies that the i-neighbor u of v in Qm belongs to

∂πj(G)+i . As in the previous case, let v be the image of the j-edge v′v′′ of the hypercube Qm

and let u′ and u′′ be the i-neighbors of v′ and v′′ in Qm. Then u is the image of the j-edge

u′u′′. Since the vertices u and v belong to πj(G), at least one vertex from each of the pairs

{u′, u′′} and {v′, v′′} belongs to G. If one of the edges u′v′ or u′′v′′ of Qm is an edge of G, then

u ∈ πj(∂G+
i ) and v ∈ πj(∂G−i ) and we are done. Finally, suppose that u′ and v′′ are vertices of

G. Since G is an isometric subgraph of Qm and d(u′, v′′) = 2, a common neighbor v′, u′′ of u′

and v′′ also belongs to G and we fall in the previous case. This shows that ∂πj(G)−i ⊆ πj(∂G
−
i ).

Consequently, Hd−1 is closed under taking pc-minors. Since Qd+1 does not belong to Hd−1, if

G belongs to Hd−1, then G does not have Qd+1 as a pc-minor, i.e., G ∈ F(Qd+1). �
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Corollary 1. A partial cube G belongs to F(Q3) if and only if each hyperplane Hi of G has

VC-dimension ≤ 1.

Remark 1. In Proposition 2 it is essential for G to be a partial cube. For example, let S consist

of all subsets of even size of an m-element set. Then the 1-inclusion graph G(S) of S consists

of isolated vertices (i.e., G(S) does not contain any edge). Therefore, any hyperplane of G(S)

is empty, however the VC-dimension of G(S) depends on m and can be arbitrarily large.

By Corollary 1, the hyperplanes of graphs from F(Q3) have VC-dimension 1. However they

are not necessarily partial cubes: any 1-inclusion graph of VC-dimension 1 may occur as a

hyperplane of a graph from F(Q3). Thus, it will be useful to establish the metric structure of 1-

inclusion graphs of VC-dimension 1. We say that a 1-inclusion graph G is a virtual isometric tree

of Qm if there exists an isometric tree T of Qm containing G as an induced subgraph. Clearly,

each virtually isometric tree is a forest in which each connected component is an isometric

subtree of Qm.

Proposition 3. An induced subgraph G of Qm has VC-dimension 1 if and only if G is a virtual

isometric tree of Qm.

Proof. Each isometric tree of Qm has VC-dimension 1, thus any virtual isometric tree has VC-

dimension ≤ 1. Conversely, let G be an induced subgraph of Qm of VC-dimension ≤ 1. We

will say that two parallelism classes Ei and Ej of Qm are compatible on G if one of the four

intersections G−i ∩ G
−
j , G

−
i ∩ G

+
j , G

+
i ∩ G

−
j , G

+
i ∩ G

+
j is empty and incompatible if the four

intersections are nonempty. From the definition of VC-dimension immediately follows that G

has VC-dimension 1 if and only if any two parallelism classes of Qm are compatible on G. By a

celebrated result by Buneman [12] (see also [22, Subsection 3.2]), on the vertex set of G one can

define a weighted tree T0 with the same vertex-set as G and such that the bipartitions {G−i , G
+
i }

are in bijection with the splits of T0, i.e., bipartitions obtained by removing edges of T0. The

length of each edge of T0 is the number of Θ-classes of Qm defining the same bipartition of G.

The distance dT0(u, v) between two vertices of T0 is equal to the number of parallelism classes

of Qm separating the vertices of T0. We can transform T0 into an isometrically embedded tree

T of Qm in the following way: if the edge uv of T0 has length k > 1, then replace this edge

by any shortest path P (u, v) of Qm between u and v. Then it can be easily seen that T is an

isometric tree of Qm, thus G is a virtual isometric tree. �

3.2. Isometric expansions. In order to characterize median graphs Mulder [42] introduced

the notion of a convex expansion of a graph. A similar construction of isometric expansion

was introduced in [14,15], with the purpose to characterize isometric subgraphs of hypercubes.

A triplet (G1, G0, G2) is called an isometric cover of a connected graph G, if the following

conditions are satisfied:

• G1 and G2 are two isometric subgraphs of G;

• V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2);

• V (G1) ∩ V (G2) 6= ∅ and G0 is the subgraph of G induced by V (G1) ∩ V (G2).

A graph G′ is an isometric expansion of G with respect to an isometric cover (G1, G0, G2) of

G (notation G′ = ψ(G)) if G′ is obtained from G in the following way:

• replace each vertex x of V (G1) \ V (G2) by a vertex x1 and replace each vertex x of

V (G2) \ V (G1) by a vertex x2;

• replace each vertex x of V (G1) ∩ V (G2) by two vertices x1 and x2;

• add an edge between two vertices xi and yi, i = 1, 2 if and only if x and y are adjacent

vertices of Gi, i = 1, 2;

• add an edge between any two vertices x1 and x2 such that x is a vertex of V (G1)∩V (G2).
11



M∗ M ′
∗

(a) (b)

M0
∗

M1
∗

M2
∗

M0
∗M0

∗

M1
∗

M2
∗

Figure 6. (a) The graph M∗. (b) The isometric expansion M ′∗ of M∗.

In other words, G′ is obtained by taking a copy of G1, a copy of G2, supposing them disjoint,

and adding an edge between any two twins, i.e., two vertices arising from the same vertex of

G0. The following result characterizes all partial cubes by isometric expansions:

Proposition 4. [14,15] A graph is a partial cube if and only if it can be obtained by a sequence

of isometric expansions from a single vertex.

We also need the following property of isometric expansions:

Lemma 4. [18, Lemma 6] If S is a convex subgraph of a partial cube G and G′ is obtained from

G by an isometric expansion ψ, then S′ := ψ(S) is a convex subgraph of G′.

Example 1. For partial cubes, the operation of isometric expansion can be viewed as the inverse

to the operation of contraction of a Θ-class. For example, the two-dimensional partial cube M

can be obtained from the two-dimensional partial cube M∗ (see Figure 2(b)) via an isometric

expansion. In Figure 6 we present another isometric expansion M ′∗ of M∗. By Proposition 4,

M ′∗ is a partial cube but one can check that it is no longer two-dimensional.

Therefore, contrary to all partial cubes, the classes F(Qd+1) are not closed under arbitrary

isometric expansions. In this subsection, we characterize the isometric expansions which pre-

serve the class F(Qd+1). Let G be isometrically embedded in the hypercube Qm = Q(X).

Suppose that G shatters the subset Y of X. For a vertex vA of Q(Y ) (corresponding to a subset

A of Y ), denote by F (vA) the set of vertices of the hypercube Qm which projects to vA. In

set-theoretical language, F (vA) consists of all vertices vB of Q(X) corresponding to subsets B

of X such that B ∩ Y = A. Therefore, F (vA) is a subcube of dimension m − |Y | of Qm. Let

G(vA) = G∩F (vA). Since F (vA) is a convex subgraph of Qm and G is an isometric subgraph of

Qm, G(vA) is also an isometric subgraph of Qm. Summarizing, we obtain the following property:

Lemma 5. If G is an isometric subgraph of Qm = Q(X) which shatters Y ⊆ X, then for any

vertex vA of Q(Y ), G(vA) is a nonempty isometric subgraph of G.

The following lemma establishes an interesting separation property in partial cubes:

Lemma 6. If (G1, G0, G2) is an isometric cover of an isometric subgraph G of Qm = Q(X)

and G1 and G2 shatter the same subset Y of X, then G0 also shatters Y .

Proof. To prove that G0 shatters Y it suffices to show that for any vertex vA of Q(Y ), G0∩F (vA)

is nonempty. Since G1 and G2 both shatter Q(Y ), G1 ∩ F (vA) and G2 ∩ F (vA) are nonempty

subgraphs of G. Pick any vertices x ∈ V (G1 ∩ F (vA)) and y ∈ V (G2 ∩ F (vA)). Then x and y

are vertices of G(vA). Since by Lemma 5, G(vA) is an isometric subgraph of Qm, there exists a

shortest path P (x, y) of Qm belonging to G(vA). Since (G1, G0, G2) is an isometric cover of G,

P (x, y) contains a vertex z of G0. Consequently, z ∈ V (G0 ∩ F (vA)), and we are done. �
12



Proposition 5. Let G′ be obtained from G ∈ F(Qd+1) by an isometric expansion with respect

to (G1, G0, G2). Then G′ belongs to F(Qd+1) if and only if G0 has VC-dimension ≤ d− 1.

Proof. The fact that G′ is a partial cube follows from Proposition 4. Let Em+1 be the unique

Θ-class of G′ which does not exist in G. Then the halfspaces (G′)−m+1 and (G′)+m+1 of G′ are

isomorphic to G1 and G2 and their boundaries ∂(G′)−m+1 and ∂(G′)+m+1 are isomorphic to G0.

If G′ belongs to F(Qd+1), by Proposition 2 necessarily G0 has VC-dimension ≤ d− 1.

Conversely, let G0 be of VC-dimension ≤ d − 1. Suppose that G′ has VC-dimension d + 1.

Since G has VC-dimension d, this implies that any set Y ′ of size d+ 1 shattered by G′ contains

the element m + 1. Let Y = Y ′ \ {m + 1}. The (m + 1)th halfspaces (G′)−m+1 and (G′)+m+1 of

G′ shatter the set Y . Since (G′)−m+1 and (G′)+m+1 are isomorphic to G1 and G2, the subgraphs

G1 and G2 of G both shatter Y . By Lemma 6, the subgraph G0 of G also shatters Y . Since

|Y | = d, this contradicts our assumption that G0 has VC-dimension ≤ d− 1. �

Let us end this section with a useful lemma with respect to antipodal partial cubes:

Lemma 7. If G is a proper convex subgraph of an antipodal partial cube H ∈ F(Qd+1), then

G ∈ F(Qd).

Proof. Suppose by way of contradiction that G has Qd as a pc-minor. Since convex subgraphs

of H are intersections of halfspaces, there exists a Θ-class Ei of H such that G is included in the

halfspace H+
i . Since H is antipodal, the subgraph −G ⊆ H−i consisting of antipodes of vertices

of G is isomorphic to G. As G ⊆ H+
i , −G and G are disjoint. Since G has Qd as a pc-minor,

−G also has Qd as a pc-minor: both those minors are obtained by contracting the same set I of

Θ-classes of H; note that Ei /∈ I. Thus, contracting the Θ-classes from I and all other Θ-classes

not crossing the Qd except Ei, we will get an antipodal graph H ′, since antipodality is preserved

by contractions. Now, H ′ consists of two copies of Qd separated by Ei. Take any vertex v in H ′.

Then there is a path from v to −v first crossing all Θ-classes of the cube containing v and then

Ei, to finally reach −v. Thus, −v is adjacent to Ei and hence every vertex of H ′ is adjacent to

Ei. Thus H ′ = Qd+1, contrary to the assumption that H ∈ F(Qd+1). �

4. Gated hulls of 6-cycles

In this section, we prove that in two-dimensional partial cubes the gated hull of any 6-cycle

C is either C, or Q−3 , or a maximal full subdivision of Kn.

4.1. Full subdivisions of Kn. A full subdivision of Kn (or full subdivision for short) is the

graph SKn obtained from the complete graph Kn on n vertices by subdividing each edge of Kn

once; SKn has n +
(
n
2

)
vertices and n(n − 1) edges. The n vertices of Kn are called original

vertices of SKn and the new vertices are called subdivision vertices. Note that SK3 is the 6-

cycle C6. Each SKn can be isometrically embedded into the n-cube Qn in such a way that each

original vertex ui is encoded by the one-element set {i} and each vertex ui,j subdividing the

edge ij of Kn is encoded by the 2-element set {i, j} (we call this embedding of SKn a standard

embedding). If we add to SKn the vertex v∅ of Qn which corresponds to the empty set ∅, we

will obtain the partial cube SK∗n. Since both SKn and SK∗n are encoded by subsets of size ≤ 2,

those graphs have VC-dimension 2. Consequently, we obtain:

Lemma 8. For any n, SKn and SK∗n are two-dimensional partial cubes.

Example 2. Our running example M contains two isometrically embedded copies of SK4. In

Figure 7(a)&(b) we present two isometric embeddings of SK4 into the 4-cube Q4, the second

one is the standard embedding of SK4. The original and subdivision vertices are illustrated by

squares and circles, respectively. Figure 7(c) describes the completion of SK4 to SK∗4 .
13



(a) (b) (c)

Figure 7. (a) An isometric embedding of SK4 into Q4. (b) A standard embed-

ding of SK4. (c) A completion of SK4 to SK∗4 .

Lemma 9. If H = SKn with n ≥ 4 is an isometric subgraph of a partial cube G, then G admits

an isometric embedding into a hypercube such that the embedding of H is standard.

Proof. Pick any original vertex of H as the base point b of G and consider the standard isometric

embedding ϕ of G into Qm. Then ϕ(b) = ∅. In H the vertex b is adjacent to n − 1 ≥ 3

subdivision vertices of H. Then for each of those vertices vi, i = 1, . . . , n − 1, we can suppose

that ϕ(vi) = {i}. Each vi is adjacent in H to an original vertex ui 6= b. Since H contains at

least three such original vertices and they have pairwise distance 2, one can easily check that

the label ϕ(ui) consists of i and an element common to all such vertices, denote it by n. Finally,

the label of any subdivision vertex ui,j adjacent to the original vertices ui and uj is {i, j}. Now

consider an isometric embedding ϕ′ of G defined by setting ϕ′(v) = ϕ(v)∆{n} for any vertex v

of G. Then ϕ′ provides a standard embedding of H: ϕ′(b) = {n}, ϕ′(ui) = {i} for any original

vertex ui, and ϕ′(vi) = {i, n} for any subdivision vertex vi adjacent to b and ϕ′(ui,j) = {i, j}
for any other subdivision vertex ui,j . �

By Lemma 9, when a full subdivision H = SKn of a graph G ∈ F(Q3) is fixed, we assume

that G is isometrically embedded in a hypercube so that H is standardly embedded.

We describe next the isometric expansions of SKn which result in two-dimensional partial

cubes. An isometric expansion of a partial cube G with respect to (G1, G0, G2) is called periph-

eral if at least one of the subgraphs G1, G2 coincides with G0, i.e., G1 ⊆ G2 or G2 ⊆ G1.

Lemma 10. If G′ is obtained from G := SKn with n ≥ 4 by an isometric expansion with

respect to (G1, G0, G2), then G′ ∈ F(Q3) if and only if this is a peripheral expansion and G0 is

an isometric tree of SKn.

Proof. The fact that an isometric expansion of SKn, such that G0 is an isometric tree, belongs

to F(Q3) follows from Proposition 5 and Lemma 8. Conversely, suppose that G′ belongs to

F(Q3). By Proposition 5, G0 has VC-dimension ≤ 1 and by Proposition 3 G0 is a virtual tree.

It suffices to prove that G1 or G2 coincides with G0. Indeed, since G1 and G2 are isometric

subgraphs of SKn, this will also imply that G0 is an isometric tree. We distinguish two cases.

Case 1. First, let G0 contain two original vertices ui and uj . Since ui and uj belong to G1 and

G2 and those two subgraphs are isometric subgraphs of G, the unique common neighbor ui,j of

ui and uj must belong to G1 and G2, and thus to G0. If another original vertex uk belongs to

G0, then the four vertices ui,j , ui, uj , uk of G0 shatter the set {i, j}, contrary to the assumption

that G0 has VC-dimension ≤ 1 (Proposition 5). This implies that each other original vertex

uk either belongs to G1 \G2 or to G2 \G1. If there exist original vertices uk and u` such that

uk belongs to G1 \ G2 and u` belongs to G2 \ G1, then their unique common neighbor uk,`
necessarily belongs to G0. But in this case the four vertices ui,j , ui, uj , uk,` of G0 shatter the set

{i, j}. Thus we can suppose that all other original vertices uk belong to G1 \G2. Moreover, for

the same reason and since G1 is an isometric subgraph of G, any vertex uk,` with {k, `} 6= {i, j}
also belongs to G1 \ G2. Since G1 is an isometric subgraph of G, for any k 6= i, j, the vertices
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ui,k, uj,k belong to G1. Therefore G1 = G and G0 = G2. Since G2 is an isometric subgraph of

G and G0 has VC-dimension ≤ 1, G0 is an isometric subtree of G.

Case 2. Now, suppose that G0 contains at most one original vertex. Let A1 be the set of

original vertices belonging to G1 \G2 and A2 be the set of original vertices belonging to G2 \G1.

First suppose that |A1| ≥ 2 and |A2| ≥ 2, say u1, u2 ∈ A1 and u3, u4 ∈ A2. But then the vertices

u1,3, u1,4, u2,3, u2,4 must belong to G0. Since those four vertices shatter the set {1, 3}, we obtain

a contradiction that G0 has VC-dimension ≤ 1. Hence, one of the sets A1 or A2 contains at

most one vertex. Suppose without loss of generality that A1 contains at least n − 2 original

vertices u1, u2, . . . , un−2. First suppose that G1 contains all original vertices. Then since G1 is

an isometric subgraph of G, each subdivision vertex ui,j also belongs to G1. This implies that

G1 = G and we are done. Thus suppose that the vertex un does not belong to A1. Since G0

contains at most one original vertex, one of the vertices un−1, un, say un, must belong to A2 (i.e.,

to G2 \G1). This implies that all vertices ui,n, i = 1, . . . , n− 2 belong to G0. Since n ≥ 4 and

un is the unique common neighbor of the vertices ui,n and uj,n with i 6= j and 1 ≤ i, j ≤ n− 2

and G1 is an isometric subgraph of G, necessarily un must be a vertex of G1, contrary to our

assumption that un ∈ A2. This contradiction concludes the proof of the lemma. �

Corollary 2. If G ∈ F(Q3) and G contains SKn with n ≥ 4 as a pc-minor, then G contains

SKn as a convex subgraph.

Proof. Suppose by way of contradiction that G′ is a smallest graph in F(Q3) which contains

SKn as a pc-minor but does not contain SKn as a convex subgraph. This means that any

contraction of G′ along a Θ-class of G′ that do not cross the SKn pc-minor, also contains this

SKn as a pc-minor. We denote the resulting graph by G. Since G ∈ F(Q3), by minimality

choice of G′, G contains SKn as a convex subgraph, denote this subgraph by H. Now, G′ is

obtained from G by an isometric expansion. By Lemma 4, H ′ = ψ(H) is a convex subgraph

of G′. Since G′ ∈ F(Q3), by Lemma 10 this isometric expansion restricted to H = SKn is

a peripheral expansion. This implies that the image of H under this expansion is a convex

subgraph H ′ of G′ which contains a copy of SKn as a convex subgraph, and thus G′ contains

a convex copy of SKn. �

Lemma 11. If C = SK3 is an isometric 6-cycle of G ∈ F(Q3), then C is convex or its convex

hull is Q−3 .

Proof. The convex hull of C in Qm is a 3-cube Q and conv(C) = Q∩V (G). Since G belongs to

F(Q3), Q cannot be included in G. Hence either conv(C) = C or conv(C) = Q−3 . �

4.2. Gatedness of full subdivisions of Kn. The goal of this subsection is to prove the

following result:

Proposition 6. If H = SKn with n ≥ 4 is a convex subgraph of G ∈ F(Q3) and H is not

included in a larger full subdivision of G, then H is a gated subgraph of G.

Proof. The proof of Proposition 6 uses the results of previous subsection and two claims.

Claim 1. If H = SKn with n ≥ 4 is an isometric subgraph of G ∈ F(Q3), then either H

extends in G to SK∗n or H is a convex subgraph of G.

Proof. Suppose by way of contradiction that H = SKn does not extend in G to SK∗n however H

is not convex. Then there exists a vertex v ∈ V (G)\V (H) such that v ∈ I(x, y) for two vertices

x, y ∈ V (H). First note that x and y cannot be both original vertices. Indeed, if x = ui and

y = uj , then in Qm the vertices x and y have two common neighbors: the subdivision vertex

ui,j and v∅. But v∅ is adjacent in Qm to all original vertices of H, thus it cannot belong to G
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because H = SKn does not extend to SK∗n. Thus, further we can suppose that the vertex x is a

subdivision vertex, say x = ui,j . We distinguish several cases depending of the value of d(x, y).

Case 1. d(x, y) = 2.

This implies that y = ui,k is also a subdivision vertex and x and y belong in H to a common

isometric 6-cycle C. Since v belongs to conv(C), Lemma 11 implies that v is adjacent to the

third subdivision vertex z = uj,k of C. Hence v = {i, j, k}. Since n ≥ 4, there exists ` 6= i, j, k

such that {`} is an original vertex of H and {i, `}, {j, `}, and {k, `} are subdivision vertices of

H. Contracting `, we will obtain a forbidden Q3.

Case 2. d(x, y) = 3.

This implies that y = uk is an original vertex with k 6= i, j. Then again the vertices x and y

belong in H to a common isometric 6-cycle C. Since v belongs to conv(C), Lemma 11 implies

that either v is adjacent to ui, uj , and uk or to ui,j , ui,k, and uj,k, which was covered by the

Case 1.

Case 3. d(x, y) = 4.

This implies that y = uk,` is a subdivision vertex with k, ` 6= i, j. In view of the previous

cases, we can suppose that v is adjacent to x or to y, say v is adjacent to x. Let Q be the convex

hull of {x, y} in Qm. Then Q is a 4-cube and x = {i, j} has 4 neighbors in Q: {i}, {j}, {i, j, k}
and {i, j, `}. The vertices {i}, {j} are original vertices of H. Thus suppose that v is one of the

vertices {i, j, k}, {i, j, `}, say v = {i, j, k}. But then v is adjacent to {j, k}, which is a subdivision

vertex of H and we are in the conditions of Case 1. Hence H is a convex subgraph of G. �

Claim 2. If H = SKn with n ≥ 4 is a convex subgraph of G ∈ F(Q3) and H is not included in

a larger full subdivision in G, then the vertex v∅ of Qm is adjacent only to the original vertices

u1, . . . , un of H.

Proof. Since H is convex, the vertex v∅ of Qm is not a vertex of G. Let ui = {i}, i = 1, . . . , n

be the original vertices of H. Suppose that in Qm the vertex v∅ is adjacent to a vertex u of

G, which is not included in H, say u = {n + 1}. Since u and each ui has in Qm two common

neighbors v∅ and ui,n+1 = {i, n + 1} and since G is an isometric subgraph of Qm, necessarily

each vertex ui,n+1 is a vertex of G. Consequently, the vertices of H together with the vertices

u, u1,n+1, . . . , un,n+1 define an isometric subgraph H ′ = SKn+1 of Qm. Since v∅ does not belong

to G, by Claim 1 H ′ is convex, contrary to the assumption that H is not included in a larger

convex full subdivision of G. Consequently, the neighbors in G of v∅ are only the original

vertices u1, . . . , un of H. �

Now, we prove Proposition 6. Let G ∈ F(Q3) be an isometric subgraph of the cube Qm in

such that the embedding of H is standard. Let Q be the convex hull of H in Qm; Q is a cube

of dimension n and a gated subgraph of Qm. Let v be a vertex of G and v0 be the gate of v

in Q. To prove that H is gated it suffices to show that v0 is a vertex of H. Suppose by way of

contradiction that H is not gated in G and among the vertices of G without a gate in H pick

a vertex v minimizing the distance d(v, v0). Suppose that v is encoded by the set A. Then its

gate v0 in Qm is encoded by the set A0 := A ∩ {1, . . . , n}. If |A0| = 1, 2, then A0 encodes an

original or subdivided vertex of H, therefore v0 would belong to H, contrary to the choice of v.

So, A0 = ∅ or |A0| > 2.

First suppose that A0 = ∅, i.e., v0 = v∅. Since v∅ is adjacent only to the original vertices

of H, by Claim 2 all original vertices of H have distance k = d(v, v∅) + 1 ≥ 3 to v. From

the choice of v it follows that I(v, ui) ∩ I(v, uj) = {v} for any two original vertices ui and uj ,

i 6= j. Indeed, if I(v, ui) ∩ I(v, uj) 6= {v} and w is a neighbor of v in I(v, ui) ∩ I(v, uj), then

d(w, ui) = d(w, uj) = k − 1. Therefore the gate w0 of w in Q has distance at most k − 2 from
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w, yielding that d(v, w0) = k − 1. This is possible only if w0 = v0. Therefore, replacing v

by w we will get a vertex of G whose gate w0 = v0 in Q does not belong to H and for which

d(w,w0) < d(v, v0), contrary to the minimality in the choice of v. Thus I(v, ui)∩I(v, uj) = {v}.
Let A = {n+ 1, . . . , n+ k − 1}.

If k = 3, then v is encoded by A = {n+ 1, n+ 2}. By Claim 2, any shortest path of G from

ui = {i} to v must be of the form ({i}, {i, `}, {`}, {n+ 1, n+ 2}), where ` ∈ {n+ 1, n+ 2}. Since

we have at least four original vertices, at least two of such shortest paths of G will pass via the

same neighbor {n+ 1} or {n+ 2} of v, contrary to the assumption that I(v, ui)∩ I(v, uj) = {v}
for any ui and uj , i 6= j. If k ≥ 4, let G′ = πn+1(G) and H ′ = πn+1(H) be the images of

G and H by contracting the edges of Qm corresponding to the coordinate n + 1. Then G′ is

an isometric subgraph of the hypercube Qm−1 and H ′ is a full subdivision isomorphic to SKn

isometrically embedded in G′. Let also v′, v′∅, and u′i, i = 1, . . . , n, denote the images of the

vertices v, v∅, and ui of G. Then u′1, . . . , u
′
n are the original vertices of H ′. Notice also that v′

has distance k− 1 to all original vertices of H ′ and distance k− 2 to v′∅. Thus in G′ the vertex

v′ does not have a gate in H ′. By the minimality in the choice of v and H, either H ′ is not

convex in G′ or H ′ is included in a larger full subdivision of G′. If H ′ is not convex in G′, by

Claim 1 v′∅ must be a vertex of G′. Since v∅ is not a vertex of G, this is possible only if the set

{n+ 1} corresponds to a vertex of G. But we showed in Claim 2 that the only neighbors of v∅
in G are the original vertices of H. This contradiction shows that H ′ is a convex. Therefore,

suppose that H ′ is included in a larger full subdivision H ′′ = SKn+1 of G′. Denote by u′` = {`}
the original vertex of H ′′ different from the vertices u′i, i = 1, . . . , n; hence ` /∈ {1, . . . , n}. Since

u′` is a vertex of G′ and in Qm the set {`} does not correspond to a vertex of G, necessarily

the set {n + 1, `} is a vertex of G in Qm. Therefore, we are in the conditions of the previous

subcase, which was shown to be impossible. This concludes the analysis of case A0 = ∅.

Now, suppose that |A0| ≥ 3 and let A0 = {1, 2, 3, . . . , k}. This implies that the vertices

u1, u2, u3 are original vertices and u1,2, u1,3, u2,3 are subdivision vertices of H. Since H = SKn

with n ≥ 4, H contains an original vertex u` with ` ≥ 4, say ` = 4. But then the sets

corresponding to the vertices u1, u2, u3, u4, u1,2, u1,3, u2,3, and v of G shatter the set {1, 2, 3},
contrary to the assumption that G ∈ F(Q3). This concludes the case |A0| ≥ 3. Consequently,

for any vertex v of G the gate v0 of v in Q belongs to H. This shows that H is a gated subgraph

of G and concludes the proof of the proposition. �

4.3. Gated hulls of 6-cycles. The goal of this subsection is to prove the following result:

Proposition 7. If C is an induced (and thus isometric) 6-cycle of G ∈ F(Q3), then the gated

hull gate(C) of C is either C, or Q−3 , or a full subdivision.

Proof. If C is included in a maximal full subdivision H = SKn with n ≥ 4, by Proposition 6

H is gated. Moreover, one can directly check that any vertex of H \ C must be included in

the gated hull of C, whence gate(C) = H. Now suppose that C is not included in any full

subdivision SKn with n ≥ 4. By Lemma 11, S := conv(C) is either C or Q−3 . In this case

we assert that S is gated and thus gate(C) = conv(C). Suppose that G is a two-dimensional

partial cube of smallest size for which this is not true. Let v be a vertex of G that has no gate

in S and is as close as possible to S, where dG(v, S) = min{dG(v, z) : z ∈ S} is the distance

from v to S. Given a Θ-class Ei of G, let G′ := πi(G), S′ := πi(S), and C ′ = πi(C). For a

vertex u of G, let u′ := πi(u).

Since any convex subgraph of G is the intersection of halfspaces, if all Θ-classes of G cross S,

then S coincides with G, contrary to the choice of G. Thus G contains Θ-classes not crossing

S. First suppose that there exists a Θ-class Ei of G not crossing S such that S′ is convex in G′.

Since G′ ∈ F(Q3), by Lemma 11 either the 6-cycle C ′ is convex or its convex hull in G′ is Q−3 .
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Since the distance in G′ between v′ and any vertex of S′ is either the same as the distance in G

between v and the corresponding vertex of S (if Ei does not separate v from S) or is one less

than the corresponding distance in G (if v and S belong to complementary halfspaces defined

by Ei), S
′ is not gated in G′, namely the vertex v′ has no gate in S′. Therefore, if S′ = Q−3 ,

then contracting all Θ-classes of G′ separating S′ from v′, we will get Q3 as a pc-minor, contrary

to the assumption that G and G′ belong to F(Q3). This implies that S′ = C ′ and thus that

S = C. Moreover, by minimality of G, the 6-cycle C ′ is included in a maximal full subdivision

H ′ = SKn of G′. By Proposition 6, H ′ is a gated subgraph of G′. Let w′ be the gate of v′ in

H ′ (it may happen that w′ = v′). Since C ′ is not gated, necessarily w′ is not a vertex of C ′.

For the same reason, w′ is not adjacent to a vertex of C ′. The graph G is obtained from G′ by

an isometric expansion ψi (inverse to πi). By Lemma 10, ψi, restricted to H ′, is a peripheral

expansion along an isometric tree of H ′. By Corollary 2, G contains an isometric subgraph

isomorphic to H ′. By the choice of Ei, C does not cross Ei, and this implies that in G the

convex cycle C is contained in a full subdivision of Kn, contrary to the choice of C.

Now, suppose that for any Θ-class Ei of G not crossing S, S′ is not convex in G′. Since C ′ is

an isometric 6-cycle of G′, G′ ∈ F(Q3), and the 6-cycle C ′ is not convex in G′, by Lemma 11 we

conclude that the convex hull of C ′ in G′ is Q−3 and this Q−3 is different from S′. Hence S′ = C ′

and S = C. This implies that there exists a vertex z′ of G′ adjacent to three vertices z′1, z
′
2,

and z′3 of C ′. Let z1, z2, z3 be the three preimages in C of the vertices z′1, z
′
2, z
′
3. Let also y, z

be the preimages in the hypercube Qm of the vertex z′. Suppose that y is adjacent to z1, z2, z3
in Qm. Since C ′ is the image of the convex 6-cycle of G, this implies that y is not a vertex of

G while z is a vertex of G. Since G is an isometric subgraph of Qm, G contains a vertex w1

adjacent to z and z1, a vertex w2 adjacent to z and z2, and a vertex w3 adjacent to z and z3.

Consequently, the vertices of C together with the vertices z, w1, w2, w3 define a full subdivision

SK4, contrary to our assumption that C is not included in such a subdivision. This shows that

the convex hull of the 6-cycle C is gated. �

5. Convex and gated hulls of long isometric cycles

In the previous section we described the structure of gated hulls of 6-cycles in two-dimensional

partial cubes. In this section, we provide a description of convex and gated hulls of long isometric

cycles, i.e., of isometric cycles of length ≥ 8. We prove that convex hulls of long isometric cycles

are disks, i.e., the region graphs of pseudoline arrangements. Then we show that all such disks

are gated. In particular, this implies that convex long cycles in two-dimensional partial cubes

are gated.

5.1. Convex hulls of long isometric cycles. A two-dimensional partial cube D is called a

pseudo-disk if D contains an isometric cycle C such that conv(C) = D; C is called the boundary

of D and is denoted by ∂D. If D is the convex hull of an isometric cycle C of G, then we

say that D is a pseudo-disk of G. Admitting that K1 and K2 are pseudo-disks, the class of

all pseudo-disks is closed under contractions. The main goal of this subsection is to prove the

following result:

Proposition 8. A graph D ∈ F(Q3) is a pseudo-disk if and only if D is a disk. In particular,

the convex hull conv(C) of an isometric cycle C of any graph G ∈ F(Q3) is an AOM of rank 2.

Proof. The fact that disks are pseudo-disks follows from the next claim:

Claim 3. If D ∈ F(Q3) is a disk, then D is the convex hull of an isometric cycle C of D.

Proof. By definition, D is the region graph of an arrangement A of pseudolines. The cycle

C is obtained by traversing the unbounded cells of the arrangement in circular order, i.e.,
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C = ∂D. This cycle C is isometric in D because the regions corresponding to any two opposite

vertices v and −v of C are separated by all pseudolines of A, thus dD(v,−v) = |A|. Moreover,

conv(C) = D because for any other vertex u of D, any pseudoline ` ∈ A separates exactly

one of the regions corresponding to v and −v from the region corresponding to u, whence

dD(v, u) + dD(u,−v) = dD(v,−v). �

The remaining part of the proof is devoted to prove that any pseudo-disk is a disk. Let D

be a pseudo-disk with boundary C. Let AD := {v ∈ D : v has an antipode}. As before, for a

Θ-class Ei of D, by D+
i and D−i we denote the complementary halfspaces of D defined by Ei.

Claim 4. If D is a pseudo-disk with boundary C, then AD = C.

Proof. Clearly, C ⊆ AD. To prove AD ⊆ C, suppose by way of contradiction that v,−v are

antipodal vertices of D not belonging to C. Contract the Θ-classes until v is adjacent to a

vertex u ∈ C, say via an edge in class Ei (we can do this because all such classes crosses C

and by Lemma 2(ii) their contraction will lead to a disk). Let u ∈ D+
i and v ∈ D−i . Since

D = conv(C), the Θ-class Ei crosses C. Let xy and zw be the two opposite edges of C belonging

to Ei and let x, z ∈ D+
i , y, w ∈ D

−
i . Let P,Q be two shortest paths in D−i connecting v with y

and w, respectively. Since the total length of P and Q is equal to the shortest path of C from x

to z passing through u, the paths P and Q intersect only in v. Extending P and Q, respectively

within D−i ∩C until −u, yields shortest paths P ′, Q′ that are crossed by all Θ-classes except Ei.

Therefore, both such paths can be extended to shortest (v,−v)-paths by adding the edge −u−v
of Ei. Similarly to the case of v, there are shortest paths P ′′, Q′′ from the vertex −v ∈ D+

i to the

vertices x, z ∈ C ∩D+
i . Again, P ′′ and Q′′ intersect only in −v. Let Ej be any Θ-class crossing

P and Ek be any Θ-class crossing Q. We assert that the set S := {u, v, x, y, z, w,−u,−v} of

vertices of D shatter {i, j, k}, i.e., that contracting all Θ-classes except Ei, Ej , and Ek yields a

forbidden Q3. Indeed, Ei separates S into the sets {u, x,−v, z} and {v, y,−u,w}, Ej separates

S into the sets {x, y,−v,−u} and {u, v, z, w}, and Ek separates S into the sets {u, v, x, y} and

{−v,−u, z, w}. This contradiction shows that AD ⊆ C, whence AD = C. �

Claim 5. If D is a pseudo-disk with boundary C, then D is an affine partial cube. Moreover,

there exists an antipodal partial cube D′ ∈ F(Q4) containing D as a halfspace.

Proof. First we show that D is affine. Let u, v ∈ D. Using the characterization of affine partial

cubes provided by [34, Proposition 2.16] we have to show that for all vertices u, v of D one

can find w,−w ∈ AD such that the intervals I(w, u) and I(v,−w) are not crossed by the same

Θ-class of D. By Claim 4 this is equivalent to finding such w,−w in C. Let I be the index set

of all Θ-classes crossing I(u, v). Without loss of generality assume that u ∈ D+
i (and therefore

v ∈ D−i ) for all i ∈ I. We assert that (
⋂

i∈I D
+
i )∩C 6= ∅. Then any vertex from this intersection

can play the role of w.

For i ∈ I, let C+
i = C ∩ D+

i and C−i = C ∩ D−i ; C+
i and C−i are two disjoint shortest

paths of C covering all vertices of C. Viewing C as a circle, C+
i and C−i are disjoint arcs of

this circle. Suppose by way of contradiction that
⋂

i∈I C
+
i =

⋂
i∈I D

+
i ∩ C = ∅. By the Helly

property for arcs of a circle, there exist three classes i, j, k ∈ I such that the paths C+
i , C

+
j , and

C+
k pairwise intersect, together cover all the vertices and edges of the cycle C, and all three

have empty intersection. This implies that C is cut into 6 nonempty paths: C+
i ∩ C

+
j ∩ C

−
k ,

C+
i ∩ C

−
j ∩ C

−
k , C+

i ∩ C
−
j ∩ C

+
k , C−i ∩ C

−
j ∩ C

+
k , C−i ∩ C

+
j ∩ C

+
k , and C−i ∩ C

+
j ∩ C

−
k . Recall

also that u ∈ D+
i ∩D

+
j ∩D

+
k and v ∈ D−i ∩D

−
j ∩D

−
k . But then the six paths partitioning C

together with u, v will shatter the set {i, j, k}, i.e., contracting all Θ-classes except i, j, k yields

a forbidden Q3.

Consequently, D is an affine partial cube, i.e., D is a halfspace of an antipodal partial cube

G, say D = G+
i for a Θ-class Ei. Suppose that G can be contracted to the 4-cube Q4. If Ei
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is a coordinate of Q4 (i.e., the class Ei is not contracted), since D = G+
i , we obtain that D

can be contracted to Q3, which is impossible because D ∈ F(Q3). Therefore Ei is contracted.

Since the contractions of Θ-classes commute, suppose without loss of generality that Ei was

contracted last. Let G′ be the partial cube obtained at the step before contracting Ei. Let D′ be

the isometric subgraph of G′ which is the image of D under the performed contractions. Since

the property of being a pseudo-disk is preserved by contractions, D′ is a pseudo-disk, moreover

D′ is one of the two halfspaces of G′ defined by the class Ei restricted to G′. Analogously, by

Lemma 3 antipodality is preserved by contractions, whence G′ is an antipodal partial cube such

that πi(G
′) = Q4. This implies that G′ was obtained from H := Q4 by an isometric antipodal

expansion (H1, H0, H2). Notice that one of the isometric subgraphs H1 or H2 of the 4-cube

H, say H1 coincides with the disk D′′ := πi(D
′). Since H is antipodal, by [34, Lemma 2.14],

H0 is closed under antipodes in Q4 and −(H1 \ H0) = H2 \ H0. Since H0 is included in the

isometric subgraph H1 = D′′ of H, H0 is closed under antipodes also in D′′. By Claim 4 we

obtain H0 = AD′′ = ∂D′′. Consequently, H0 is an isometric cycle of H = Q4 that separates Q4

in two sets of vertices. However, no isometric cycle of Q4 separates the graph. �

Figure 8. An OM containing Q−3 as a halfspace.

If D /∈ F(Q3) is the convex hull of an isometric cycle, then D is not necessarily affine, see

X5
4 in Figure 3. On the other hand, SK4 ∈ F(Q3) is affine but is not a pseudo-disk. Let us

introduce the distinguishing feature.

Claim 6. If D is a pseudo-disk with boundary C, then D is a disk, i.e., the region graph of a

pseudoline arrangement.

Proof. By Claim 5 we know that D is the halfspace of an antipodal partial cube G. Suppose

by contradiction that G is not an OM. By [34] G has a minor X from the family Q−. Since

the members of this class are non-antipodal, to obtain X from G not only contractions but

also restrictions are necessary. We perform first all contractions I to obtain a pseudo-disk

D′ := πI(D) ∈ F(Q3) that is a halfspace of the antipodal graph G′ := πI(G). By the second part

of Claim 5 we know that G′ ∈ F(Q4). Now, since G′ contains X as a proper convex subgraph,

by Lemma 7 we get X ∈ F(Q3). Since SK4 is the only member of the class Q− containing

SK4 as a convex subgraph, by Proposition 1, we obtain X = SK4. Assume minimality in this

setting, in the sense that any further contraction destroys all copies of X present in D′. We

distinguish two cases.

First, suppose that there exists a copy of X which is a convex subgraph of D′. Let n ≥ 4

be maximal such that there is a convex H = SKn in D′ extending a convex copy of X. By

Proposition 6, H is gated. If H 6= D′, there exists a Θ-class Ei of D′ not crossing H. Contracting

Ei, by Lemma 2(iii) we will obtain a gated full subdivision πi(H) = SKn contrary to the

minimality in the choice of D′. Therefore D′ = H = SKn, but it is easy to see that all

SKn, n ≥ 4, are not pseudo-disks, a contradiction.
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Now, suppose that no copy of X is a convex subgraph of D′. Since G′ contains X as a

convex subgraph, D′ is a halfspace of G′ (say D′ = (G′)+i ) defined by a Θ-class Ei, and G′ is an

antipodal partial cube, we conclude that Ei crosses all convex copies H of X = SK4. Then Ei

partitions H into a 6-cycle C and a K1,3 such that all edges between them belong to Ei. The

antipodality map of G′ maps the vertices of (G′)+i to vertices of (G′)−i and vice-versa. Therefore

in D′ there must be a copy of K1,3 and a copy of C = C6, and both such copies belong to the

boundary ∂(G′)+i . The antipodality map is also edge-preserving. Therefore, it maps edges of

Ei to edges of Ei and vertices of (G′)+i \ ∂(G′)+i to vertices of (G′)−i \ ∂(G′)−i . Consequently,

all vertices of ∂(G′)−i have antipodes in the pseudo-disk D′ = (G′)+i and their antipodes also

belong to ∂(G′)+i . This and Claim 4 imply that ∂(G′)+i ⊂ AD′ = ∂D′. Therefore the isometric

cycle ∂D′ contains an isometric copy of C6, whence ∂D′ = C6. Since ∂D′ also contains the leafs

of a K1,3 we conclude that the pseudo-disk D′ coincides with Q−3 . However, the only antipodal

partial cube containing Q−3 as a halfspace is depicted in Figure 8 and it is an OM, leading to a

contradiction. �

Note that Claim 6 generalizes Lemma 11. Together with Claim 3 it yields that pseudo-disks

are disks, i.e., tope graphs of AOMs of rank two, concluding the proof of Proposition 8. �

5.2. Gated hulls of long isometric cycles. By Proposition 8 disks and pseudo-disks are the

same, therefore, from now on we use the name “disk” for both. We continue by showing that

in two-dimensional partial cubes all disks with boundary of length > 6 are gated.

Proposition 9. If D is a disk of G ∈ F(Q3) and |∂D| > 6, then D is a gated subgraph of G.

In particular, convex long cycles of G are gated.

Proof. Let G be a minimal two-dimensional partial cube in which the assertion does not hold.

Let D be a non-gated disk of G whose boundary C := ∂D is a long isometric cycle. Let v

be a vertex of G that has no gate in D and is as close as possible to D, where dG(v,D) =

min{dG(v, z) : z ∈ D}. We use some notations from the proof of [18, Proposition 1]. Let

Pv := {x ∈ D : dG(v, x) = dG(v,D)} be the metric projection of v to D. Let also Rv := {x ∈
D : I(v, x) ∩ D = {x}}. Since D is not gated, Rv contains at least two vertices. Obviously,

Pv ⊆ Rv and the vertices of Rv are pairwise nonadjacent. We denote the vertices of Pv by

x1, . . . , xk. For any xi ∈ Pv, let vi be a neighbor of v on a shortest (v, xi)-path. By the choice of

v, each vi has a gate in D. By the definition of Pv, xi is the gate of vi in D. This implies that

the vertices v1, . . . , vk are pairwise distinct. Moreover, since xi is the gate of vi in D, for any

two distinct vertices xi, xj ∈ Pv, we have dG(vi, xi) + dG(xi, xj) = dG(vi, xj) ≤ 2 + dG(vj , xj).

Since dG(xi, vi) = dG(xj , vj), necessarily dG(xi, xj) = 2.

We assert that any three distinct vertices xj , xk, x` ∈ Pv do not have a common neighbor.

Suppose by way of contradiction that there exists a vertex x adjacent to xj , xk, x`. Then x

belongs to D by convexity of D and xj , xk, x` ∈ I(x, v) since xj , xk, x` ∈ Pv. Let Ej be the

Θ-class of the edge vjv and let Ck be the cycle of G defined by a (v, xj)-shortest path P passing

via vj , the 2-path (xj , x, xk), and a shortest (xk, v)-path Q passing via vk. Then Ej must

contain another edge of Ck. Necessarily this cannot be an edge of P . Since v is a closest

vertex to D without a gate, this edge cannot be an edge of Q. Since xj ∈ I(x, v), this edge is

not xxj . Therefore the second edge of Ej in Ck is the edge xxk. This implies that v and xk
belong to the same halfspace defined by Ej , say G+

j , and vj and x belong to its complement

G−j . Using an analogously defined cycle C`, one can show that the edge xx` also belong to

Ej , whence the vertices xk and x` belong to the same halfspace G+
j . Since x ∈ I(xk, x`) and

x ∈ G−j , we obtain a contradiction with convexity of G+
j . Therefore, if xj , xk, x` ∈ Pv, then

conv(xj , xk, x`) is an isometric 6-cycle of D. In particular, this implies that each of the intervals

I(xj , xk), I(xk, x`), I(xj , x`) consists of a single shortest path.
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Next we show that |Pv| ≤ 3. Suppose by way of contradiction that |Pv| ≥ 4 and pick the

vertices x1, x2, x3, x4 ∈ Pv. Let H be the subgraph of D induced by the union of the intervals

I(xj , xk), with j, k ∈ {1, 2, 3, 4}. Since these intervals are 2-paths intersecting only in common

end-vertices, H is isomorphic to SK4 with x1, x2, x3, x4 as original vertices. Since D is a two-

dimensional partial cube, one can directly check that H is an isometric subgraph of D. Since

the intervals I(xj , xk) are interiorly disjoint paths, H = SK4 cannot be extended to SK∗4 . By

Claim 1, H = SK4 is a convex subgraph of D. Since D is an AOM of rank 2 and thus a COM

of rank 2, by Proposition 1, D cannot contain SK4 as a pc-minor. This contradiction shows

that |Pv| ≤ 3.

Let S := conv(Pv). Since |Pv| ≤ 3 and dG(xj , xk) = 2 for any two vertices xj , xk of Pv, there

exists at most three Θ-classes crossing S. Since the length of the isometric cycle C is at least

8, there exists a Θ-class Ei crossing C (and D) and not crossing S. We assert that v and the

vertices of Pv belong to the same halfspace defined by Ei. Indeed, if Ei separates v from S,

then for any j, Ei has an edge on any shortest (vj , xj)-path. This contradicts the fact that xj is

the gate of vj in D. Consequently, v and the set S belong to the same halfspace defined by Ei.

Consider the graphs G′ := πi(G), D′ := πi(D) and the cycle C ′ := πi(C). By Lemma 2(i), D′

is a disk with boundary C ′ (and thus an AOM) of the two-dimensional partial cube G′. Notice

that the distance in G′ between v′ and the vertices x′j of Pv is the same as the distance between

v and xj in G and that the distance between v′ and the images of vertices of Rv \ Pv may

eventually decrease by 1. This implies that D′ is not gated. By minimality of G, this is possible

only if C ′ is a 6-cycle. In this case, by Proposition 7, we conclude that D′ is included in a

maximal full subdivision H ′ = SKn, which is a gated subgraph of G′. The graph G is obtained

from G′ by an isometric expansion ψi (inverse to πi). By Lemma 10, ψi, restricted to H ′, is a

peripheral expansion along an isometric tree of H ′. This implies that in G the convex AOM D

is contained in a full subdivision of Kn, contrary to the assumption that D is the convex hull

of the isometric cycle C of length at least 8. �

Summarizing Propositions 7, 8, and 9, we obtain the following results:

Theorem 2. Let G be a two-dimensional partial cube and C be an isometric cycle of G. If

C = C6, then the gated hull of C is either C, Q−3 , or a maximal full subdivision. If otherwise

C is long, then conv(C) is a gated disk.

Corollary 3. Maximal full subdivisions, convex disks with long cycles as boundaries (in par-

ticular, long convex cycles) are gated subgraphs in two-dimensional partial cubes.

6. Completion to ample partial cubes

In this section, we prove that any partial cube G of VC-dimension 2 can be completed to an

ample partial cube G> of VC-dimension 2. We perform this completion in two steps. First,

we canonically extend G to a partial cube Gq ∈ F(Q3) not containing convex full subdivisions.

The resulting graph Gq is a COM of rank 2: its cells are the gated cycles of G and the 4-cycles

created by extensions of full subdivisions. Second, we transform Gq into an ample partial cube

(Gq)p∈ F(Q3) by filling each gated cycle C of length ≥ 6 of G (and of Gq) by a planar tiling

with squares. Here is the main result of this section and one of the main results of the paper:

Theorem 3. Any G ∈ F(Q3) can be completed to an ample partial cube G> := (Gq)p∈ F(Q3).

6.1. Canonical completion to two-dimensional COMs. The 1-extension graph of a partial

cube G ∈ F(Q3) of Qm is a subgraph G′ of Qm obtained by taking a maximal by inclusion

convex full subdivision H = SKn of G such that H is standardly embedded in Qm and adding

to G the vertex v∅.
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Lemma 12. If G′ is the 1-extension of G ∈ F(Q3) and G′ is obtained with respect to the

maximal by inclusion convex full subdivision H = SKn of G, then G′ ∈ F(Q3) and G is an

isometric subgraph of G′. Moreover, any convex full subdivision SKr with r ≥ 3 of G′ is a

convex full subdivision of G and any convex cycle of length ≥ 6 of G′ is a convex cycle of G.

Proof. Let G be an isometric subgraph of Qm. To show that G′ is an isometric subgraph of Qm

it suffices to show that any vertex v of G can be connected in G′ with v∅ by a shortest path. By

Proposition 6 H is a gated subgraph of G and the gate v0 of v in Q = conv(H) belongs to H.

This means that if v is encoded by the set A and v0 is encoded by the set A0 = A∩ {1, . . . , n},
then either A0 = {i} or A0 = {i, j} for an original vertex ui or a subdivision vertex ui,j . This

means that d(v, v0) = d(v, ui) = |A| − 1 in the first case and d(v, v0) = d(v, ui,j) = |A| − 2 in

the second case. Since d(v, v∅) = |A|, we obtain a shortest (v, v∅)-path in G′ first going from v

to v0 and then from v0 to v∅ via an edge or a path of length 2 of H. This establishes that G′

is an isometric subgraph of Qm. Since any two neighbors of v∅ in H have distance 2 in G and

v∅ is adjacent in G only to the original vertices of H, we also conclude that G is an isometric

subgraph of G′.

Now we will show that G′ belongs to F(Q3). Suppose by way of contradiction that the sets

corresponding to some set S of 8 vertices of G′ shatter the set {i, j, k}. Since G ∈ F(Q3), one

of the vertices of S is the vertex v∅: namely, v∅ is the vertex whose trace on {i, j, k} is ∅. Thus

the sets corresponding to the remaining 7 vertices of S contain at least one of the elements

i, j, k. Now, since H = SKn with n ≥ 4, necessarily there exists an original vertex u` of H with

` /∈ {i, j, k}. Clearly, u` is not a vertex of S. Since the trace of {`} on {i, j, k} is ∅, replacing

in S the vertex v∅ by u` we will obtain a set of 8 vertices of G still shattering the set {i, j, k},
contrary to G ∈ F(Q3).

It remains to show that any convex full subdivision of G′ is a convex full subdivision of

G. Suppose by way of contradiction that H ′ = SKr, r ≥ 3, is a convex full subdivision of G′

containing the vertex v∅. By Claim 2, in G′ v∅ is adjacent only to the original vertices of H.

Hence, if v∅ is an original vertex of H ′ then at least two original vertices of H are subdivision

vertices of H ′ and if v∅ is a subdivision vertex of H ′ then the two original vertices of H ′ adjacent

to v∅ are original vertices of H. In both cases, denote those two original vertices of H by x = ui
and y = uj . Since H ′ is convex and ui,j is adjacent to ui and uj , ui,j must belong to H ′.

But this implies that H ′ contains the 4-cycle (x = ui, v∅, y = uj , ui,j), which is impossible in a

convex full subdivision. In a similar way, using Claim 2, one can show that any convex cycle of

length ≥ 6 of G′ is a convex cycle of G. �

Now, suppose that we consequently perform the operation of 1-extension to all gated full

subdivisions and to the occurring intermediate partial cubes. By Lemma 12 all such isometric

subgraphs of Qm have VC-dimension 2 and all occurring convex full subdivisions are already

convex full subdivisions of G. After a finite number of 1-extension steps (by the Sauer-Shelah-

Perles lemma, after at most
(
m
≤2
)

1-extensions), we will get an isometric subgraph Gq of Qm

such that Gq ∈ F(Q3), G is an isometric subgraph of Gq, and all maximal full subdivisions

SKn of Gq are included in SK∗n. We call Gq the canonical 1-completion of G. We summarize

this result in the following proposition:

Proposition 10. If G ∈ F(Q3) is an isometric subgraph of the hypercube Qm, then after at

most
(
m
≤2
)

1-extension steps, G can be canonically completed to a two-dimensional COM Gq
and G is an isometric subgraph of Gq.

Proof. To prove that Gq is a two-dimensional COM, by second assertion of Proposition 1 we

have to prove that Gq belongs to F(Q3, SK4) = F(Q3)∩F(SK4). The fact that Gq belongs to

F(Q3) follows from Lemma 12. Suppose now that Gq contains SK4 as a pc-minor. By Corollary
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2, Gq contains a convex subgraph H isomorphic to SK4. Then H extends in Gq to a maximal

by inclusion SKn, which we denote by H ′. Since Gq ∈ F(Q3) and H does not extend to SK∗4 ,

H ′ does not extend to SK∗n either. By Claim 1 and Proposition 6 applied to Gq, we conclude

that H ′ is a convex and thus gated subgraph of Gq. Applying the second assertion of Lemma

12 (in the reverse order) to all pairs of graphs occurring in the construction transforming G to

Gq, we conclude that H ′ is a convex and thus gated full subdivision of G. But this is impossible

because all maximal full subdivisions SKn of Gq are included in SK∗n. This shows that Gq
belongs to F(SK4), thus Gq is a two-dimensional COM. That G is isometrically embedded in

Gq follows from Lemma 12 and the fact that if G is an isometric subgraph of G′ and G′ is an

isometric subgraph of G′′, then G is an isometric subgraph of G′′. �

6.2. Completion to ample two-dimensional partial cubes. Let G ∈ F(Q3), C a gated

cycle of G, and Ej a Θ-class crossing C. Set C := (v1, v2, . . . , v2k), where the edges v2kv1 and

vkvk+1 are in Ej . The graph GC,Ej is defined by adding a path on vertices v2k = v′1, . . . , v
′
k =

vk+1 and edges viv
′
i for all 2 ≤ i ≤ k − 1. Let C ′ = (v′1, . . . , v

′
k, vk+2, . . . , v2k−1). Then we

recursively apply the same construction to the cycle C ′ and we call the resulting graph a cycle

completion of G along a gated cycle C; see Figure 9 for an illustration. Proposition 11 establishes

the basic properties of this construction, in particular it shows that the cycle completion along

a gated cycle is well defined.

v1

v2

v4
v5 = v′4

v6

v7

v8 = v′1

v3
v′2

v′3

Ej
v1

v2

v4
v5

v6

v7

v8

v3

(b)(a)

Figure 9. (a) GC,Ej is obtained by adding the white vertices to a graph G with

a gated cycle C = (v1, v2, . . . , v8). (b) A cycle completion of G along the cycle

C = (v1, v2, . . . , v8).

Proposition 11. Let G be a partial cube, C a gated cycle of G, and Ej a Θ-class crossing C.

(1) GC,Ej is a partial cube and G is an isometric subgraph of GC,Ej ,

(2) C ′ = (v′1, . . . , v
′
k, vk+2, . . . , v2k−1) is a gated cycle,

(3) If G ∈ F(Q3), then so is GC,Ej ,

(4) If G contains no convex SKn, then neither does GC,Ej .

Proof. To prove (1), notice that the Θ-classes of G extend to GC,Ej is a natural way, i.e., edges

of the form viv
′
i for all 2 ≤ i ≤ k − 1 belong to Ej , while an edge v′iv

′
i+1 belongs to the Θ-class

of the edge vivi+1 for all 1 ≤ i ≤ k − 1. Clearly, among the old vertices distances have not

changed and the new vertices are embedded as an isometric path. If w ∈ C and u ∈ C ′ is a

new vertex, then it is easy to see that there is a shortest path using each Θ-class at most once.

In fact, since w is at distance at most one from C ′ it has a gate in C ′, i.e., the path only uses

Ej . Finally, let v be an old vertex of G \ C, w be its gate in C, and u be a new vertex, i.e.,

u ∈ GC,Ej \ G. Let P be a path from v to u that is a concatenation of a shortest (v, w)-path

P1 and a shortest (w, u)-path P2. Since C is gated and all Θ-classes crossing P2 also cross C,

the Θ-classes of G crossing P1 and the Θ-classes crossing P2 are distinct. Since P1 and P2 are
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shortest paths, the Θ-classes in each of two groups are also pairwise different. Consequently, P

is a shortest (v, u)-path and thus GC,Ej is a partial cube. Finally, G is an isometric subgraph

of GC,Ej by construction.

To prove (2), let v ∈ G \ C ′. If v ∈ G \ C, let w be its gate in C. Thus there is a shortest

(v, w)-path which does not cross the Θ-classes crossing C. Suppose that w /∈ C ′, otherwise we

are done. Then there exists a vertex w′ such that the edge ww′ belongs to Ej . Since Ej crosses

C and not C ′, w′ is the gate of v in C ′. If v ∈ C \C ′, using the previous argument, there exists

an edge vv′ belonging to Ej and we conclude that v′ is the gate of v in C ′.

To prove (3), suppose by way of contradiction that GC,Ej has a Q3 as a pc-minor. Then

there exists a sequence s of restrictions ρs and contractions πs such that s(G) = Q3. Recall that

restrictions and contractions commute in partial cube [18]. Hence, we get a graph G′ = πs(G)

which contains a convex Q3. Thus, this pc-minor Q3 can be obtained by contractions. Clearly,

Ej must be among the uncontracted classes, because πj(GC,Ej ) = πj(G). Furthermore, if only

one other Θ-class of C is not contracted in GC,Ej , then contraction will identify all new vertices

with (contraction) images of old vertices and again by the assumption G ∈ F(Q3) we get a

contradiction. Thus, the three classes that constitute the copy of Q3 are Ej and two other

classes say E′j , E
′′
j of C. Thus, the augmented C yields a Q−3 in the contraction of GC,Ej , but

the last vertex of the Q3 comes from a part of G. In other words, there is a vertex v ∈ G, such

that all shortest paths from v to C cross Ej , E
′
j , or E′′j . This contradicts that C was gated,

establishing that GC,Ej ∈ F(Q3).

To prove (4), suppose by way of contradiction that GC,Ej contains a convex SKn. Since SKn

has no 4-cycles nor vertices of degree one, the restrictions leading to SKn must either include

Ej or the class of the edge v1v2 or v2k−1v2k. The only way to restrict here in order to obtain

a graph that is not a convex subgraph of G is restricting to the side of Ej , that contains the

new vertices. But the obtained graph cannot use new vertices in a convex copy of SKn because

they form a path of vertices of degree two, which does not exist in a SKn. Thus GC,Ej does

not contain a convex SKn. �

Propositions 10 and 11 allow us to prove Theorem 3. Namely, applying Proposition 10 to

a graph G ∈ F(Q3), we obtain a two-dimensional COM Gq, i.e. a graph Gq ∈ F(Q3, SK4).

Then, we recursively apply the cycle completion along gated cycles to the graph Gq and to

the graphs resulting from Gq. By Proposition 11 (3), (4), all intermediate graphs belong to

F(Q3, SK4), i.e. they are two-dimensional COMs. This explain why we can recursively apply

the cycle completion construction cycle-by-cycle. Since this construction does not increase

the VC-dimension, by Sauer-Shelah lemma after a finite number of steps, we will get a graph

(Gq)p∈ F(Q3, SK4) in which all convex cycles must be gated (by Propositions 7 and 9) and

must have length 4. This implies that (Gq)p∈ F(C6). Consequently, (Gq)p∈ F(Q3, C6) and

by Proposition 1 the final graph G> = (Gq)p is a two-dimensional ample partial cube. This

completes the proof of Theorem 3. For an illustration, see Figure 10.

Remark 2. One can generalize the construction in Proposition 11 by replacing a gated cycle

C by a gated AOM that is the convex hull of C, such that all its convex cycles are gated. In a

sense, this construction captures the set of all possible extensions of the graph G.

7. Cells and carriers

This section uses concepts and techniques developed for COMs [6] and for hypercellular

graphs [18]. Let C(G) denote the set of all convex cycles of a partial cube G and let C(G) be

the 2-dimensional cell complex whose 2-cells are obtained by replacing each convex cycle C of

length 2j of G by a regular Euclidean polygon [C] with 2j sides. It was shown in [33] that the
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Figure 10. An ample completion M> of the running example M .

set C(G) of convex cycles of any partial cube G constitute a basis of cycles. This result was

extended in [18, Lemma 13] where it has been shown that the 2-dimensional cell complex C(G)

of any partial cube G is simply connected. Recall that a cell complex X is simply connected

if it is connected and if every continuous map of the 1-dimensional sphere S1 into X can be

extended to a continuous mapping of the (topological) disk D2 with boundary S1 into X.

Let G be a partial cube. For a Θ-class Ei of G, we denote by N(Ei) the carrier of Ei

in C(G), i.e., the subgraph of G induced by the union of all cells of C(G) crossed by Ei.

The carrier N(Ei) of G splits into its positive and negative parts N+(Ei) := N(Ei) ∩ G+
i and

N−(Ei) := N(Ei)∩G−i , which we call half-carriers. Finally, call G+
i ∪N−(Ei) and G−i ∪N+(Ei)

the extended halfspaces of Ei. By Djoković’s Theorem 1, halfspaces of partial cubes G are convex

subgraphs and therefore are isometrically embedded in G. However, this is no longer true for

carriers, half-carriers, and extended halfspaces of all partial cubes. However this is the case for

two-dimensional partial cubes:

Proposition 12. If G ∈ F(Q3) and Ei is a Θ-class of G, then the carrier N(Ei), its halves

N+(Ei), N
−(Ei), and the extended halfspaces G+

i ∪N−(Ei), G
−
i ∪N+(Ei) are isometric subgraphs

of G, and thus belong to F(Q3).

Proof. Since the class F(Q3) is closed under taking isometric subgraphs, it suffices to show that

each of the mentioned subgraphs is an isometric subgraph of G. The following claim reduces

the isometricity of carriers and extended halfspaces to isometricity of half-carriers:

Claim 7. Carriers and extended halfspaces of a partial cube G are isometric subgraphs of G if

and only if half-carriers are isometric subgraphs of G.

Proof. One direction is implied by the equality N+(Ei) := N(Ei)∩G+
i and the general fact that

the intersection of a convex subgraph and an isometric subgraph of G is an isometric subgraph

of G. Conversely, suppose that N+(Ei) and N−(Ei) are isometric subgraphs of G and we want

to prove that the carrier N(Ei) is isometric (the proof for G+
i ∪ N−(Ei) and G−i ∪ N+(Ei) is

similar). Pick any two vertices u, v ∈ N(Ei). If u and v belong to the same half-carrier, say

N+(Ei), then they are connected in N+(Ei) by a shortest path and we are done. Now, let

u ∈ N+(Ei) and v ∈ N−(Ei). Let P be any shortest (u, v)-path of G. Then necessarily P

contains an edge u′, v′ with u′ ∈ ∂G+
i ⊆ N+(Ei) and v′ ∈ ∂G−i ⊆ N−(Ei). Then u, u′ can be

connected in N+(Ei) by a shortest path P ′ and v, v′ can be connected in N−(Ei) by a shortest

path P ′′. The path P ′, followed by the edge u′v′, and by the path P ′′ is a shortest (u, v)-path

included in N(Ei). �

By Claim 7 it suffices to show that the half-carriers N+(Ei) and N−(Ei) of a two-dimensional

partial cube G are isometric subgraphs of G. By Proposition 10, G is an isometric subgraph
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of its canonical COM-extension Gq. Moreover from the construction of Gq it follows that the

carrier N(Ei) and its half-carriers N+(Ei) and N−(Ei) are subgraphs of the carrier Nq(Ei) and

its half-carriers Nq+(Ei), Nq−(Ei) in the graph Gq. By [6, Proposition 6], carriers and their

halves of COMs are also COMs. Consequently, Nq+(Ei) and Nq−(Ei) are isometric subgraphs

of Gq. Since the graph Gq is obtained from G via a sequence of 1-extensions, it easily follows

that any shortest path P ⊂ Nq+(Ei) between two vertices of N+(Ei) can be replaced by a path

P ′ of the same length lying entirely in N+(Ei). Therefore N+(Ei) is an isometric subgraph of

the partial cube Nq+(Ei), thus the half-carrier N+(Ei) is also an isometric subgraph of G. �

A partial cube G = (V,E) is a 2d-amalgam of two-dimensional partial cubes G1 =

(V1, E1), G2 = (V2, E2) both isometrically embedded in the cube Qm if the following condi-

tions are satisfied:

(1) V = V1 ∪ V2, E = E1 ∪ E2 and V2 \ V1, V1 \ V2, V1 ∩ V2 6= ∅;

(2) the subgraph G12 of Qm induced by V1 ∩ V2 is a two-dimensional partial cube and each

maximal full subdivision SKn of G12 is maximal in G;

(3) G is a partial cube.

As a last ingredient for the next proposition we need a general statement about COMs.

Lemma 13. If G is a COM and the cube Qd is a pc-minor of G, then there is an antipodal

subgraph H of G that has Qd as a pc-minor.

Proof. By [34, Lemma 6.2.], if H is an antipodal subgraph of a COM G and G′ is an expansion

of G, then the expansion H ′ of H in G′ is either antipodal as well or is peripheral, where the

latter implies that H ′ contains H as a convex subgraph. In either case G′ contains an antipodal

subgraph, that has H as minor. Since Qd is antipodal, considering a sequence of expansions

from Qd = G0, . . . Gk = G every graph at an intermediate step contains an antipodal subgraph

having Qd as a minor. �

Proposition 13. Two-dimensional partial cubes are obtained via successive 2d-amalgamations

from their gated cycles and gated full subdivisions. Conversely, the 2d-amalgam of two-

dimensional partial cubes G1 = (V1, E1) and G2 = (V2, E2) of Qm is a two-dimensional partial

cube of Qm in which every gated cycle or gated full subdivision belongs to at least one of the two

constituents.

Proof. Let G = (V,E) be a two-dimensional partial cube which is not a single cell. We can

suppose that G is 2-connected, otherwise we can do an amalgam along an articulation vertex.

We assert that G contains two gated cells intersecting in an edge. Since the intersection of two

gated sets is gated and any cell does not contain any proper gated subgraph except vertices and

edges, the intersection of any two cells of G is either empty, a vertex, or an edge. If the last case

never occur, since any convex cycle of G is included in a single cell, any cycle of G containing

edges of several cells (such a cycle exists because G is 2-connected) cannot be written as a

modulo 2 sum of convex cycles. This contradicts the result of [33] that the set of convex cycles

of any partial cube G constitute a basis of cycles. Pick two gated cells C1 and C2 intersecting

in an edge e. Let Ei be a Θ-class crossing C1 and not containing e. Since C2 is gated, C2 is

contained in one of the halfspaces G+
i or G−i , say C2 ⊆ G+

i . Notice also that C2 is not included

in the carrier N(Ei). Set G1 := G−i ∪N+(Ei) and G2 := G+
i . By Proposition 12, G1, G2, and

G1 ∩ G2 = N+(Ei) are two-dimensional partial cubes, thus G is a 2d-amalgam of G1 and G2.

Conversely, suppose that a partial cube G is a 2d-amalgam of two-dimensional partial cubes G1

and G2. Consider the canonical COM completions G1q and G2q of G1 and G2, which are in

F(Q3) by the Lemma 12. Then G1q∩G2q coincides with G12q. Therefore, by [6, Proposition 7]

this provides a COM G′, which is a COM amalgam of G1q and G2q along G12q without creating
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new antipodal subgraphs. Using the Lemma 13, we deduce that G′ ∈ F(Q3). Since the graph

G is isometrically embedded in G′, G ∈ F(Q3), which concludes the proof. �

The 2-dimensional cell complex C(G) of a partial cube G is simply connected but not con-

tractible even if G is two-dimensional. However, for a two-dimensional partial cube G there is a

simple remedy: one can consider the (combinatorial) cell complex having gated cycles and gated

full subdivisions of G as cells. However, since full subdivisions cannot be directly represented

by Euclidean cells, this complex does not have a direct geometric meaning. One possibility is to

replace each gated full subdivision SKn by a regular Euclidean simplex with sides of length 2

and each gated cycle by a regular Euclidean polygon. Denote the resulting polyhedral complex

by X(G). Notice that two cells of X(G) can intersect in an edge of a polygonal cell or in a

half-edge of a simplex. This way, with each two-dimensional partial cube G we associate a

polyhedral complex X(G) which may have cells of arbitrary dimensions. Alternatively, one can

associate to G the cell complex C(Gq) of the canonical COM completion Gq of G. Recall that

in C(Gq), each gated cycle of G is replaced by a regular Euclidean polygon and each gated full

subdivision SKn of G is extended in Gq to SK∗n and this correspond to a bouquet of squares

in C(Gq). Thus C(Gq) is a 2-dimensional cell complex.

Corollary 4. If G ∈ F(Q3), then the complexes X(G) and C(Gq) are contractible.

Proof. That C(Gq) is contractible follows from the fact that Gq is a two-dimensional COM

(Proposition 10) and that the cell complexes of COMs are contractible (Proposition 15 of [6]).

The proof that X(G) is contractible uses the same arguments as the proof of [6, Proposition

15]. We prove the contractibility of X(G) by induction on the number of maximal cells of X(G)

by using the gluing lemma [9, Lemma 10.3] and Proposition 12. By the gluing lemma, if X is

a cell complex which is the union of two contractible cell complexes X1 and X2 such that their

intersection X1∩X2 is contractible, then X is contractible. If X(G) consists of a single maximal

cell, then this cell is either a polygon or a simplex, thus is contractible. If X(G) contains at least

two cells, then by the first assertion of Proposition 13 G is a 2d-amalgam of two-dimensional

partial cubes G1 and G2 along a two-dimensional partial cube G12. By induction assumption,

the complexes X(G1), X(G1), and X(G12) = X(G1) ∩ X(G2) are contractible, thus X(G) is

contractible by gluing lemma. �

8. Characterizations of two-dimensional partial cubes

The goal of this section is to give a characterization of two-dimensional partial cubes, sum-

marizing all the properties established in the previous sections:

Theorem 4. For a partial cube G = (V,E) the following conditions are equivalent:

(i) G is a two-dimensional partial cube;

(ii) the carriers N(Ei) of all Θ-classes of G, defined with respect to the cell complex C(G),

are two-dimensional partial cubes;

(iii) the hyperplanes of G are virtual isometric trees;

(iv) G can be obtained from the one-vertex graph via a sequence {(G1
i , G

0
i , G

2
i ) : i = 1, . . . ,m}

of isometric expansions, where each G0
i , i = 1, . . . ,m has VC-dimension ≤ 1;

(v) G can be obtained via 2d-amalgams from even cycles and full subdivisions;

(vi) G has an extension to a two-dimensional ample partial cube.

Moreover, any two-dimensional partial cube G satisfies the following condition:

(vii) the gated hull of each isometric cycle of G is a disk or a full subdivision.

Proof. The implication (i)⇒(ii) is the content of Proposition 12. To prove that (ii)⇒(iii) notice

that since N(Ei) is a two-dimensional partial cube, by Propositions 2 and 3 it follows that
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Figure 11. A subgraph Z of Q4 of VC-dimension 2, such that any ample partial

cube containing Z has VC-dimension 3.

the hyperplane of the Θ-class Ei of N(Ei) is a virtual isometric tree. Since this hyperplane of

N(Ei) coincides with the hyperplane Hi of G, we deduce that all hyperplanes of G are virtual

isometric trees, establishing (ii)⇒(iii). The implication (iii)⇒(i) follows from Propositions 2

and 3. The equivalence (i)⇔(iv) follows from Proposition 5. The equivalence (i)⇔(v) follows

from Proposition 13. The implication (i)⇒(vi) follows from Theorem 3 and the implication

(vi)⇒(i) is evident. Finally, the implication (i)⇒(vii) is the content of Theorem 2. �

Note that it is not true that if in a partial cube G the convex hull of every isometric cycle

is in F(Q3), then G ∈ F(Q3); see X4
2 in Figure 3. However, we conjecture that the condition

(vii) of Theorem 4 is equivalent to conditions (i)-(vi):

Conjecture 1. Any partial cube G in which the gated hull of each isometric cycle is a disk or

a full subdivision is two-dimensional.

9. Final remarks

In this paper, we provided several characterizations of two-dimensional partial cubes via

hyperplanes, isometric expansions and amalgamations, cells and carriers, and gated hulls of

isometric cycles. One important feature of such graphs is that gated hulls of isometric cycles

have a precise structure: they are either full subdivisions of complete graphs or disks, which

are plane graphs representable as graphs of regions of pseudoline arrangements. Using those

results, first we show that any two-dimensional partial cube G can be completed in a canonical

way to a COM Gq of rank 2 and that Gq can be further completed to an ample partial cube

G> := (Gq)p of VC-dimension 2. Notice that G is isometrically embedded in Gq and that Gq is

isometrically embedded in G>. This answers in the positive (and in the strong way) the question

of [39] for partial cubes of VC-dimension 2. However, for Theorem 3 it is essential that the

input is a partial cube: Figure 11 presents a (non-isometric) subgraph Z of Q4 of VC-dimension

2, such that any ample partial cube containing Z has VC-dimension 3. Therefore, it seems to us

interesting and nontrivial to solve the question of [47] and [39] for all (non-isometric) subgraphs

of hypercubes of VC-dimension 2 (alias, for arbitrary set families of VC-dimension 2).

It is also important to investigate the completion questions of [39] and [47] for all partial cubes

from F(Qd+1) (i.e., for partial cubes of VC-dimension ≤ d). For this, it will be interesting to

see which results for partial cubes from F(Q3) can be extended to graphs from F(Qd+1). We

have the impression, that some of the results on disks can be extended to balls; a partial cube

is a d-ball if G ∈ F(Qd+1) and G contains an isometric antipodal subgraph C ∈ F(Qd+1) such

that G = conv(C). With this is mind, one next step would be to study the class F(Q4).
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[29] R. Hammack, W. Imrich, and S. Klavžar, Handbook of Product Graphs, CRC Press, 2011.

[30] D. Haussler, Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-

Chervonenkis dimension, J. Comb. Theory, Ser. A 69 (1995), 217–232.

[31] D. Haussler, N. Littlestone, and M. K. Warmuth, Predicting {0, 1}-functions on randomly drawn

points, Inf. Comput. 115 (1994), 248–292.

[32] W. Hochstättler and V. Welker, The Varchenko determinant for oriented matroids, Math. Z. 293,

1415–1430 (2019)
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