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Isometric embedding of Busemann surfaces into L 1

In this paper, we prove that any non-positively curved 2-dimensional surface (alias, Busemann surface) is isometrically embeddable into L1. As a corollary, we obtain that all planar graphs which are 1skeletons of planar non-positively curved complexes with regular Euclidean polygons as cells are L1-embeddable with distortion at most 2 + π/2 < 4. Our results significantly improve and simplify the results of the recent paper A. Sidiropoulos, Non-positive curvature, and the planar embedding conjecture, FOCS 2013.

Avant-propos

Isometric and low distortion embeddings of finite and infinite metric spaces into L p -spaces is one of the main subjects in the theory of metric spaces. Work in this area was initiated by Cayley in 1841 and continued in the first half of the 20th century by Fréchet, Menger, Schoenberg, and Blumenthal. Since these days it is known that all metric spaces isometrically embed into L ∞ . Metric spaces isometrically embeddable into L 2 were characterized by Menger and Schoenberg. Even if embeddability into L 1 can be defined in several equivalent ways and a few necessary conditions for L 1 -embedding are known, metric spaces isometrically embeddable into L 1 cannot be characterized in an efficient way, because deciding whether a finite metric space is L 1 -embeddable is NP-complete. On the other hand, many classes of metric spaces (Euclidean and spherical metrics, tree and outerplanar metrics, as well as graph metrics of some classes of graphs) are known to be L 1 -embeddable; for a full account of the theory of isometric embeddings, see the book [START_REF] Deza | Geometry of Cuts and Metrics[END_REF].

Although already simple metric spaces are not L 1 -embeddable, Bourgain [START_REF] Bourgain | On Lipschitz embedding of finite metric spaces in Hilbert space[END_REF] established that any metric space on n points can be embedded into L 1 with O(log n) (multiplicative) distortion and this important result has found numerous algorithmic applications (for a theory of low distortion embeddings of metric spaces and its algorithmic applications, the interested reader can consult the book [START_REF] Matoušek | Lectures on Discrete Geometry[END_REF] and the survey [START_REF] Indyk | Low-distortion embeddings of finite metric spaces[END_REF]). One of main open problems in this domain is the so-called planar embedding conjecture asserting that all planar metrics (i.e., metrics of planar graphs) can be embedded into L 1 with constant distortion. This conjecture was established for series-parallel graphs [START_REF] Gupta | Cuts, trees and l1-embeddings of graphs[END_REF]; on the other hand, several classes of planar graphs are known to be L 1 -embeddable (see the book [START_REF] Deza | Geometry of Cuts and Metrics[END_REF] and the survey [START_REF] Bandelt | Metric graph theory and geometry: a survey[END_REF]), in particular, it was shown in [START_REF] Chepoi | Distance and routing problems in plane graphs of non-positive curvature[END_REF] that the three basic classes of non-positively curved planar graphs (so-called, [START_REF] Baues | Curvature and geometry of tessellating plane graphs[END_REF][START_REF] Bridson | Metric Spaces of Non-positive Curvature[END_REF], [START_REF] Bridson | Metric Spaces of Non-positive Curvature[END_REF][START_REF] Baues | Curvature and geometry of tessellating plane graphs[END_REF], and (4,4)-graphs) are L 1 -embeddable.

Recently, Sidiropoulos [START_REF] Sidiropoulos | Non-positive curvature, and the planar embedding conjecture[END_REF] proved that for any finite set Q of a non-positively curved planar surface (S, d), the metric space (Q, d) is L 1 -embeddable with constant distortion. As a consequence, all planar graphs which give rise to non-positively curved surfaces can be embedded into L 1 with constant distortion. 1 The proof-method in [START_REF] Sidiropoulos | Non-positive curvature, and the planar embedding conjecture[END_REF] uses at minimum the geometry of (S, d) and essentially employs probabilistic techniques. Using the convexity of the distance function, Sidiropoulos "approximates" (Q, d) by special planar graphs called "bundles", which he shows to be L 1 -embeddable with constant distortion. To provide such an embedding, the author searches for a good distribution over a special type of cuts (bipartitions of Q), called "monotone cuts", defined on bundles. Searching for this good distribution is the most technically involved part of the paper [START_REF] Sidiropoulos | Non-positive curvature, and the planar embedding conjecture[END_REF].

In this paper, we prove that in fact all non-positively curved planar surfaces (S, d) (which we call Busemann surfaces) are L 1 -embeddable (without any distortion). This significantly improves the result of [START_REF] Sidiropoulos | Non-positive curvature, and the planar embedding conjecture[END_REF]. Our approach is geometric and combinatorial. First, we establish some elementary properties of convexity in Busemann surfaces, analogous to the properties of usual convexity in R 2 . Then we use some of these properties to show that for any finite set Q in general position of S, (Q, d) is L 1 -embeddable. For this, we extend to Busemann surfaces the proof-method of a combinatorial Crofton lemma given by R. Alexander [START_REF] Alexander | Planes for which the lines are the shortest paths between points[END_REF] for finite point-sets in general position in R 2 endowed with a metric in which lines are geodesics. Using local perturbations of points, we extend our result to all finite sets Q of S. Then the fact that (S, d) is L 1 -embeddable follows from a compactness result of [START_REF] Bretagnolle | Lois stables et espaces Lp[END_REF] about L p -embeddings.

Preliminaries

2.1. L 1 -embeddings. A metric space (X, d) is isometrically embeddable into a metric space (X ′ , d ′ ) if there exists a map ϕ : X → X ′ such that d ′ (ϕ(x), ϕ(y)) = d(x, y) for any x, y ∈ X. More generally, ϕ : X → X ′ is an embedding with (multiplicative) distortion c ≥ 1 if d(x, y) ≤ d ′ (ϕ(x), ϕ(y)) ≤ c • d(x, y) for all x, y ∈ X (non-contractive embedding), or if 1 c •d(x, y) ≤ d ′ (ϕ(x), ϕ(y)) ≤ d(x, y) for all x, y ∈ X (non-expansive embedding). Let (Ω, A, µ) be a measure space consisting of a set Ω, a σ-algebra A of subsets of Ω, and a measure µ on A. Given a function f : Ω → R, its L 1 -norm is defined by f 1 = Ω |f (w)|µ(dw). Then L 1 (Ω, A, µ) denotes the set of functions f : Ω → R which satisfy f 1 < ∞. The L 1 -norm defines a metric on L 1 (Ω, A, µ) by taking f -g 1 as the distance between two functions f, g ∈ L 1 (Ω, A, µ). A metric space (X, d) is said to be L 1 -embeddable if there exists an isometric embedding of (X, d) into L 1 (Ω, A, µ) for some measure space (Ω, A, µ)

[9]. If Ω is finite (say, |Ω| = n) and A = 2 Ω , the resulting space L 1 (Ω, A, µ) is the n-dimensional l 1 -space (R n , d 1 )
, where the l 1 -distance between two points x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ) is andd is called an l 1 -metric) if there exists an isometric embedding of (X n , d) into some l 1 -space (R m , d 1 ). It is well known [START_REF] Deza | Geometry of Cuts and Metrics[END_REF]Chapter 4] that the set of all l 1 -metrics on X n forms a closed cone CUT n in

d 1 (x, y) = n i=1 |x i -y i |. A metric space (X n , d) on n points is l 1 -embeddable (
R n(n-1) 2 
, called the cut cone. CUT n is generated by the cut semimetrics δ S for S ⊆ X n , where δ S (x, y) = 1 if |S ∩ {x, y}| = 1 and δ S (x, y) = 0 otherwise. A well-known compactness result 1 Non-positively curved metric spaces constitute a large class of geodesic metric spaces at the heart of modern metric geometry and playing an essential role in geometric group theory [START_REF] Bridson | Metric Spaces of Non-positive Curvature[END_REF][START_REF] Papadopulos | Metric Spaces, Convexity and Nonpositive Curvature[END_REF].

of [START_REF] Bretagnolle | Lois stables et espaces Lp[END_REF] implies that L 1 -embeddability of a metric space is equivalent to l 1 -embeddability of its finite subspaces.

2.2.

Geodesics and geodesic metric spaces. In this subsection, we recall some definitions and notations on geodesic metric spaces; we closely follow the books [START_REF] Bridson | Metric Spaces of Non-positive Curvature[END_REF] and [START_REF] Papadopulos | Metric Spaces, Convexity and Nonpositive Curvature[END_REF]. Let (X, d) be a metric space. A path in X is a continuous map γ : [a, b] → X, where a and b are two real numbers with a ≤ b. If γ(a) = x and γ(b) = y, then x and y are the endpoints of γ and that γ joins x and y. A geodesic path (or simply a geodesic) in

X is a path γ : [a, b] → X that is distance-preserving, that is, such that d(γ(s), γ(t)) = |s -t| for all s, t ∈ [a, b].
A geodesic line (or simply a line) is a distance-preserving map γ : R → X and a geodesic ray (or simply a ray) is a distance-preserving map γ : [0, ∞) → X. A path γ : [a, b] → X is said to be a local geodesic if for all t in (a, b) one can find a closed interval I(t) ⊆ [a, b] containing t in its interior such that the restriction of γ on I(t) is geodesic. A metric space X is geodesic if every pair of points in X can be joined by a geodesic. A uniquely geodesic space is a geodesic space in which every pair of points can be joined by a unique geodesic.

2.3.

Non-positively curved spaces. We continue with the definitions of non-positively curved spaces in the sense of Alexandrov [START_REF] Bridson | Metric Spaces of Non-positive Curvature[END_REF] and of Busemann [START_REF] Papadopulos | Metric Spaces, Convexity and Nonpositive Curvature[END_REF]. A geodesic triangle ∆ := ∆(x 1 , x 2 , x 3 ) in a geodesic metric space (X, d) consists of three points in X (the vertices of ∆) and a geodesic between each pair of vertices (the edges of ∆). A comparison triangle for

∆(x 1 , x 2 , x 3 ) is a triangle ∆(x ′ 1 , x ′ 2 , x ′ 3 ) in the Euclidean plane E 2 such that d E 2 (x ′ i , x ′ j ) = d(x i
, x j ) for i, j ∈ {1, 2, 3}. A geodesic metric space (X, d) is a CAT(0) space (or a nonpositively curved space in the sense of Alexandrov) [START_REF] Gromov | Hyperbolic Groups, Essays in group theory[END_REF] if for all geodesic triangles ∆(x 1 , x 2 , x 3 ) of X, if y is a point on the side of ∆(x 1 , x 2 , x 3 ) with vertices x 1 and x 2 and y ′ is the unique point on the line segment

[x ′ 1 , x ′ 2 ] of the comparison triangle ∆(x ′ 1 , x ′ 2 , x ′ 3 ) such that d E 2 (x ′ i , y ′ ) = d(x i , y) for i = 1, 2, then d(x 3 , y) ≤ d E 2 (x ′ 3 , y ′
). CAT(0) spaces have many fundamental properties and can be characterized in several natural ways (for a full account of this theory consult the book [START_REF] Bridson | Metric Spaces of Non-positive Curvature[END_REF]).

A Busemann space (or a non-positively curved space in the sense of Busemann) is a geodesic metric space (X, d) in which the distance function between any two geodesics is convex: for any two reparametrized geodesics γ :

[a, b] → X and γ ′ : [a ′ , b ′ ] → X the map f γ,γ ′ (t) : [0, 1] → R defined by f γ,γ ′ (t) = d(γ((1 -t)a + tb), γ ′ ((1 -t)a ′ + tb ′ )) is convex. Each CAT(0)
space is a Busemann space, but not vice-versa. However, Busemann spaces still satisfy most of fundamental properties of CAT(0) spaces: they are contractible, uniquely geodesic, local geodesics are geodesics, and geodesics vary continuously with their endpoints (for these and other results on Busemann spaces consult the book [START_REF] Papadopulos | Metric Spaces, Convexity and Nonpositive Curvature[END_REF]). Busemann spaces and CAT(0) spaces are the same in the case of smooth Riemannian manifolds and of piecewise Euclidean or hyperbolic complexes (because in the latter case, the CAT(0) property is equivalent to the uniqueness of geodesics; see [START_REF] Bridson | Metric Spaces of Non-positive Curvature[END_REF]Theorem 5.4]).

Busemann surfaces.

A planar surface S is a 2-dimensional manifold without boundary, i.e., S is homeomorphic to the plane R 2 . A geodesic metric space (S, d) is called a Busemann surface if S is a planar surface and the metric space (S, d) is a Busemann space.

Notice that each point x of S has an open neighborhood B(x, ǫ) which is homeomorphic to an open ball in the plane.

Particular instances of Busemann surfaces are non-positively curved piecewise-Euclidean (PE) (or piecewise hyperbolic) planar complexes without boundary. In fact, as we will show below, any finite non-positively curved planar complex can be extended to a Busemann surface. Recall that a planar PE complex X is obtained from a (not necessarily finite) planar graph G by replacing each inner face of G having n sides by a convex n-gon in the Euclidean plane. Then X is called a regular planar complex if each face of G with n sides is replaced by a regular n-gon in the plane. Note that the graph G is the 1-skeleton of X. The complex X is called a non-positively curved planar complex if the sum of angles around each inner vertex of G is at least 2π or, equivalently, if X endowed with the intrinsic l 2 -metric is uniquely geodesic. We will call a planar graph G a Busemann graph (or a non-positively curved planar graph) if G is the 1-skeleton of a regular non-positively curved planar complex. Basic examples of Busemann graphs are so-called [START_REF] Baues | Curvature and geometry of tessellating plane graphs[END_REF][START_REF] Bridson | Metric Spaces of Non-positive Curvature[END_REF], [START_REF] Bourgain | On Lipschitz embedding of finite metric spaces in Hilbert space[END_REF][START_REF] Bourgain | On Lipschitz embedding of finite metric spaces in Hilbert space[END_REF], and (6,3)-graphs (a planar graph G embedded into the plane is called a (p, q)-graph if the degrees of all inner vertices are at least p and all inner faces have lengths at least q). It was shown in [START_REF] Chepoi | Distance and routing problems in plane graphs of non-positive curvature[END_REF] (see also [START_REF] Bandelt | Metric graph theory and geometry: a survey[END_REF]Proposition 8.6]) that all [START_REF] Baues | Curvature and geometry of tessellating plane graphs[END_REF][START_REF] Bridson | Metric Spaces of Non-positive Curvature[END_REF], [START_REF] Bourgain | On Lipschitz embedding of finite metric spaces in Hilbert space[END_REF][START_REF] Bourgain | On Lipschitz embedding of finite metric spaces in Hilbert space[END_REF], and (6,3)-graphs are l 1 -embeddable (for other properties of these graphs, see [START_REF] Baues | Curvature and geometry of tessellating plane graphs[END_REF]). In this paper, we will present a Busemann planar graph which is not l 1 -embeddable.

To embed a finite non-positively curved planar complex X into a Busemann surface S, to each boundary edge e of X we add a closed halfplane H e of R 2 so that e is a segment of the boundary of H e . If two boundary edges e, e ′ of X share a common endvertex x, then H e and H ′ e will be glued along the rays of their boundaries emanating from x which are disjoint from e and e ′ . It can be easily seen that the resulting planar surface S is CAT(0) and that X isometrically embeds into S.

2.5. Main results. We continue with the formulation of the main results of this paper:

Theorem 1. If (S, d) is a Busemann surface, then (S, d) is L 1 -embeddable.
Corollary 1. Any Busemann graph G endowed with its standard-graph metric d G admits a non-expansive L 1 -embedding with distortion at most 2 + π/2.

To prove Theorem 1, by a compactness result of [START_REF] Bretagnolle | Lois stables et espaces Lp[END_REF], it suffices to show that for any finite subset Q of S, (Q, d) is l 1 -embeddable. For this, first we show that any finite subset of S in general position (no three points on a common geodesic line) is l 1 -embeddable. Then, using this result and a local perturbations of points, we prove that there exists a sequence d i of l 1 -metrics on Q converging to d. Since the cone of l 1 -metrics on Q is closed [START_REF] Deza | Geometry of Cuts and Metrics[END_REF], (Q, d) is l 1 -embeddable as well. Our proof that any finite set of S in general position is l 1 -embeddable is based on a beautiful Crofton formula by Alexander [START_REF] Alexander | Planes for which the lines are the shortest paths between points[END_REF] established for finite point-sets in general position of R 2 endowed with a metric in which lines are geodesics (for another use of this formula, see [START_REF] Chepoi | A note on circular decomposable metrics[END_REF]). To generalize this result to Busemann surfaces S, we extend to S some elementary properties of the usual convexity in the plane (see also [START_REF] Maftuleac | Algorithmique des complexes CAT(0) planaires et rectangulaires[END_REF] for some similar properties of planar CAT(0) complexes and [START_REF] Dhandapani | Convexity in topological affine planes[END_REF] for such properties for topological affine planes). This is done in Section 3. The proof of the Crofton formula for Busemann surfaces is given in Section 4 and the proof of the main results is completed in Section 5.

Geodesic lines and convexity

In this section, we present elementary properties of geodesic lines and convex sets in Busemann planar surfaces (S, d). For two points x, y ∈ S, we denote by [x, y] the unique geodesic segment joining x and y. A set of points Q of S is in general position if no three points of Q are collinear, i.e., lie on a common line of S. For three points x, y, z of S, we will denote by ∆ * (x, y, z) the closed region of S bounded by the geodesics [x, y], [y, z], [z, x] of the geodesic triangle ∆(x, y, z). A set R ⊆ S is called convex if [p, q] ⊆ R for any p, q ∈ R. For a set Q of S we denote by conv(Q) the smallest convex set containing Q and call conv(Q) the convex hull of Q.

Geodesic lines.

A geodesic metric space (X, d) is said to have the geodesic extension property if for every local geodesic γ : [a, b] → X, with a < b, there exists ǫ > 0 and a local geodesic

γ ′ : [a, b + ǫ] → X such that γ ′ | [a,b] = γ.
In Busemann spaces local geodesics are geodesics, hence for such spaces the geodesic extension property is equivalent to the fact that the geodesic between any two distinct points can be extended to a geodesic line. It was established in Proposition 5.12 of [START_REF] Bridson | Metric Spaces of Non-positive Curvature[END_REF] that any CAT(0) space that is homeomorphic to a finite dimensional manifold has the geodesic extension property. By [6, Footnote 24] and the proof of this proposition, an analogous statement holds for Busemann spaces. Therefore, for Busemann surfaces (S, d) we obtain: Lemma 1. S has the geodesic extension property.

The next lemma immediately follows from the definition of Busemann spaces. Proof. Let x be a point of ℓ and let B(x, ǫ) be a closed ball centered at x. Since B(x, ǫ) is convex and S is a planar surface, B(x, ǫ) ∩ ℓ = [p, q] and the segment [p, q] partitions B(x, ǫ) in two connected components. Let u, v be two points from different components of

B(x, ǫ/2) \ [p, q]. By Lemma 2, p / ∈ [u, v]. Since B(x, ǫ) is convex, necessarily [u, v] intersects [p, q]; let x ′ ∈ [u, v] ∩ [p, q]
. Now, if ℓ does not separate S, then u and v can be connected by a path γ not intersecting ℓ. Let R be the region of S bounded by γ and [u, v]. Then one of the points p, q, say p, belongs to R. The ray r x ′ of ℓ emanating from x ′ and passing via p enters the region R, hence r x ′ must intersect the boundary of R in a point w different from

x ′ . Then p ∈ [x ′ , w]. Since ℓ ∩ γ = ∅, necessarily w ∈ [u, v]
and we conclude that x ′ and w are joined by two different geodesics, one is a portion of ℓ passing via p / ∈ [u, v] and the second is a portion of [u, v], a contradiction.

r 3 r 2 r 4 r 1 ℓ ′ ℓ H + ℓ x Figure 1. Illustration to Lemma 5.
For a line ℓ, we denote by Hℓ and H+ ℓ the two connected components of S \ ℓ, respectively, and call them open halfplanes. The closed halfplanes defined by ℓ are the sets

H - ℓ = H- ℓ ∪ ℓ and H + ℓ = H+ ℓ ∪ ℓ.
Since each line ℓ is convex, the following result is straightforward.

Lemma 4. The closed halfplanes H - ℓ and H + ℓ are convex sets of S.

Lemma 5. Let ℓ and ℓ ′ be two intersecting geodesic lines such that ℓ ′ is contained in the closed halfplane H + ℓ defined by ℓ, x ∈ ℓ ∩ ℓ ′ , and let r 1 , . . . r 4 be the four rays emanating from x defined as in Figure 1. Then r 1 ∪ r 3 and r 2 ∪ r 4 are also geodesic lines.

Proof. We will prove that ℓ 0 = r 2 ∪ r 4 is a geodesic line. If ℓ ∩ ℓ ′ = [x ′ , x ′′ ] with x ′ = x ′′ , then ℓ 0 is a local geodesic because it is covered by the rays of ℓ and ℓ ′ emanating from x ′ and x ′′ sharing the geodesic segment [x ′ , x ′′ ]. Thus ℓ 0 is a geodesic line. Now, suppose that ℓ ∩ ℓ ′ = {x}. Pick any two points y ∈ r 2 and z ∈ r 4 and suppose by way of contradiction that [y, z] is not contained in ℓ 0 . Moreover, we can suppose without loss of generality that ℓ 0 ∩ [y, z] = {y, z}. But then [y, z] necessarily intersects one of the rays r 1 or r 3 , say there exists z ′ ∈ [y, z] ∩ r 3 . Then we obtain two distinct geodesics between y and z ′ : one along ℓ ′ and the second along [y, z].

Lemma 6. (Pasch axiom) If ∆(x, y, z) is a geodesic triangle, u ∈ [x, y], and z ∈ [x, v], then [u, v] ∩ [y, z] = ∅ (see Figure 2(a)). Proof. The assertion is obvious if u ∈ {x, y} or v ∈ [y, z]. So, let u / ∈ {x, y} and v / ∈ [y, z]. If there exists a point v ′ ∈ [u, v] ∩ [x, z], then z ∈ [u, v] by convexity of [u, v] ∩ [x, v]. So, we can further suppose that [u, v] ∩ [z, x] = ∅. Note that v / ∈ ∆ * (x, y, z). Indeed, if v ∈ ∆ * (x, y, z), consider any line ℓ extending [x, v]. The ray from ℓ emanating from v and not containing x intersects [x, y] or [y, z]. But in this case ℓ ∩ [x, y] or ℓ ∩ [y, z] is not convex.
Let ℓ be a line extending [x, y]. Let r x and r y be the two disjoint rays of ℓ emanating from x and y, respectively. Proof. First we show that ∆ * := ∆ * (x, y, z) is convex. Suppose by way of contradiction that for two points p, q ∈ ∆ * , [p, q] contains a point s ∈ S \ ∆ * . Without loss of generality, we can assume that [p, q] ∩ ∆ * = {p, q} and that p ∈ [x, y], q ∈ [x, z]. Let ℓ be a line extending [x, y]. By convexity of closed halfplanes, [p, q] and z must be in the same halfplane defined by ℓ, thus, since [p, q] ∩ ∆ * = {p, q}, the only possible positions for p are p ∈ {x, y}. Similarly, q ∈ {x, z}. This implies that s ∈ ∆ ⊂ ∆ * , a contradiction. Now, we show that ∆ * ⊆ conv(x, y, z). Notice that ∆(x, y, z) ⊆ conv(x, y, z). Let w ∈ ∆ * \ ∆(x, y, z). Let ℓ be any line containing w. The two rays of ℓ emanating from w must each intersect ∆, say in u and v respectively. Hence w ∈ [u, v] ⊂ conv(x, y, z).

[u, v] intersects r y ∪ [y, z] ∪ [z, x] ∪ r x . Because [u, v] ∩ l is convex and does not contain x nor y, [u, v] ∩ (r x ∪ r y ) = ∅. Therefore [u, v] ∩ [y, z] = ∅. u v z x y x y z p q u v (a) (b)
Proof. Let u, v ∈ C(x, y) and w ∈ [u, v], w / ∈ {u, v}. By Pasch axiom, there exists a point w ′ ∈ [y, w] ∩ [u, x]. Since w ′ ∈ [u, x] ⊂ C(x, y), we conclude that x ∈ [w ′ , y] ⊂ [w, y], whence w ∈ C(x, y). This shows that C(x, y) is convex. To show that C(x, y) is closed, let {u i } be a

Geodesic convexity.

In this subsection, we establish some elementary properties of convex sets in Busemann surfaces (S, d).

Lemma 9. (Peano axiom) If ∆(x, y, z) is a geodesic triangle, p ∈ [x, y], q ∈ [x, z], and u ∈ [p, q], then there exists a point v ∈ [y, z] such that u ∈ [x, v]. (see Figure 2(b))
Proof. We can suppose that u / ∈ ∆(x, y, z), otherwise the result is obvious. By Lemma 8, the point u belongs to ∆ * (x, y, z). Let ℓ be a geodesic line extending [x, u] and let r u be the ray of ℓ emanating from u and not passing via x. Necessarily r u will intersect one of the sides of ∆ * (x, y, z). Since u / ∈ [x, y] ∪ [x, z], x ∈ ℓ \ r u , and S is uniquely geodesic, r u necessarily intersects [y, z] in a point v. Then u ∈ [x, v], and we are done.

It is well known [START_REF] Van De | Theory of Convex Structures[END_REF] that Peano axiom is equivalent to the following property, called joinhull commutativity: for any convex set A and any point p / ∈ A, conv(p∪A) = ∪{[p, x] : x ∈ A}. As a consequence, we obtain: Lemma 10. S is join-hull commutative.

We continue by establishing that the Carathéodory number of S equals 3:

Lemma 11. For any finite set Q of S, conv(Q) = ∪{∆ * (x, y, z) : x, y, z ∈ Q}.
Proof. We proceed by induction on n = |Q|. Let x ∈ Q and suppose that the assertion holds for the set

Q x = Q \ {x}. Let K x = conv(Q x ). Pick p ∈ conv(Q). If p ∈ K x , we are done by induction assumption. So, let p / ∈ K x . Since conv(Q) = conv(x ∪ K x )
, by join-hull commutativity there exists a point q ∈ K x such that p ∈ [x, q]. By induction assumption, there exists three points y, z, v ∈ Q

x such that q ∈ ∆ * = ∆ * (y, z, v). The geodesic segment [x, q] necessarily intersects one of the sides [y, z], [z, v], [v, y] of ∆ * , say there exists q ′ ∈ [x, q] ∩ [y, z]. But then p ∈ [x, q ′ ]
and we conclude that p ∈ conv(x, y, z) with x, y, z ∈ Q.

Let Q be a nonempty finite set of points of S and K := conv(Q). Let Q 0 denote the set of all points u ∈ Q such that u does not belong to any triangle ∆ * (x, y, z) with x, y, z ∈ Q and u = x, y, z. By Lemma 11, Q 0 = ∅, moreover conv(Q 0 ) = conv(Q). We call the points of Q 0 extremal points of Q (or of K). A line ℓ is called a tangent line (or, simply a tangent) of K if K ∩ ℓ = ∅ and K is contained in one of the closed halfplanes defined by ℓ. A geodesic segment [x, y] is called an edge of K if x, y ∈ Q and some line ℓ extending [x, y] is a tangent of K. Clearly, each edge of K belongs to the boundary of K. A geodesic line ℓ is called a bitangent of two disjoint convex sets K ′ and K ′′ if ℓ is a tangent line of K ′ and K ′′ . A bitangent ℓ of K ′ , K ′′ is called an inner bitangent if K ′ and K ′′ belong to different closed halfplanes defined by ℓ.

Lemma 12. If Q is a nonempty finite set in general position of S, then [p, q] is an edge of K := conv(Q) if and only if any line ℓ extending [p, q] is a tangent of K. If (Q ′ , Q ′′ ) is a bipartition of Q such that the convex hulls K ′ = conv(Q ′ ), K ′′ = conv(Q ′′ ) are disjoint and ℓ is an inner bitangent of K ′ , K ′′ such that p ′ ∈ Q ′ ∩ ℓ and p ′′ ∈ Q ′′ ∩ ℓ, then any geodesic line extending [p ′ , p ′′ ] is an inner bitangent of K ′ , K ′′ .
Proof. Let [p, q] be an edge of K and let ℓ be a tangent of K extending [p, q]. Suppose by way of contradiction that some line ℓ ′ extending [p, q] is not a tangent of K, i.e., two points x and y of Q belong to complementary halfplanes defined by ℓ ′ , say y is in the region delimited by the rays of ℓ and ℓ ′ emanating from p that do not contain q. Then consider [y, q], by convexity of the halfplanes delimited by ℓ and ℓ ′ , p ∈ [y, q], hence y ∈ C(q, p), contrary to the assumption that the points of Q are in general position.

Analogously, if ℓ is an inner bitangent of K ′ , K ′ as defined in the lemma, but a line ℓ ′ extending [p ′ , p ′′ ] is not an inner bitangent, we will conclude that some point x ∈ Q, x / ∈ {p ′ , p ′′ } belongs to one of the cones C(p ′ , p ′′ ) or C(p ′′ , p ′ ), contrary to the assumption that the points of Q are in general position.

Lemma 13. For any finite set Q of S, the set Q 0 of extremal points of K := conv(Q) admits a circular order π = (p i 1 , . . . p i k ), such that the geodesic segments [p i j , p i j+1(mod k) ] are edges of K and the boundary of K is the union of these edges [p i j , p i j+1(mod k) ].

Proof. We proceed by induction on |Q|.

For a point x ∈ Q, let Q x = Q \ {x} and K x = conv(K x ). If for some x ∈ Q, x ∈ K x , then x / ∈ Q 0 and conv(Q) = conv(Q x )
, so we can apply the induction hypothesis to the set Q x . Thus we can assume that all points of Q are extremal.

To define the required circular order π on Q, for each point x ∈ Q we have to define its two neighbors in π. Consider the set Q x . Then obviously Q x 0 = Q x and, by the induction assumption, the points of Q x admit the required circular order π ′ . We will prove now that we can find two consecutive points y, z ∈ Q x of π ′ such that [x, y] and [x, z] are edges of K. Then the circular order π is obtained from π ′ by inserting the point x between y and z.

For two distinct points u, v ∈ Q x , let R(u, v) be the closed region of S comprised between two rays of ℓ ′ and ℓ ′′ from x extending [x, u] and [x, v], respectively. Let n(u, v) be the number of points of Q ∩ R(u, v). Notice that for any point

w ∈ Q x , we have w ∈ R(u, v) if and only if [x, w] ∩ [u, v] = ∅.
Let y, z be a pair of points of Q x for which n(y, z) is maximal. We claim that n(y, z) = |Q|. Suppose by way of contradiction that there exists a point y ′ ∈ Q x such that some line ℓ ′ extending [x, y] separates y ′ from z. We claim that n(y ′ , z) > n(y, z). Let ℓ be a geodesic line extending [x, y ′ ] and defining n(y ′ , z). First, since ℓ ′ separates y ′ and z, we have [y

′ , z]∩ℓ ′ = ∅. Since y / ∈ ∆ * (x, y ′ , z) because the points of Q are extremal, this implies that [y ′ , z]∩[x, y] = ∅, i.e., y ∈ R(y ′ , z). Let u ∈ [y ′ , z] ∩ [x, y]. Pick any point w ∈ R(y, z). Then there exists w ′ ∈ [y, z] ∩ [w, x]. Since [u, z] ∩ [w ′ , x] = ∅
by Pasch axiom applied to the triangle ∆(x, y, w ′ ), we conclude that [w, x] intersects [y ′ , z], whence w ∈ R(y ′ , z). Since y ′ ∈ R(y ′ , z) \ R(y, z), we deduce that n(y ′ , z) > n(y, z), contrary to the maximality choice of the pair y, z. This proves that n(y, z) = |Q|. Therefore for the lines ℓ ′ , ℓ ′′ extending [x, y] and [x, z], the set Q is contained in the convex set R(y, z) bounded by ℓ ′ and ℓ ′′ . Hence ℓ ′ , ℓ ′′ are tangents of

K = conv(Q), showing that [x, y], [x, z] are edges of K.
Note that [y, z] is an edge of K x = conv(Q x ) (i.e., y, z are consecutive in π ′ ), otherwise ∆ * (x, y, z) will contain yet another point of Q, contrary to the assumption that all points of Q are extremal. It remains to show that any edge

[u, v] of K x different from [y, z] is also an extremal edge of K. From the choice of [y, z], we conclude that [x, u] ∩ [y, z] = ∅ and [x, v] ∩ [y, z] = ∅. Let u ′ ∈ [x, u] ∩ [y, z]. Pick any line ℓ extending [u, v]; ℓ is a tangent of K x . If ℓ is not a tangent of K, then ℓ intersects [x, y] and [x, z]. Consequently, [x, u ′ ] intersects ℓ,
and thus ℓ ∩ [x, u] is not convex, a contradiction. Hence [u, v] is also an edge of K. Lemma 14. Let A ⊂ S and q / ∈ conv(A). Let ℓ and ℓ ′ be two lines containing q and intersecting conv(A). Orient ℓ and ℓ ′ from q to conv(A), and let H + ℓ , H + ℓ ′ be the two halfplanes to the right of ℓ and ℓ ′ , respectively. Then, either

A ∩ H + ℓ ⊂ H + ℓ ′ or A ∩ H + ℓ ′ ⊂ H + ℓ . Proof.
Suppose by way of contradiction that there exist p ∈ H

+ l ∩ A \ H + ℓ ′ and p ′ ∈ H + ℓ ′ ∩ A \ H + ℓ .
Consider the geodesic triangle ∆(p, p ′ , q). By assumption q / ∈ [p, p ′ ]. Let u ∈ [p, p ′ ] ∩ ℓ and u ′ ∈ [p, p ′ ] ∩ ℓ ′ . We have u = p ′ , u ′ = p, and u, u ′ ∈ conv(A). By Lemma 8, [p, u] ⊂ ∆ * (q, p, p ′ ) and [p, u ′ ] ⊂ ∆ * (q, p, p ′ ). This contradicts the facts that p ′ is on the left of ℓ and on the right of ℓ ′ and that p is on the left of ℓ ′ and on the right of ℓ.

Lemma 15. If (Q ′ , Q ′′ ) is a proper bipartition of a finite set Q of S such that the convex hulls K ′ = conv(Q ′ ), K ′′ = conv(Q ′′ )
are disjoint, then there exists four (not necessarily distinct) points p ′ , q ′ ∈ Q ′ and p ′′ , q ′′ ∈ Q ′′ and two inner bitangents extending [p ′ , p ′′ ] and [q ′ , q ′′ ] respectively. Any inner bitangent of

K ′ , K ′′ extends [p ′ , p ′′ ] or [q ′ , q ′′ ].
Proof. For a line ℓ extending a segment [p ′ , p ′′ ] with p ′ ∈ Q ′ , p ′′ ∈ Q ′′ , orient ℓ from p ′ to p ′′ , and denote by H + l the closed halfplane delimited by ℓ on the right of ℓ, and by H - ℓ the closed halfplane on the left of ℓ.

Let p ′ ∈ Q ′ and p ′′ ∈ Q ′′ be two points such that for some line

ℓ ′ extending [p ′ , p ′′ ] the value of |Q ′ ∩ H - ℓ ′ | + |Q ′′ ∩ H + ℓ ′ | = n 1 (p ′ , p ′′
) is as large as possible. We assert that ℓ ′ is an inner bitangent of K ′ and K ′′ . Suppose not: then either there exists q ∈ Q ′′ ∩ Hℓ ′ or p ∈ Q ′ ∩ H+ ℓ ′ , say the first. We will find a pair s ′ , s ′′ with n 1 (s ′ , s ′′ ) > n 1 (p ′ , p ′′ ), leading to a contradiction with the maximality choice of the pair p ′ , p ′′ .

Pick any line ℓ extending [p ′ , q]. By Lemma 14 using point p ′ ,

Q ′′ ∩ H + ℓ ′ ⊂ Q ′′ ∩ H + ℓ . If Q ′ ∩H - ℓ ′ ⊂ Q ′ ∩H - ℓ , then since q ∈ Q ′′ ∩H + ℓ \Q ′′ ∩H + ℓ ′ , we conclude that n 1 (p ′ , q) > n 1 (p ′ , p ′′ ). So, suppose that there exists a point p ∈ Q ′ ∩ H - ℓ ′ such that p ∈ H+ ℓ . Let p ∈ Q ′ ∩ H - ℓ ′ ∩ H+ ℓ
be such that for some line ℓ ′′ extending [p, q] the value of |Q ′ ∩ H - ℓ ′′ | is as large as possible. Suppose there exists p * ∈ Q ′ ∩ H - ℓ ′ ∩ H+ ℓ ′′ . Let ℓ * be any line extending [q, p * ]. Then, by Lemma 14 applied to Q ′ and q for the lines ℓ ′′ and ℓ * , we get that

|Q ′ ∩ H - ℓ ′′ | < |Q ′ ∩ H - ℓ |, contradicting our choice of p.
By Lemma 5, we can assume that H - ℓ ′ ∩ H+ ℓ is contained in the region delimited by the rays of ℓ and ℓ ′ emanating from p ′ containing respectively q and p ′′ . Consequently, p ∈ Q ′ ∩ H - ℓ ′ ∩ H+ ℓ , and thus, p is in the triangle ∆ * (p ′ , q, p ′′ ). Consider the ray of ℓ ′′ emanating from p not containing q. In ∆ * (p ′ , q, p ′′ ), it intersects [p ′ , p ′′ ]. Let u ∈ [p ′ , p ′′ ] ∩ ℓ ′′ ; note that u / ∈ K ′′ , since it would imply that p ∈ K ′′ . By Lemma 14 applied to u, we have that

Q ′′ ∩ H + ℓ ′ H + ℓ ′′ .
Consequently, from our choice of p, we have n 1 (p, q) > n 1 (p ′ , q ′ ), contradicting the choice of p ′ and q ′ . Analogously, taking two points q ′ ∈ Q ′ and q ′′ ∈ Q ′′ such that for some geodesic line ℓ ′′ extending [q ′ , q ′′ ] the value of

|Q ′ ∩ H + ℓ ′′ | + |Q ′′ ∩ H - ℓ ′′ | = n 2 (q ′ , q ′′
) is maximum, we will obtain that n 2 (q ′ , q ′′ ) = |Q ′ | + |Q ′′ | and thus ℓ ′′ is an inner bitangent.

Finally, if ℓ is a third inner bitangent extending an other segment [p, q] with p ∈ Q ′ and q ∈ Q ′′ , then ℓ will necessarily intersect twice one of the lines ℓ ′ or ℓ ′ . This establishes that any inner bitangent of K ′ , K ′′ either extends [p ′ , p ′′ ] or [q ′ , q ′′ ].

Two sets K ′ , K ′′ of S are called line-separable if there exists a geodesic line ℓ such that K ′ ⊂ Hℓ and K ′′ ⊂ H+ ℓ . We will call two sets K ′ , K ′′ weakly line-separable if there exists a line ℓ such that K ′ ⊆ H - ℓ and K ′′ ⊆ H + ℓ . In the first case, we will say that the line ℓ separates K ′ and K ′′ and in the second case that ℓ weakly separates K ′ and K ′′ .

Lemma 16. If (Q ′ , Q ′′ ) is a bipartition of a finite set Q of S such that the convex hulls K ′ = conv(Q ′ ), K ′′ = conv(Q ′′ ) are disjoint, then K ′ and K ′′ are line-separable.
Proof. Let ℓ ′ and ℓ ′′ be two inner bitangents of K ′ , K ′′ defined as in Lemma 15: ℓ ′ extends [p ′ , p ′′ ] and ℓ ′′ extends [q ′ , q ′′ ] with {p ′ , q ′ } ⊂ Q ′ and {p ′′ , q ′′ } ⊂ Q ′′ (it may happen that p

′ = q ′ or p ′′ = q ′′ ). Let [p ′ , p ′′ ] ∩ [q ′ , q ′′ ] = [u, v], where u ∈ [p ′ , v]. Case 1. u ∈ K ′ and v ∈ K ′′ .
Since K ′ and K ′′ are disjoint, u = v. Let w be an arbitrary point of [u, v] not belonging to K ′ and K ′′ and let ǫ > 0 be such that B(w, ǫ)∩(K ′ ∪K ′′ ) = ∅ (it exists since K ′ , K ′′ are closed by Lemma 11). Let x and y be two points from different connected components of B(w, ǫ)\[u, v]. Let ℓ be a geodesic line extending [x, y]. By convexity of B(w, ǫ), [x, y] ⊂ B(w, ǫ) and ∅ = ℓ ∩ [u, v] ⊂ B(w, ǫ). Hence the two disjoint rays of ℓ with endpoints x and y are disjoint from ℓ ′ and ℓ ′′ , thus ℓ separates K ′ and K ′′ .

Case 2. u / ∈ K ′ or v / ∈ K ′′ , say v / ∈ K ′′ . Let ǫ > 0 such that B(v, ǫ) ∩ (K ′ ∪ K ′′ ) = ∅. Let w be a point in B(v, ǫ/2) \ (ℓ ′ ∪ ℓ ′′ )
, in the same connected component as K ′′ in S \ (ℓ ′ ∪ ℓ ′′ ). Because w / ∈ K ′′ , by Lemma 13 there are two geodesic [q 1 , w], [w, q 2 ] with {q 1 , q 2 } ⊂ Q ′′ , extendable in two distinct lines ℓ 1 and ℓ 2 respectively, both tangent to conv(Q ′′ ∪ {w}). Denote by H 1 and H 2 the closed halfplanes containing K ′′ delimited by ℓ 1 and ℓ 2 respectively. For i ∈ {1, 2}, the rays of ℓ i must each intersect a distinct side of the triangle ∆(v, p ′′ , q ′′ ). Note that if ℓ i intersects [p ′′ , q ′′ ], then [p ′′ , q ′′ ] is an edge of K ′′ and ℓ i contains either p ′′ or q ′′ . Consequently,

ℓ i must intersects both [v, p ′′ ] ⊂ ℓ ′ and [v, q ′′ ] ⊂ ℓ ′′ , and v / ∈ ℓ i . Clearly K ′ ⊂ S \ H i . Choose x ∈ ( H1 \ H 2 ) ∩ B(w, ǫ/2) and y ∈ ( H2 \ H 1 ) ∩ B(w, ǫ/2), clearly [x, y] ⊂ B(v, ǫ). Moreover ℓ 1 ∩ [x, y] = ∅ and ℓ 2 ∩ [x, y] = ∅. Then any line extending [x, y] separates K ′ and K ′′ . Lemma 17. If (Q ′ , Q ′′ ) is a bipartition of a finite set Q in general position of S such that the convex hulls K ′ = conv(Q ′ ), K ′′ = conv(Q ′′ )
are weakly line-separable and (K ′ ∩K ′′ )∩Q = ∅, then the sets Q ′ and Q ′′ are line-separable.

Proof. If K ′ and K ′′ are disjoint, then the result follows from Lemma 16. So, let K ′ ∩ K ′′ = ∅ and let ℓ 0 be a line weakly-separating K ′ from K ′′ . We denote the two halfplanes delimited by ℓ 0 as H + and H -such that K ′ ⊂ H -and Lemma 13 there exists an edge [p ′ , q ′ ] of K ′ and an edge [p ′′ , q ′′ ] of K ′′ such that [p, q] = [p ′ , q ′ ] ∩ [p ′′ , q ′′ ] and {p, q} ∩ {p ′ , q ′ , p ′′ , q ′′ } = ∅ (because the points of Q are in general position). Let ℓ ′ and ℓ ′′ be two tangents of K ′ and K ′′ extending [p ′ , q ′ ] and [p ′′ , q ′′ ], respectively (ℓ 0 may coincide with one of these tangents). Notice that ℓ ′ and ℓ ′′ also separate K ′ and K ′′ , as by convexity 

K ′′ ⊂ H + . Then K ′ ∩ K ′′ ⊂ ℓ 0 , thus K ′ ∩ K ′′ = [p, q] for some points p, q ∈ K ′ ∩ K ′′ . Since (K ′ ∩ K ′′ ) ∩ Q = ∅, by
ℓ ′ ∩ K ′′ = [p, q] = ℓ ′′ ∩ K ′ .
K ′ ⊂ H - ℓ ′ ∩ H - ℓ ′′ and K ′′ ⊂ H + ℓ ′ ∩ H + ℓ ′′ .
Let ǫ > 0 be such that min{d(p, p ′ ), d(p, p ′′ ), d(q, q ′ ), d(q, q ′′ )} > ǫ. Pick two points x and y in H+ ℓ ′ ∩ Hℓ ′′ so that x ∈ B(p, ǫ) and y ∈ B(q, ǫ). Let ℓ be any geodesic line extending [x, y]. We assert that ℓ line-separate

Q ′ and Q ′′ . Since {x, y} ⊂ H+ ℓ ′ ∩ H- ℓ ′′ , from Lemma 4 we conclude that [x, y] ⊂ H + ℓ ′ ∩ H - ℓ ′′ . Since K ′ ⊂ H - ℓ ′ and K ′′ ⊂ H + ℓ ′′ , we conclude that ℓ ∩ K ′ ⊂ ℓ ′ ∩ K ′ = [p ′ , q ′ ] and ℓ ∩ K ′′ ⊂ ℓ ′′ ∩ K ′′ = [p ′′ , q ′′ ]. In particular, [p, q] ⊂ ℓ and K ′ ⊂ H - ℓ , K ′′ ⊂ H + ℓ . Therefore, if ℓ does not line-separate Q ′ and Q ′′ , there exists a point of Q ′ or Q ′′ on ℓ, say Q ′ , hence on ℓ ∩ K ′ ⊂ [p ′ , q ′ ]
. This contradicts the general position assumption for Q.

Crofton formula (after R. Alexander)

In this section we will prove a Crofton formula for finite subsets in general position of Busemann surfaces. Our proof uses the convexity results of previous section and follows closely and generalizes an analogous result of Alexander [START_REF] Alexander | Planes for which the lines are the shortest paths between points[END_REF].

Let (S, d) be a Busemann surface and let Q = {p 1 , . . . , p n } be a finite set of distinct points of S in general position. A line ℓ of S is said to separate the points of Q if (i) none of the points of Q lie on ℓ, and (ii) each of the open halfplanes determined by ℓ contains at least one of the points of Q. Two separating lines are called equivalent if each separates Q into the same pair of sets. Let L 1 , . . . , L m be the equivalence classes of lines of S separating the points of Q. For a line ℓ separating the points of Q into two nonempty subsets Q ′ , Q ′′ , let K ′ = conv(Q ′ ) and K ′′ = conv(Q ′′ ). We will say that a pair of points p i , p j ∈ Q constitutes an extremal segment [p i , p j ] for the pair (K ′ , K ′′ ) (or (Q ′ , Q ′′ )) if any line ℓ extending [p i , p j ] weakly separates K ′ and K ′′ . We will call an extremal segment [p i , p j ] positive if either

p i ∈ Q ′ , p j ∈ Q ′′ or p i ∈ Q ′′ , p j ∈ Q ′ and we call [p i , p j ] negative if either p i , p j ∈ Q ′ or p i , p j ∈ Q ′′ .
By Lemma 15 (and similarly to the Euclidean plane) the positive extremal segments correspond to the two pairs [p ′ , p ′′ ] and [q ′ , q ′′ ] of segments with p ′ , q ′ ∈ K ′ , p ′′ , q ′′ ∈ K ′′ such that any line extending one of these segments is an inner bitangent of K ′ and K ′′ . On the other hand, since any line extending a negative segment of K ′ (or of K ′′ ) is a tangent of K ′ (or of K ′′ ), the negative extremal segments are edges of K ′ or K ′′ . In the Euclidean plane, they are precisely the edges of K ′ and K ′′ which belongs to the triangles ∆ * (p ′ , q ′ , x) and ∆ * (p ′ , q ′ , x), where x = [p ′ , p ′′ ] ∩ [q ′ , q ′′ ]. We will show now that a similar property holds for Busemann surfaces: Lemma 18. An edge [p, q] of K ′ is a negative extremal segment of (K ′ , K ′′ ) if and only if p, q ∈ ∆ * (p ′ , q ′ , x), where x is any point of [p ′ , p ′′ ] ∩ [q ′ , q ′′ ].

Proof. Let ℓ ′ , ℓ ′′ be two inner bitangents of K ′ , K ′′ extending [p ′ , p ′′ ] and [q ′ , q ′′ ], respectively. Let A ′ , A ′′ , B ′ , B ′′ be the four pairwise intersections of closed halfplanes defined by the lines ℓ ′ and ℓ ′′ , so that K ′ ⊂ A ′ and K ′′ ⊂ A ′′ . Pick any edge [p, q] of K ′ and let ℓ be any line extending [p, q]. Then ℓ is a tangent of K ′ . From Lemma 13, either both p, q belong to ∆ * (p ′ , q ′ , x) or neither of p or q belong to the interior of ∆ * (p ′ , q ′ , x).

First suppose that p, q ∈ ∆ * (p ′ , q ′ , x). Since ℓ is a tangent of K ′ , ℓ does not intersect [p ′ , q ′ ]. Hence, ℓ necessarily intersects the sides [x, p ′ ] and [x, q ′ ] of ∆ * (p ′ , q ′ , x) and enters in the regions B ′ , B ′′ . If [p, q] is not an extremal segment, then ℓ intersects K ′′ (and therefore A ′′ ). This means that ℓ will intersect twice ℓ ′ or ℓ ′′ , a contradiction. This proves that any edge [p, q] of K ′ with p, q ∈ ∆ * (p ′ , q ′ , x) is a negative extremal segment.

Conversely, suppose that [p, q] is an edge of K ′ such that p, q / ∈ ∆ * (p ′ , q ′ , x) \ ∆(p ′ , q ′ , x). Suppose by way of contradiction that [p, q] is a negative extremal segment, i.e., ℓ weakly separates K ′ from K ′′ . Then necessarily ℓ intersects the boundary of A ′ consisting of rays of ℓ ′ , ℓ ′′ , say ℓ intersects ℓ ′ ∩ A ′ ∩ B ′ . If ℓ does not intersect the interior of B ′ , we will conclude that ℓ passes via the point p ′ . By Lemma 5 there exists a line extending [p, q] and passing via p ′ and q ′′ , contrary to the assumption that the points of Q are in general position. If ℓ intersects the interior of (i.e., B ′ \(ℓ ′ ∪ℓ ′′ )), then since ℓ weakly separates K ′ and K ′′ ⊂ A ′′ , ℓ necessarily intersects a second time the line ℓ ′ in [p ′ , q ′′ ], which is impossible. Hence [p, q] cannot be a negative extremal segment.

For an equivalence class L t of lines, t = 1, . . . , m, we will denote by Q ′ t and Q ′′ t the two subsets of Q into which any line ℓ of L t separates the points of Q and by K ′ t and K ′′ t we denote their convex hulls. Let also ES + t and ES - t be the sets of positive and negative extremal segments of the pair (K ′ t , K ′′ t ). Finally, set σ t :=

[p i ,p j ]∈ES + t d(p i , p j ) - [p i ,p j ]∈ES - t d(p i , p j ).
We will show that for any equivalence class L t , σ t ≥ 0. Let p ′ , q ′ ∈ K ′ t and p ′′ , q ′′ ∈ K ′′ t such that [p ′ , q ′ ] and [p ′′ , q ′′ ] are the positive extremal segments of

K ′ t , K ′′ t . Let x ∈ [p ′ , p ′′ ] ∩ [q ′ , q ′′ ]. Let σ ′ t = d(x, p ′ ) + d(x, q ′ ) - {d(p, q) : [p, q] ∈ ES - t , p, q ∈ K ′ t } and σ ′′ t = d(x, p ′′ ) + d(x, q ′′ ) - {d(p, q) : [p, q] ∈ ES - t , p, q ∈ K ′′ t }. Since σ t = σ ′ t + σ ′′ t ,
it suffices to show that σ ′ t ≥ 0 and σ ′′ t ≥ 0. These inequalities are immediate consequences of the following result: Lemma 19. Let Q ′ be a finite set of points of S in general position and let

K ′ = conv(Q ′ ). For any x / ∈ K ′ , for all p ′ , q ′ ∈ Q ′ such that [x, p ′ ] and [x, q ′ ] are edges of conv(Q ′ ∪ {x}), d(x, p ′ ) + d(x, q ′ ) ≥ {d(p, q) : [p, q
] is an edge of K and p, q ∈ ∆ * (x, p ′ , q ′ )}.

Proof. If p ′ = q ′ , the lemma trivially holds. In the following, we assume that p ′ = q ′ . We prove the lemma by induction on the number of segments in the set ES -(Q ′ , x, p ′ , q ′ ) = {[p, q] : [p, q] is an edge of K ′ such that p, q ∈ ∆ * (x, p ′ , q ′ )}. Note that since the points of Q ′ are in general position, there exists at most one

p ′′ ∈ Q ′ ∩ [x, p ′ ]. If p ′′ exists, then [p ′ , p ′′ ] is an edge of K ′ , d(x, p ′ ) = d(x, p ′′ ) + d(p ′′ , p ′ ), and ES -(Q ′ , x, p ′ , q ′ ) = ES -(Q ′ , x, p ′′ , q ′ ) ∪ {[p ′ , p ′′ ]}.
By induction, we immediately get the result. Thus, we can further assume that

Q ′ ∩ [x, p ′ ] = Q ′ ∩ [x, q ′ ] = ∅.
By Lemma 13, the segments of ES -(Q ′ , x, p ′ , q ′ ) form a path constituted by all edges of K ′ located in ∆ * (p ′ , q ′ , x). Let [p 0 , q 0 ] ∈ ES -(Q ′ , x, p ′ , q ′ ) with p 0 = p ′ . If q 0 = q ′ , then [p 0 , q 0 ] is the unique segment in ES -(Q ′ , x, p ′ , q ′ ) and by triangle inequality d(p 0 , q 0 ) = d(p ′ , q ′ ) ≤ d(p ′ , x) + d(x, q ′ ). So, let q 0 = q ′ . Since the points of Q ′ are in general position and

Q ′ ∩ [x, p ′ ] = Q ′ ∩ [x, q ′ ]
= ∅, q 0 belongs to the interior of ∆ * (p ′ , q ′ , x). Let ℓ be a line extending [p 0 , q 0 ]. Then ℓ necessarily intersects the segment [x, q ′ ] in a point x ′ . Note that all segments of ES -(Q ′ , x, p ′ , q ′ ) except [p 0 , q 0 ] are located in the triangle ∆ * (q 0 , q ′ , x ′ ).

By induction assumption,

d(q 0 , x ′ ) + d(q ′ , x ′ ) ≥ {d(p, q) : [p, q] ∈ ES -(Q ′ , x ′ , q 0 , q ′ )}. On the other hand, d(p 0 , q 0 ) + d(q 0 , x ′ ) = d(p ′ , x ′ ) ≤ d(p ′ , x) + d(x, x ′
) by triangle inequality. Putting these two inequalities together and taking into account that p ′ = p 0 , we obtain: If r ∈ conv(X) ∩ conv(Y ), then r ∈ conv(A ∪ {q}) or r ∈ conv(B ∪ {q}), say the first. Since r will belong to the boundary of conv(A ∪ {q}), by Lemma 13 there exist points q ′ , q ′′ ∈ A ∪ {q} ⊂ Q such that r ∈ [q ′ , q ′′ ], a contradiction with the fact that the points of Q are in general position. Hence conv(X) ∩ conv(Y ) ∩ Q = ∅. By Lemma 17, the convex sets X and Y are line-separable.

d(p ′ , x) + d(x, q ′ ) = d(p ′ , x) + d(x, x ′ ) + d(x ′ , q ′ ) ≥ d(p ′ , x ′ ) + d(x ′ , q ′ ) = d(p 0 , q 0 ) + d(q 0 , x ′ ) + d(x ′ , q ′ ) ≥ d(p 0 , q 0 ) + {d(p, q) : [p, q] ∈ ES -(Q ′ , x ′ , q 0 , q ′ )} = {d(p, q) : [p, q] ∈ ES -(Q ′ , x ′ , p ′ , q ′ )}.
Here is the main result of this section: Proposition 1. (Crofton formula) Let Q = {p 1 , . . . , p n } be a finite set of points in general position of a Busemann surface (S, d). Then for any two points p i , p j ∈ Q, we have 2d(p i , p j ) = {σ t : t ∈ [1, m] and any line of L t intersects the segment [p i , p j ]}. [START_REF] Alexander | Planes for which the lines are the shortest paths between points[END_REF] In particular, the finite metric space (Q, d) is l 1 -embeddable.

Proof. The proof uses double counting and closely follows the proof of Lemma 1 of [START_REF] Alexander | Planes for which the lines are the shortest paths between points[END_REF]. We will show that each segment [q, r] with q, r ∈ Q occurs as an extremal segment in such a way that +d(q, r) appears exactly the same number of times as -d(q, r) on the right side of the equation ( 1), unless [q, r] = [p i , p j ], in which case +d(q, r) appears twice. We distinguish four cases:

Case 1: The points p i , p j , q, r are distinct and no line ℓ containing [q, r] cut the segment [p i , p j ].

We assert that in this case ±d(q, r) cannot appear on the right side of (1). Indeed, if d(q, r) were to appear, then there would exist an equivalence class of lines L t such that any line of L t intersects the segment [p i , p j ] and [q, r] is an extremal segment for the couple (K ′ t , K ′′ t ). By the definition of an extremal segment, there exists a line ℓ ′ of L t passing via [q, r] such that the convex sets K ′ t and K ′′ t belong to different closed halfplanes defined by ℓ ′ . Since q, r, p i , p j are pairwise distinct, the points p i , p j are located in different open halfplanes defined by ℓ ′ . But then ℓ ′ necessarily cuts the segment [p i , p j ], a contradiction.

Case 2: The points p i , p j , q, r are distinct and some line ℓ containing [q, r] cuts the segment [p i , p j ].

We assert that in this case there exist precisely four equivalence classes of lines which separate p i and p j in such a way that [q, r] is an extremal segment; moreover, [q, r] occurs twice as positive and twice as negative extremal segment. We will identify these equivalence classes by giving the four pairs (K ′ t , K ′′ t ). Since the line ℓ cuts the segment [p i , p j ], ℓ separates the set Q -{q, r} into the necessarily nonempty sets A and B. By Lemma 20, in each of four choices the respective partition (Q ′ t , Q ′′ t ) of Q is line-separable. We immediately conclude that in the first two pairs [q, r] occurs as a positive extremal segment while in the last two pairs [q, r] occurs as a negative extremal segment.

Case 3:

The segments [p i , p j ] and [q, r] are distinct but r = p i .

We assert that in this case there exist precisely two equivalence classes of lines which separate p i and p j in such a way that [q, r] is an extremal segment; moreover, [q, r] occurs once as positive and once as negative extremal segment. We will identify these equivalence classes by giving the two pairs (K ′ t , K ′′ t ). We use the notation of Case 2 except that we assume that p j is in B and we allow A to be empty. Here are the two possible choices for the pairs

(K ′ t , K ′′ t ) : 1. (conv(A ∪ {r}), conv(B ∪ {q})), 2. (conv(A ∪ {q, r}), conv(B)).
Again, by Lemma 20, the respective partitions (A ∪ {r}, B ∪ {q}) and (A ∪ {q, r}, B) of Q are line-separable. The first pair leads to a positive extremal segment and the second pair to a negative extremal segment.

Case 4:

The segments [p i , p j ] and [q, r] coincide.

We assert that in this case there exist exactly two equivalence classes of lines which separate p i and p j in such a way that [q, r] is an extremal segment. The sets A and B are defined as in Cases 2 and 3; here we allow that either A or B to be empty. The two possible choices for the pairs (K

′ t , K ′′ t ) are: 1. (conv(A ∪ {q}), conv(B ∪ {r})), 2. (conv(A ∪ {r}), conv(B ∪ {q})).
By Lemma 20, the partitions (A ∪ {q}, B ∪ {r}) and (A ∪ {r}, B ∪ {q}) are line-separable. Each pair leads to a positive extreme segment, thus to a contribution of +d(q, r) = +d(p i , p j ) to the right side of the equation (1).

The Cases 1-4 show the validity of (1). Since σ t ≥ 0, t = 1, . . . , m, in order to deduce that (Q, d) is l 1 -embeddable, it suffices to consider each σ t with coefficient 1 2 .

Proof of main results

5.1. Proof of Theorem 1. Let (S, d) be a Busemann surface. For a finite set Q of S, denote by N (Q) the number of different collinear triplets of points of Q. Clearly, N (Q) = 0 if and only if the points of Q are in general position. First we will show that for any finite set (not necessarily in general position) Q of S, the metric space (Q, d) is l 1 -embeddable. Let Q = {p 1 , . . . , p n }. For a given ǫ > 0, in m ≤ n 3 steps we will define a set of points

Q ǫ = {p ′ 1 , . . . , p ′ n } in general position such that d(p i , p ′ i ) < ǫ/2 and |d(p i , p j ) -d(p ′ i , p ′ j )| < ǫ for any p i , p j ∈ Q. For this, setting Q 0 := Q, we will construct a sequence of sets Q 1 , . . . , Q m such that N (Q) = N (Q 0 ) > N (Q 1 ) > . . . > N (Q m-1 ) > N (Q m ) = 0. Each set Q i+1 is obtained from the set Q i by moving a single point of Q i at distance < ǫ
2m . We will set Q ǫ := Q m and denote by p ′ i the final position of the point p i after all these movements. Since each initial point can move at most m times, d(p i , p ′ i ) ≤ ǫ/2, thus for each pair p i , p j ∈ Q we will have |d(p i , p j ) -d(p ′ i , p ′ j )| < ǫ. We will describe now how from a set Q with N (Q) > 0 to define a new set Q 1 with N (Q 1 ) < N (Q). Let p, q, r be three points of Q such that q ∈ [p, r]. Let R denote the set of pairs {p ′ , q ′ } of points of Q such that q, p ′ , q ′ are not collinear. This means that for any pair {p ′ , q ′ } ∈ R, the point q does not belong to the geodesic [p ′ , q ′ ] and to the cones

C(p ′ , q ′ ) = {x ∈ S : p ′ ∈ [x, q ′ ]} and C(q ′ , p ′ ) = {x ∈ S : q ′ ∈ [p ′ , x]}. Since the set R is finite, the sets R(p ′ , q ′ ) := C(p ′ , q ′ ) ∪ [p ′ , q ′ ] ∪ C(q ′ ,
p ′ ) are closed and q does not belong to any such set, we conclude that ǫ ′ := min{d(q, R(p ′ , q ′ )) : {p ′ , q ′ } ∈ R} > 0. Let ǫ 0 = min{ǫ ′ , ǫ 2m }. Since q contains a neighborhood homeomorphic to a circle, there exists a direction in the neighborhood of q different from the directions on [q, p] and [q, r]. Let q 0 be a point obtained from q by moving along that direction at distance < ǫ 0 from q. Let Q 1 := Q \ {q} ∪ {q 0 }. We assert that N (Q 1 ) < N (Q). From the construction, q 0 / ∈ R(p ′ , q ′ ) for any pair {p ′ , q ′ } ∈ R, thus q 0 cannot create new collinear triplets. On the other hand, since q 0 / ∈ [p, q] we conclude that indeed N (Q) > N (Q 1 ).

As a result, for each ǫ > 0 we can define a set

Q ǫ = {p ′ 1 , . . . , p ′ n } of points in general position such that d(p i , p ′ i ) < ǫ and |d(p i , p j ) -d(p ′ i , p ′ j )| < ǫ.
By Proposition 1, the metric spaces (Q ǫ , d) are l 1 -embeddable. On the set Q we define the metric d ǫ by setting d ǫ (p i , p j ) = d(p ′ i , p ′ j ) for any two points p i , p j ∈ Q, where p ′ i and p ′ j are the images of p i and p j in the set Q ǫ . Since (Q ǫ , d) are l 1 -embeddable, the metric spaces (Q, d ǫ ) are also l 1 -embeddable, whence each d ǫ belongs to the cut cone CUT n . Since CUT n is closed and d ǫ converge to d when ǫ converges to 0, we conclude that d ∈ CUT n . This establishes that the finite metric space (Q, d) is l 1 -embeddable. Since all finite subspaces of (S, d) are l 1 -embeddable, the metric space (S, d) is L 1 -embeddable by the compactness result of [START_REF] Bretagnolle | Lois stables et espaces Lp[END_REF]. 5.2. Proof of Corollary 1. First we present an example of a Busemann graph B n , which is not isometrically embeddable into l 1 . The graph B n consists of two 3-cycles T ′ = u ′ uu ′′ and T ′′ = v ′ vv ′′ and two odd (2n + 1)-cycles C ′ , C ′′ sharing the edge uv. Let C ′ ∩ T ′ = u ′ u, C ′ ∩ T ′′ = v ′ v and C ′′ ∩ T ′ = u ′′ u, C ′′ ∩ T ′′ = v ′′ v; see Fig. 3. Let X n be the planar polygonal complex obtained by replacing the cycles C ′ , C ′′ by regular (2n + 1)-gons and the 3-cycles T ′ , T ′′ by equilateral triangles. Now, if n ≥ 6, then the angles around the vertices u and v are ≥ 2π. Hence X n is a CAT(0) complex and B n , its 1-skeleton, is a Busemann graph. To show that a graph G is not l 1 -embeddable, we will use the well-known fact (which can be derived from the pentagonal inequality for L 1 -spaces, see [START_REF] Deza | Geometry of Cuts and Metrics[END_REF]) that all intervals I(a, b) in l 1 -graphs are convex (i.e., if c ′ , c ′′ ∈ I(a, b) and c ∈ I(c ′ , c ′′ ), then c ∈ I(a, b); the interval I(a, b) consists of all vertices on shortest (a, b)-paths between a and b). Let x and y be the vertices of C ′ and C ′′ opposite to the edge uv. Then u ′ , u ′′ , v ′ , v ′′ ∈ I(x, y), however u, v ∈ I(u ′ , v ′ ) \ I(x, y), thus I(x, y) is not convex and therefore B n is not an l 1 -graph. Now, we prove Corollary 1 that for any Busemann graph G = (V, E) with a standard graph metric d G , (V, d G ) admits an embedding into L 1 with constant distortion. Every (combinatorial) graph G = (V, E) equipped with its standard distance d G can be transformed into a (network-like) geodesic space G ′ = (V ′ , d G ′ ) by replacing every edge e = (u, v) by a segment γ uv = [u, v] of length 1; the segments may intersect only at common ends. Then (V, d G ) is isometrically embedded in a natural way in (V ′ , d G ′ ). G ′ is often called a metric graph. Since G is a Busemann graph, G is the 1-skeleton of a non-positively curved regular planar complex X; let d be the intrinsic ℓ 2 -metric on X. The graph G and its metric graph G ′ are naturally embedded in X by the identity mapping id : V ′ → X. As we noticed in Subsection 2.4, (X, d) can be extended to a Busemann surface, and this extension is an isometric embedding. Thus Theorem 1 implies that (X, d) is isometrically embeddable into L 1 . Therefore, in order to show that (V, d G ) is embeddable into L 1 with distortion c = 2 + π/2, it suffices to show that id embeds (V ′ , d G ′ ) into (X, d) with distortion c. Pick any two points x, y ∈ V ′ and let [x, y] be the geodesic segment between x and y in X. Let x =: x 0 , x 1 , . . . , x k-1 , x k := y be the consecutive intersections of [x, y] with the 1-faces (edges) of X. Then each pair of consecutive points x i-1 , x i belongs to a common 2-face F i of X. Let P i be the shortest of the two boundary paths of F i connecting x i-1 and x i and let ℓ i be its length. Since the union ∪ k i=1 P i of these paths is a path between x and y in the metric graph G ′ , we deduce that d G ′ (x, y) ≤ k i=1 ℓ i . Therefore, to prove that d G ′ (x, y) ≤ c • d(x, y) it suffices to show that ℓ i ≤ c • d(x i-1 , x i ) for all i = 1, . . . , k, where d(x i-1 , x i ) is simply the Euclidean distance between two boundary points x i-1 , x i of the regular polygon F i . This is a consequence of the following result: Proof. Let C be the circle circumscribed to the regular polygon F . We distinguish two cases. Hence, id : V ′ → X is a non-expansive embedding of G ′ (and G) into X with distortion c = 2 + π/2: for any two vertices x, y of G (and, more generally, for any two points x, y ∈ V ′ of G ′ ) we have 1 c d G ′ (x, y) ≤ d(x, y) ≤ d G ′ (x, y). This concludes the proof of Corollary 1.

Lemma 2 .

 2 Closed balls of S are convex. Lemma 3. Any geodesic line ℓ partitions S into two connected components.

Figure 2 .

 2 Figure 2. Pasch and Peano axioms.

  sequence of points of C(x, y) converging to a point u ∈ S. Since {d(y, u i )} converges to d(y, u), {d(x, u i )} converges to d(x, u), and d(y, x) + d(x, u i ) = d(y, u i ), we conclude that d(y, x) + d(x, u) = d(y, u), hence u ∈ C(x, y). Lemma 8. ∆ * (x, y, z) is the convex hull of {x, y, z}.

Lemma 20 .

 20 Let Q be a finite set of points in general position of a Busemann surface (S, d). Let q, r ∈ Q two distinct points of Q and ℓ an arbitrary line passing via [q, r]. Let ℓ separates the set Q -{q, r} into (possibly empty) sets A and B. For any pair (X, Y ) among (A ∪ {r}, B ∪ {q}), (A ∪ {q}, B ∪ {r}), (A, B ∪ {q, r}), (A ∪ {q, r}, B), if X = ∅ and Y = ∅, then X and Y are line-separable. Proof. Let Hℓ , H+ ℓ denote the open halfplanes containing respectively the sets A and B. Since the closed halfplanes H - ℓ and H + ℓ are convex and A ∪ {q, r} ⊂ H - ℓ , B ∪ {q, r} ⊂ H + ℓ , the sets conv(A), conv(A ∪ {r}), conv(A ∪ {q}), and conv(A ∪ {q, r}) are contained in H - ℓ while the sets conv(B), conv(B ∪ {q}), conv(B ∪ {r}), and conv(B ∪ {q, r}) are contained in H + ℓ . Hence the convex hulls of the four pairs of sets from the statement are weaklyseparated by the line ℓ; thus their intersections are contained in the line ℓ, consequently, conv(X) ∩ conv(Y ) ∩ Q ⊆ {q, r}.

  Let Hℓ , H+ ℓ denote the open halfplanes containing respectively the sets A and B. Here are the four possible choices for the pairs (K ′ t , K ′′ t ) : 1. (conv(A ∪ {r}), conv(B ∪ {q})), 2. (conv(A ∪ {q}), conv(B ∪ {r})), 3. (conv(A), conv(B ∪ {q, r})), 4. (conv(A ∪ {q, r}), conv(B)).

Figure 3 .

 3 Figure 3. A Busemann graph that admits no isometric embedding into l 1 .

Lemma 21 .

 21 If a, b are two points on the boundary of a regular Euclidean polygon F and ℓ(a, b) is the length of the shortest boundary path P of F connecting a and b, then ℓ(a, b) ≤ (2 + π/2)d(x, y).

Case 1 . 2 .

 12 a and b lie on incident edges [z ′ , z], [z, z ′′ ] of F . Let α be the angle between these edges. Then d(a, b) = (d(a, z) 2 +d(b, z) 2 -2d(a, z)d(b, z) cos α) 1 Simple calculations using the fact that π/3 ≤ α ≤ π show that if d(a, z)+d(z, b) is fixed, then d(a, b) is minimized when α is minimized (i.e., α = π/3) and d(a, z) = d(z, b), in which case d(a, b) ≥ (d(a, z) + d(z, b))/2 ≥ ℓ(a, b)/2.

Case 2 .

 2 a and b lie on non-incident edges, say P = (a, z 1 , z 2 , . . . z k , b), with k ≥ 2. Then clearly d(a, b) ≥ 1 and d(a, b) ≥ d(z 1 , z k ). Also ℓ(z 1 , z k ) (the length of the portion of P between z 1 and z k ) is upper bounded by the length of the (z 1 , z k )-arc of the circle C, and thus is at most π 2 d(z 1 , z k ). From this we get ℓ(a, b) ≤ 2 + ℓ(z 1 , z k ) ≤ 2d(a, b) + π 2 d(z 1 , z k ) ≤ 2 + π 2 d(a, b).

  So, denote by H - ℓ ′ and H + ℓ ′ the halfplanes delimited by ℓ ′ , and H - ℓ ′′ and H + ℓ ′′ the halfplanes delimited by ℓ ′′ , such that