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Fast approximation of centrality and distances in hyperbolic graphs

We show that the eccentricities (and thus the centrality indices) of all vertices of a δhyperbolic graph G = (V, E) can be computed in linear time with an additive one-sided error of at most cδ, i.e., after a linear time preprocessing, for every vertex v of G one can compute in O(1) time an estimate ê(v) of its eccentricity eccG(v) such that eccG(v) ≤ ê(v) ≤ eccG(v) + cδ for a small constant c. We prove that every δ-hyperbolic graph G has a shortest path tree, constructible in linear time, such that for every vertex v of G, eccG(v) ≤ eccT (v) ≤ eccG(v) + cδ. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of G, the smaller its eccentricity is. We also show that the distance matrix of G with an additive one-sided error of at most c ′ δ can be computed in O(|V | 2 log 2 |V |) time, where c ′ < c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.

Introduction

The diameter diam(G) and the radius rad(G) of a graph G = (V, E) are two fundamental metric parameters that have many important practical applications in real world networks. The problem of finding the center C(G) of a graph G is often studied as a facility location problem for networks where one needs to select a single vertex to place a facility so that the maximum distance from any demand vertex in the network is minimized. In the analysis of social networks (e.g., citation networks or recommendation networks), biological systems (e.g., protein interaction networks), computer networks (e.g., the Internet or peer-to-peer networks), transportation networks (e.g., public transportation or road networks), etc., the eccentricity ecc(v) of a vertex v is used to measure the importance of v in the network: the centrality index of v [START_REF] Koschützski | Centrality Indices, Network Analysis[END_REF] is defined as 1 ecc (v) . Being able to compute efficiently the diameter, center, radius, and vertex centralities of a given graph has become an increasingly important problem in the analysis of large networks. The algorithmic complexity of the diameter and radius problems is very well-studied. For some special classes of graphs there are efficient algorithms [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse Graphs[END_REF][START_REF] Ben-Moshe | Efficient algorithms for center problems in cactus networks[END_REF][START_REF] Brandstädt | The algorithmic use of hypertree structure and maximum neighbourhood orderings[END_REF][START_REF] Cabello | Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs[END_REF][START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF][START_REF] Chepoi | Center and diameter problems in plane triangulations and quadrangulations[END_REF][START_REF] Corneil | Diameter determination on restricted graph families[END_REF][START_REF] Dragan | LexBFS-orderings of distance-hereditary graphs with application to the diametral pair problem[END_REF][START_REF] Dvir | The absolute center of a network[END_REF][START_REF] Hakimi | Optimum location of switching centers and absolute centers and medians of a graph[END_REF][START_REF] Olariu | A simple linear-time algorithm for computing the center of an interval graph[END_REF]. However, for general graphs, the only known algorithms computing the diameter and the radius exactly compute the distance between every pair of vertices in the graph, thus solving the all-pairs shortest paths problem (APSP) and hence computing all eccentricities. In view of recent negative results [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse Graphs[END_REF][START_REF] Borassi | Into the square -on the complexity of quadratic-time solvable problems[END_REF][START_REF] Roditty | Fast approximation algorithms for the diameter and radius of sparse graphs[END_REF], this seems to be the best what one can do since even for graphs with m = O(n) (where m is the number of edges and n is the number of vertices) the existence of a subquadratic time (that is, O(n 2-ǫ ) time for some ǫ > 0) algorithm for the diameter or the radius problem will refute the well known Strong Exponential Time Hypothesis (SETH). Furthermore, recent work [START_REF] Abboud | Subcubic equivalences between graph centrality problems, APSP and diameter[END_REF] shows that if the radius of a possibly dense graph (m = O(n 2 )) can be computed in subcubic time (O(n 3-ǫ ) for some ǫ > 0), then APSP also admits a subcubic algorithm. Such an algorithm for APSP has long eluded researchers, and it is often conjectured that it does not exist (see, e.g., [START_REF] Roditty | On dynamic shortest paths problems[END_REF][START_REF] Vassilevska Williams | Subcubic equivalences between path, matrix and triangle problems[END_REF]).

Motivated by these negative results, researches started devoting more attention to development of fast approximation algorithms. In the analysis of large-scale networks, for fast estimations of diameter, center, radius, and centrality indices, linear or almost linear time algorithms are desirable. One hopes also for the all-pairs shortest paths problem to have o(nm) time small-constant-factor approximation algorithms. In general graphs, both diameter and radius can be 2-approximated by a simple linear time algorithm which picks any node and reports its eccentricity. A 3/2-approximation algorithm for the diameter and the radius which runs in Õ(mn 2/3 )1 time was recently obtained in [START_REF] Chechik | Better approximation algorithms for the graph diameter[END_REF] (see also [START_REF] Aingworth | Fast estimation of diameter and shortest paths (without matrix multiplication)[END_REF] for an earlier Õ(n 2 + m √ n) time algorithm and [START_REF] Roditty | Fast approximation algorithms for the diameter and radius of sparse graphs[END_REF] for a randomized Õ(m √ n) time algorithm). For the sparse graphs, this is an o(n 2 ) time approximation algorithm. Furthermore, under plausible assumptions, no O(n 2-ǫ ) time algorithm can exist that (3/2 -ǫ ′ )-approximates (for ǫ, ǫ ′ > 0) the diameter [START_REF] Roditty | Fast approximation algorithms for the diameter and radius of sparse graphs[END_REF] and the radius [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse Graphs[END_REF] in sparse graphs. Similar results are known also for all eccentricities: a 5/3-approximation to the eccentricities of all vertices can be computed in Õ(m 3/2 ) time [START_REF] Chechik | Better approximation algorithms for the graph diameter[END_REF] and, under plausible assumptions, no O(n 2-ǫ ) time algorithm can exist that (5/3 -ǫ ′ )-approximates (for ǫ, ǫ ′ > 0) the eccentricities of all vertices in sparse graphs [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse Graphs[END_REF]. Better approximation algorithms are known for some special classes of graphs [START_REF] Brandstädt | LexBFS-orderings and powers of chordal graphs[END_REF][START_REF] Chepoi | Finding a central vertex in HHD-free graphs[END_REF][START_REF] Chepoi | Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs[END_REF][START_REF] Corneil | Diameter determination on restricted graph families[END_REF][START_REF] Corneil | On the power of BFS to determine a graph's diameter[END_REF][START_REF] Dragan | Almost diameter of a house-hole-free graph in linear time via LexBFS[END_REF][START_REF] Dragan | Eccentricity approximating trees[END_REF][START_REF] Dragan | LexBFS-orderings and powers of graphs[END_REF][START_REF] Weimann | Approximating the diameter of planar Graphs in near linear time[END_REF]. A number of heuristics for approximating diameters, radii and eccentricities in real-world graphs were proposed and investigated in [START_REF] Abu-Ata | Metric tree-like structures in real-world networks: an empirical study[END_REF][START_REF] Borassi | Into the square -on the complexity of quadratic-time solvable problems[END_REF][START_REF] Borassi | Takes: Fast diameter and radius BFS-based computation in (weakly connected) real-world graphs: With an application to the six degrees of separation games[END_REF][START_REF] Borassi | An Axiomatic and an Average-Case Analysis of Algorithms and Heuristics for Metric Properties of Graphs[END_REF][START_REF] Koschützski | Centrality Indices, Network Analysis[END_REF][START_REF] Cairo | New Bounds for Approximating Extremal Distances in Undirected Graphs[END_REF][START_REF] Dragan | Revisiting Radius, Diameter, and all Eccentricity Computation in Graphs through Certificates[END_REF].

Approximability of APSP is also extensively investigated. An additive 2-approximation for APSP in unweighted undirected graphs (the graphs we consider in this paper) was presented in [START_REF] Dor | All-pairs almost shortest paths[END_REF]. It runs in Õ(min{n 3/2 m 1/2 , n 7/3 }) time and hence improves the runtime of an earlier algorithm from [START_REF] Aingworth | Fast estimation of diameter and shortest paths (without matrix multiplication)[END_REF]. In [START_REF] Berman | Faster approximation of distances in graphs[END_REF], an Õ(n 2 ) time algorithm was designed which computes an approximation of all distances with a multiplicative error of 2 and an additive error of 1. Furthermore, [START_REF] Berman | Faster approximation of distances in graphs[END_REF] gives an O(n 2.24+o(1) ǫ -3 log(n/ǫ)) time algorithm that computes an approximation of all distances with a multiplicative error of (1 + ǫ) and an additive error of 2. The latter improves an earlier algorithm from [START_REF] Elkin | Computing almost shortest paths[END_REF]. Better algorithms are known for some special classes of graphs (see [START_REF] Brandstädt | The algorithmic use of hypertree structure and maximum neighbourhood orderings[END_REF][START_REF] Chepoi | Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs[END_REF][START_REF] Dragan | Estimating All Pairs Shortest Paths in Restricted Graph Families: A Unified Approach[END_REF][START_REF] Thorup | Compact oracles for reachability and approximate distances in planar digraphs[END_REF] and papers cited therein).

The need for fast approximation algorithms for estimating diameters, radii, centrality indices, or all pairs shortest paths in large-scale complex networks dictates to look for geometric and topological properties of those networks and utilize them algorithmically. The classical relationships between the diameter, radius, and center of trees and folklore linear time algorithms for their computation is one of the departing points of this research. A result from 1869 by C. Jordan [START_REF] Jordan | Sur les assemblages des lignes[END_REF] asserts that the radius of a tree T is roughly equal to half of its diameter and the center is either the middle vertex or the middle edge of any diametral path. The diameter and a diametral pair of T can be computed (in linear time) by a simple but elegant procedure: pick any vertex x, find any vertex y furthest from x, and find once more a vertex z furthest from y; then return {y, z} as a diametral pair. One computation of a furthest vertex is called an FP scan; hence the diameter of a tree can be computed via two FP scans. This two FP scans procedure can be extended to exact or approximate computation of the diameter and radius in many classes of tree-like graphs. For example, this approach was used to compute the radius and a central vertex of a chordal graph in linear time [START_REF] Chepoi | A linear-time algorithm for finding a central vertex of a chordal graph[END_REF]. In this case, the center of G is still close to the middle of all (y, z)-shortest paths and d G (y, z) is not the diameter but is still its good approximation: d(y, z) ≥ diam(G) -2. Even better, the diameter of any chordal graph can be approximated in linear time with an additive error 1 [START_REF] Dragan | LexBFS-orderings and powers of graphs[END_REF]. But it turns out that the exact computation of diameters of chordal graphs is as difficult as the general diameter problem: it is even difficult to decide if the diameter of a split graph is 2 or 3.

The experience with chordal graphs shows that one have to abandon the hope of having fast exact algorithms, even for very simple (from metric point of view) graph-classes, and to search for fast algorithms approximating diam(G), rad(G), C(G), ecc G (v) with a small additive constant depending only of the coarse geometry of the graph. Gromov hyperbolicity or the negative curvature of a graph (and, more generally, of a metric space) is one such constant. A graph G = (V, E) is δ-hyperbolic [START_REF] Alonso | Notes on word hyperbolic groups, Group Theory from a Geometrical Viewpoint[END_REF][START_REF] Ghys | Les groupes hyperboliques d'après M. Gromov[END_REF][START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF][START_REF] Gromov | Hyperbolic groups, Essays in group theory[END_REF] if for any four vertices w, v, x, y of G, the two largest of the three distance sums d(w, v) + d(x, y), d(w, x) + d(v, y), d(w, y) + d(v, x) differ by at most 2δ ≥ 0. The hyperbolicity δ(G) of a graph G is the smallest number δ such that G is δ-hyperbolic. The hyperbolicity can be viewed as a local measure of how close a graph is metrically to a tree: the smaller the hyperbolicity is, the closer its metric is to a tree-metric (trees are 0-hyperbolic and chordal graphs are 1-hyperbolic).

Recent empirical studies showed that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) are tree-like from a metric point of view [START_REF] Abu-Ata | Metric tree-like structures in real-world networks: an empirical study[END_REF][START_REF] Adcock | Tree-like structure in large social and information networks[END_REF][START_REF] Borassi | On computing the hyperbolicity of real-world graphs[END_REF] or have small hyperbolicity [START_REF] Kennedy | On the hyperbolicity of large-scale networks and its estimation[END_REF][START_REF] Narayan | Large-scale curvature of networks[END_REF][START_REF] Shavitt | Hyperbolic embedding of internet graph for distance estimation and overlay construction[END_REF]. It has been suggested in [START_REF] Narayan | Large-scale curvature of networks[END_REF], and recently formally proved in [START_REF] Chepoi | Core congestion is inherent in hyperbolic networks[END_REF], that the property, observed in real-world networks, in which traffic between nodes tends to go through a relatively small core of the network, as if the shortest paths between them are curved inwards, is due to the hyperbolicity of the network. Bending property of the eccentricity function in hyperbolic graphs were used in [START_REF] Al-Rasheed | Core-periphery models for graphs based on their d-hyperbolicity[END_REF][START_REF] Al-Rasheed | Structural Properties in δ-Hyperbolic Networks: Algorithmic Analysis and Implications[END_REF] to identify core-periphery structures in biological networks. Small hyperbolicity in real-world graphs provides also many algorithmic advantages. Efficient approximate solutions are attainable for a number of optimization problems [START_REF] Chepoi | Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs[END_REF][START_REF] Chepoi | Notes on diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces and graphs[END_REF][START_REF] Chepoi | Additive spanners and distance and routing labeling schemes for hyperbolic graphs[END_REF][START_REF] Chepoi | Core congestion is inherent in hyperbolic networks[END_REF][START_REF] Chepoi | Packing and covering δ-hyperbolic spaces by balls[END_REF][START_REF] Dasgupta | Node expansions and cuts in Gromov-hyperbolic graphs[END_REF][START_REF] Edwards | Fast approximation algorithms for p-centres in large delta-hyperbolic graphs[END_REF][START_REF] Verbeek | Metric embedding, hyperbolic space, and social networks[END_REF].

In [START_REF] Chepoi | Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs[END_REF] we initiated the investigation of diameter, center, and radius problems for δ-hyperbolic graphs and we showed that the existing approach for trees can be extended to this general framework. Namely, it is shown in [START_REF] Chepoi | Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs[END_REF] that if G is a δ-hyperbolic graph and {y, z} is the pair returned after two FP scans, then

d(y, z) ≥ diam(G) -2δ, diam(G) ≥ 2rad(G) -4δ -1, diam(C(G)) ≤ 4δ + 1,
and C(G) is contained in a small ball centered at a middle vertex of any shortest (y, z)-path. Consequently, we obtained linear time algorithms for the diameter and radius problems with additive errors linearly depending on the input graph's hyperbolicity.

In this paper, we advance this line of research and provide a linear time algorithm for approximate computation of the eccentricities (and thus of centrality indices) of all vertices of a δ-hyperbolic graph G, i.e., we compute the approximate values of all eccentricities within the same time bounds as one computes the approximation of the largest or the smallest eccentricity (diam(G) or rad(G)). Namely, the algorithm outputs for every vertex

v of G an estimate ê(v) of ecc G (v) such that ecc G (v) ≤ ê(v) ≤ ecc G (v) + cδ,
where c > 0 is a small constant. In fact, we demonstrate that G has a shortest path tree, constructible in linear time, such that for every vertex v of G, ecc G (v) ≤ ecc T (v) ≤ ecc G (v)+cδ (a so-called eccentricity cδ-approximating spanning tree). This is our first main result of this paper and the main ingredient in proving it is the following interesting dependency between the eccentricities of vertices of G and their distances to the center C(G): up to an additive error linearly depending on δ, ecc G (v) is equal to d(v, C(G)) plus rad(G). To establish this new result, we have to revisit the results of [START_REF] Chepoi | Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs[END_REF] about diameters, radii, and centers, by simplifying their proofs and extending them to all eccentricities.

Eccentricity k-approximating spanning trees were introduced by Prisner in [START_REF] Prisner | Eccentricity-approximating trees in chordal graphs[END_REF]. A spanning tree T of a graph G is called an eccentricity k-approximating spanning tree if for every vertex v of G ecc T (v) ≤ ecc G (v)+k holds [START_REF] Prisner | Eccentricity-approximating trees in chordal graphs[END_REF]. Prisner observed that any graph admitting an additive tree k-spanner (that is, a spanning tree T such that d T (v, u) ≤ d G (v, u) + k for every pair u, v) admits also an eccentricity k-approximating spanning tree. Therefore, eccentricity k-approximating spanning trees exist in interval graphs for k = 2 [START_REF] Kratsch | Additive tree spanners[END_REF][START_REF] Madanlal | Tree 3-spanners on interval, permutation and regularbipartite graphs[END_REF][START_REF] Prisner | Distance approximating spanning trees[END_REF], in asteroidal-triple-free graph [START_REF] Kratsch | Additive tree spanners[END_REF], strongly chordal graphs [START_REF] Brandstädt | Distance approximating trees for chordal and dually chordal graphs[END_REF] and dually chordal graphs [START_REF] Brandstädt | Distance approximating trees for chordal and dually chordal graphs[END_REF] for k = 3. On the other hand, although for every k there is a chordal graph without an additive tree k-spanner [START_REF] Kratsch | Additive tree spanners[END_REF][START_REF] Prisner | Distance approximating spanning trees[END_REF], yet as Prisner demonstrated in [START_REF] Prisner | Eccentricity-approximating trees in chordal graphs[END_REF], every chordal graph has an eccentricity 2-approximating spanning tree. Later this result was extended in [START_REF] Dragan | Eccentricity approximating trees[END_REF] to a larger family of graphs which includes all chordal graphs and all plane triangulations with inner vertices of degree at least 7. Both those classes belong to the class of 1-hyperbolic graphs. Thus, our result extends the result of [START_REF] Prisner | Eccentricity-approximating trees in chordal graphs[END_REF] to all δ-hyperbolic graphs.

As our second main result, we show that in every δ-hyperbolic graph G all distances with an additive one-sided error of at most c ′ δ can be found in O(|V | 2 log 2 |V |) time, where c ′ < c is a small constant. With a recent result in [START_REF] Chalopin | Fast approximation and exact computation of negative curvature parameters of graphs[END_REF], this demonstrates an equivalence between approximating the hyperbolicity and approximating the distances in graphs. Note that every δ-hyperbolic graph G admits a distance approximating tree T [START_REF] Chepoi | Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs[END_REF][START_REF] Chepoi | Notes on diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces and graphs[END_REF][START_REF] Chepoi | Additive spanners and distance and routing labeling schemes for hyperbolic graphs[END_REF], that is, a tree T (which is not necessarily a spanning tree) such that d T (v, u) ≤ d G (v, u) + O(δ log n) for every pair u, v. Such a tree can be used to compute all distances in G with an additive one-sided error of at most O(δ log n) in O(|V | 2 ) time. Our new result removes the dependency of the additive error from log n and has a much smaller constant in front of δ. Note also that the tree T may use edges not present in G (not a spanning tree of G) and thus cannot serve as an eccentricity O(δ log n)-approximating spanning tree. Furthermore, as chordal graphs are 1-hyperbolic, for every k there is a 1-hyperbolic graph without an additive tree k-spanner [START_REF] Kratsch | Additive tree spanners[END_REF][START_REF] Prisner | Distance approximating spanning trees[END_REF].

At the conclusion of this paper, we analyze the performance of our algorithms for approximating eccentricities and distances on a number of real-world networks. Our experimental results show that the estimates on eccentricities and distances obtained are even better than the theoretical bounds proved.

Preliminaries

Center, diameter, centrality

All graphs G = (V, E) occurring in this paper are finite, undirected, connected, without loops or multiple edges. We use n and |V | interchangeably to denote the number of vertices and m and |E| to denote the number of edges in G. The length of a path from a vertex v to a vertex u is the number of edges in the path. The distance d G (u, v) between vertices u and v is the length of a shortest path connecting u and v in G. The eccentricity of a vertex v, denoted by ecc G (v), is the largest distance from v to any other vertex, i.e., ecc

G (v) = max u∈V d G (v, u). The centrality index of v is 1 eccG(v) . The radius rad(G) of a graph G is the minimum eccentricity of a vertex in G, i.e., rad(G) = min v∈V ecc G (v). The diameter diam(G) of a graph G is the the maximum eccentricity of a vertex in G, i.e., diam(G) = max v∈V ecc G (v). The center C(G) = {c ∈ V : ecc G (c) = rad(G)} of
a graph G is the set of vertices with minimum eccentricity.

Gromov hyperbolicity and thin geodesic triangles

Let (X, d) be a metric space. The Gromov product of y, z ∈ X with respect to w is defined to be

(y|z) w = 1 2 (d(y, w) + d(z, w) -d(y, z)).
A metric space (X, d) is said to be δ-hyperbolic [START_REF] Gromov | Hyperbolic groups, Essays in group theory[END_REF] δ-Hyperbolic graphs generalize k-chordal graphs and graphs of bounded tree-length: each k-chordal graph has the tree-length at most ⌊ k 2 ⌋ [START_REF] Dourisboure | Tree-decompositions with bags of small diameter[END_REF] and each tree-length λ graph has hyperbolicity at most λ [START_REF] Chepoi | Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs[END_REF][START_REF] Chepoi | Notes on diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces and graphs[END_REF]. Recall that a graph is k-chordal if its induced cycles are of length at most k, and it is of tree-length λ if it has a Robertson-Seymour tree-decomposition into bags of diameter at most λ [START_REF] Dourisboure | Tree-decompositions with bags of small diameter[END_REF].

For geodesic metric spaces and graphs there exist several equivalent definitions of δ-hyperbolicity involving different but comparable values of δ [START_REF] Alonso | Notes on word hyperbolic groups, Group Theory from a Geometrical Viewpoint[END_REF][START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF][START_REF] Ghys | Les groupes hyperboliques d'après M. Gromov[END_REF][START_REF] Gromov | Hyperbolic groups, Essays in group theory[END_REF]. In this paper, we will use the definition via thin geodesic triangles. Let (X, d) be a metric space. A geodesic joining two points x and y from X is a (continuous) X,d) is geodesic if every pair of points in X can be joined by a geodesic. Every unweighted graph G = (V, E) equipped with its standard distance d G can be transformed into a geodesic (network-like) space (X, d) by replacing every edge e = uv by a segment [u, v] of length 1; the segments may intersect only at common ends. Then (V, d G ) is isometrically embedded in a natural way in (X, d). The restrictions of geodesics of X to the vertices V of G are the shortest paths of G.

map f from the segment [a, b] of R 1 of length |a -b| = d(x, y) to X such that f (a) = x, f (b) = y, and d(f (s), f (t)) = |s -t| for all s, t ∈ [a, b]. A metric space (
Let (X, d) be a geodesic metric space. A geodesic triangle ∆(x, y, z) with x, y, z ∈ X is the union [x, y] ∪ [x, z]∪[y, z] of three geodesic segments connecting these vertices. Let m x be the point of the geodesic segment [y, z] located at distance α y := (x|z) y = (d(y, x) + d(y, z) -d(x, z))/2 from y. Then m x is located at distance α z := (y|x) z = (d(z, y) + d(z, x) -d(y, x))/2 from z because α y + α z = d(y, z). Analogously, define the points m y ∈ [x, z] and m z ∈ [x, y] both located at distance α x := (y|z) x = (d(x, y) + d(x, z) -d(y, z))/2 from x; see Fig. 1 for an illustration. There exists a unique isometry ϕ which maps ∆(x, y, z) to a tripod T (x, y, z) consisting of three solid segments [x, m], [y, m], and [z, m] of lengths α x , α y , and α z , respectively. This isometry maps the vertices x, y, z of ∆(x, y, z) to the respective leaves of T (x, y, z) and the points m x , m y , and m z to the center m of this tripod. Any other point of T (x, y, z) is the image of exactly two points of ∆(x, y, z). A geodesic triangle ∆(x, y, z) is called δ-thin if for all points u, v ∈ ∆(x, y, z), ϕ(u) = ϕ(v) implies d(u, v) ≤ δ. A graph G = (V, E) whose all geodesic triangles ∆(u, v, w), u, v, w ∈ V , are δ-thin is called a graph with δ-thin triangles, and δ is called the thinness parameter of G. The following result shows that hyperbolicity of a geodesic space or a graph is equivalent to having thin geodesic triangles.

Proposition 1 ([14,28,59,60]). Geodesic triangles of geodesic δ-hyperbolic spaces or graphs are 4δ-thin.

Conversely, geodesic spaces or graphs with δ-thin triangles are δ-hyperbolic.

In what follows, we will need few more notions and notations. Let G = (V, E) be a graph. By [x, y] we denote a shortest path connecting vertices x and y in G; we call [x, y] a geodesic between x and y. A ball B(s, r) of G centered at vertex s ∈ V and with radius r is the set of all vertices with distance no more than r from s (i.e., B(s, r) 

:= {v ∈ V : d G (v, s) ≤ r}). The kth-power of a graph G = (V, E) is the graph G k = (V, E ′ ) such that xy ∈ E ′ if and only if 0 < d G (x, y) ≤ k. Denote by F (x) := {y ∈ V : d G (x, y) = ecc G (x)} the

Fast approximation of eccentricities

In this section, we give linear and almost linear time algorithms for sharp estimation of the diameters, the radii, the centers and the eccentricities of all vertices in graphs with δ-thin triangles. Before presenting those algorithms, we establish some conditional lower bounds on complexities of computing the diameters and the radii in those graphs.

Conditional lower bounds on complexities

Recent work has revealed convincing evidence that solving the diameter problem in subquadratic time might not be possible, even in very special classes of graphs. Roditty and Vassilevska W. [START_REF] Roditty | Fast approximation algorithms for the diameter and radius of sparse graphs[END_REF] showed that an algorithm that can distinguish between diameter 2 and 3 in a sparse graph in subquadratic time refutes the following widely believed conjecture.

The Orthogonal Vectors Conjecture:

There is no ǫ > 0 such that for all c ≥ 1, there is an algorithm that given two lists of n binary vectors A, B ⊆ {0, 1} d where d = c log n can determine if there is an orthogonal pair

a ∈ A, b ∈ B, in O(n 2-e ) time.
Williams [START_REF] Williams | A new algorithm for optimal constraint satisfaction and its implications[END_REF] showed that the Orthogonal Vectors (OV) Conjecture is implied by the well-known Strong Exponential Time Hypothesis (SETH) of Impagliazzo, Paturi, and Zane [START_REF] Impagliazzo | Which problems have strongly exponential complexity?[END_REF][START_REF] Impagliazzo | On the complexity of k-SAT[END_REF]. Nowadays many papers base the hardness of problems on SETH and the OV conjecture (see, e.g., [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse Graphs[END_REF][START_REF] Borassi | Into the square -on the complexity of quadratic-time solvable problems[END_REF][START_REF] Williams | Hardness of easy problems: basing hardness on popular conjectures such as the strong exponential time hypothesis[END_REF] and papers cited therein).

Since all geodesic triangles of a graph constructed in the reduction in [START_REF] Roditty | Fast approximation algorithms for the diameter and radius of sparse graphs[END_REF] are 2-thin, we can rephrase the result from [START_REF] Roditty | Fast approximation algorithms for the diameter and radius of sparse graphs[END_REF] as follows.

Statement 1 If for some ǫ > 0, there is an algorithm that can determine if a given graph with 2-thin triangles, n vertices and m = O(n) edges has diameter 2 or 3 in O(n 2-ǫ ) time, then the Orthogonal Vector Conjecture is false.

To prove a similar lower bound result for the radius problem, recently Abboud et al. [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse Graphs[END_REF] suggested to use the following natural and plausible variant of the OV conjecture.

The Hitting Set Conjecture: There is no ǫ > 0 such that for all c ≥ 1, there is an algorithm that given two lists A, B of n subsets of a universe U of size c log n, can decide in O(n 2-e ) time if there is a set in the first list that intersects every set in the second list, i.e. a hitting set.

Abboud et al. [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse Graphs[END_REF] showed that an algorithm that can distinguish between radius 2 and 3 in a sparse graph in subquadratic time refutes the Hitting Set Conjecture. Since all geodesic triangles of a graph constructed in the reduction in [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse Graphs[END_REF] are 2-thin, rephrasing that result from [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse Graphs[END_REF], we have.

Statement 2 If for some ǫ > 0, there is an algorithm that can determine if a given graph with 2-thin triangles, n vertices, and m = O(n) edges has radius 2 or 3 in O(n 2-ǫ ) time, then the Hitting Set Conjecture is false.

Fast additive approximations

In this subsection, we show that in a graph G with δ-thin triangles the eccentricities of all vertices can be computed in total linear time with an additive error depending on δ. We establish that the eccentricity of a vertex is determined (up-to a small error) by how far the vertex is from the center C(G) of G. Finally, we show how to construct a spanning tree T of G in which the eccentricity of any vertex is its eccentricity in G up to an additive error depending only on δ. For these purposes, we revisit and extend several results from our previous paper [START_REF] Chepoi | Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs[END_REF] concerning the linear time approximation of diameter, radius, and centers of δ-hyperbolic graphs. For these particular cases, we provide simplified proofs, leading to better additive errors due to the use of thinness of triangles instead of the four point condition and to the computation in O(δ|E|) time of a pair of mutually distant vertices.

Define the eccentricity layers of a graph G as follows:

for k = 0, . . . , diam(G) -rad(G) set C k (G) := {v ∈ V : ecc G (v) = rad(G) + k}.
With this notation, the center of a graph is

C(G) = C 0 (G).
In what follows, it will be convenient to define also the eccentricity of the middle point m of any edge

xy of G; set ecc G (m) = min{ecc G (x), ecc G (y)} + 1/2.
We start with a proposition showing that, in a graph G with δ-thin triangles, a middle vertex of any geodesic between two mutually distant vertices has the eccentricity close to rad(G) and is not too far from the center C(G) of G.

Proposition 2. Let G be a graph with δ-thin triangles, u, v be a pair of mutually distant vertices of G.

(a) If c * is the middle point of any (u, v)-geodesic, then ecc G (c * ) ≤ dG(u,v) 2 + δ ≤ rad(G) + δ. (b) If c is a middle vertex of any (u, v)-geodesic, then ecc G (c) ≤ ⌈ dG(u,v) 2 ⌉ + δ ≤ rad(G) + δ. (c) d G (u, v) ≥ 2rad(G) -2δ -1. In particular, diam(G) ≥ 2rad(G) -2δ -1. (d) If c is a middle vertex of any (u, v)-geodesic and x ∈ C k (G), then k -δ ≤ d G (x, c) ≤ k + 2δ + 1. In particular, C(G) ⊆ B(c, 2δ + 1).
Proof. Let x be an arbitrary vertex of G and 

∆(u, v, x) := [u, v] ∪ [v, x] ∪ [x,
) v = 1 2 (d(x, v)+d(v, u)-d(x, u)) from v and hence at distance (x|v) u = 1 2 (d(x, u)+d(v, u)-d(x, v)) from u.
Since u and v are mutually distant, we can assume, without loss of generality, that c * is located on [u, v] between v and m x , i.e., d(v, c * ) ≤ d(v, m x ) = (x|u) v , and hence (x|v

) u ≤ (x|u) v . Since d G (v, x) ≤ d G (v, u), we also get (u|v) x ≤ (x|v) u .
(a) By the triangle inequality and since

d G (u, v) ≤ diam(G) ≤ 2rad(G), we get d G (x, c * ) ≤ e(u|v) x + δ + d G (u, c * ) -(x|v) u ≤ d G (u, c * ) + δ = d G (u, v) 2 + δ ≤ rad(G) + δ. (b) Since c * = c when d G (u, v) is even and d G (c * , c) = 1 2 when d G (u, v) is odd, we have ecc G (c) ≤ ecc G (c * ) + 1 2 .
Additionally to the proof of (a), one needs only to consider the case when d G (u, v) is odd. We know that the middle point c * sees all vertices of G within distance at most dG(u,v) 2 + δ. Hence, both ends of the edge of (u, v)-geodesic, containing the point c * in the middle, have eccentricities at most

d G (u, v) 2 + 1 2 + δ = ⌈ d G (u, v) 2 ⌉ + δ ≤ ⌈ 2rad(G) -1 2 ⌉ + δ = rad(G) + δ.
(c) Since a middle vertex c of any (u, v)-geodesic sees all vertices of G within distance at most

⌈ dG(u,v) 2 ⌉ + δ, if d G (u, v) ≤ 2rad(G) -2δ -2, then ecc G (c) ≤ ⌈ d G (u, v) 2 ⌉ + δ ≤ ⌈ 2rad(G) -2δ -2 2 ⌉ + δ < rad(G),
which is impossible. (d) In the proof of (a), instead of an arbitrary vertex x, consider any vertex x from C k (G). By the triangle inequality and since c) and ecc G (c) ≤ rad(G) + δ, by statement (a), we get

d G (u, v) ≥ 2rad(G) -2δ -1 and both d G (u, x), d G (x, v) are at most rad(G) + k, we get d G (x, c * ) ≤ (u|v) x + δ + (x|u) v -d G (v, c * ) = d G (v, x) -d G (v, c * ) + δ ≤ rad(G) + k - d G (u, v) 2 + δ ≤ k + 2δ + 1 2 . Consequently, d G (x, c) ≤ d G (x, c * ) + 1 2 ≤ k + 2δ + 1. On the other hand, since ecc G (x) ≤ ecc G (c) + d G (x,
d G (x, c) ≥ ecc G (x) -ecc G (c) = k + rad(G) -ecc G (c) ≥ (k + rad(G)) -(rad(G) + δ) = k -δ.

⊓ ⊔

As an easy consequence of Proposition 2(d), we get that the eccentricity ecc G (x) of any vertex x is equal, up to an additive one-sided error of at most 4δ + 2, to d G (x, C(G)) plus rad(G).

Corollary 1. For every vertex x of a graph G with δ-thin triangles,

d G (x, C(G)) + rad(G) -4δ -2 ≤ ecc G (x) ≤ d G (x, C(G)) + rad(G).
Proof. Consider an arbitrary vertex x in G and assume that ecc

G (x) = rad(G) + k. Let c x be a vertex from C(G) closest to x. By Proposition 2(d), d G (c, c x ) ≤ 2δ+1 and d G (x, c) ≤ k+2δ+1 = ecc G (x)-rad(G)+2δ+1. Hence, d G (x, C(G)) = d G (x, c x ) ≤ d G (x, c) + d G (c, c x ) ≤ d G (x, c) + 2δ + 1 and ecc G (x) ≥ d G (x, c) + rad(G) -2δ -1.
Combining both inequalities, we get

ecc G (x) ≥ d G (x, C(G)) + rad(G) -4δ -2.
Note also that, by the triangle inequality, ecc

G (x) ≤ d G (x, c x ) + ecc G (c x ) = d G (x, C(G)) + rad(G) (that
is, the right-hand inequality holds for all graphs). ⊓ ⊔

It is interesting to note that the equality ecc G (x) = d G (x, C(G)) + rad(G) holds for every vertex of a graph G if and only if the eccentricity function ecc G (•) on G is unimodal (that is, every local minimum is a global minimum) [START_REF] Dragan | Centers of graphs and the Helly property[END_REF]. A slightly weaker condition holds for all chordal graphs [START_REF] Dragan | Eccentricity approximating trees[END_REF]: for every vertex

x of a chordal graph G, ecc G (x) ≥ d G (x, C(G)) + rad(G) -1.
Proposition 3. Let G be a graph with δ-thin triangles and u, v be a pair of vertices of

G such that v ∈ F (u). (a) If w is a vertex of a (u, v)-geodesic at distance rad(G) from v, then ecc G (w) ≤ rad(G) + δ. (b) For every pair of vertices x, y ∈ V , max{d G (v, x), d G (v, y)} ≥ d G (x, y) -2δ. (c) ecc G (v) ≥ diam(G) -2δ ≥ 2rad(G) -4δ -1. (d) If t ∈ F (v), c is a vertex of a (v, t)-geodesic at distance ⌈ dG(v,t) 2 ⌉ from t and x ∈ C k (G), then ecc G (c) ≤ rad(G) + 3δ and k -3δ ≤ d G (x, c) ≤ k + 3δ + 1. In particular, C(G) ⊆ B(c, 3δ + 1). Proof. (a) Let x be a vertex of G with d G (w, x) = ecc G (w). Let ∆(u, v, x) := [u, v] ∪ [v, x] ∪ [x, u] be a geodesic triangle, where [v, x], [x, u] are arbitrary geodesics connecting x with v and u. Let m x be a point on [u, v] which is at distance (x|u) v = 1 2 (d(x, v) + d(v, u) -d(x, u)) from v and hence at distance (x|v) u = 1 2 (d(x, u) + d(v, u) -d(x, v)) from u.
We distinguish between two cases: w is between u and m x or w is between v and m x in [u, v].

In the first case, by the triangle inequality and

d G (u, x) ≤ d G (u, v) (and hence, (u|x) v ≥ (u|v) x ), we get d G (w, x) ≤ rad(G) -(u|x) v + δ + (u|v) x ≤ rad(G) + δ.
In the second case, by the triangle inequality and since Since

d G (v, x) ≤ diam(G) ≤ 2rad(G), we get d G (w, x) ≤ (u|x) v -rad(G) + δ + (u|v) x ≤ d G (x, v) -rad(G) + δ ≤ 2rad(G) -rad(G) + δ = rad(G) + δ. (b) Consider an arbitrary (u, v)-geodesic [u, v]. Let ∆(u, v, x) := [u, v]∪[v, x]∪[x,
d G (u, v) ≥ d G (u, x) (as v ∈ F (u)), we have (u|v) x ≤ (u|x) v .
By the triangle inequality, we get

d G (x, y) ≤ (u|v) x + δ + ((y|u) v -(u|x) v ) + δ + (u|v) y ≤ (u|x) v -(u|x) v + 2δ + (y|u) v + (u|v) y = d G (v, y) + 2δ. Consequently, max{d G (v, x), d G (v, y)} ≥ d G (v, y) ≥ d G (x, y) -2δ. (c) Now, if x, y is a diametral pair, i.e., d G (x, y) = diam(G), then, by (b) and Proposition 2(c), ecc G (v) ≥ max{d G (v, x), d G (v, y)} ≥ d G (x, y) -2δ = diam(G) -2δ ≥ 2rad(G) -4δ -1.
(d) Consider any (v, t)-geodesic [v, t] and let c * be the middle point of it, w be a vertex of [v, t] at distance rad(G) from t, and c be a vertex of [v, t] 

at distance ⌈ dG(v,t) 2 ⌉ from t. We know by (a) that ecc G (w) ≤ rad(G) + δ. Furthermore, since 2rad(G) ≥ d G (v, t) ≥ 2rad(G) -4δ -1 (by (c)), rad(G) ≥ d G (t, c) = ⌈ dG(v,t) 2 ⌉ ≥ rad(G) -2δ. Hence, d G (w, c) = d G (w, t) -d G (c, t) ≤ rad(G) -rad(G) + 2δ = 2δ, implying ecc G (c) ≤ d G (w, c) + ecc G (w) ≤ rad(G) + 3δ.
Let now x be an arbitrary vertex from C k (G), i.e., ecc G (x) ≤ rad(G)+k, for some integer k ≥ 0. Consider a geodesic triangle

∆(t, v, x) := [t, v] ∪ [v, x] ∪ [x, t]
, where [v, x], [x, t] are arbitrary geodesics connecting x with v and t. Let m x be a point on [t, v] 

which is at distance (x|t) v = 1 2 (d(x, v) + d(v, t) -d(x, t)) from v and hence at distance (x|v) t = 1 2 (d(x, t) + d(v, t) -d(x, v)) from t.
Since, in what follows, we will use only the fact that d G (v, t) ≥ 2rad(G) -4δ -1, we can assume, without loss of generality, that c * is located on

[t, v] between v and m x , i.e., d(v, c * ) ≤ d(v, m x ) = (x|t) v .
By the triangle inequality and since d G (v, t) ≥ 2rad(G) -4δ -1 and both d G (t, x) and d G (x, v) are at most rad(G) + k, we get Since ecc G (y) ≤ rad(G) + k, we have

d G (x, c * ) ≤ (t|v) x + δ + (x|t) v -d G (v, c * ) = d G (v, x) -d G (v, c * ) + δ ≤ rad(G) + k - d G (v, t) 2 + δ ≤ k + 3δ + 1 2 . Hence, d G (x, c) ≤ d G (x, c * ) + 1 2 ≤ k + 3δ + 1. On the other hand, since ecc G (x) ≤ ecc G (c) + d G (x, c) and ecc G (c) ≤ rad(G) + 3δ, we get d G (x, c) ≥ ecc G (x) -ecc G (c) = k + rad(G) -ecc G (c) ≥ (k + rad(G)) -(rad(G) + 3δ) = k -3δ. ⊓ ⊔ Proposition 4. For every graph G with δ-thin triangles, diam(C k (G)) ≤ 2k + 2δ + 1. In particular, diam(C(G)) ≤ 2δ + 1. Proof. Let x, y be two vertices of C k (G) such that d G (x, y) = diam(C k (G)).
d G (m, z) = ecc G (m) ≥ rad(G) - 1 2 ≥ ecc G (y) -k - 1 2 ≥ d G (y, z) -k - 1 2 .
On the other hand, by the triangle inequality, we get 

d G (m, z) ≤ (x|z) y -d G (y, m) + δ + (x|y) z = d G (y, z) -d G (y, m) + δ ≤ d G (y, z) - d G (x, y) 2 + δ.
v := v 1 , t := v 2 , v 3 , . . . v k with k ≤ 2δ + 2 such that each v i is most distant from v i-1 (with, v 0 = u) and v k , v k-1
are mutually distant vertices (the initial value d(v, t) ≥ diam(G) -2δ can be improved at most 2δ times). Thus, by Proposition 2 and Proposition 3, we get the following additive approximations for the radius and the diameter of a graph with δ-thin triangles.

Corollary 2. Let G = (V, E) be a graph with δ-thin triangles.

There is a linear (O(|E|)) time algorithm which finds in G a vertex c with eccentricity at most rad(G)+3δ

and a vertex v with eccentricity at least diam(G) -2δ. Furthermore, C(G) ⊆ B(c, 3δ + 1) holds. 2. There is an almost linear (O(δ|E|)) time algorithm which finds in G a vertex c with eccentricity at most rad(G) + δ. Furthermore, C(G) ⊆ B(c, 2δ + 1) holds.

All eccentricities.

In what follows, we will show that all vertex eccentricities of a graph with δ-thin triangles can be also additively approximated in (almost) linear time.

Proposition 5. Let G be a graph with δ-thin triangles.

(a) If c is a middle vertex of any (u, v)-geodesic between a pair u, v of mutually distant vertices of G and T is a BF S(c)-tree of G, then, for every vertex

x of G, ecc G (x) ≤ ecc T (x) ≤ ecc G (x) + 3δ + 1. (b) If v is a most distant vertex from an arbitrary vertex u, t is a most distant vertex from v, c is a vertex of a (v, t)-geodesic at distance ⌈ dG(v,t) 2 ⌉ from t and T is a BF S(c)-tree of G, then ecc G (x) ≤ ecc T (x) ≤ ecc G (x) + 6δ + 1.
Proof. (a) Let x be an arbitrary vertex of G and assume that ecc G (x) = rad(G) + k for some integer k ≥ 0. We know from Proposition 2(b) that ecc G (c) ≤ rad(G) + δ. Furthermore, by Proposition 2(d),

d G (c, x) ≤ k + 2δ + 1. Since T is a BF S(c)-tree, d G (x, c) = d T (x, c) and ecc G (c) = ecc T (c). Consider a vertex y in G such that d T (x, y) = ecc T (x). We have ecc T (x) = d T (x, y) ≤ d T (x, c) + d T (c, y) ≤ d G (x, c) + ecc T (c) = d G (x, c) + ecc G (c) ≤ k + 2δ + 1 + rad(G) + δ = rad(G) + k + 3δ + 1 = ecc G (x) + 3δ + 1.
As T is a spanning tree of G, evidently, also ecc G (x) ≤ ecc T (x) holds. (b) The proof is similar to the proof of (a); only, in this case, ecc G (c) ≤ rad(G)+3δ and d G (c, x) ≤ k+3δ+1 holds for every x ∈ C k (G) (by Proposition 3(d)).

⊓ ⊔

A spanning tree T of a graph G is called an eccentricity k-approximating spanning tree if for every vertex v of G ecc T (v) ≤ ecc G (v) + k holds [START_REF] Dragan | Eccentricity approximating trees[END_REF][START_REF] Prisner | Eccentricity-approximating trees in chordal graphs[END_REF]. Thus, by Proposition 5, we get.

Theorem 1. Every graph G = (V, E) with δ-thin triangles admits an eccentricity (3δ + 1)-approximating spanning tree constructible in O(δ|E|) time and an eccentricity (6δ + 1)-approximating spanning tree constructible in O(|E|) time.

Theorem 1 generalizes recent results from [START_REF] Dragan | Eccentricity approximating trees[END_REF][START_REF] Prisner | Eccentricity-approximating trees in chordal graphs[END_REF] that chordal graphs and some of their generalizations admit eccentricity 2-approximating spanning trees.

Note that the eccentricities of all vertices in any tree T = (V, U ) can be computed in O(|V |) total time. As we noticed already, it is a folklore by now that for trees the following facts are true:

(1) The center C(T ) of any tree T consists of one vertex or two adjacent vertices.

(2) The center C(T ) and the radius rad(T ) of any tree T can be found in linear time.

(3) For every vertex v ∈ V , ecc T (v) = d T (v, C(T )) + rad(T ).

Hence, using BF S(C(T )) on T one can compute d T (v, C(T )) for all v ∈ V in total O(|V |) time. Adding now rad(T ) to d T (v, C(T ))

, one gets ecc T (v) for all v ∈ V . Consequently, by Theorem 1, we get the following additive approximations for the vertex eccentricities in graphs with δ-thin triangles.

Theorem 2. Let G = (V, E) be a graph with δ-thin triangles.

(1) There is an algorithm which in total linear (O(|E|)) time outputs for every vertex v ∈ V an estimate ê(v) of its eccentricity ecc

G (v) such that ecc G (v) ≤ ê(v) ≤ ecc G (v) + 6δ + 1

. (2) There is an algorithm which in total almost linear (O(δ|E|)) time outputs for every vertex

v ∈ V an estimate ê(v) of its eccentricity ecc G (v) such that ecc G (v) ≤ ê(v) ≤ ecc G (v) + 3δ + 1.

Fast Additive Approximation of All Distances

Here, we will show that if the δth power G δ of a graph G with δ-thin triangles is known in advance, then the distances in G can be additively approximated (with an additive one-sided error of at most δ + 1) in O(|V | 2 ) time. If G δ is not known, then the distances can be additively approximated (with an additive one-sided error of at most 2δ + 2) in almost quadratic time.

Our method is a generalization of an unified approach used in [START_REF] Dragan | Estimating All Pairs Shortest Paths in Restricted Graph Families: A Unified Approach[END_REF] to estimate (or compute exactly) all pairs shortest paths in such special graph families as k-chordal graphs, chordal graphs, AT-free graphs and many others. For example: all distances in k-chordal graphs with an additive one-sided error of at most k -1 can be found in O(|V | 2 ) time; all distances in chordal graphs with an additive one-sided error of at most 1 can be found in O(|V | 2 ) time and the all pairs shortest path problem on a chordal graph G can be solved in O(|V | 2 ) time if G 2 is known. Note that in chordal graph all geodesic triangles are 2-thin.

Let G = (V, E) be a graph with δ-thin triangles. Pick an arbitrary start vertex s ∈ V and construct a BF S(s)-tree T of G rooted at s. Denote by p T (x) the parent and by h T (x) = d T (x, s) = d G (x, s) the height of a vertex x in T . Since we will deal only with one tree T , we will often omit the subscript T . Let P T (x, s) := (x q , x q-1 , . . . , x 1 , s) and P T (y, s) := (y p , y p-1 , . . . , y 1 , s) be the paths of T connecting vertices x and y with the root s. By sl T (x, y; λ) we denote the largest index k such that d G (x k , y k ) ≤ λ (the λ separation level). Our method is based on the following simple fact.

Proposition 6. For every vertices x and y of a graph G with δ-thin triangles and any BF S-tree T of G, h

T (x) + h T (y) -2k -1 ≤ d G (x, y) ≤ h T (x) + h T (y) -2k + d G (x k , y k ),
where k = sl T (x, y; δ).

Proof. By the triangle inequality, d

G (x, y) ≤ d G (x, x k ) + d G (x k , y k ) + d G (y k , y) = h T (x) + h T (y) -2k + d G (x k , y k ). Consider now an arbitrary (x, y)-geodesic [x, y] in G. Let ∆(x, y, s) := [x, y] ∪ [x, s] ∪ [y,
s] be a geodesic triangle, where [x, s] = P T (x, s) and [y, s] = P T (y, s). Since ∆(x, y, s) is δ-thin, sl T (x, y; δ) ≥ (x|y) s -1 2 . Hence, h T (x)-sl T (x, y; δ) ≤ (s|y) x + 1 2 and h T (y)-sl T (x, y; δ) ≤ (s|x) y + 1 2 . As d G (x, y) = (s|y) x + (s|x) y , we get d G (x, y) ≥ h T (x) -sl T (x, y; δ) + h T (y) -sl T (x, y; δ) -1.

⊓ ⊔

Note that we may regard BF S(s) as having produced a numbering from n to 1 in decreasing order of the vertices in V where vertex s is numbered n. As a vertex is placed in the queue by BF S(s), it is given the next available number. The last vertex visited is given the number 1. Let σ := [v 1 , v 2 , . . . , v n = s] be a BF S(s)-ordering of the vertices of G and T be a BF S(s)-tree of G produced by a BF S(s). Let σ(x) be the number assigned to a vertex x in this BF S(s)-ordering. For two vertices x and y, we write x < y whenever σ(x) < σ(y).

First, we will show that if G δ is known in advance (i.e., its adjacency matrix is given) for a graph G with δ-thin triangles, then the distances in G can be additively approximated (with an additive one-sided error of at most δ + 1) in O(|V | 2 ) time. We consider the vertices of G in the order σ from 1 to n. For each current vertex x we show that the values d(x, y) := h T (x) + h T (y) -2sl T (x, y; δ) + δ for all vertices y with y > x can be computed in O(|V |) total time. By Proposition 6,

d G (x, y) ≤ d(x, y) ≤ d G (x, y) + δ + 1.
The values d(x, y) for all y with y > x can be computed using the following simple procedure. We will omit the subscripts G and T if no ambiguities arise. Let also L i = {v ∈ V : d(v, s) = i}. In the procedure, S u represents vertices of a subtree of T rooted at u.

(01) set q := h(x) (02)
define a set S u := {u} for each vertex u ∈ L q , u > x, and denote this family of sets by F (03) for k = q downto 0 (04) let x k be the vertex from

L k ∩ P T (x, s) (05) for each vertex u ∈ L k with u > x (06) if d G (u, x k ) ≤ δ (i.e., u = x k or u is adjacent to x k in G δ ) then (07)
for every v ∈ S u (08) set d(x, v) := h(x) + h(v) -2k + δ and remove S u from F (09) endfor [START_REF] Abu-Ata | Metric tree-like structures in real-world networks: an empirical study[END_REF] endfor [START_REF] Adcock | Tree-like structure in large social and information networks[END_REF] /* update F for the next iteration */ [START_REF] Aingworth | Fast estimation of diameter and shortest paths (without matrix multiplication)[END_REF] if k > 0 then [START_REF] Albert | Internet: Diameter of the world-wide web[END_REF] for each vertex u ∈ L k-1 [START_REF] Alonso | Notes on word hyperbolic groups, Group Theory from a Geometrical Viewpoint[END_REF] combine all sets S u1 , . . . , S u ℓ from F (ℓ ≥ 0), such that p T (u 1 ) = . . . = p T (u ℓ ) = u, [START_REF] Al-Rasheed | Structural Properties in δ-Hyperbolic Networks: Algorithmic Analysis and Implications[END_REF] into one new set S u := {u} ∪ S u1 ∪ . . . ∪ S u ℓ /* when ℓ = 0, S u := {u} */ ( 16) endfor [START_REF] Batagelj | Pajek datasets[END_REF] endfor [START_REF] Ben-Moshe | Efficient algorithms for center problems in cactus networks[END_REF] set also d(x, s) := h(x).

Thus, we have the following result.

Theorem 3. Let G = (V, E) be a graph with δ-thin triangles. Given G δ , all distances in G with an additive one-sided error of at most δ + 1 can be found in O(|V | 2 ) time.

To avoid the requirement that G δ is given in advance, we can use any known fast constant-factor approximation algorithm that in total T (|V |)-time computes for every pair of vertices x, y of G a value d(x, y) such that d G (x, y) ≤ d(x, y) ≤ αd G (x, y) + β. We can show that, using such an algorithm as a preprocessing step, the distances in a graph G with δ-thin triangles can be additively approximated with an additive one-sided error of at most αδ

+ β + 1 in O(T (|V |) + |V | 2 ) time.
Although one can use any known fast constant-factor approximation algorithm in the preprocessing step, in what follows, we will demonstrate our idea using a fast approximation algorithm from [START_REF] Berman | Faster approximation of distances in graphs[END_REF]. It computes in O(|V | 2 log 2 |V |) total time for every pair x, y a value d(x, y) such that

d G (x, y) ≤ d(x, y) ≤ 2d G (x, y) + 1.
Assume that the values d(x, y), x, y ∈ V , are precomputed. By sl T (x, y; λ) we denote now the largest index k such that d G (x k , y k ) ≤ λ. We have Proposition 7. For every vertices x and y of a graph G with δ-thin triangles, any integer ρ ≥ δ, and any BF S-tree T of G,

h T (x) + h T (y) -2k -1 ≤ d G (x, y) ≤ h T (x) + h T (y) -2k + d G (x k , y k ),
where k = sl T (x, y; 2ρ + 1).

Proof. The proof is identical to the proof of Proposition 7. One needs only to notice the following. In a geodesic triangle ∆(x, y, s)

:= [x, y] ∪ [x, s] ∪ [y, s] with [x, s] = P T (x, s) = (x q , x q-1 , . . . , x 1 , s) and [y, s] = P T (y, s) = (y p , y p-1 , . . . , y 1 , s), for each i ≤ (x|y) s , d G (x i , y i ) ≤ δ ≤ ρ and, hence, d(x i , y i ) ≤ 2ρ + 1 holds. Therefore, sl T (x, y; 2ρ + 1) ≥ (x|y) s -1 2 . ⊓ ⊔
Let ρ be any integer greater than or equal to δ. By replacing in our earlier procedure lines ( 06) and ( 08) with 

(06) ′ if d(u, x k ) ≤ 2ρ + 1 then (08) ′ set d(x, v) := h(x) + h(v) -2k +
d G (x, y) ≤ h T (x) + h T (y) -2 sl T (x, y; 2ρ + 1) + d G (x k , y k ) ≤ h T (x) + h T (y) -2 sl T (x, y; 2ρ + 1) + d(x k , y k ) ≤ h T (x) + h T (y) -2 sl T (x, y; 2ρ + 1) + 2ρ + 1 = d(x, y) and d(x, y) = h T (x) + h T (y) -2 sl T (x, y; 2ρ + 1) + 2ρ + 1 ≤ d G (x, y) + 2ρ + 2.
Thus, we have the following result: The second part of Theorem 4 says that if an approximation of the thinness parameter of a graph G is given then all distances in G can be additively approximated in O(|V |2 log 2 |V |) time. Recently, it was shown in [START_REF] Chalopin | Fast approximation and exact computation of negative curvature parameters of graphs[END_REF] that the following converse is true. From an estimate of all distances in G with an additive one-sided error of at most k, it is possible to compute in O(|V | 2 ) time an estimation ρ * of the thinness of G such that δ ≤ ρ * ≤ 8δ + 12k + 4, proving a Õ(|V | 2 )-equivalence between approximating the thinness and approximating the distances in graphs.

Experimentation on Some Real-World Networks

In this section, we analyze the performance of our algorithms for approximating eccentricities and distances on a number of real-world networks. Our experimental results show that the estimates on eccentricities and distances obtained are even better than the theoretical bounds described in Corollary 2 and Theorems 2,4.

We apply our algorithms to six social networks, four email communication networks, four biological networks, six internet graphs, four peer-to-peer networks, three web networks, two product-co-purchasing networks, and four infrastructure networks. Most of the networks listed are part of the Stanford Large Network Dataset Collection (snap) and the Koblenz Network Collection (konect), and are available at [1] and [2]. Characteristics of these networks, such as the number of vertices and edges, the average degree, the radius and the diameter, are given in Table 1. The numbers listed in Table 1 are based on the largest connected component of each network, when the entire network is disconnected. We ignore the directions of the edges and remove all self-loops from each network. Additionally, in Table 1, for each network we report the size (as the number of vertices) of its center C(G). We also analyze the diameter and the connectivity of the center of each network. The diameter of the center diam G (C(G)) is defined as the maximum distance between any two central vertices in the graph. In the last column of Table 1, we report the Gromov hyperbolicity δ of majority of networks 2 . Computing the hyperbolicity of a graph is computationally expensive; therefore, we provide the exact δ values for the smaller networks (those with |V | ≤ 30K) in our dataset (in some cases, the algorithm proposed in [START_REF] Cohen | Exact and approximate algorithms for computing the hyperbolicity of large-scale graphs[END_REF] was used). For some larger networks, the approximated δ-hyperbolicity values listed in Table 1 are as reported in [START_REF] Kennedy | On the hyperbolicity of large-scale networks and its estimation[END_REF] 3 . Most networks that we included in our dataset are hyperbolic. However, for comparison reasons, we included also a few infrastructure networks that are known to lack the hyperbolicity property.

Estimation of Eccentricities

Following Proposition 2, for each graph in our dataset, we found a pair u, v of mutually distant vertices. In column two of Table 2, we report on how many BF S sweeps of a graph were needed to locate u and v. Interestingly, for almost all graphs (28 out 33) only two sweeps were sufficient. For four other graphs (including road-pa network whose hyperbolicity is large) three sweeps were needed, and only for one graph (power-grid network) we needed four sweeps.

Network Type

Ref. In column four of Table 2, we report for each graph G the difference between 2rad(G) and d G (u, v). Proposition 2(c) says that the difference must be at most 2δ + 1, where δ is the thinness of geodesic triangles in G. Actually, for large number (27 out of 33) of graphs in our dataset, the difference is at most two. Five other graphs have the difference equal to 3, and only road-pa network has the difference equal to 10. We have d G (u, v) = diam(G) for 27 graphs in our dataset, including road-pa network whose geodesic triangles thinness is at least 196. For remaining six graphs d G (u, v) = diam(G) -1 holds.

|V | |E| |C(G)| deg rad(G) diam(G) diamG(C(G)) connected? δ(G)

We also analyzed the quality of a middle vertex c of a randomly picked shortest path between mutually distant vertices u and v. Proposition 2 states that ecc G (c) is close to rad(G) and c is not too far from the graph's center C(G). Table 2 lists the properties of the selected middle vertex c. In almost all graphs, vertex c belongs to the center C(G) or is at distance one or two from C(G). Even in graphs with ecc G (c)-rad(G) > 2 (power-grid and road-pa), the value ecc G (c) -rad(G) is smaller than what is suggested by Proposition 2(b). It is also clear from Table 2 that c is not too far from any vertex in C(G) (look at the radius i of the ball B(c, i) required to include C(G)). In all graphs, i is much smaller than 2δ + 1 (indicated in Proposition 2(d)).

Following Theorem 1, for each graph G = (V, E) in our dataset, we constructed an arbitrary BF S(c)-tree T 1 = (V, E ′ ), rooted at vertex c, and analyzed how well T 1 preserves or approximates the eccentricities of vertices in G. By Theorem 1, ecc G (v) ≤ ecc T1 (v) ≤ ecc G (v)+3δ+1 holds for every v ∈ V . In our experiments, for each graph G and the constructed for it BF S(c)-tree T 1 , we computed k max := max v∈V {ecc T1 (v)ecc G (v)} (maximum distortion) and k avg := 1 n v∈V ecc T1 (v)-ecc G (v) (average distortion). For most graphs (see Table 2), the value of k max is small: k max = 0 for one graph, k max = 2 for eight graphs, k max = 3 for nine graphs, k max = 4 for four graphs, k max = 5 for two graphs, and k max > 5 for nine graphs. Also, the average distortion k avg is much smaller than k max for all graphs. In fact, k avg < 3 in all but five graphs (gnutella-30, gnutella-31, amazon-2, power-grid, and road-pa). In graphs with high k max , close inspection reveals that only small percent of vertices achieve this maximum. For example, in graph web-stanford, k max = 28 was only achieved by 17 vertices. The distributions of the values of k(v) := ecc T1 (v) -ecc G (v) of all graphs are listed in Table 6 (see Appendix).

Similar experiments were performed following Proposition 3. For each graph G in our dataset, we picked a random vertex u ∈ V and a random vertex v ∈ F (u). Then, we identified in a randomly picked (u, v)geodesic a vertex w at distance rad(G) from v. We did not consider a vertex c defined in Proposition 3(d) since, for majority of graphs in our dataset, c will be a middle vertex of a geodesic between two mutually distant vertices, and working with c we will duplicate previous experiments. Recall that for majority of our graphs (as found in our experiments) two BFS sweeps already identify a pair of mutually distant vertices. We know from Proposition 3 that ecc G (v) ≥ diam(G) -2δ ≥ 2rad(G) -4δ -1 and ecc G (w) ≤ rad(G) + δ. Our experimental results are better than these theoretical bounds. In Table 3, we list eccentricities of v and w for each graph. In almost all graphs, the eccentricity of v is equal to the diameter diam(G). Only four graphs have ecc G (v) = diam(G) -1 and one graph (road-pa) has ecc G (v) > diam(G) -1. Vertex w is central for 21 graphs, has eccentricity equal to rad(G) + 1 for 10 graphs, has eccentricity equal to rad(G) + 2 for one graph, and only for one remaining graph (road-pa network, which has large hyperbolicity) its eccentricity is equal to rad(G) + 15. It turns out also (see columns five and six of Table 2) that vertex w either belongs to the center C(G) or is very close to the center. The only exception is again road-pa network where 2rad(G) -ecc G (w) = 32 and d(w, C(G)) = 21. For every graph G = (V, E) in our dataset, we constructed also an arbitrary BF S(w)-tree T 2 = (V, E ′ ), rooted at vertex w, and analyzed how well T 2 preserves or approximates the eccentricities of vertices in G. The value of k max is at most five for 23 graphs. The average distortion k avg is much smaller than k max in all graphs. The distributions of the values of k(x) for all graphs are presented in Table 7 (see Appendix).

In Table 4, we compare these two eccentricity approximating spanning trees T 1 and T 2 with each other and with a third BF S(c * )-tree T 3 which we have constructed starting from a randomly chosen central vertex c * ∈ C(G).

For each graph in the dataset, three values of k max (k T1 max , k T2 max and k T3 max ) and three values of k avg (k T1 avg , k T2 avg and k T3 avg ) are listed. We observe that the smallest k max (out of three) is achieved by tree T 3 in 28 graphs, by tree T 2 in 20 graphs and by tree T 1 in 20 graphs (in 14 graphs, the smallest k max is achieved by all three trees). The difference between the largest and the smallest k max of a graph is at most one for 26 graphs in the dataset. The largest difference is observed for road-pa network: the largest k max (98) is given by tree T 1 , the smallest k max [START_REF] Dor | All-pairs almost shortest paths[END_REF] is given by tree T 3 . Two other graphs have the difference larger than three: for sc-ppi network, the largest k max [START_REF]University of oregon route-views project[END_REF] is given by tree T 2 , the smallest k max (3) is given by tree T 1 ; for power-grid network, the largest k max [START_REF] Albert | Internet: Diameter of the world-wide web[END_REF] is given by tree T 1 , the smallest k max (4) is shared by remaining trees T 2 , T 3 . Overall, we conclude that k max values for trees T 1 and T 2 are comparable and generally can be slightly worse than those for tree T 3 . Similar observations hold also for the average distortion k avg . Note, however, that for construction of trees T 2 and T 3 one needs to know rad(G) or a central vertex of G, which are unlikely to be computable in subquadratic time (see Statement 2). 

Network diam(G) diam(T1) k

T 1 max k T 1 avg diam(T2) k T 2 max k T 2 avg diam(T3) k T 3 max k T 3 avg dutch-elite 22 

Estimation of Distances

Following Theorem 3, we experimented also on how well our approach approximates the distances in graphs from our dataset. To analyze the quality of approximation provided by our method for a given graph G = (V, E), for every δ := 0, 1, 2, . . . , we computed an estimate d δ (x, y) on d G (x, y) and the error ∆ xy (δ) = d δ (x, y) -d G (x, y) for all x, y ∈ V . In Table 5, we report ∆ max (δ) = max x,y∈V ∆ xy (δ) and ∆ avg (δ) =

1 n 2
x,y∈V ∆ xy (δ) for the smallest δ such that ∆ max (δ) ≤ δ + 1. We omitted some very large graphs in this experiment. For some other large graphs, we did only sampling; we calculated ∆ max (δ) and ∆ avg (δ) based only on a set of sampled vertices. We sampled vertices that are most distant from the root. The number of sampled vertices ranged from 10 to 100 in each network. For all networks investigated, the average error ∆ avg (δ) was very small, less that 1 even for infrastructure networks. That is, the maximum error ∆ max (δ) was realized on a very small number of vertex pairs. The maximum error ∆ max (δ) was 2 for three networks, was 3 for five networks, was 4 for ten networks (including infrastructure network openflight), and was at most 6 for all except one social network dutch-elite and two infrastructure networks: road-euro and power-grid. The largest ∆ max (δ) value had expectedly power-grid network whose hyperbolicity is 10. x,y∈V ∆ xy (δ); δ is defined as the smallest δ (0 ≤ δ ≤ diam(G)) such that ∆ max (δ) ≤ δ + 1. Due to large sizes of some networks, the values of ∆ max (δ) and ∆ avg (δ) for networks marked with * were computed only for some sampled vertices (we sampled vertices that are most distant from the root). The number of sampled vertices ranged from 10 to 100 in each network. 

Fig. 1 .

 1 Fig. 1. A geodesic triangle ∆(x, y, z), the points m x , m y , m z , and the tripod Υ (x, y, z)

  set of all vertices of G that are most distant from x. Vertices x and y of G are called mutually distant if x ∈ F (y) and y ∈ F (x), i.e., ecc G (x) = ecc G (y) = d G (x, y).

  u] be a geodesic triangle, where [v, x], [x, u] are arbitrary geodesics connecting x with v and u. Let ∆(u, v, y) := [u, v] ∪ [v, y] ∪ [y, u] be a geodesic triangle, where [v, y], [y, u] are arbitrary geodesics connecting y with v and u. Let m x be a point on [u, v] which is at distance (x|u) v = 1 2 (d(x, v) + d(v, u) -d(x, u)) from v and hence at distance (x|v) u = 1 2 (d(x, u) + d(v, u) -d(x, v)) from u. Let m y be a point on [u, v] which is at distance (y|u) v = 1 2 (d(y, v) + d(v, u) -d(y, u)) from v and hence at distance (y|v) u = 1 2 (d(y, u) + d(v, u) -d(y, v)) from u. Without loss of generality, assume that m x is on [u, v] between v and m y .

  Pick any (x, y)-geodesic and consider the middle point m of it. Let z be a vertex of G such that d G (m, z) = ecc G (m). Consider a geodesic triangle ∆(x, y, z) := [x, y] ∪ [y, z] ∪ [z, x], where [z, x], [y, z] are arbitrary geodesics connecting z with x and y. Let m z be a point on [x, y] which is at distance (x|z) y = 1 2 (d(x, y) + d(z, y) -d(x, z)) from y and hence at distance (y|z) x = 1 2 (d(x, y) + d(z, x) -d(y, z)) from x. Without loss of generality, we can assume that m is located on [x, y] between y and m z .

  Hence, d G (x, y) ≤ 2k + 2δ + 1. ⊓ ⊔ Diameter and radius. For an arbitrary connected graph G = (V, E) and a given vertex u ∈ V , a most distant from u vertex v ∈ F (u) can be found in linear (O(|E|)) time by a breadth-first-search BF S(u) started at u. A pair of mutually distant vertices of a connected graph G = (V, E) with δ-thin triangles can be computed in O(δ|E|) total time as follows. By Proposition 3(c), if v is a most distant vertex from an arbitrary vertex u and t is a most distant vertex from v, then d(v, t) ≥ diam(G) -2δ. Hence, using at most O(δ) breadth-first-searches, one can generate a sequence of vertices

Theorem 4 .

 4 Let G = (V, E) be a graph with δ-thin triangles. (a) If the value of δ is known, then all distances in G with an additive one-sided error of at most 2δ + 2 can be found in O(|V | 2 log 2 |V |) time. (b) If an approximation ρ of δ such that δ ≤ ρ ≤ aδ + b is known (where a and b are constants), then all distances in G with an additive one-sided error of at most 2(aδ + b + 1) can be found in O(|V | 2 log 2 |V |) time.

Table 2 .

 2 Qualities of a pair of mutually distant vertices u and v, of a middle vertex c of a (u, v)-geodesic, and of a BF S(c)-tree T 1 rooted at vertex c. "No. of BFS iterations" indicates how many breadth-firstsearch iterations were needed to obtain a pair of mutually distant vertices u and v. For each vertex x ∈ V , k(x) := ecc T1 (x) -ecc G (x). Also, k max := max x∈V k(x) and k avg := 1 n x∈V k(x).

  2ρ + 1 and remove S u from F

	we will compute for each current vertex x all values d(x, y) := h T (x) + h T (y) -2 sl T (x, y; 2ρ + 1) + 2ρ + 1, y > x, in O(|V |) total time. By Proposition 7,

Table 1 .

 1 Statistics of the analyzed networks: |V | is the number of vertices, |E| is the number of edges;

	-elite		[17]	3621	4310	3	2.4	12	22	4	no	5
	facebook		[74]	4039	88234	1 43.7	4	8	0	yes	1.5
	eva slashdot	social	[17] [73]	4475 77360 905468 4664	15 1 13.1 2.1	10 6	18 12	3 0	yes yes	3.5 *1.5
	loans		[71]	89171 3394979 29350 74.69	5	8	4	yes	
	twitter		[45] 465017 834797	755 3.59	5	8	4	yes	
	email-virgili		[61]	1133	5451	215	9.6	5	8	4	yes	2
	email-enron	communi-[73,68]	33696 180811	248 10.7	7	13	2	yes	
	email-eu	cation	[72] 224832 680720	1 ≈ 3	7	14	0	yes	
	wikitalk-china		[87] 1217365 3391055	17	2.9	4	8	2	yes	
	cs-metabolic		[55]	453	4596	17	8.9	4	7	2	yes	1.5
	sc-ppi yeast-ppi	biological	[65] [29]	1458 2224	1948 6609	48 57 ≈ 6 2.7	11 6	19 11	6 4	no no	3.5 2.5
	homo-pi		[86]	16635 115364	135 13.87	5	10	2	no	2
	as-graph-1		[3]	3015	5156	32	3.4	5	9	2	yes	2
	as-graph-2		[3]	4885	9276	531	3.8	6	11	4	no	3
	as-graph-3 routeview	internet	[3] [7]	5357 10515	10328 21455	10 2	3.9 4.1	5 5	9 10	2 2	yes no	2 2.5
	as-caida		[5]	26475	53381	2 4.03	9	17	1	yes	2.5
	itdk		[4] 190914 607610	155	6.4	14	26	4	yes	
	gnutella-06		[82,72]	8717	31525	338	7.2	6	10	5	no	3
	gnutella-24 gnutella-30	peer-to-peer	[82,72] [82,72]	26498 36646	65359 88303	1 602	4.9 4.8	6 7	11 11	0 6	yes no	3 *2.5
	gnutella-31		[82,72]	62561 295756	55	4.7	7	11	5	no	*2.5
	web-stanford		[73] 255265 2234572	1 15.2	82	164	0	yes	*7
	web-notredam	web	[13] 325729 1497134	12	6.8	23	46	2	no	*2
	web-berkstan		[73] 654782 7600595	1 20.1	104	208	0	yes	*7
	amazon-1	product	[96] 334863 925872	21	5.5	24	47	3	no	
	amazon-2	co-purchasing	[96] 400727 3200440	194 11.7	11	20	5	no	
	road-euro		[88]	1039	1305	1	2.5	31	62	0	yes	7.5
	openflight power-grid	infrastructure	[6] [93]	3397 4941	19231 6594	21 11.3 1 2.7	7 23	13 46	2 0	yes yes	2 10
	road-pa		[73] 1087562 3083028	2 2.83	402	794	1	yes *195.5

|C(G)| is the number of central vertices; deg is the average degree; rad(G) is the graph's radius; diam(G) is the graph's diameter; diam G (C(G)) is the diameter of the graph's center; "connected?" indicates whether or not the center of the graph is connected; δ(G) is the graph's hyperbolicity. Hyperbolicity values marked with asterisks are approximate.

Table 3 .

 3 Qualities

of a vertex v most distant from a random vertex u, of a vertex w of a (u, v)-geodesic at distance rad(G) from v, and of a BF S(w)-tree T 2 rooted at vertex w. For each vertex x ∈ V , k(x) := ecc T2 (x) -ecc G (x). Also, k max := max x∈V k(x) and k avg := 1 n x∈V k(x).

Table 4 .

 4 Comparison of three BFS-trees T 1 , T 2 and T 3 . T 3 is a BF S(c

* )-tree rooted at a randomly picked central vertex c * ∈ C(G).

Table 5 .

 5 Distance approximations: for every x, y ∈ V , ∆ xy (δ) = d δ (x, y) -d G (x, y); ∆ max (δ) = max x,y∈V ∆ xy (δ); ∆ avg (δ) = 1

	Network	diam(G) rad(G) δ ∆max(δ) ∆avg (δ) ecc(s)
	dutch-elite	22	12	8	8	0.177	16
	facebook	8	4	2	2	0.169	6
	eva	18	10	6	6	0.044	12
	slashdot*	12	6	4	2	0.028	8
	loans*	8	5	3	3	0.213	6
	twitter*	8	5	3	3	0.156	6
	email-virgili	8	5	3	4	0.39	6
	email-enron	13	7	4	4	0.06	9
	email-eu*	14	7	3	2	0.005	10
	ce-metabolic	7	4	2	3	0.125	4
	sc-ppi	19	11	6	6	0.19	13
	yeast-ppi	11	6	4	4	0.239	8
	homo-pi	10	5	3	3	0.02	7
	as-graph-1	9	5	3	4	0.061	8
	as-graph-2	11	6	4	4	0.034	8
	as-graph-3	9	5	4	3	0.035	9
	routeview	10	5	4	4	0.038	6
	as-caida	17	9	3	4	0.022	14
	itdk*	26	14	5	4	0.15	19
	gnutella-06	9	6	5	4	0.331	8
	gnutella-24	11	6	6	6	0.128	9
	gnutella-30*	11	7	6	5	0.439	8
	gnutella-31*	11	7	6	5	0.386	9
	road-euro	62	31	21	11	0.927	39
	openflight	13	7	3	4	0.029	10
	power-grid	46	23	17	17	0.518	38
	n 2						

Table 6 .

 6 Distribution of values k(x) = ecc T1 (x) -ecc

	dutch-elite	6	2.35	14.9	0	54.3	0	29.1	0	1.7
	facebook	2	0.686	51.9	27.6	20.5				
	eva	2	0.571	47.6	47.7	4.7				
	slashdot	3	1.777	2.3	24.1	67.1	6.5			
	loans	3	2.06	0.1	13.9	66.3	19.7			
	twitter	4	2.569	0.1	≈ 1	44.4	51.2	3.4		
	email-virgili	4	2.729	0.1	2.3	32	55.7	9.9		
	email-enron	2	0.906	23.4	62.6	14				
	email-eu	2	0.002	99.8	0.1	0.1				
	wikitalk-china 3	2.076	≈ 0	0.01	92.4	7.6			
	ce-metabolic	3	1.982	0.2	7.5	86.1	6.2			
	sc-ppi	3	0.981	32.4	41.6	21.5	4.5			
	yeast-ppi	3	1.872	2	25.4	55.8	16.8			
	homo-pi	2	0.747	34.2	56.9	8.9				
	as-graph-1	3	1.791	0.5	24.9	69.7	4.9			
	as-graph-2	3	1.124	9.6	68.5	21.7	0.2			
	as-graph-3	2	0.828	27.8	61.6	10.6				
	routeview	2	0.329	69.7	27.6	2.7				
	as-caida	0	0	100						
	itdk	4	2.108	0.3	12	64.5	22.8	0.4		
	gnutella-06	4	2.507	0.3	5.7	41.1	48.8	4.1		
	gnutella-24	5	2.697	0.2	1.5	37	50.7	10.5	0.1	
	gnutella-30	5	3.167	0.1	1.8	13	52.4	31.8	0.9	
	gnutella-31	6	4.176	0.01	0.2	1.4	13.3	51.1	33.4	0.5
	web-stanford	28 0.006	99.9	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
	web-notredam	2	0.935	7.1	92.4	0.5				
	web-berkstan	22 0.002	99.9	≈ 0	0	≈ 0	0	≈ 0	≈ 0
	amazon-1	6	0.991	28.1	48	21.5	1.5	0.5	0.3	0.1
	amazon-2	6	3.735	0.1	0.3	3.6	33.9	46.5	15.3	0.3
	road-euro	8	0.135	97.4	0.3	0.1	0.4	0	0.8	≈ 1
	openflight	3	1.879	0.2	23.9	63.7	12.2			
	power-grid	13 5.735	14.3	13.1	1.6	1.6	3.9	8.7	39.8
	road-pa	98 23.339	0.02	1.5	0.1	2.9	0.2	0.2	95

G (x), x ∈ V . k max := max x∈V k(x). k avg := 1 n x∈V k(x).

Table 7 .

 7 Distribution of values k(x) = ecc T2 (x) -ecc G (x), x ∈ V . k max := max x∈V k(x). k avg :=

	1 n	x∈V k(x).

Õ hides a polylog factor.

All δ-hyperbolicity values listed in Table1were computed using Gromov's four-point condition definition. As mentioned in[START_REF] Ghys | Les groupes hyperboliques d'après M. Gromov[END_REF][START_REF] Gromov | Hyperbolic groups, Essays in group theory[END_REF], geodesic triangles of geodesic δ-hyperbolic spaces are 4δ-thin.

For web-stanford and web-berkstan,[START_REF] Kennedy | On the hyperbolicity of large-scale networks and its estimation[END_REF] gives 1.5 and 2, respectively, as estimates on the hyperbolicities. However, the sampling method they used seems to be not very accurate. According to[76], the hyperbolicities are at least 7 for both graphs.
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Appendix