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The spectrum of software tasks no longer includes only rare function controlling tasks for sensor actuator chains in reactive embedded systems. However, more and more responsible challenges like safety-critical scenarios are tackled. Therefore sensor data have to be safeguarded by several mechanism. An obvious and widely used approach is the use of two redundant hardware controllers, but this comes along with an additional cost, space and energy factor. Another way to fulfill certain safety properties is to implement a second diverse software channel in a single microcontroller architecture according the Safely Embedded Software (SES) approach. However, a lack of performance occurs by implementing this diverse channel for complex computations e.g. floating-point operations. This paper gives an approach for transferring the SES into a coprocessor and to migrate SES to a flexible and powerful FPGA architecture.

Introduction

The increasing functionality in automotive systems is mostly realized by software. Those software is often part of a sensor-actor chain, e.g. the break-by-wire technology, and meets safety-relevant requirements in many cases. As a consequence of this several measures to ensure the right processing of sensor data have to be taken. A widely used method to achieve both fail safe and fail operational architectures is based on hardware redundancy. However, this comes along with an additional cost, space and energy factor. With the Safely Embedded Software (SES) approach diverse redundancy could be created by software [START_REF] Mottok | Safely Embedded Software for State Machines in Automotive Applications[END_REF]. This approach allows to detect both permanent and temporary errors and due to this a suitable reaction (e.g. retry, recover, fail safe state or fail operational) could be initiated. Also SES is independent of specific hardware and specific operating systems which makes it more portable.

On the other side arithmetic coding mechanisms are accompanied by larger data values and more complex operations in the transformation domain, so the diverse software channel is the main time-consuming factor in the system. This paper introduces a solution to this matter by transferring the SES part to dedicated hardware and continuous with a complete migration of the SES architecture to a FPGA, where microcontroller and SES-coprocessor are realized within a single FPGA. The FPGA architecture also offers benefits in sensor data conditioning. Modern sensors often need special algorithms for signal conditioning which need a lot of processing power if they must be realized in software. In a FPGA architecture such tasks could be easily realized in hardware and so the performance of the system could be improved.

The following section gives an overview of the SES approach, the performance is analyzed in section 3. Section 4 describes the FPGA archtecture.

Safely Embedded Software (SES)

This Section gives an overview of the Safely Embedded Software (SES) approach. Safety Code Weaving is the procedure of adding a second software channel to an existing software channel. In this way, SES adds a second channel of the transformed domain to the software channel of the original domain. In dedicated nodes of the control flow graph, comparator functionality is added. Though, the second channel comprises diverse data, diverse instructions, comparator and monitoring functionality. The comparator or voter, respectively, on the same ECU has to be safeguarded with voter diversity [START_REF] Ehrenberger | Software-Verifikation[END_REF] or other additional diverse checks. Due to the safety code weaving, it is possible to check the validity of data in a given granularity. Based on this results, a dedicated fault reaction is initiated to achieve a fail safe state. Some examples for possible fault reactions are backward recovery, forward recovery, reset, consecutive calculation, consecutive transmission (timing redundancy), retry, substitute value, degradation of service (limp home) 

x c = A * x f + B x + D where x c , x f ∈ Z, A ∈ N + , B x , D ∈ N 0 , B x + D < A.
The prime number A [START_REF] Forin | Vital Coded Microprocessor Principles and Application for Various Transit Systems[END_REF][START_REF] Ozello | The Coded Microprocessor Certification[END_REF] determines important safety characteristics like Hamming Distance and residual error probability P = 1/A of the code. Number A has to be prime because in case of a sequence of i faulty operations with constant offset f , the final offset will be i * f . This offset is a multiple of a prime number A if and only if i or f is divisible by A. If A is not a prime number then several factors of i and f may cause multiples of A. The same holds for the multiplication of two faulty operands. Additionally, so called deterministic criteria like the above mentioned Hamming Distance and the Arithmetic Distance verify the choice of a prime number.

Other functional characteristics like necessary bit field size etc. the handling of overflow are also caused by the value of A. The simple transformation x c = A * x f is illustrated in Fig. 3. The static signature B x ensures the correct memory addresses of variables by using the memory address of the variable or any other variable specific number. The dynamic signature D ensures that the variable is used in the correct task cycle. The determination of the dynamic signature depends on the used scheduling scheme. It can be calculated by a clocked counter or it is offered directly by the task scheduler.

The instructions are coded in that way, that at the end of each cycle (i. e. before the output starts) either a comparator verifies the diverse channel results z c = A * z f + B z + D?, or the coded channel is checked directly by the verification condition (z c -B z -D) mod A = 0? (cf. Definition 1).

Coding of Operations

A complete set of arithmetic and logical operators in the transformed domain can be derived. The transformation in Definition 1 is used. Definition 2 (Coded Operators) A coded operator OP c is an operator in the transformed domain that corresponds to an operator OP in the original domain. Its application to uncoded values provides coded values as results that are equal to those received by transforming the result from the original domain after the application OP for the original values. The formalism is defined, such that the following statement is correct for all x f , y f from the original domain and all x c , y c from the transformed domain, where x c = σ(x f ) and y c = σ(y f ) is valid:

x f c s x c y f c s y c z f c s z c z f = x f OP y f c s z c = x c OP c y c (1) 
Accordingly, the unary operators are noted as:

z f = OP y f c s z c = OP c y c (2) 
In the following, the derivation steps for the integer addition and integer subtraction operation are explained exemplarily.

Coding of integer Addition

The addition is the simplest operation of the four basic arithmetic operations. Defining a coded operator (see Definition 2), the coded operation ⊕ is formalized as follows:

z f = x f + y f c s z c = x c ⊕ y c (3) 
Starting with the addition in the original domain and applying the formula for the inverse transformation, the following equation can be obtained for z c using 1:

z f = x f + y f z c -B z -D A = x c -B x -D A + y c -B y -D A z c -B z -D = x c -B x -D + y c -B y -D z c = x c -B x -D + y c -B y + B z z c = x c + y c + (B z -B x -B y ) const.
-D (4)

The equations ( 3) and ( 4) state two different representations of z c . A comparison leads immediately to the definition of the coded addition ⊕: Definition 3 (Coded Addition ⊕)

z c = x c ⊕ y c = x c + y c + (B z -B x -B y ) -D 2.

Coding of integer Subtraction

In analogy to the addition in Section 2.2.1, the coded operation can be formalized as follows:

z f = x f -y f c s z c = x c y c (5) 
Applying the formula for the inverse transformation, the following equation can be obtained for z c :

z f = x f -y f z c -B z -D A = x c -B x -D A - y c -B y -D A z c -B z -D = x c -B x -D -y c + B y + D z c = x c -y c + (B z + B y -B x ) const.
+D [START_REF] Mahr | Hardware-Software-Codesign Vieweg[END_REF] According to this equation, the coded subtraction can be defined as follows: Definition 4 (Coded Subtraction )

z c = x c y c = x c -y c + (B z -B x + B y ) + D
On basis of this procedure, other arithmetic operations like multiplication and division can be formalized.

Coded Floating-Point Operations

Additionally to the coded integer operations coded floating-point operations could be formulated. Finite floating-point numbers are internally represented by a dataset containing sign, exponent and the fraction. A single (32 Bit) floating-point number is encoded by a 1-bit sign s, an 8-bit exponent e and a 23-bit fraction f, as shown in Table 1.

For a proper transformation of floating-point numbers into the transformed domain the dataset is transformed separately. So each part of the dataset (sign, 

Performance Analysis

In this Section, the performance of the coded addition is discussed. In addition to the coded integer addition, the coded floating-point addition is introduced. This floating-point addition in the transformed domain is based on coded integer addition with separating mantissa, exponent and sign. For a better comparison between the performance of floating-point additions in the original and the transformed domain, the calculations in the original domain are completely emulated in software and no internal compiler library is used. The calculations in the transformed domain are completely handled in software following the SES approach.

All measurements are done on an Infineon XC167CI-32F40F BB-A(XC167) microcontroller. This 16-bit controller is broadly used in the automotive industry. For clock frequency, 20 MHz were selected and the Keil Vision3 v3.53 C-Compiler without optimizations is used.

As shown in Figure 4(a), the coded integer addition on the XC167 microcontroller is only about 3.5 times slower than the addition in the original domain. However, the corresponding floating-point addition (Figure 4(b)) is about 10 times slower. As mentioned above, the floating-point addition in the original domain is emulated in software, so that the difference to a calculation with a hardware floating-point unit (FPU) would be much higher. The mentioned integer addition as well as the floating-point addition are the easiest operations in the transformed domain. It is expected that for other arithmetic operations like multiplication or division the difference in performance between original and transformed domain is rising, especially for coded floating-point operations.

Due to this, SES could lead to a growing demand for performance if e.g floating-point operations should be safeguarded.

SES-Coprocessor

A possible option to raise the performance is to source out the SES part of the microcontroller by applying a SES-coprocessor.

External coprocessor approach

The SES-coprocessor connected to the microcontroller (Figure 5) contains a coded arithmetic logic unit (ALU c ) for integer and (if needed) floating-point arithmetic. The communication path between microcontroller and SES-coprocessor has to be safeguarded. This ALU c could be completely realized in hardware, so a complex programmable logic device (CPLD) or a field programmable gate array (FPGA) would be a proper platform for the SES-coprocessor. If a large number of units is expected, an application specific integrated circuit (ASIC) is a possible alternative. The interconnection between microcontroller and coprocessor could be realized by port-or memory mapping, also serial connections (CAN, I 2 C, etc.) are possible.

Hardware implementation of coded addition

This Section describes the realization of the coded integer addition in hardware.

Based on the definition of the coded integer addition (Section 2.2.1)

z c = x c + y c + (B z -B x -B y ) const.
-D

a simple hardware model could be created. The coded ALU c for integer-addition is shown in Figure 6 and consists of 2 adders and 3 subtracters in a serial alignment.

Overflow handling is not explicitly mentioned in this paper. Due to the concurrent logic approach of this model, the execution time of a coded addition only depends on the propagation delay of the gates, as there is no dependency on the clock frequency (of course, the propagation delay affects the clock frequency on the whole design). If we assume that Figure 6: Structure of a coded ALU for coded integeraddition the propagation delay of an adder/subtracter would be about 6ns, the calculation of a coded addition could be finished in about 30ns.

In a next step, this design could be optimized. A main advantage of a hardware implementation in comparison to software is the possibility to parallelize operations. The equation 7 could be rearranged as follows:

z c = (x c + y c + B z ) -(B x + B y + D) (8) 
Based on the equation 8 we could modify the hardware model in the following way.

Figure 7 shows an optimized hardware model for a coded integer addition. In contrast to Figure 6, this ALU consists of 4 adders and 1 subtracter, two additions are done parallel in stage 1 and 2. Due to this, the calculation time of the coded addition is reduced to 18ns in this way.

With this SES-coprocessor approach, the performance of the system could be increased, but on the other hand additional hardware is needed. 

Migration to a FPGA architecture

FPGAs allow a flexible, low-cost solution for control functions, bridging an interface between components or simply as glue logic for a variety of customized systems. Multiple functions could be integrated into a single-chip solution to reduce board space and costs [START_REF]Actel Corporation: Reliability Considerations for Automotive FPGAs[END_REF]. Many FPGA vendors provide powerful microcontroller soft cores (Table 2. So it would be obvious to integrate the microcontroller and the SES-coprocessor onto a single FPGA.

Single core processor with SES

State of the art FPGAs contain either hardwired microcontrollers (e.g. Xilinx Virtex 4) or a microcontroller soft core could be implemented. Figure 8 shows a FPGA including a microcontroller soft core and a SES-coprocessor. The SES-coprocessor is reconfigurable and contains the operations defined in the SES approach needed by the application. An increasing number of microcontroller soft cores is available, so there is a suitable device for many applica- This approach offers a couple of advantages:

• modular microcontroller concept -several microcontroller could be used on the same FPGA, so the microcontroller could be upgraded quickly due to modified requirements without changing any hardware components.

• modular SES-coprocessor concept -the SEScoprocessor could be easily adapted to the desired application, for instance only coded integer arithmetic could be installed or, if needed, coded floating-point arithmetic could also be implemented.

• concept verification with fault injection strategies (stimulated bit flips) in the soft core divider.

• automatic regression tests are also possible as needed for a safety assessment of the SES FPGA.

Multi core processor with SES

For higher SIL demands, this approach could be easily expanded by adding a traditional redundant hardware channel.

The approach described in figure 9 uses the existing know-how in redundant hardware design. The two microcontrollers have not necessarily be equal in this concept, two different soft cores can be implemented to reduce common cause failures. In this way, diverse hardware channels are achieved. This is a main advantage against a classical dual core processor, the two cores are mostly identical here. Although the 

Further options to increase the performance

Some sensors need a special and complex signal conditioning which may consume a lot of processing power if it must be realized in software. Modern FP-GAs can hold more than one single microcontroller soft core and a SES-coprocessor, so dedicated digital hardware for signal conditioning could be easily implemented too. Also coprocessors for other special applications could be added. Some examples for such tasks:

• signal conditioning (digital filters),

• fast signal processing (DCT, DFT,...),

• fast arithmetic calculations (e.g. multiplications with high bit width),

• decoders or

• multiplexers Also external digital hardware components could be reduced by including them into a FPGA. So this approach increases performance, fulfills safety requirements with the SES approach and reduces the amount of hardware components.

Intelligent Sensors

A weak point concerning safety sensor data processing is the interconnection between sensor and host. Nowadays many sensors have a digital interface, in many case they can be directly connected to a bus system like LIN, I 2 C or CAN. Such a sensor comprises typically a microcontroller which is responsible for signal conditioning and connectivity. Considering the limited output range of a sensor a tailored SES unit could be implemented on this microcontroller too (Figure 11). This SES unit safeguards the transmission from sensor to host. For higher SIL demands the protocol could be extended by a message counter and a time counter.

Hardware -Software Codesign

Choosing a FPGA architecture including microcontroller and SES cores also affects the design methodology of the system. The possibility for hardware -software codesign allows the cooperative and concurrent development of hardware and software (cospecification, co-development, and co-verification) in order to achieve shared functionality and performance goals for a combined system [START_REF] Gupta | Hardware-Software Cosynthesis for Digital Systems IEEE Design & Test of Computers[END_REF], [START_REF] Mahr | Hardware-Software-Codesign Vieweg[END_REF]. In this way, the decision if a task should be realized in software or in hardware could be changed rapidly. Special sensor signal conditioning tasks could be either realized in software or in hardware (or any combination of that) without changing any hardware component. In a classic microcontroller design such a decision leads to an expensive and complicated design modification. Also the parallelization of hard and software design reduces costs of development and the time to market.

Conclusion and Outlook

The FPGA approach presented in this paper offers considerable advantages. On the one hand the performance of SES guided systems could be improved by sourcing the SES part out into a dedicated hardware. For this only a low density FPGA is necessary and possibly existing system could be retained. The fast growing performance of FPGAs allows on the other hand a complete integration of microcontroller and SES-coprocessor into a single component. Also specialized coprocessors for signal conditioning of sensor data or other individual tasks could be integrated. This leads to increased performance and a flexible approach for safety embedded systems. If the design methodology is adapted too, also economic advantages are possible.
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 3 Figure 3: Simple coding x c = A * x f from the original into the transformation domain.
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 5 Figure 5: Microcontroller with a SES-Coprocessor.The interconnection between microcontroller and coprocessor could be realized by port-or memory mapping, also serial connections (CAN, I 2 C, etc.) are possible.
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 4 Figure 4: Performance of integer and floating-point additions in the original and coded domain on Infineon XC167CI-32F40F BB-A microcontroller
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 7 Figure 7: Structure of a optimized coded ALU for integer-addition
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 8 Figure 8: FPGA including microcontroller soft core and SES-coprocessor
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 9 Figure 9: FPGA including dual microcontroller soft core and SES-coprocessor in a redundant hardware approach
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 10 Figure 10: FPGA including microcontroller soft core, SES-coprocessor and several coprocessors for individual tasks
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 11 Figure 11: Intelligent Sensors with SES

  Error detection techniques like ECC only check the validity of data in the RAM/ROM area. With SES it is possible to check the validity of data inside the whole memory area, including cache and CPU registers (Figure2).

			processing in hardware / software domain
			memory		1st channel (original domain)
			variables	OP 1		
			constants			OP 2	OP n
		sensor	transform (edit time)	comparator	units	comp. unit 1 transform (runtime) comp. unit 2 optional optional	comp. unit n mandatory	actuator
			coded				
			variables	coded		
			coded	OP 1	coded	
			constants			OP 2	coded
							OP n
			memory		2nd channel (transformed domain)
			Figure 1: Safe Sensor Data Processing
	or shutdown.						
		Memory					
		REGISTER					
		CACHE					
			Safeguarded		
			by SES			
	Safeguarded						
	by ECC,	RAM/ROM					
	etc...						
	Figure 2: Safeguarded Areas				
	2.1 Coding of Data					
	Safely Embedded Software is based on the (AN+B)-		
	code of the Coded Monoprocessor [1] transformation		
	of original integer data x f into diverse coded data x c .		
	Definition 1 (Coded Data) Coded data is data		
	fulfilling the relation:						

Table 1 :

 1 Representation of 32-bit IEEE 754 single floating-point number exponent, fraction) is treated as integer and transformed under the rules shown in section 2.1.Coded floating-point operations are also based on the coded integer operations (section 2.2.1, 2.2.2), so the parts of the floating-point dataset are processed separately with the coded integer operations.

	1	8	23
	S	Exponent	Fraction
	31		0

Table 2 :

 2 Table 2 illustrates a few examples (list is not exhaustive). Of course, a proprietary solution is also possible. common microcontroller soft cores

	Type Name	Vendor
	8-Bit	PicoBlaze	Xilinx
	16-Bit Nios II	Altera
	32-Bit Leon	Gaisler Research
	32-Bit MicroBlaze Xilinx