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ABSTRACT 28 

Actin cytoskeleton is indispensable for plant cell integrity. Besides, increasing evidences illustrate 29 

its crucial role in plant responses to environment, including defence against pathogens. Recently, 30 

we have demonstrated that pre-treatment with actin disrupting drugs latrunculin B (latB) and 31 

cytochalasin E can enhance plant resistance against bacterial and fungal pathogens via activation 32 

of salicylic acid (SA) pathway. Here, we show that actin depolymerization in Arabidopsis thaliana 33 

seedlings not only triggers SA biosynthesis by ICS1, but also induces callose deposition via callose 34 

synthase PMR4. This effect is SA-independent since still present in mutants that do not accumulate 35 

SA. LatB also triggers the expression of several defence related genes. We could distinguish genes, 36 

induced in a SA-dependent manner (PR1, WRKY38, ICS1) and those that are SA-independent 37 

(PR2, PAD4, BAP1). As actin cytoskeleton is tightly connected with membrane trafficking, we 38 

assayed the effect of latB on mutant plants invalidated in phosphatidylinositol 4-kinase beta1 and 39 

beta2 (PI4Kβ1β2). Deficiency in PI4Kβ1β2 enhanced latB-triggered actin filaments 40 

depolymerisation. Yet, it did not lead to a stronger callose deposition or SA biosynthesis in 41 

response to latB. Surprisingly, introduction of NahG construct or pad4 mutation in pi4kß1ß2 42 

background had much lower effect on SA induction and SA-dependent gene expression changes 43 

than it has in wild type. We can thus conclude that actin disruption itself triggers immune-like 44 

responses: there is an induction of SA via PAD4 coupled to ICS1; it leads to the induction of PR1 45 

and WRKY38, and this requires a functional PI4Kβ1β2 to be properly regulated. However, an 46 

alternative, SA-independent, pathway also exists that leads to the enhanced expression of PR2 and 47 

to callose accumulation.  48 

 49 
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INTRODUCTION 50 

Plants are always confronted to changes in their environment. This can concern physical 51 

parameters such as light intensity and/or quality, temperature or water availability, or interactions 52 

with other organisms, including bacteria or fungi. Some of the interactions can lead to diseases. 53 

Nowadays, plant responses to the environmental challenges, either abiotic or biotic, are an object 54 

of an intense research. A novel aspect of such a research is the investigation of the roles of 55 

processes that were so far mainly (or uniquely) considered as important for the cell structure. Such 56 

a process is the dynamics of cytoskeleton. Cytoskeleton is comprised of microfilaments and 57 

microtubules. Actin filaments (F-actin) are highly dynamic structures formed from monomers (G-58 

actin) (Drobak et al, 2004). Even in basal conditions, filaments constantly grow at one end and 59 

depolymerize at the opposite one (Li et al, 2017). The filaments are indispensable for cell shaping, 60 

growth and polarity (Andreeva et al, 2010), cytokinesis (Brill et al, 2000), but also for intracellular 61 

trafficking of vesicles (Geitmann & Nebenführ, 2015). Yet, the direct mechanisms regulating actin 62 

dynamics in regards to vesicle trafficking are still waiting to be revealed. A particular role has been 63 

proposed for phospholipids, especially phosphoinositides (Ebine & Ueda, 2015). 64 

Phosphoinositides are phosphorylated forms of phosphatidylinositol (PI). From the position and 65 

number of the phosphate groups on the inositol ring, we can distinguish PI-3-phosphate (PI3P), 66 

PI-4-phosphate (PI4P) and PI-4,5-bisphosphate (PIP2). Phosphoinositides play a key role in vesicle 67 

trafficking (Delage et al, 2013) and also interact with cytoskeleton: for instance, F-actin capping 68 

protein interaction with actin monomers is regulated by PIP2 (Pleskot et al, 2012). This makes 69 

phosphoinositides potential central players in the regulation of cytoskeleton dynamics versus 70 

vesicle trafficking. Phosphatidylinositol-4 kinases (PI4Ks) are the first enzymes committing PI 71 

into phosphoinositides phosphorylated at position 4 of inositol. The study of these enzymes and of 72 

their corresponding mutants can be useful to investigate the regulation of the vesicle trafficking 73 

together with cytoskeleton dynamics. In Arabidopsis thaliana, the isoforms AtPI4Kβ1 and 74 

AtPI4Kβ2 appear to be located in the endomembrane system (Antignani et al, 2015; Kang et al, 75 

2011). They participate in cytokinesis in A.thaliana roots by targeting actin filaments to the cell 76 

plate (Lin et al, 2019).  77 

Regarding cytoskeleton and the responses to pathogens, it must be noted that soon after 78 

contact between a plant cell and a pathogen, actin filaments get rapidly reordered to support 79 

transport of the stress-related compounds. For instance, in the case of fungal infection, actin is 80 



needed for the transport of antimicrobial compounds and callose to the penetration site (Hardham, 81 

2007). This results in forming cell wall appositions that arrest pathogen growth at the invaded cell 82 

(Sassmann et al, 2018). This is part of plant immunity response. In case of bacterial infection, the 83 

reaction at the level of cytoskeleton is more diffuse along the leaf tissue but an increase of actin 84 

filament density and bundling can nevertheless be measured (Lu & Day, 2017). Various 85 

components of pathogen cells can trigger actin polymerization in plants. The most described are 86 

the so-called microbe associated molecular patterns (MAMPs), like flagellin flg22, elf18, chitin, 87 

oligogalacturonides (Li et al, 2017), or secreted effectors (e.g. HopG1 of Pseudomonas syringae, 88 

(Shimono et al, 2016). Those compounds not only affect cytoskeleton, but induce other immune 89 

responses, especially reactive oxygen species formation, defence genes expression, biosynthesis 90 

of salicylic acid (SA) (Bigeard et al, 2015).  91 

A well described response to pathogens is callose accumulation (Schneider et al, 2016). 92 

Callose is a polysaccharide, β-1,3-glucan, synthetized in the apoplast and involved in various 93 

processes in plants including cytokinesis (Chen et al, 2009; Thiele et al, 2009), pollen development 94 

(Záveská Drábková & Honys, 2017), cell-to-cell communication through plasmodesmata (Cui & 95 

Lee, 2016), and various stress responses. Arabidopsis genome encodes twelve callose synthases, 96 

each of a specific function (Chen & Kim, 2009). Callose synthase 12 (also known as GLUCAN-97 

SYNTHASE LIKE 5, GSL5, of POWDERY MILDEW RESISTANT 4, PMR4) is the one 98 

responsive to wounding and pathogen responses (Ellinger et al, 2014; Keppler et al, 2018). Callose 99 

biosynthesis in the apoplast and its accumulation highly depend on the transport of the substrates 100 

outside of the cells. Notably, distinct signaling pathways may result in callose formation. For 101 

instance, wounding-induced and MAMP-triggered callose might represent different branches of 102 

responses going through PMR4 (Keppler et al, 2018). We therefore wanted to investigate the 103 

influence of actin depolymerization on callose accumulation. An elegant way to investigate the 104 

role of cytoskeleton is the use of drugs that alter cytoskeletal dynamics. Latrunculin B (latB) is 105 

such a drug. It originates from a Red Sea sponge Latrunculia magnificans. LatB reversely binds 106 

actin monomers preventing their polymerization (Morton et al, 2000). It is often used in plant 107 

biology to assess the role of actin in endo- and exocytosis (Moscatelli et al, 2012), pollen tube 108 

elongation (Gibbon et al, 1999) and growth (Baluška et al, 2001). Concerning the response to 109 

pathogens, it has been shown that when applied simultaneously with pathogens, latB negatively 110 

affects plant resistance to them (Henty-Ridilla et al, 2013). However, latB is able to activate SA-111 



associated gene expression in Arabidopsis thaliana (Matoušková et al, 2014). In Brassica napus 112 

and Nicotiana benthamiana, the pre-treatment of plant leaves with low concentrations of latB - 113 

increased SA levels in tissues, activated defence gene expression and was sufficient to increase 114 

resistance to further infection. Similar results were obtained with another actin disrupting drug, 115 

cytochalasin E (Leontovyčova et al, 2019).  116 

We firstly show that actin disruption by latB triggers callose accumulation in A. thaliana 117 

seedlings through the callose synthase PMR4. Using mutants altered in SA signaling (pad4), 118 

biosynthesis (sid2) and accumulation (NahG), we demonstrate that this callose deposition is SA-119 

independent. Furthermore, we found that latB effect on gene expression does not correspond to a 120 

general transcriptome deregulation, but that specific pathways related to the response to pathogens 121 

are the ones triggered by latB. Amongst the gene responses, we were also able to reveal SA-122 

dependent and SA-independent effects of latB. Interestingly, we show that deficiency in PI4Kβ1β2 123 

enhanced the susceptibility of actin filaments to latB while latB does not appear to impact 124 

phosphoinositides levels on plasma membrane. To study the role of PI4Kβ1β2 in SA-independent 125 

responses to actin disruption, we have introduced NahG construct as well as sid2 and pad4 126 

mutations into pi4kβ1β2 background. Surprisingly, the latB treatment still strongly induced SA in 127 

pad4pi4kβ1β2 and NahGpi4kβ1β2 triple mutants, while SA accumulation was prevented in pad4 128 

and NahG mutant plants. To conclude, here we characterize the immunity-like responses to latB, 129 

showing that actin depolymerisation acts through both SA-dependent and SA-independent 130 

pathways. Moreover, we reveal the existence of an unexpected cross-talk between actin filaments 131 

and phosphoinositides in the regulation of those defence-related responses.  132 

 133 

Materials and methods 134 

Plant material 135 

The following Arabidopsis thaliana genotypes were used: Columbia-0 (WT); NahG (Delaney et 136 

al, 1994); NahGpi4kβ1β2 (Šašek et al, 2014); pad4.1 (NASC stock N3806); pad4pi4kβ1β2 (this 137 

study); sid2, pi4kß1ß2, sid2pi4kß1ß2 (Kalachova et al, 2019); pmr4; pUBQ::PMR4-GFP in WT 138 

background; pUBQ::PMR4-GFP in pmr4 background (Kulich et al, 2018);  Lifeact-GFP 139 

(Cvrčková & Oulehlová, 2017); pUBQ::mCitrine-2xFAPP1 (Simon et al, 2014). 140 



Plant cultivation and treatment 141 

Seedlings were grown in MS medium, containing 4.41 g Murashige and Skoog medium including 142 

vitamins (Duchefa, Netherlands) and 5 g sucrose per litre, pH adjusted to 5.7 using 1M KOH. 143 

Surface-sterilized seeds were sown in 24-well plates, 4-5 seeds per well containing 400 μL of 144 

medium and  cultivated for 10 days before treatment under a short-day photoperiod (10 h/14 h 145 

light/dark regime) at 100-130 μE m-2 s-1 and 22°C. On the 7th day, 200 μL of fresh medium was 146 

added to the wells.  147 

Latrunculin B (latB, Sigma-Aldrich, USA) was dissolved in DMSO at 2 mM stock solution. The 148 

seedlings were treated 24 h with 200 nM latB and 0.01% DMSO as mock control prior to sampling.  149 

Gene expression analysis  150 

The whole seedlings (approximatively 300 µg fresh weight) from three wells were immediately 151 

frozen in liquid nitrogen. The tissue was homogenized in plastic Eppendorf tubes with 1 g of 1.3 152 

mm silica beads using a FastPrep-24 instrument (MP Biomedicals, USA). Total RNA was isolated 153 

using Spectrum Plant Total RNA kit (Sigma-Aldrich, USA) and treated with a DNA-free kit 154 

(Ambion, USA). Subsequently, 1 μg of RNA was converted into cDNA with M-MLV RNase H– 155 

Point Mutant reverse transcriptase (Promega Corp., USA) and an anchored oligo dT21 primer 156 

(Metabion, Germany). Gene expression was quantified by qPCR using a LightCycler 480 SYBR 157 

Green I Master kit and LightCycler 480 (Roche, Switzerland). The PCR conditions were 95 °C for 158 

10 min followed by 45 cycles of 95 °C for 10 s, 55 °C for 20 s, and 72 °C for 20 s. Melting curve 159 

analysis was then conducted. Relative expression was normalized to the housekeeping gene 160 

AtTIP41. A list of the analysed genes and primers is available in Supplemental table ST1. 161 

Trypan blue and anilin blue staining 162 

Seedlings were immersed into the staining solution (10 mL lactic acid (85%, w:w), 10 mL phenol, 163 

10 mL glycerol, 10 mL distilled H2O, 40 mg trypan blue) for 2 min (Fernández-Bautista et al, 164 

2016). Seedlings were then washed twice in ethanol:glacial acetic acid (1:3, v:v) until leaves were 165 

fully decoloured. Seedlings were rehydrated by incubating in ethanol solutions of decreasing 166 

concentrations (70%, 50%, 30%, v:v) for at least 30 min each. They were then stained in 0.01 % 167 

aniline blue in 150 mM K2HPO4, pH 9.5 for 4h and kept in water for the microscopy observation. 168 



Callose imaging and quantification 169 

Callose deposition was observed by fluorescence microscope using a Zeiss AxioImager 170 

ApoTome2 (objective 5x). Callose accumulation was calculated using FIJI software 171 

(https://fiji.sc/) (Schindelin et al, 2012) as the percent occupancy of aniline blue signal (spots) per 172 

region of interest (ROI). One round-shaped ROI (d=1500 µm) was taken from one cotyledon, at 173 

least 18 independent cotyledons were analysed per variant. 174 

 175 

Confocal microscopy  176 

For in vivo microscopy, a Zeiss LSM 880 inverted confocal laser scanning microscope (Carl Zeiss 177 

AG, Germany) was used with either a 40× C-Apochromat objective (NA = 1.2 W) or a 20x Plan-178 

Apochromat objective (NA = 0.8). Fluorescence associated with actin filaments (LifeAct-GFP) or 179 

phosphoinositides (mCitrine-2xFAPP1) was acquired at excitation 488 nm emission 490–540 nm 180 

for GFP and excitation 516nm emission 520-552 nm for mCitrine. Images were acquired at in z-181 

stacks 20µm thickness). Actin filaments density analysis was calculated by Fiji software as the 182 

percent occupancy of GFP/mCitrine signal in each Maximum intensity projection. For Lifeact-183 

GFP, image threshold was set to include all actin filaments and area fraction was measured. For 184 

each variant, fluorescent intensity of at least 30 ROI (50x50µm) from 10-14 leaves was analysed.  185 

 186 

Salicylic acid measurement 187 

All seedlings from 3 wells were sampled as 1 sample, frozen in nitrogen and stored at -80°C until 188 

the analysis. Samples were homogenized in tubes with 1.3 mm silica beads using a FastPrep-24 189 

instrument (MP Biomedicals, CA, United States) with 2 x 500 µl of extraction reagent 190 

methanol/water/formic acid (15:4:1, v:v:v) supplemented with stable isotope-labelled 13C-SA 191 

internal standards, each at 100 ng per sample, to check the recovery during the purification and to 192 

validate the quantification. Extract was subjected to solid phase extraction using Oasis MCX 193 

cartridges (Waters Co., Milford, MA, United States) and eluted with methanol. The eluate was 194 

evaporated to dryness and dissolved in 30 μl of 15% acetonitrile/water (v/v) immediately before 195 

the analysis. immediately before the analysis. Quantification was performed on an Ultimate 3000 196 

https://fiji.sc/


high-performance liquid chromatograph (UHPLC, Dionex; Thermo Fisher Scientific, Waltham , 197 

MA, United States) coupled to IMPACT II Q-TOF ultra-high resolution and high mass accuracy 198 

mass spectrometer  (HRAM-MS; Bruker Daltonik, Bremen, Germany). Separation was carried out 199 

using column Acclaim RSLC 120 C18 (2.2 m, 2.1x100 mm; Thermo Fisher Scientific, Waltham, 200 

MA, United States) tempered at 30°C and mobile phase consisting of 0.1% formic acid (A) and 201 

methanol (B) by gradient elution. The gradient started at 1%B and going to 39 % B in 3min, 60 % 202 

B in 7 min, 100 % B in 8 min, followed by 3 min of washing by 100% B and 5 min equilibration 203 

at initial conditions (1%B). Flow rate was changing during separation from 200 l/min to 300 204 

l/min in 7 min and then kept at this rate to 16 min. Injection volume was 5 L. The full-scan data 205 

were recorded in negative electrospray ionization (ESI) mode and processed using Data Analysis 206 

4.3 and TASQ 1.4 software (both Bruker Daltonik, Bremen, Germany). SA and labelled internal 207 

standard (13C6-SA) were monitored as ions of their deprotonated molecules [M-H]- (137.0239 m/z 208 

and 143.0440 m/z, respectively). SA content was expressed in ng/g fresh weight (FW). 209 

 210 

RESULTS  211 

Latrunculin B induces callose via PMR4 callose synthase 212 

Ten-day-old A. thaliana seedlings were treated for 24 h with 200 nM latB. As expected, 213 

latB treatment caused actin disruption, measured as the decrease of filament abundancy (fig.S1). 214 

The concentration used for the drug did not lead to cell death (fig.S1). More unexpectedly, the 215 

treatment also caused callose accumulation (measured as the area occupied with callose spots) 216 

(fig.1A,B).  217 



 218 
Figure 1. Latrunculin B (latB) induces PMR4-dependent callose accumulation. Ten days old 219 
A. thaliana seedlings were treated for 24h with 0.05% DMSO (mock) of 200 nM latB. A. 220 

Representative images of aniline blue stained cotyledons of WT, pmr4, pUBQ::PMR4-GFP in 221 

pmr4, and pUBQ::PMR4-GFP in WT, epifluorescent microscopy, scale bar = 500µm. B. 222 
Quantification of the relative area occupied with callose particles, n=18. Values for the mock-223 
treated plants are presented in white boxes, latB treated - in dark grey boxes. In the plots, central 224 
line represents the median occupancy, cross represents the mean, bottom and top edges of the box 225 
are 25 and 75% of distribution and the ends of whiskers are set at 1.5 times the interquartile range. 226 

Values outside this range are shown as outliers. Different letters indicate variants that are 227 

significantly different, one-way ANOVA with Tukey-HSD test, p<0.05. C. Relative expression of 228 

PMR4. Relative expression of PMR4 in WT plants. Values were normalized for the untreated WT. 229 



TIP41 was used as the reference gene. D. Salicylic acid content. *** - variants are significantly 230 
different, two-tailed t-test, p<0.001, n=8. 231 

 232 

Among twelve known callose synthases in A. thaliana, PMR4 was shown to be a major 233 

one involved to biotiс stress responses (Nishimura et al., 2003; Kulich et al., 2018). We therefore 234 

tested its contribution to latB-triggered callose. In the pmr4 mutant seedlings, the callose level 235 

detected after latB treatment was nearly equal to that in mock-treated control. When a 236 

pUBQ::PMR4-GFP construct was expressed in WT or pmr4 backgrounds, basal callose level in 237 

cotyledons remained low. Yet, when latB was added, callose accumulation was restored (Fig. 1B). 238 

Besides, such an induction did not rely on transcriptional changes, as soon as the expression of 239 

PMR4 was not affected (Fig. 1C).  240 

 241 

Latrunculin B effects on callose accumulation is SA-independent  242 

The fact that latB treatment causes callose accumulation through PMR4 strongly suggests 243 

that other defence-related responses should be studied. We therefore decided to study the role of 244 

SA content and signaling pathway in the observed callose deposition. To do so, we first measured 245 

SA levels in seedlings after latB treatment. A 20-fold increase of SA was observed in WT 246 

seedlings. Notably, pmr4 plants behaved similarly to WT, suggesting callose to be either 247 

downstream, either independent on SA (fig. 1D, Supplementary table ST3). To address this, we 248 

analyzed SA induction and callose deposition in plants with altered SA pathway: NahG mutant 249 

plants, expressing the bacterial salicylate hydroxylase that degrades SA to inactive catechol and 250 

therefore unable to accumulate SA; sid2 plants, deficient in ISOCHORISMATE SYNTHASE 1 251 

(ICS1); and pad4 plants, with a mutation in PHYTOALEXIN DEFICIENT 4 (PAD4) (fig.2, 252 

Supplementary table ST3). PAD4 protein has been shown to regulate the synthesis of SA via the 253 

ICS1 pathway (Cui et al, 2017). As expected, both NahG and pad4 plants had lower basal content 254 

of SA, and smaller (approx. 5-fold) increase in SA after latB comparing to WT. sid2 plants showed 255 

no increase in SA, pointing out that the detected SA was produced by ICS1. On the contrary, 256 

callose production was not affected any of the studied mutants, confirming SA-independent nature 257 

of the process (fig. 2, B,C).  258 



 259 

Figure 2. SA-independent induction of callose accumulation by latB treatment. Ten-day-old 260 
seedlings of WT, NahG, sid2 and pad4 were treated by 200 nM latB or 0.01 % DMSO as the 261 
control. Seedlings were harvested 24 hr after the treatment A. SA content. *** - samples are 262 
different, p<0.001, two-tailed t-test. B. Representative images of aniline blue stained cotyledons, 263 

scale bar 500 µm. C. Relative area of callose particles. Central line of the boxplot represents the 264 

median occupancy, cross represents the mean, bottom and top edges of the box are 25 and 75% of 265 
distribution and the ends of whiskers are set at 1.5 times the interquartile range. Values outside 266 
this range are shown as outliers. Different letters indicate variants that are significantly different, 267 
one-way ANOVA with Tukey-HSD test, p<0.05. At least 30 independent cotyledons were 268 
analysed for each variant.  269 

 270 

Latrunculin B affects gene expression in both SA-dependent and -independent manner 271 



We had already shown that latB could induce the expression of some genes related to plant 272 

defence (Leontovyčova et al, 2019; Matoušková et al, 2014). Here we studied whether intracellular 273 

level of SA or an intact SA-signaling pathway is needed for latB to trigger gene expression changes 274 

(figure 3, Supplementary figure S2, Supplementary table ST2). To do so, we analysed the 275 

expression of several defence marker genes in NahG and pad4 mutants. Eleven-day-old in vitro 276 

grown plants (whole seedlings) of WT and mutant genotypes were harvested for gene expression 277 

studies 24 hpt by 200nM latB. Concerning the gene response in WT plants, we show here that the 278 

defence-associated PR1, PR2, WRKY38, ICS1 and PAD4 were induced by latB (Figure 3). We also 279 

detected an activation of the wounding marker BAP1, even though no cell death was yet detected 280 

by trypan blue staining (Supplemental figure S1). On the contrary, no significant changes were 281 

observed in the expression of SA biosynthetic genes other than ICS1 (ICS2, PAL1, PAL2, PAL3). 282 

To be noted, ICS2 expression seems to be very dependent on the growth conditions, as we 283 

previously detected its induction after latB treatment (Leontovyčova et al, 2019). In addition, 284 

neither jasmonate biosynthesis marker genes (LOX2, AOS1), nor jasmonate responsive genes 285 

(VSP2 and PDF1.2), nor ethylene marker gene (ERF1) were significantly affected by the treatment 286 

(Supplemental figure S2, Supplemental Table ST2).  287 

 288 

 289 



Figure 3. SA-independent expression of defence-related genes by latB treatment. Ten-day-290 
old seedlings of WT, NahG and pad4 were treated by 200 nM latB or 0.01 % DMSO as the control. 291 
Seedlings were harvested 24 hr after the treatment. Data from the representative experiment are 292 

shown. Values were normalized for mock treated WT, note that data are plotted at the log10 scale. 293 
Asterisks indicate values, different from respective controls for each genotype, * - p<0,05; *** - 294 
p<0.001, two-tailed Student t-test). Reference gene TIP41. 295 

However, we detected that PR1 and WRKY38 inductions by latB were abolished in NahG 296 

and pad4 mutants, strongly suggesting these inductions rely on a SA-dependent pathway (fig.3). 297 

This also involves that SA is accumulated in response to latB (Fig.2 A). On the contrary, the 298 

expression of PR2 in response to latB appears not to be dependent on SA since it was still present 299 

in NahG and pad4 mutants. Similarly, the expression of the PAD4 by latB was still present in 300 

NahG plants: it does not rely on SA accumulation. The expression of ICS1 in response to latB does 301 

not appear to be controlled by SA level in the tissues, as seen in NahG mutant. Yet, PAD4 protein 302 

regulates ICS1 expression, at least partly. As for the induction of the expression of BAP1 by latB, 303 

it was diminished in NahG and pad4 mutants (though still present), and so can be considered as 304 

partly SA-dependent.  305 

We can thus conclude that latB induces several defence-like responses: there is an 306 

induction of SA; it leads to the induction of PR1 and WRKY38. However, an alternative, SA-307 

independent, pathway also exists. It controls the expression of PR2, ICS1, PAD4 and callose 308 

accumulation in response to latB.  309 

Effects of latB on cytoskeleton are enhanced in pi4kß1ß2 double mutant 310 

Phosphoinositides, that are the phosphorylated forms of phosphatidylinositol (PI), are 311 

involved in vesicular trafficking. This process requires correct actin cytoskeleton organization 312 

(Pleskot et al, 2014). There is therefore a link between actin cytoskeleton and phosphoinositides. 313 

We wanted to investigate whether the effect of latB could be impacted by a modification in 314 

phosphoinositide metabolism. To do so, we used the pi4kß1ß2 double mutant. This mutant is 315 

invalidated in the two beta isoforms of phosphatidylinositol-4-kinases. This double mutant was 316 

shown to have impaired vesicle trafficking, dwarf phenotype and increased SA level (Kang et al, 317 

2011; Šašek et al, 2014).  318 

We firstly introduced LifeAct-GFP construct into pi4kß1ß2 background by crossing. Four 319 

independent lines were tested. No major defects in actin filaments organization in epidermal cells 320 

were observed while compared to WT (fig.4). After 24h of latB treatment, the density of the 321 



filaments in pi4kß1ß2 plants was 20-times lower than that in non-treated double mutant, while in 322 

the WT background this decrease was 5-fold. Consequently, in pi4kß1ß2 plants the actin filaments 323 

were almost lost while in WT their occupancy was still 7% (fig 4B). The actin cytoskeleton of 324 

pi4kß1ß2 mutants thus appear to be more sensitive to latB. Meanwhile, we wanted to evaluate the 325 

impact of latB directly on the PI4P content using genetically encoded biosensor mCitrine-326 

2xFAPP1 for PI4P (Simon et al., 2014). The sensor mostly labels PI4P localized in plasma 327 

membrane. In our setup, the content of PI4P remained stable in response to latB (fig.S3 A, C). 328 

 329 

Figure 4. Effect of latB on actin filaments organization of pi4kß1ß2 mutants. A. Representative 330 

images of maximum intensity projections of 10µm abaxial epidermis of LifeAct-GFP expressing 331 

WT and pi4kß1ß2 plants. Confocal microscopy, scale bar = 20µm. Quantification of relative area 332 

occupied with fluorescent filament in WT (B) and pi4kß1ß2 (C). For each variant at least 15 333 
independent seedlings were imaged, n=12. For quantification, maximµm intensity projections of 334 
10µm Z-stacks of abaxial sides of the leaves were used. At least 30 regions of interest (ROI) 335 

measured for each treatment. In the plots, central line represents the median occupancy, cross 336 

represents the mean, bottom and top edges of the box are 25 and 75% of distribution and the ends 337 

of whiskers are set at 1.5 times the interquartile range. Values outside this range are shown as 338 
outliers. Asterisks indicate statistically significant differences with the mock treatment, Student t-339 
test, p<0,05 340 

 341 

Effects of latB on callose accumulation in pi4kß1ß2 double mutant is still SA-independent 342 



Because it seems there was a positive (enhancing) interaction between latB and PI4Kbeta 343 

mutations on actin filaments, we studied SA levels, callose accumulation and gene expression 344 

responses to latB in pi4kß1ß2 plants. Indeed, latB triggered SA increase in pi4kß1ß2 plants (fig. 345 

5A). Surprisingly, introduction of neither NahG construct nor pad4 mutation into pi4kß1ß2 346 

background did not fully prevent SA increase as it did in WT background (fig.2A), even though 347 

such an increase was still much lower than in WT or pi4kß1ß2.  However, sid2 mutation was 348 

sufficient to block SA production in both WT and pi4kß1ß2, confirming that the entire SA pool 349 

induced by latB treatment is synthetized due to ICS1 activity in both backgrounds. As for callose, 350 

its basal levels in 8-, 10- and 14-day-old pi4kß1ß2 seedlings were similar to that of WT 351 

(Supplemental figure S4). To study the involvement of SA, the callose accumulation was also 352 

tested in triple mutants NahGpi4kß1ß2 (Šašek et al, 2014), sid2pi4kß1ß2 (Kalachova et al, 2019) 353 

and pad4pi4kß1ß2, obtained by crossing pi4kß1ß2 to pad4 (homozygous F3 plants were used). 354 

After latB treatment, accumulation of callose in all studied mutants was similar to that in WT (fig. 355 

5B), suggesting that callose response to latB in pi4kß1ß2 is still not SA-dependent (fig. 5B). This 356 

is consistent with our findings in WT plants. 357 

 358 



Figure 5. LatB induced SA and callose accumulation in pi4kß1ß2 mutants. Ten-days-old 359 
seedlings were treated by 200 nM latB or 0.01% DMSO as mock control. Seedlings were harvested 360 
24 hr after the treatment. A. SA content. Data from two independent experiments are plotted. B. 361 

Relative area of callose particles in the cotyledons. At least 30 independent cotyledons were 362 
analysed for each variant. Experiment was repeated three times with similar results, the data from 363 
a representative repetition are shown. In boxplots, central line represents the median occupancy, 364 
cross represents the mean, bottom and top edges of the box are 25 and 75% of distribution and the 365 
ends of whiskers are set at 1.5 times the interquartile range. Values outside this range are shown 366 

as outliers. Different letters mark significantly different values, p<0,05; Student t-test, unequal 367 

variance.  368 

 369 

Effects of latrunculin B on defence genes expression in pi4kß1ß2 double mutant  370 

As for PR1 and WRKY38, after latB treatment, their induction in pi4kß1ß2 was comparable 371 

to that in WT. Yet, contrary to what was observed in WT background, their induction was also 372 

observed in NahGpi4kß1ß2 and pad4pi4kß1ß2 triple mutants (fig. 6). This is in agreement with 373 

the fact that SA is still accumulated in these triple mutants. BAP1 expression in PI4K deficient 374 

mutants after latB treatment was induced less than in WT and was partly SA-dependent (fig. 6). 375 

Besides, neither induction of SA biosynthetic enzymes other than ICS1 was detected, nor of JA-, 376 

ABA-, or ethylene markers (Supplemental figure S5, supplemental table ST2).  377 

 378 

Figure 6. LatB–induced gene expression in pi4kß1ß2 mutants. Ten-days-old seedlings of WT, 379 

pi4kß1ß2, NahGpi4kß1ß2 and pad4pi4kß1ß2 were treated by 200 nM latB or 0.01% DMSO as 380 
mock control. Seedlings were harvested 24 hr after the treatment. Data are normalized to mock-381 

treated WT, note that data are plotted at the log10 scale.  Asterisks indicate values, different from 382 



respective controls for each genotype, * - p<0,05; *** - p<0.001, two-tailed Student t-test). 383 
Reference gene TIP41. 384 

 385 

DISCUSSION 386 

We show here that latrunculin B induces callose accumulation in seedlings. It is also true for 387 

cytochalasin E, another actin filament disruptor (data not shown). Therefore, it is very likely that 388 

this effect of latB is due to actin depolymerization. Callose deposition was reported in responses 389 

to various stresses, like wounding or pathogen infection (Jacobs et al, 2003). We had previously 390 

shown that chemical disruption of actin led to some immunity-related responses such as activation 391 

of PR1 expression (Matouskova et al., 2014). In this regard, callose is particularly important, as 392 

another biotic-stress-like response, partly connected with SA. Arabidopsis genome encodes twelve 393 

callose synthases (Voigt, 2014). PMR4 (POWLDERY MILDEW RESISTANT 4, also called 394 

GLUCAN SYNTHASE LIKE 5, GLS5 or CALS12) is precisely the one activated during infection 395 

(Nishimura et al, 2003). Here we first show that callose accumulation induced by latB fully relies 396 

on PMR4. It indicates its connection with a biotic stress. Interestingly, using NahG and pad4 397 

mutants, we show that latrunculin B effects on callose accumulation is SA-independent and not 398 

downstream of PAD4. To be noted, pmr4 mutant itself was reported to have a constitutively 399 

activated SA pathway in adult plants and contribute to most of callose accumulations in studies 400 

connected with biotics stres (Nishimura et al., 2003). Nevertheless, SA level in pmr4 seedlings did 401 

not differ from that in WT (Supplementary table ST3). It was also true for pi4kß1ß2 plants, known 402 

as SA and callose accumulators while being grown up to 4-weeks (Kalachova et al, 2019). 403 

However, neither SA nor callose levels were increased in non-stimulated seedlings (figure 5). A 404 

negative interaction between actin polymerisation, callose and SA levels has been suggested 405 

recently: natural polymorphism of genetic disruption of Actin Related Protein Complex 4 406 

(ARPC4) affected pathogen- and wounding-induced callose deposition, as well as affected 407 

expression of PR1 in response to Sclerotinia sclerotiorum (Badet et al, 2019).  408 

As latB action on callose appeared as SA-independent, we wanted to check whether the 409 

effect of latB on gene expression was also independent on SA. We first better detailed the changes 410 

in gene expression triggered by latB. We show here that PR1, PR2, WRKY38, ICS1 and PAD4 411 

were induced by latB in WT. It is also the case for a marker of cell death in pathogen and wounding 412 

responses, BAP1 (Yang et al, 2007). BAP1 was described as wounding marker, but also as a SA-413 



associated gene: it negatively regulates cell death in response to Pseudomonas syringae pv tomato 414 

and Hyaloperonospora parasitica acting in the same pathway with BON1, SNC1 and PAD4 (Yang 415 

et al, 2006) BAP1 expression can be induced by high temperature or ROS formation, however this 416 

induction was abolished in mutants with altered SA pathways (NahG, pad4) (Hedtmann et al, 417 

2017; Zhu et al, 2011). In our setup, the expression of BAP1 was increased independently of the 418 

SA content in plants, indicating a new role of this gene in plant stress responses. Yet, no significant 419 

changes were observed in the expression of SA biosynthetic genes other than ICS1 (ICS2, PAL1, 420 

PAL2, PAL3), nor in the expression of LOX2 and AOS, a JA-biosynthesis marker genes, nor to the 421 

jasmonate responsive genes VSP2 and PDF1.2. Genes involved in ethylene biosynthesis (ACS2) 422 

(Denoux et al, 2008), ethylene response (ERF1, LEA4-1)(Lorenzo et al, 2003) or to the response 423 

of abscisic acid (ABI1)(Leung et al, 1997) were not induced by latB. Therefore, it seems that latB 424 

action is not “universal”, that it does not lead to a deregulation of the whole transcriptome. Its 425 

action seems to be directed mainly towards the SA signalling pathway or toward response to 426 

biotrophic pathogens.  427 

Clearly, a SA dependent pathway is activated by latB. Expression of PR1, a classical 428 

representative of defence genes, is usually induced during pathogen attack, but also as a reaction 429 

to any SA increase. Besides, ICS1, that is responsible for most of the SA accumulation in response 430 

to bacteria (Li et al, 2019; Wildermuth et al, 2001; Zheng et al, 2015), was strongly induced. 431 

Therefore, the question was the following: did the changes in gene expression, that target SA 432 

responsive genes, occur through a SA-dependent pathway. We could show that the expression of 433 

PR1 and WRKY38 by latB relied on SA accumulation and a functional PAD4 protein. The fact that 434 

ICS1 expression is controlled by PAD4 in response to pathogen was established (Cui et al., 2017). 435 

Yet, the expression of PR2 and ICS1 is independent on SA, as seen in the NahGpi4kß1ß2. PR2 is 436 

one of the early defence genes, usually co-expressed with PR1 and PR5 and used as a marker of 437 

SA pathway (Hamamouch et al, 2011). Nevertheless, here we describe its clear SA-independent 438 

induction. It might seem contradictory, unless we take into account that PR2 protein is β-1,3-439 

glucanase, particularly important for antifungal defences (Ali et al, 2018). PR2 is crucial for callose 440 

degradation and contributes to the SA increase; its overexpression enhances resistance both to 441 

fungal and bacterial pathogens (Oide et al, 2013).  442 



It thus appears that latB (likely through its action on actin filaments) activates a signaling 443 

pathway typical of the response to pathogens. It activates PAD4. Some of the PAD4 action leads 444 

to ICS1 expression, to SA accumulation and to the expression of SA responsive genes. Yet, a part 445 

of PAD4 action is not dependent on SA, as seen by ICS1 expression. LatB also triggers a pathway 446 

that does not involve PAD4 nor SA, and that leads to callose accumulation and PR2 expression.  447 

The action of latB is likely to occur through actin filament depolymerization. Actin 448 

filaments are involved in the control of vesicle trafficking. Phosphoinositides are also involved in 449 

vesicular trafficking. There is indeed an interaction/interplay between actin filaments and 450 

phosphoinositides (Pleskot et al, 2014). F-actin capping protein interaction with actin monomers 451 

is regulated by phosphatidic acid and phosphatidylinositol-4,5-bisphosphate, a phosphoinositide 452 

(Pleskot et al, 2012). In pollen tube, cytoskeletal disruption by latB or jasplakinolide not only 453 

affects actin and arrested tube growth, but also causes relocalization and even dissociation of 454 

RabA4a and RabA4b-tagged vesicles (Zhang et al, 2010). Interestingly, PI4Kβ1 and PI4Kβ2 were 455 

shown to be recruited by RabA4b. Due to this interaction between actin and phosphoinositides in 456 

relation to vesicle trafficking, we were interested to investigate whether the action of latB could 457 

be impacted by alteration in phosphoinositide metabolism. To address this, pi4kß1ß2 mutant was 458 

a tool of choice. As already mentioned, PI4Ks are the first enzymes that commit PI toward the 459 

synthesis of phosphoinositides, and the beta isoforms PI4Kβ1 and PI4Kβ2 were shown to be 460 

recruited by RabA4b. PI4Kbeta proteins participate in cytokinesis in Arabidopsis roots by 461 

targeting actin filaments to the cell plate (Lin et al, 2019). Nevertheless, it is important to consider 462 

the fact that pi4kß1ß2 plants exhibit constitutive activation of SA-related genes and high basal 463 

levels of callose. Yet it is true for mature 4 week-old soil-grown plants (Antignani et al, 2015; 464 

Kalachova et al, 2019; Šašek et al, 2014). In younger plants, no PR1 overexpression was detected 465 

(Sasek et al., 2014). In the present study we used 10-day-old seedlings grown in vitro. In these 466 

conditions, neither SA accumulation (fig.5 A, Supplementary table ST3), nor constitutively high 467 

expression of PR1 and ICS1 was observed (fig. 6).  468 

The actin cytoskeleton of pi4kß1ß2 mutants appear to be more sensitive to latB (fig.4). 469 

This is consistent with the above mentioned references which show F-actin capping protein 470 

interaction with actin monomers is regulated by phosphatidic acid and phosphatidylinositol-4,5-471 

bisphosphate, a phosphoinositide (Pleskot et al, 2012). In response to latB, pi4kß1ß2 seedlings 472 



accumulated callose, in a SA- and PAD4- independent way, as observed in WT plants. Yet, when 473 

we assay the SA increase in response to latB, a process not observed in WT is then detected: the 474 

SA induction in pi4kß1ß2 background still occurs, despite the mutation in PAD4 or expression of 475 

NahG. The pi4kß1ß2 double mutation allows to reveal a signalling pathway, triggered here by 476 

latB, that leads to SA biosynthesis and PR1 expression independently on PAD4. Yet, the PR1 477 

expression in response to latB was not only observed in NahGpi4kß1ß2 and pad4pi4kß1ß2 triple 478 

mutants, but also in sid2pi4kß1ß2 (data not shown). Therefore, our data on the existence of such a 479 

SA independent pathway are strong. Is this pathway usually actively inhibited by functional 480 

PI4Ks? Is it linked to the effect of pi4kß1ß2 double mutation on trafficking? Or is it due to a role 481 

of phosphoinositide on signalling? An important contribution may come from immune-related 482 

MAPKs, whose transient or sustained activation works as a switch between pattern-triggered 483 

immunity and effector triggered immunity (Tsuda et al, 2013). Indeed, Tsuda et al. described 484 

expression of PR1 in sid2 background, induced by constitutive activation of MPK3 and MPK6. 485 

Another enzyme of the cascade, MPK4, was shown to interact with PI4Kβ1 during cell plate 486 

formation in cytokinesis (Lin et al, 2019). More research is necessary to understand and 487 

characterize this pathway.  488 

To summarize, we here report the defence-like consequences of actin cytoskeleton 489 

disruption by latB (fig. 7). Two kinds of signalling pathways were activated by latB treatment: a 490 

first pathway is independent on SA; it leads to the expression of genes such as PR2, but also to 491 

callose accumulation through PMR4. The second pathway involves SA synthesis via PAD4 and 492 

ICS1; it leads to the expression of genes such as PR1 and WRKY38. The double mutation in 493 

PI4Kß1ß2 makes the effect of latB on filaments more pronounced. Interestingly, the SA increase 494 

and PR1 expression in response to latB in the pi4kß1ß2 background is also triggered in an 495 

unconventional, PAD4-independent pathway. Either this pathway is actively inhibited in WT 496 

background by PI4Kß1ß2 (and thus not seen), or it is activated only when the PI4Kß1ß2 are 497 

missing. 498 

 499 

 500 



 501 

Figure 7. Graphical summary of the latrunculin B effects in seedlings.  The disruption of actin 502 
polymers by latB activates two kinds of signalling pathways. A first pathway is independent on 503 

SA; it leads to the expression of genes such as PR2, but also to callose accumulation. The second 504 
pathway involves SA synthesis via PAD4 and ICS1; it leads to the expression of genes such as 505 
PR1 and WRKY38. The double mutation in PI4K beta1 and beta2 makes the effect of latB on 506 
filaments more pronounced. Interestingly, the PR1 expression in response to latB is no longer SA-507 
dependent in the pi4kß1ß2 background: a SA independent pathway leading to PR1 expression is 508 

thus revealed.  509 

Still several open questions remain: what makes actin depolymerization trigger these pathways? 510 

Is it the disrupted actin per se that act? Or are these pathways activated as a response to a process 511 

altered due to lack of good filaments? Such a process could be a modified vesicle trafficking due 512 

the missing actin filaments. In this regard, it would be interesting to monitor the processing of 513 

receptors of MAMPs in seedlings submitted to artificial cytoskeleton depolymerization agents. 514 

We believe this work sheds light on the connection between cytoskeleton dynamics, vesicular 515 

trafficking and immunity at the cellular and subcellular level and thus will contribute to better 516 

understanding of plant responses to changing environment. 517 

 518 

 519 
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SUPPLEMENTARY DATA: 544 

Supplemental figure S1. LatB treatment did not cause cell death in seedlings. A. Actin 545 

depolymerization after latB treatment.  Representative confocal images of abaxial epidermis of 546 
10-days-old A.thaliana seedlings expressing Lifeact-GFP treated with for 24h with 0.05% DMSO 547 
(mock) of 200nM latB. Confocal microscopy, scale bar = 20µm. B. Trypan blue staining of 548 

seedlings. Boiling for 5min was used as a positive control for cell death; color camera, scale bar = 549 
500µm. 550 

 551 

  552 



Supplementary figure S2. Relative expression of SA biosynthesis and JA marker genes in 553 
NahG and pad4 mutants. Ten-days-old seedlings of WT, NahG and pad4 were treated by 200 554 
nM latB or 0.01% DMSO as mock control. Seedlings were harvested 24 hr after the treatment. 555 

Data are normalized to mock-treated WT, note that data are plotted at the log10 scale.  Asterisks 556 
indicate values, different from respective controls for each genotype, * - p<0,05; *** - p<0.001, 557 
two-tailed Student t-test). Reference gene TIP41.  558 

 559 

  560 



Supplemental figure S3. LatB decrease actin filaments abundance while PI4P level remains 561 
stable. Ten-days-old seedlings were imaged 24h after replacing cultivation media with 0.05% 562 
DMSO (Mock) of 200nM latrunculin B (latB). For each variant at least 10 individual seedlings 563 

were observed. A. Representative images of the cotyledons of Lifeact-GFP and mCitrine-564 
2xFAPP1 expressing plants after latB treatment; confocal microscopy, scale bar 20µm. 565 
Quantification of the actin filaments by lifeact-GFP signal intensity (B); PI4P levels by mCitrine-566 
2xFAPP1 fluorescent signal intensity (C). For quantification, maximum intensity projections of 567 
10µm Z-stacks of abaxial sides of the leaves were used. At least 30 regions of interest (ROI) 568 

measured for each treatment. In the plots, central line represents the median occupancy, cross 569 

represents the mean, bottom and top edges of the box are 25 and 75% of distribution and the ends 570 
of whiskers are set at 1.5 times the interquartile range. Values outside this range are shown as 571 
outliers.  Asterisks indicate statistically significant differences with the mock treatment, Student t-572 
test, p<0,05 573 

 574 

  575 



Supplemental figure S4. Representative images of basal callose accumulation in WT and 576 
pi4kß1ß2 seedlings. Anilin blue staining, epifluorescent microscopy, scale bar 500µm.  577 

 578 

  579 



Supplementary figure S5. Relative expression of SA biosynthesis and JA marker genes in 580 
pi4kß1ß2 mutants. Ten-days-old seedlings of WT, pi4kß1ß2, NahGpi4kß1ß2 and pad4pi4kß1ß2 581 
were treated by 200 nM latB or 0.01% DMSO as mock control. Seedlings were harvested 24 h 582 

after the treatment. Data are normalized to mock-treated WT, note that data are plotted at the log10 583 
scale.  Asterisks indicate values, different from respective controls for each genotype, * - p<0,05; 584 
*** - p<0.001, two-tailed Student t-test). Reference gene TIP41.  585 

 586 

 587 

 588 
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Supplemental table ST1. Primers used in this study 591 

 592 

Gene Accession number Forward primer Reverse primer 

TIP41 AT4G34270 GTGAAAACTGTTGGAGAGAAGCAA TCAACTGGATACCCTTTCGCA 

PR1 AT2G14610 AGTTGTTTGGAGAAAGTCAG GTTCACATAATTCCCACGA 

PR2 AT3G57260 TATAGC CAC TGA CAC CAC GCCAAGAAACCTATCACTG 

ICS1 At1g74710 GCAAGAATCATGTTCCTACC AATTATCCTGCTGTTACGAG 

ICS2 AT1G18870 TGTCTTCAAAGTCTCCTCTG CTTCCTCCAAACTCATCAAAC 

WRKY38 At5g22570 GCCCCTCCAAGAAAAGAAAG CCTCCAAAGATACCCGTCGT 

LOX2 AT3G45140 ATCCCACCTCACTCATTACT ATCCAACACGAACAATCTCT 

VSP2 AT5G24770 CCAAACAGTACCAATACGAC CTTCTCTGTTCCGTATCCAT 

PAL1 AT2G37040 GTGTCGCACTTCAGAAGGAA GGCTTGTTTCTTTCGTGCTT 

PAL2 AT3G53260 GTGCTACTTCTCACCGGAGA TATTCCGGCGTTCAAAAATC 

PAL3 AT5G04230 CAACCAAACGCAACAGCA CTCCAGGTGGCTCCCTTTTA 

PAD4 AT3G52430 GGTTCTGTTCGTCTGATGTT GTTCCTCGGTGTTTTGAGTT 

BAP1 At3g61190 ATGCCCATCAATGGTAATG TCCCACACTTATCACCAAA 

PDF1.2a AT5G44420 ACGCACCGGCAATGGTGGAA TGCATGATCCATGTTTGGCT 

PDF1.2c AT5G44430 CTGCTACCATCATCACCTTC CCGCAAACGCCTGACCATGT 

AOS AT5G42650 GGTCATCAAGTTCATAACCG TTTCTCAATCGCTCCCAT 

ACS2 At1g01480 GTTAAGCTCAATGTGTCTCC AAGCAAATCCTAAACCATCC 

ERF1 At3g23240 ATCAAATCCGTAAGCTCAAG CCAAACCCTAATACCGTTTC 

LEA4-1 AT1G32560 AGCAAAAGCTGATGAGAAGGCA TAGGTCTGAGGAGGCACTGA 

ABI1 AT4G26080 ATGTCGAGATCCATTGGCGAT TTCCTTTCTCCGCTCATCCG 

PMR4 AT4G03550 ATGTACACATGTAAATGGCG GAGGCTGGGTCTCGAGGAGTT 

 593 

 594 



Supplemental table ST2. Effect of latB on defence gene expression. 

 

  

PdF1.2a 1.03 ± 0.29 3.48 ± 0.64 2.22 ± 0.78 2.25 ± 0.32 1.84 ± 0.21 4.50 ± 0.70 1.72 ± 0.18 4.79 ± 0.92 3.49 ± 0.54 13.29 ± 2.34 4.67 ± 0.67 4.91 ± 0.96

PdF1.2c 1.17 ± 0.43 4.64 ± 1.05 1.82 ± 0.66 2.78 ± 0.37 2.15 ± 0.31 6.00 ± 1.05 1.73 ± 0.20 6.93 ± 1.55 2.34 ± 0.34 16.99 ± 5.05 4.15 ± 0.69 5.75 ± 1.25

ACS2 3.83 ± 2.15 2.20 ± 0.16 3.07 ± 0.33 4.97 ± 1.12 8.81 ± 1.30 42.83 ± 7.80 0.47 ± 0.18 2.13 ± 0.21 5.05 ± 0.87 10.43 ± 1.26 1.40 ± 0.12 10.30 ± 3.72

AOS 1.14 ± 0.39 6.07 ± 0.87 0.48 ± 0.15 1.27 ± 0.44 1.26 ± 0.67 2.05 ± 1.24 0.62 ± 0.14 2.15 ± 0.28 1.60 ± 0.76 5.08 ± 1.14 2.69 ± 0.92 5.82 ± 1.63

ERF1 2.05 ± 0.80 8.57 ± 0.55 1.09 ± 0.12 5.82 ± 0.55 2.86 ± 0.33 13.32 ± 1.90 0.82 ± 0.27 5.99 ± 0.68 2.51 ± 0.80 13.83 ± 0.92 3.13 ± 0.23 11.10 ± 1.91

LEA4-1 1.14 ± 0.32 1.35 ± 0.23 1.21 ± 0.24 0.87 ± 0.24 0.82 ± 0.15 1.29 ± 0.19 0.93 ± 0.12 0.97 ± 0.07 0.95 ± 0.22 1.25 ± 0.29 3.45 ± 2.07 0.92 ± 0.13

ABI1 0.98 ± 0.04 1.18 ± 0.03 0.89 ± 0.05 1.13 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.56 ± 0.02 0.79 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

pad4

mock LatB

NahGWT

mock LatB mock LatB LatB

pi4kβ1β2 NahGpi4kβ1β2 pad4pi4kβ1β2

mock LatB mock LatB mock



Supplemental table ST3. Effect of latB on salicylic acid content in seedlings. Seedlings were grown in vitro for 10 days and 

treated with 1µM latB for 24h. DMSO was used as mock treatment. SA content was measured by LC-MS. Means ± SE from 8 

values generated in two independent experiments are shown. 

 

 

 

 

 

SA content (ng/ g FW)

WT 307,70 ± 66,59 7247,39 ± 793,85

pmr4 402,10 ± 45,02 10179,89 ± 756,35

NahG 64,11 ± 6,30 451,38 ± 51,03

sid2 54,30 ± 6,84 54,84 ± 3,32

pad4 102,97 ± 20,15 788,84 ± 158,57

pi4kβ1β2 159,56 ± 26,04 6879,74 ± 864,17

NahGpi4kβ1β2 105,50 ± 18,14 2286,92 ± 222,89

sid2pi4kβ1β2 60,94 ± 9,76 62,75 ± 10,80

pad4pi4kβ1β2 237,77 ± 92,15 1925,06 ± 385,01

DMSO LatB
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