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We investigated 89Zr production induced by deuteron beams on yttrium targets at energies up to
Ed=32MeV using the stacked-foil activation technique. Cross sections of the following nuclear reactions

89Y(d,2n)89Zr, 89Y(d,3n)88Zr and 89Y(d,x)88Y have also been measured. Based on the measured values, we
determined the thick target yields for 89Zr and 88Zr which is the main contaminant associated to the production
of 89Zr.

1. Introduction

Thanks to its nuclear characteristics (t1/2=78.41 h, 22.3% positron
emission with a maximum decay energy of 900 keV), zirconium-89
(89Zr) is a very promising radionuclide for immuno-PET (positron
emission tomography using an antibody to target the cells of interest)
[1–5]. It can also be used for bio distribution studies of labelled
monoclonal antibodies [6]; furthermore, in literature it was reported a
method to prepare pharmaceuticals for simultaneous magnetic re-
sonance imaging and PET [7].

Our work presents and discusses the experimental determination of
the cross-sections of the 89Y(d,2n)89Zr reaction in the 6–32MeV energy
range.

The earlier results for nuclear reactions induced by deuteron beams
on Y target were published by Baron and Cohen [8], La Gamma and
Nassif [9], Bissem et al. [10], Degering et al. [11], West et al. [12],
Uddin et al. [13], Tárkányi et al. [14] and Lebeda et al. [15] and are
rather scattered. These data will be compared with ours results, which
contribute with a new set of experimental values.

In parallel, we evaluated the excitation functions for the co-pro-
duced zirconium-88 (88Zr) and yttrium-88 (88Y).

88Zr, with t1/2 =83.4 d and single gamma-ray emission
(392.87 keV), is the only radioisotopic impurity in 89Zr production by

deuterons on 89Y and it has an impact on the specific activity of the final
production.

88Y has an half-life of 106.65 d and it may have an impact on waste
management during the production process.

2. Experimental

We determined the excitation functions using stacks of high purity
aluminium (as degrader, monitor and catcher foil, Goodfellow
Cambridge Ltd., purity 99.999%, 4.30mg·cm−2), yttrium (as target
foil) and titanium (as monitor foil, Goodfellow Cambridge Ltd., purity
99.6+%, 8.80mg·cm−2): each stack was composed of four couples of Y
and Al foils, by one couple of Ti and Al foils after each Y/Al foils and by
some added aluminium foils as degraders.

IAEA tabulated monitor reactions [16] – natTi(p,x)48V and 27Al
(d,x)24Na reactions – were used for the determination of beam intensity
and energy.89Y targets (Goodfellow Cambridge Ltd., purity 99.6+%)
had a nominal thickness of 25 μm (i.e. 11.17mg·cm−2). We verified the
homogeneity of the target with an analog thickness gauge (resolution
0.001mm) and we measured accurately by weighing the value of target
thickness: 11.13mg·cm−2 (used in the 28.1–32.3MeV and
18.2–21.0MeV energy ranges) and 12.37mg·cm−2 (in all the other
energy ranges) with a relative uncertainty of ± 2%.
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The irradiations were performed with the cyclotron IBA C70 of the
ARRONAX center (Saint-Herblain, France) [17]: the mean beam in-
tensity was about 180 nA and irradiations duration was 1 h.

We irradiated six stacks with different incident energies in order to
limit the energy straggling and the energy spread to the minimum in the
energy interval from 6MeV up to 32MeV. The stacks were irradiated in
air with an external beam line; the line was closed by a kapton foil with
a thickness of 75 μm and the distance between the beam line window
and the first foil in the stacks was 82mm.

SRIM 2013 [18] was used to compute the mean deuteron beam
energy in each foil. The uncertainty of the mean energy includes the
energy straggling of the beam through the target foils, the uncertainties
related to the mean areal density and the energy uncertainty of the
extracted deuteron beam.

Decay radiations associated to each radionuclide were measured
without any chemical processing at the LASA laboratory (Segrate, INFN
and Physics Dept. of University of Milan), by a calibrated HPGe (high
purity germanium, 15% relative efficiency) detector. We measured the
samples periodically for six months starting the first measurement
within 48 h after end of bombardment (EOB).

To calculate the overall uncertainty related to the experimental
cross sections, the several error sources reported in [19] are taken into
account: this overall uncertainty has a relative error of 6–15%.

Relative uncertainties of the half-lives and the gamma emission
intensities are very small (usually 0.1%) and, therefore, are neglected
in the overall uncertainty calculations.

The decay characteristics for the radionuclides investigated are
taken from [20,21] and are summarized in Table 1.

3. Results

We measured the thin foils by gamma spectrometry and calculated
the cross-sections (E) (mb) for each target as described in [19]: our
data are presented in Table 2.

The measured excitation functions are compared with the literature
data in Figs. 1, 3 and 5. Theoretical values were also extracted from
TENDL-2017 [22] and EMPIRE-3.2.2 [23] and are also presented on
Figs. 1, 3 and 5.

In order to bring more quantitative considerations, we calculated
the Thick Target Yield (TTY) [24] for the production of 89Zr and 88Zr.
Figs. 2 and 4 show the resulting TTY compared with experimental TTY
available in literature (Dmitriev et al. [25] and Zweit et al. [26]) and a
proton one [27].

3.1. 89Y(d,2n)89Zr

89Zr has a half-life of 78.41 h and can be produced through the
(d,2n) reaction. We assessed the activity through the 908.96 keV
gamma line (I =99.87%). 89Zr has a short-lived isomer 89mZr
(t1/2 =4.18min, isomeric transition probability equal to 93.77%) that
was not measured: we measured a cumulative production of 89,m+gZr.

Fig. 1 reports the measured experimental cross-sections together
with curves from theoretical calculations with EMPIRE and TALYS
codes (TENDL-2017) and the data of the earlier studies. Our cross-

sections are in good agreement with the results of West et al. [12],
Uddin et al. [27] and Lebeda et al. [15]. All the experimental data are
lower than the prediction of TENDL-2017 while they are under-
estimated by the prediction of EMPIRE 3.2.2 in the energy range
7–21MeV.

Fig. 2 shows the calculated TTY, two experimental TTY available in
literature (Dmitriev al. [25] and Zweit et al. [26]) and a proton one
(dash-dot line, Uddin et al. [27]).

A very good agreement between the curves calculated from data of
the present work and the experimental data points can be seen. A
comparison between a curve for the proton production and our curve
for the deuteron production of 89Zr shows that the proton one is higher
up to 26.5 MeV leading to higher production yield. For higher particle
energies the achievable TTY with protons is lower than with deu-
terons.

Table 1
Zr and Y radionuclides decay data [20] and contributing reactions. The Eth is
evaluated on the base of the mass defects in [21].

Nuclide t1/2 Contributing reactions Eth (MeV) E (keV) I (%)

89Zr 78.41 h 89Y(d,2n)89Zr 5.97 908.96 99.87
88Zr 83.4 d 89Y(d,3n)88Zr 15.50 392.87 97.31
88Y 106.65 d 89Y(d,t)88Y 5.34 898.04 93.7

89Y(d,dn)88Y 11.74
89Y(d,p2n)88Y 14.02

Table 2
Experimental cross-sections (one standard deviation) of the 89Y(d,xn)89,88Zr
and 89Y(d,x)88Y reactions.

Energy 89Zr 88Zr 88Y
(MeV) (mb) (mb) (mb)

6.0 ± 0.3 8.62 ± 0.70
9.6 ± 0.3 446 ± 36 0.255 ± 0.023
12.3 ± 0.3 728 ± 59 3.77 ± 0.22
14.1 ± 0.3 857 ± 70 7.63 ± 0.44
14.7 ± 0.3 851 ± 69 8.56 ± 0.50
15.4 ± 0.3 897 ± 73 0.164 ± 0.018 9.66 ± 0.79
15.6 ± 0.3 866 ± 70 0.106 ± 0.016 9.89 ± 0.57
17.1 ± 0.3 895 ± 73 6.54 ± 0.53 14.84 ± 0.85
17.6 ± 0.3 928 ± 75 9.74 ± 0.79 13.2 ± 1.6
17.9 ± 0.3 901 ± 73 20.8 ± 1.7 18.0 ± 1.6
18.2 ± 0.3 946 ± 77 25.1 ± 2.0 18.0 ± 1.5
19.6 ± 0.3 907 ± 74 94.9 ± 7.7 41.5 ± 3.4
19.6 ± 0.3 815 ± 66 68.9 ± 5.6 30.3 ± 2.9
21.0 ± 0.3 730 ± 59 192 ± 16 65.9 ± 5.4
21.5 ± 0.3 685 ± 56 210 ± 17 67.8 ± 5.9
23.1 ± 0.3 597 ± 48 392 ± 32 109.9 ± 9.3
24.8 ± 0.3 449 ± 36 498 ± 40 144 ± 12
26.4 ± 0.3 370 ± 30 601 ± 49 207 ± 17
27.9 ± 0.3 292 ± 24 629 ± 51 240 ± 20
28.1 ± 0.4 312 ± 25 653 ± 53 254 ± 21
29.6 ± 0.4 252 ± 20 646 ± 52 292 ± 24
31.0 ± 0.3 220 ± 18 651 ± 53 319 ± 27
32.3 ± 0.3 197 ± 16 634 ± 52 348 ± 28

Fig. 1. Excitation functions for 89Y(d,2n)89Zr nuclear reactions.
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3.2. 89Y(d,3n)88Zr

88Zr has a half-life of 83.4 d and can be produced through the (d,3n)
reaction. The activity was assessed through the 392.87 keV gamma line
(I =97.31%).

Our cross-sections (Fig. 3) are in good agreement with the two
previous results available in the same energy range [12,15]. The ex-
perimental data from the work of La Gamma and Nassif [9] are higher
than ours and these data are probably wrong, while data from Tárkányi
et al. [14] are lower. Still in this case, the prediction of TENDL-2017 is
higher than all the experimental data. However, EMPIRE 3.2.2 gives a
good description of the cross-sections.

Also in this case, Fig. 4 shows the resulting TTY in comparison with
one experimental TTY available in literature (Dmitriev al. [25]) and the
proton one (dash-dot line, Uddin et al. [27]).

For all particle energies the achievable TTY with protons is higher
than with deuterons. This indicates that more contaminants are pro-
duced using proton beams than using deuteron beams. We can then
expect a better purity of the 89Zr produced by deuteron induced reac-
tion on 89Y.

3.3. 89Y(d,x)88Y

88Y has a half-life of 106.65 d and the activity was assessed through
the 898.04 keV gamma line (I =93.7%); it can be produced through
the (d,x) reactions.

Our cross-sections are, in general, in good agreement with the re-
sults of Lebeda et al. [15], Uddin et al. [13], Tárkányi et al. [14] and
West et al. [12] (Fig. 5). The experimental data from the work of La
Gamma and Nassif [9] are lower than ours. Also TENDL-2017 is in good
agreement with our experimental points while EMPIRE 3.2.2 gives
higher values above 20MeV. For both nuclear code, low energy values
are not correct. In this region, the (d,t) reaction is the only one in place
which means that these nuclear code must improve this reaction me-
chanism.

4. Conclusions

89Zr is extensively used in the research of new PET radio-
pharmaceuticals.

We presented the excitation functions of the reactions on 89Y

Fig. 2. Thick Target Yield for 89Y(d,2n)89Zr nuclear reactions compared with
TTY obtained from (p,n) reaction [27].

Fig. 3. Excitation functions for 89Y(d,3n)88Zr nuclear reactions.

Fig. 4. Thick Target Yield for 89Y(d,3n)88Zr nuclear reactions compared with
TTY obtained from (p,n) reaction [27].

Fig. 5. Excitation functions for 89Y(d,x)88Y nuclear reactions.
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induced by deuteron beams up to 32MeV: significant amounts of 89Zr
can be produced by accelerators using deuteron beams and yttrium as a
target. A very low amount radionuclidic impurities is produced in the
energy range considered in this study (Fig. 6).

From Fig. 6 we can see that a define radionuclidic purity of 99.9%
corresponds to a higher beam energy for deuterons (20.5 MEV) than for
protons (16.2MeV). This turns out in a 9% higher production yield for
deuteron.

So, the use of deuteron beams bring an advantage in term of activity
production with respect to the use of proton beams and, at the same
time, it requires a less amount of 89Y to be involved in the radio-
chemical separation.
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