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Abstract

In the bidirected minimum Manhattan network problem, given a set T of n terminals in the

plane, we need to construct a network N(T ) of minimum total length with the property that the

edges of N(T ) are axis-parallel and oriented in a such a way that every ordered pair of terminals

is connected in N(T ) by a directed Manhattan path. In this paper, we present a polynomial

factor 2 approximation algorithm for the bidirected minimum Manhattan network problem.

1 Introduction

A rectilinear network N = (V,E) in R
2 consists of a finite set V of points and horizontal and

vertical segments connecting pairs of points of V. The length of N is the sum of lengths of its edges.

Given a finite set T of terminals in R
2, a Manhattan network [10] on T is a rectilinear network

N(T ) = (V,E) such that T ⊆ V and for every pair of points in T, the network N(T ) contains a

shortest rectilinear (i.e., Manhattan or l1-) path between them. A minimum Manhattan network

on T is a Manhattan network of minimum possible length and the Minimum Manhattan Network

problem (MMN problem) is to find such a network (for an illustration, see Fig. 1). Note that there

is always a minimum Manhattan network lying in the grid Γ(T ) defined by the terminals (consisting

of all line segments that result from intersecting each horizontal and vertical lines through a point

in T ).

In this paper, we consider the following oriented version of the MMN problem. In the Bidirected

Minimum Manhattan Network problem (which we abbreviate BDMMN problem), given a set T of

terminals in the l1-plane, we want to select a minimum-length subset N(T ) of edges in the grid

Γ(T ) and to orient each edge in N(T ) such that each ordered pair of terminals is connected by a

directed Manhattan path (for an illustration, see Fig. 2). This oriented version of the minimum

Manhattan network problem was formulated in [11] by M. Benkert and the second author of this

note. Further we will assume that T does not contain two terminals on the same horizontal or

vertical line, otherwise the problem does not have a solution.

The minimumManhattan network problem has been introduced by Gudmundsson, Levcopoulos,

and Narasimhan [10]. Gudmundsson et al. [10] proposed an O(n3)-time 4-approximation algorithm,

and an O(n log n)-time 8-approximation algorithm. They also conjectured that there exists a 2-

approximation algorithm and asked if MMN is NP-complete. Chin, Guo, and Sun [4] recently

established that the problem is indeed NP-complete. Kato, Imai, and Asano [12] presented a 2-

approximation algorithm, however, their correctness proof is incomplete (see [1]). Benkert, Wolff,
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Figure 1: A minimum Manhattan network Figure 2: A minimum bidirected Manhattan network

Shirabe, and Widmann [1] described an O(n log n)-time 3-approximation algorithm and presented

a mixed-integer programming formulation of problem. Nouioua [16] and Fuchs and Schulze [7]

presented two simpleO(n log n)-time 3-approximation algorithms. The first correct 2-approximation

algorithm (solving the first open question from [10]) was presented by Chepoi, Nouioua, and Vaxès

[3] and is based on a strip-staircase decomposition and a rounding method applied to the linear

program from [1]. In his PhD thesis, Nouioua [16] described an O(n log n)-time 2-approximation

algorithm based on the primal-dual method. In 2008, Guo, Sun, and Zhu [8, 9] presented two

combinatorial factor 2 approximation algorithms with complexity O(n2) and O(n log n) (see also

the PhD thesis [19] of Schulze for yet another O(n log n)-time 2-approximation algorithm). Seibert

and Unger [18] announced a 1.5-approximation algorithm, however the conference format of their

paper does not permit to understand the description of the algorithm and to check its claimed

performance guarantee (a counterexample that an important intermediate step is incorrect was

given in [7, 19]). Finally, a factor 2.5 approximation algorithm for MMN problem in normed planes

with polygonal unit balls was proposed in [2].

Gudmundsson et al. [10] introduced the MMN problem in connection with geometric spanners.

A geometric network N is a c-spanner (c ≥ 1) for T if for each pair ti, tj ∈ T, there exists a

(ti, tj)-path in N of length at most c · ‖ti − tj‖. In the Euclidean plane, the unique 1-spanner

of T is the complete graph on T. In the rectilinear plane, the points are connected by several

Manhattan paths, and the problem of finding the sparsest 1-spanner becomes non trivial. Minimum

Manhattan networks are precisely the optimal 1-spanners. Analogously, the bidirected minimum

Manhattan networks can be viewed as optimal 1-spanners of the directed grid
←→
Γ (T ) obtained from

Γ(T ) by replacing each edge by two opposite directed arcs. Alternatively, bidirected Manhattan

networks are roundtrip 1-spanners sensu [17] for the grid
←→
Γ (T ) and for the set T of terminals. In

both reformulations of bidirected Manhattan networks as directed 1-spanners of
←→
Γ (T ) we suppose

that, like in Manhattan Street Networks [5, 14, 20], an edge of Γ(T ) participating in the resulting

spanner can be directed only in one sense. Geometric spanners have applications in network and

VLSI circuit design, distributed algorithms, and other areas [6, 15]. Lam, Alexandersson, and

Pachter [13] used minimum Manhattan networks to design efficient search spaces for pair hidden

Markov model alignment algorithms.

In this paper, we propose a factor 2 approximation algorithm for the minimum bidirected Man-

hattan network problems. We also solve in the negative Problem 6 from the collection [11] asking
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whether a specially constructed bidirected Manhattan network N∅(T ) is always optimal.

Our algorithm employs the strip-staircase decomposition proposed in our previous paper [3]

and subsequently used in other approximation algorithms for MMN. First we notice that each strip,

oriented clockwise or counterclockwise, belongs to any bidirected Manhattan network. Then we show

that all strips constituting larger sets, called blocks, have the same orientation. Since the strips

from different blocks do not overlap, one can suppose that the algorithm orients the strips in the

same way as in an optimal solution. Since the bases of a staircase and the strips touching it belong

to a common block, it remains to construct in each staircase a completion of the strip’s solution.

Any optimal completion can be subdivided into two subnetworks which, forgetting the orientation,

can be viewed as variants of the MMN problem for staircases. Such optimal (undirected) networks

can be computed in polynomial time by dynamic programming. The algorithm then constructs a

directed version of these networks by directing their edges and replacing some edges by two shifted

oriented copies.

We conclude this section with some notations. For a point p ∈ R
2 we will denote by px and

py its two coordinates. For two points p, q of R
2 we will denote by R(p, q) the smallest axis-

parallel rectangle containing p and q (clearly, p and q are two opposite corners of R(p, q)). Let

T = {t1, . . . , tn} denote the set of n terminals (recall that T does not contain two terminals on the

same vertical or horizontal line). For two terminals ti, tj ∈ T we will set Ri,j = R(ti, tj). We will

say that the rectangle Ri,j is empty if Ri,j ∩ T = {ti, tj}. Finaly, let F∅ be the set of all ordered

pairs (i, j) such that Ri,j is empty.

2 The counterexample

We start with an example showing that the bidirected network N∅(T ) defined in [11] is not optimal.

N∅(T ) is defined in the following way: go through all empty rectangles Ri,j and orient the edges

on the boundary of Ri,j clockwise if the line segment titj has positive slope and counterclockwise

if titj has negative slope. N∅(T ) is always a bidirected Manhattan network. In Fig. 3 we present

an optimal bidirected Manhattan network (its length is 32) for a set of 5 terminals. For the same

set of terminals, the length of the bidirected Manhattan network N∅(T ) presented in Fig. 4 is 34:

N∅(T ) also includes the two dotted edges of the staircase not included in the optimal solution.

Analogous larger examples show that the ratio between the length of N∅(T ) and the optimum can

be arbitrarily large.

Figure 3: An optimal bidirected Manhattan

network

Figure 4: The bidirected Manhattan network

N∅(T )
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3 Strips and staircases

In this section, we briefly recall the notions of strips and staircases defined and studied in [3]; we

refer to this paper for proofs and some missing details. An empty rectangle Ri,j is called a vertical

strip if the x-coordinates of ti and tj are consecutive entries of the sorted list of all x-coordinates of

the terminals. Analogously, a empty rectangle Ri,j is called a horizontal strip if the y-coordinates

of ti and tj are consecutive entries of the sorted list of all y-coordinates of the terminals. The sides

of a vertical (resp., horizontal) strip Ri,j are the vertical (resp., horizontal) sides of Ri,j . Notice

that two points ti, tj may define both a horizontal and a vertical strip. We say that the rectangles

Ri,i′ and Rj,j′ form a crossing configuration if they intersect and they have the same slope. The

importance of such configurations resides in the following property whose proof is straightforward:

Lemma 3.1 If the rectangles Ri,i′ and Rj,j′ form a crossing configuration, then from the two couples

of directed l1-paths connecting ti with ti′ and tj with tj′ one can derive two couples of directed l1-

paths connecting ti with tj′ and tj with ti′ .

o tj

ti

ti′

tj′ o′

tj

ti

ti′

tj′

Figure 5: A crossing configuration

For a crossing configuration defined by the strips Ri,i′ , Rj,j′ we can define a rectangle with four

tips as illustrated in Fig. 5. Let o and o′ be the two opposite corners of this rectangle labeled in

such a way that the four tips connect o with ti, tj and o′ with ti′ , tj′ . Additionally, suppose without

loss of generality, that ti and tj belong to Q1(o), i.e., to the first quadrant with respect to the origin

o. Then ti′ and tj′ belong to Q3(o
′). Denote by Ti,j the set of all terminals tk ∈ (T \{ti, tj})∩Q1(o)

such that (i) R(tk, o) ∩ T = {tk} and (ii) the region {q ∈ Q2(o) : q
y ≤ t

y
k} ∪ {q ∈ Q4(o) : q

x ≤ txk}

does not contain any terminal of T. When Ti,j 6= ∅, we define the staircase Si,j|i′,j′ as the union

of rectangles
⋃
{R(o′, tk) : tk ∈ Ti,j} \ R(o, o′); see Fig. 6 for an illustration. The point o is called

the origin of this staircase. Analogously one can define the set Ti′,j′ and the staircase Si′,j′|i,j with

origin o′. Two other types of staircases will be defined if ti, tj belong to the second quadrant with

respect to o and ti′ , tj′ belong to Q4(o
′). In order to simplify the presentation, further we will prove

all results under the assumption that the staircase is located in the first quadrant. By symmetry,

all these results also hold for the other types of staircases.

Let α be the leftmost highest point of the staircase Si,j|i′,j′ and let β be the rightmost lowest

point of this staircase. By definition, Si,j|i′,j′ ∩T = Ti,j. By the choice of Ti,j , there are no terminals

of T located in the regions {q ∈ Q2(o) : q
y ≤ αy} and {q ∈ Q4(o) : q

x ≤ βx}.
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−→
t t

←−
t

ti

α

∅

tj′ o′

Tij

tj

β

Si,j|i′,j′

sj

sj′

∅

ti′

o

sisi′

R′jj′

R′ii′

Figure 6: Staircase Si,j|i′,j′

v0 v1

h2

h1

Figure 7: Si,j|i′,j′ with Γeven
i,j and Γodd

i,j oriented

Figure 8: An example of a strip-staircase decomposition

4 Blocks and generating sets

For a strip Ri,j, the terminals ti and tj can be connected by two directed Manhattan paths only

if we take the boundary of the rectangle Ri,j in the solution and orient it accordingly. Therefore

the boundary of each strip Ri,j belongs to all bidirected Manhattan networks. Ri,j has only two

orientations (clockwise and counterclockwise) producing the two directed Manhattan paths between

ti and tj. We say that (the orientations of) two rectangles Ri,j and Ri′,j′ are compatible if they have

the same slope and are oriented in the same way or if they have different slopes and are oriented

in opposite ways. Clearly, two strips sharing an edge e of Γ(T ) must be compatible.We extend this

property to larger sets, called blocks.

Let P ⊆ T be a maximal by inclusion set of terminals such that for all ti ∈ P (the same)

two opposite quadrants centered at ti are empty, i.e., their intersections with T consist only of ti;

suppose that these empty quadrants are the second and the fourth quadrants Q2(ti) and Q4(ti).

Now, let the points of P be sorted by x-coordinate. The ith block is the set of all terminals of T

contained in the axis-parallel rectangle spanned by ith and (i + 1)th points of P, the first block

consists of all terminals located in the third quadrant defined by the first point of P, and the last

block consists of all terminals located in the first quadrant defined by the last point of P. From the

definition follows that two terminals defining a strip belong to a common block (which some abuse
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of language, we will say that the strip itself belongs to this block).

Lemma 4.1 In any bidirected Manhattan network N(T ), all strips from the same block B are

compatible.

Proof. Consider a graph whose vertices are the strips from B and two strips are adjacent if and

only if their boundaries share an edge of Γ(T ) or a terminal. This graph is connected because its

two subgraphs induced by horizontal and vertical strips are connected and any terminal of B defines

in B a vertical and a horizontal strip which are adjacent in this graph. Therefore, if B contains

incompatible strips, then we can find in this graph two adjacent incompatible strips Ri,j and Rj′,k.

Since two strips sharing an edge are compatible, Ri,j and Rj′,k necessarily share a terminal, say

j = j′. We can suppose without loss of generality that ti ∈ Q1(tj) and tk ∈ Q3(tj), otherwise the

boundaries of these strips overlap. Hence tj /∈ P, and Q2(tj) or Q4(tj) is not empty. Suppose that

there is a point tl ∈ Q4(tj) (see Fig. 4 for an illustration). Since Ri,j and Rj,k are incompatible,

tj is the head or the tail of both edges incident to tj in Q4(tj), say the tail. Since tl ∈ Q4(tj), the

rectangle Rj,l is also included in Q4(tj). Since any (directed or not) Manhattan path between tj

and tl is included in Rj,l and both edges of N(T )∩Rj,l incident to tj are directed away from tj , we

will not be able to produce a directed Manhattan path from tl to tj in N(T ), a contradiction. �

tl

tj = tj′

ti

tk

Figure 9: To the proof of Lemma 4.1.

We continue by adapting to BDMMN the notion of a generating set introduced in [12] for MMN

problem: a generating set is a subset F of ordered pairs of terminals of T with the property that

a directed subnetwork of Γ(T ) containing directed Manhattan paths between all pairs of F is a

bidirected Manhattan network for T. Let F ′ be the set of all ordered pairs of terminals defining

strips. Let also F ′′ be the set of all ordered pairs (tj′ , tl) and (tl, tj′) such that there exists a

staircase Si,j|i′,j′ with tl belonging to the set Ti,j of all terminals defining the corners of Si,j|i′,j′.

The proof of the following result closely follows the proof of Lemma 3.3 of [3].

Lemma 4.2 F := F ′ ∪ F ′′ is a generating set.

Proof. The set F∅ of empty pairs is clearly a generating set. Let N be a bidirected rectilinear

network containing directed l1-paths for all ordered pairs in F. To prove that N is a bidirected

Manhattan network on T , it suffices to establish that for any arbitrary pairs (k, k′), (k′, k) ∈ F∅ \F,

in N there exists a directed Manhattan path from tk to tk′ and a directed Manhattan path from

tk′ to tk. Assume without loss of generality that txk′ ≤ txk and t
y
k′
≤ t

y
k
. Since (k, k′) ∈ F∅, the

rectangle Rk,k′ is empty. The vertical and horizontal lines through the points tk and tk′ partition the

6



ti1 ti′
2

tk′

tj′
1

tj′
2

ti′
1

ti2

tj2

tj1

tk

H3

H2
H4

o

o
′

H1

Figure 10: To the proof of Lemma 4.2

plane into the rectangle Rk,k′, four open quadrants and four closed unbounded half-bands labeled

counterclockwise H1,H2,H3, and H4 (see Fig. 10). Consider the leftmost terminal ti1 of H1 (this

terminal exists because tk ∈ H1). Now, consider the rightmost terminal ti′
1
of H3 such that tx

i′
1

≤ txi1
(again this terminal exists because tk′ ∈ H3 and txk′ ≤ txi1). By the choice of ti1 and ti′

1
, the rectangle

Ri1,i
′

1
is the leftmost vertical strip crossing the rectangle Rk,k′. Analogously, by letting ti2 , tj1 , and

tj2 be the rightmost terminal of H3, the lowest terminal of H4 and the highest terminal of H2,

respectively, we obtain the rightmost vertical strip Ri2,i
′

2
, the lowest horizontal strip Rj1,j

′

1
, and the

highest horizontal strip Rj2,j
′

2
crossing the rectangle Rk,k′ . Notice that the strips Rj2,j

′

2
and Ri2,i

′

2

as well as the strips Rj1,j
′

1
and Ri1,i

′

1
constitute crossing configurations.

Now, we will prove that N contains a directed l1-path from ti2 to tk and a directed l1-path from

tk′ and tj1 . We distinguish three cases. If tk = ti′
2
, then Ri2,k = Ri2,i

′

2
is a strip and thus (k, i2) ∈ F.

If tk = tj′
2
, then the strips Rj2,k and Ri2,i

′

2
form a crossing configuration. By Lemma 3.1, from the

directed l1-paths of N running from tj2 to tk and from ti2 to ti′
2
, we can derive a couple of directed

l1-paths connecting tk with ti2 . Finally, if tk /∈ {ti′
2
, tj′

2
}, we assert that the crossing configuration

Ri2,i
′

2
and Rj2,j

′

2
defines a staircase Si′

2
,j′
2
|i2,j2 such that tk belongs to Ti′

2
,j′
2
. Indeed, let o be the

highest leftmost intersection point of the strips Ri2,i
′

2
and Rj2,j

′

2
(see Fig. 10). Since R(tk, o) is

contained in the empty rectangle Rk,k′, we conclude that R(tk, o) ∩ T = {tk}. Moreover, by the

choice of ti2 and tj2 , the unbounded half-bands {q ∈ H3 : qx ≥ ti′
2
} and {q ∈ H2 : qy ≥ tj′

2
} do

not contain terminals (in Fig. 10, the shaded region does not contain terminals), thus establishing

our assertion. This implies that tk ∈ Ti′
2
,j′
2
, whence (k, i2), (i2, k) ∈ F. Therefore, in all three cases

the terminals tk and ti2 are connected in N by a couple of directed l1-paths. Using a similar

analysis, one can show that tk′ and tj1 are also connected in N by a couple of directed l1-paths. By

construction, the rectangles Rk,i2 and Rk′,j1 form a crossing configuration and thus, by Lemma 3.1,

there is a couple of l1-paths of N between the terminals tk and tk′, concluding the proof. �

For a staircase Si,j|i′,j′, let T
+

i,j be the set consisting of Ti,j , the four terminals ti, tj, ti′ , tj′ of the
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bases of Si,j|i′,j′ , and the terminals defining strips touching the boundary of Si,j|i′,j′.

Lemma 4.3 T+

i,j is included in a block.

Proof. Suppose by way of contradiction that there exists tk ∈ P such that two terminals tl and

tm of T+

i,j belong to different quadrants Q1(tk) and Q3(tk) (and the quadrants Q2(tk) and Q4(tk)

are empty). Since the interiors of Si,j|i′,j′ , of the rectangles Ri,i′ , Rj,j′, and of the regions Q′,Q′′

defined in previous section are all empty, tk can be located only in the first quadrant defined by a

concave vertex of Si,j|i′,j′. But in this case, we can find two terminals of Si,j|i′,j′ located in Q2(tk)

and Q4(tk), contrary to the choice of tk in P . �

5 The algorithm

By Lemma 4.1, all strips of any block are compatible. Since the strips from different blocks are

edge-disjoint, the algorithm can test the two possible orientations of each block independently of

the orientations of other blocks. Thus, we can suppose that the algorithm oriented the strips of each

block in the same way as in an optimal bidirected Manhattan network N∗(T ). Let N ′(T ) be the

union of all boundaries of strips directed this way. By Lemma 4.3, the bases of a staircase Si,j|i′,j′

and the strips touching Si,j|i′,j′ belong to the same block B, therefore they are all compatible and

their orientation can be assumed fixed. Since the bases of Si,j|i′,j′ have the same slope, they are

oriented both clockwise or both counterclockwise. From [3] we know that any strip may touch the

boundary of a staircase but cannot cross its interior. Let N ′
i,j be the intersection of Si,j|i′,j′ with

the union of the boundaries of the strips from B, i.e., N ′
i,j = N ′(T )∩Si,j|i′,j′ . Hence, by Lemma 4.2

it remains, for each staircase Si,j|i′,j′, to complete N ′
i,j to a local bidirected network N ′′

i,j, such that

any pair (tj′, tl), (tl, tj′) with tl ∈ Ti,j can be connected in N ′′
i,j ∪ N ′(T ) by a directed Manhattan

path. This must be done in such a way that the length of the network Ni,j = N ′′
i,j \N

′
i,j is as small

as possible. Let N∗
i,j be an optimal completion of N ′

i,j .

Suppose that Ri,i′ and Rj,j′ are the vertical and the horizontal bases of Si,j|i′,j′ (see Fig. 6).

Let R′
i,i′ = Ri,i′ ∩ Si,j|i′,j′ and R′

j,j′ = Rj,j′ ∩ Si,j|i′,j′. Suppose that in algorithm’s and optimal

solutions, these strips are oriented clockwise. Hence the leftmost vertical side si′ of R
′
i,i′ is upward,

the opposite side si is downward, the upper horizontal side sj of R
′
j,j′ is to the right, and its opposite

side sj′ is to the left. For a terminal t ∈ Ti,j, denote by
−→
t and

←−
t the tail and the head of the

directed edges of N ′
i,j incident to t. Set

−→
T i,j = {

−→
t : t ∈ Ti,j} and

←−
T i,j = {

←−
t : t ∈ Ti,j} (they are

all vertices of the grid Γ(T )).

Any optimal completion N∗
i,j of N

′
i,j can be decomposed into two edge-disjoint subnetworks

−→
N∗

i,j

and
←−
N∗

i,j, such that
−→
N∗

i,j contains the edges on the directed Manhattan paths running from si′ ∪sj
to the points of

−→
T i,j and

←−
N∗

i,j contains the edges on the directed Manhattan paths running from

the points of
←−
T i,j to si ∪ sj′. The length of

−→
N∗

i,j cannot be smaller than the length of an optimal

(non-oriented) network Ai,j in Γ(T ) connecting the points of
−→
T i,j to si′ ∪ sj by Manhattan paths.

Analogously, the length of
←−
N∗

i,j cannot be smaller than the length of an optimal (non-oriented)

network Bi,j in Γ(T ) connecting the points of
←−
T i,j to si ∪ sj′ . At the difference of

−→
N∗

i,j and
←−
N∗

i,j,

the networks Ai,j and Bi,j are not edge-disjoint. However, we can compute optimal Ai,j and Bi,j

in polynomial time using dynamic programming because each of the sets of terminals
−→
T i,j and
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←−
T i,j also constitute a staircase and to compute an optimal solution we will have to solve only a

polynomial number of subproblems (this problem is similar to Steiner arborescence or to MMN

problems for terminals on a staircase).

The algorithm computes by dynamic programming an optimal network Ai,j for connecting
−→
T i,j

to si′ ∪ sj and an optimal network Bi,j for connecting
←−
T i,j to si ∪ sj′. The dynamic programming

constructs Ai,j recursively in the following way: there exists a point
−→
t ∈

−→
T i,j which is either

connected in Ai,j to si′ by a horizontal segment s′ or to sj by a vertical segment s′′, say the first.

Then the problem is subdivided into two smaller subproblems, one for the points of
−→
T i,j located

strictly above s′ and the union si′ ∪ s
′ and another for si′ ∪ sj and the points of

−→
T i,j located strictly

below s′ (the case when
−→
t is connected vertically is analogous). The construction of Bi,j is similar

(see the first two networks in Fig. 5 for an illustration of Ai,j and Bi,j).

Finally, the algorithm “rounds” each of the networks Ai,j and Bi,j in order to produce directed

networks
−→
A i,j and

←−
B i,j having lengths at most twice the lengths of Ai,j and Bi,j, respectively (see

the last two networks from Fig. 5). The algorithm returns Ni,j =
−→
A i,j ∪

←−
B i,j as a local completion

of N ′
i,j. The networks

−→
A i,j and

←−
B i,j are constructed in the following way. Let v0, v1, . . . , vk−1

and h1, h2, . . . , hl be the consecutive horizontal and vertical lines of the grid Γ(T ) intersecting

the staircase Si,j|i′,j′ and numbered in such a way that si′ ⊂ v0, si ⊂ v1 and sj′ ⊂ h1, sj ⊂ h2.

(If the bases are oriented counterclockwise, then we consider the same lines but we index them

v1, v2, . . . , vk and h0, h1, . . . , hl−1.) Let Γeven
i,j (respectively, Γodd

i,j ) be the subgrid of Γ(T ) ∩ Si,j|i′,j′

induced by vertical and horizontal lines with even indices (respectively, with odd indices). (Notice

that if we orient the horizontal edges of Γeven
i,j to the right and the vertical edges upward, and the

horizontal edges of Γodd
i,j to the left and the vertical edges downward, then we obtain a network

which is well-known in the literature as a Manhattan Street Network (see Fig. 7) [5, 14, 20].)

The algorithm recursively derives
−→
A i,j from Ai,j and

←−
B i,j from Bi,j. We show how to construct

−→
A i,j , but each step of the algorithm is performed for both

−→
A i,j and

←−
B i,j (before going to the next

step). First, in Step 1, we insert in
−→
A i,j the edges of Γeven

i,j which have their support in Ai,j and

orient them upward or to the right. The remaining directed edges are added in order in which the

segments of Ai,j have been added by the dynamic programming algorithm. For a current
−→
t , let s

be the vertical or horizontal segment of Ai,j connecting
−→
t to the previously defined part of

−→
A i,j. If

s belongs to a horizontal or vertical line with odd index m, say s belongs to hm, then in Step 2 we

include in
−→
A i,j the segments s′, s′′ oriented to the right which correspond to paths of Γeven

i,j obtained

by intersecting hm−1 and hm+1 with the vertical lines passing via the ends of s. If sj ⊂ hm−1 (i.e.,

m = 3), then s′ is not added. Additionally, we remove from
−→
A i,j all vertical edges whose lowest

end-vertex is comprised between s′ and s′′ (by the construction, this pruning operation removes the

edges that are no longer used by directed Manhattan paths in
−→
A i,j). In Step 3, we proceed the

points of
−→
T i,j ∩ Γ

odd
i,j in the same order as in Step 2. Let c be the vertical segment connecting

−→
t to

hm−1. If c does not belong to
←−
B i,j after Step 2 (Fig. 13, Step 3 (a)), we add c oriented upward to

−→
A i,j . Otherwise, we consider the cell of Γ(T ) whose boundary contains c and a subsegment b′ of s′

(Fig. 13, Step 3 (b)), we remove b′ and add to
−→
A i,j the alternative path around this cell consisting

of an upward twin c′ of c and a twin b of b′ oriented to the right (b is a subsegment of s). We call

such a path a replacement path. Let N ′′
i,j := N ′

i,j ∪
−→
A i,j ∪

←−
B i,j and let l(N ′′

i,j) be its length.

We conclude this section with the pseudocode of the algorithm constructing the directed networks
−→
A i,j and

←−
B i,j from Ai,j and Bi,j:
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(a) Ai,j (b) Bi,j

(c)
−→

A i,j (d)
←−

B i,j

Figure 11: The networks Ai,j, Bi,j and the rounded directed networks
−→
A i,j,

←−
B i,j

Algorithm 1 Construction of
−→
A i,j ∪

←−
B i,j

Require: Networks Ai,j and Bi,j.

Step 1: Insert in
−→
A i,j the edges of Γ

even
i,j which have their support in Ai,j and orient them upward

or to the right.

Step 2: For each remaining directed edge (in order in which the segments of Ai,j have been

added by the dynamic programming algorithm):

If sj 6⊂ hm−1 (i.e., m 6= 3), then include in
−→
A i,j the segment s′ oriented to the right.

Include in
−→
A i,j the segment s′′ oriented to the right.

Remove from
−→
A i,j all vertical edges whose lowest end-vertex is comprised between s′ and s′′.

Perform the Steps 1-2 for computing
←−
B i,j from Bi,j.

Step 3: For each point of
−→
T i,j ∩ Γodd

i,j (proceeded in the same order as in Step 2):

If c does not belong to
←−
B i,j, then add to

−→
A i,j the segment c oriented upward.

Otherwise, remove b′ and add to
−→
A i,j the alternative path consisting of c′ oriented upward

and b oriented to the right (see Fig. 13).

Perform the Step 3 for each point of
←−
T i,j ∩ Γeven

i,j .

6 The analysis of the algorithm

Now, we will show that the algorithm described in previous section returns a bidirected Manhattan

network and that the length of this network is at most twice the length of an optimal bidirected

10



Figure 12: Network
−→
A i,j ∪

←−
B i,j

(a) (b)
Step 3Step 2

c c

b′

b

b′

c′s′

s

s′′s′′

s

s′

s′′

s

s′

−→
t

−→
t

−→
t

Figure 13: Steps 2 and 3 of Algorithm 1

Manhattan network.

Lemma 6.1 The supports of
−→
A i,j and

←−
B i,j are disjoint. Moreover, in

−→
A i,j there exists a directed

Manhattan path from si′ ∪ sj to each point of
−→
T i,j and in

←−
B i,j there exists a directed Manhattan

path from each point of
←−
T i,j to si ∪ sj′.

Proof. By the algorithm, after Step 2 the supports of
−→
A i,j and

←−
B i,j are disjoint, however these

networks are not yet feasible. Step 3 ensures feasibility of
−→
A i,j (and

←−
B i,j) by connecting each

terminal
−→
t ∈
−→
T i,j to the network

−→
A i,j computed in Step 2, using either a vertical segment c (Fig.

13 Step 3 (a)) or a replacement path {b, c′} (Fig. 13 Step 3 (b)). We will prove now that after

Step 3 the networks
−→
A i,j and

←−
B i,j are disjoint and feasible.

By construction, Ai,j connects each terminal of
−→
T i,j to si′ ∪sj by a Manhattan path. Therefore,

it suffices to show that this property is preserved each time when we orient a new part of the

network Ai,j. This is obviously true when we orient all edges of Γeven
i,j which have their support

in Ai,j. Now, suppose that a segment s added in Ai,j to connect a terminal
−→
t is replaced by two

directed segments s′ and s′′. Then all vertices of
−→
T i,j connected in Ai,j via s (they are all located

above s) will be now connected by directed Manhattan paths going via s′′. On the other hand,
−→
t

is connected in
−→
A i,j via c and s′ if c does not belong to

←−
B i,j and via the replacement path {b, c′}

and s′ otherwise. We assert that in the last case, c′ and b will not be used by
←−
B i,j. Indeed, due

to the pruning operation in Step 2, each
−→
t is incident to at most one outgoing edge of

←−
B i,j . Now,

since we used a replacement path, the segment c of Γodd
i,j is still in

←−
B i,j after the pruning operation

in Step 2. This shows that b cannot belong to
←−−
Bi,j. On the other hand, the end-points of c′ do not

belong to
←−
T i,j, otherwise two distinct points of

−→
T i,j ∪

←−
T i,j will lie on the same vertical or horizontal
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line, which is impossible. Now, since c′ belongs to Γeven
i,j , by the algorithm, c′ can be involved in a

replacement path of
←−
B i,j only if it is incident to a point of

←−
T i,j. Therefore c′ does not belong to

←−
B i,j either. �

Lemma 6.2 l(Ni,j) = l(
−→
A i,j ∪

←−
B i,j) ≤ 2 l(N∗

i,j) + l(N ′
i,j), where N∗

i,j is an optimal completion of

N ′
i,j.

Proof. By construction, the length of
−→
A i,j∪

←−
B i,j is at most 2 l(Ai,j)+2 l(Bi,j) plus the total length

∆ of the edges c or c′ orthogonal to s′ defined in the algorithm. Since any horizontal or vertical line

crosses at most one such edge, ∆ is at most l(N ′
i,j), hence l(Ni,j) ≤ 2 (l(Ai,j) + l(Bi,j)) + l(N ′

i,j).

By optimality of Ai,j and Bi,j, l(Ai,j) + l(Bi,j) ≤ l(
−→
N∗

i,j) + l(
←−
N∗

i,j) = l(N∗
i,j). �

Let N(T ) be the network obtained as the union of N ′(T ) and all local completions Ni,j =
−→
A i,j ∪

←−
B i,j taken over all staircases. Let N∗(T ) be an optimal solution of the BDMMN problem

having N ′(T ) as a subnetwork. Then N∗(T ) can be viewed as the disjoint union of N ′(T ) with the

local completions N∗
i,j = (N∗(T ) \N ′(T )) ∩ Si,j|i′,j′ of N

′
i,j. It was shown in [3] that the interiors of

two staircases are disjoint. Since in the BDMMN problem there are no two terminals on the same

horizontal or vertical line, two staircases cannot intersect in an edge, thus the intersection of two

staircases is empty or a subset of terminals. Hence the local completions N∗
i,j are pairwise disjoint (as

well as the local completions Ni,j). By their definition, the networks N ′
i,j are also pairwise disjoint.

Using this disjointness property, Lemma 6.2, and summing up over all staircases, we obtain that

l(N(T )) = l(N ′(T )) +
∑

l(Ni,j) ≤ l(N ′(T )) +
∑

(2 l(N∗
i,j) + l(N ′

i,j))

≤ 2 l(N ′(T )) + 2 l(N∗(T ) \N ′(T )) = 2 l(N∗(T )),

The time complexity of the algorithm for the BDMMN problem is dominated by the execution

of the dynamic programming algorithm that computes Ai,j and Bi,j for every staircase Si,j|i′,j′. A

staircase Si,j|i′,j′ contributes O(|Ti,j |
3) to the total complexity of the algorithm. Since each terminal

belongs to at most two staircases, the total complexity of the algorithm for the BDMMN problem

is O(n3), establishing the main result of the paper:

Theorem 6.3 The network N(T ) computed by the algorithm in O(n3) time is a factor 2 approxi-

mation for the BDMMN problem.

Open question: Is the BDMMN problem polynomial or NP-hard? BDMMN reduces only to

staircases, avoiding thus the difficulty occurring in the MMN problem due to the interaction between

strips and staircases. However, in the directed version, for each staircase we have to compute two

disjoint but not necessarily optimal directed networks
−→
N i,j and

←−
N i,j which together provide an

optimal completion of N ′
i,j.
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