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Abstract  

Several genetic polymorphisms have been associated with Late Onset Alzheimer’s Disease 

(LOAD), but there has been limited evidence on whether these polymorphisms predict 

intermediary stage outcomes such as cognitive changes in prospective community-based studies. 

Our aim was to evaluate whether polymorphisms previously established as predictors of LOAD 

also predict worse cognitive function and accelerated decline across multiple cognitive domains. 

We analyzed data from the 3C-Dijon study, in which 4 931 respondents aged 65+ were examined 

up to 5 times over 10 years with a neuropsychological assessment.  We evaluated the associations 

of polymorphisms in APOE, CR1, BIN1, CLU, PICALM, ABCA7, MS4A6A, CD33, MS4A4E, 

and CD2AP with level and change in 5 neuropsychological tests, assuming a dominant effect 

model. To optimize measurement, we used a mixed regression model with a latent process for 

each cognitive domain: global cognition (MMSE); verbal fluency (Isaac’s Set Test); visual 

memory (Benton Visual Retention Test); information processing (Trail Making Test B); and 

literacy (NART).  

APOE was associated with accelerated decline in global cognition and verbal fluency. Only two 

non-APOE genetic polymorphisms were associated with cognitive decline: CR1 was associated 

with rate of change in verbal fluency and BIN1 was associated with rate of change in global 

cognition. In a large prospective population-based study of dementia-free individuals, only a few 

cognitive domains were associated with established LOAD risk alleles.  The most consistent 

associations were for global cognition and verbal fluency.  

Keywords: Alzheimer's disease, genes, longitudinal cohort study, cognition, genome wide 

association studies 
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Introduction 

Although genetic factors are thought to influence individual risk of late onset Alzheimer's disease 

(LOAD), only a few specific polymorphisms have been identified. APOE is the main locus 

established to have a large effect on LOAD risk. Other single-nucleotide polymorphisms (SNPs) 

have also been implicated in recent genome wide association studies (GWAS), although these 

SNPs demonstrated modest effects: CR1, CLU, PICALM, BIN1, MS4A4/MS4A6E, CD2AP, 

CD33, EPHA1, TREM2, ABCA7.1-7 These new susceptibility genes suggested new pathways in 

the etiology of LOAD: lipid-processing for CLU and ABCA7, cell-membrane trafficking for 

PICALM, CD2AP and BIN1, and the immune-system for CR1, CD33 and EPHA1.8 Nonetheless, 

except for the APOE genotype,9-11 evidence for the association between these loci and 

prospectively assessed cognitive decline has been mixed.12-16
 

Confirming that the genes linked to LOAD also predict accelerated cognitive losses – the 

hallmark symptom of LOAD – is a critical step for understanding how these genes contribute to 

the course of LOAD. Without evidence on the association between risk SNPs and cognitive 

change, we do not understand how the risk loci relate to LOAD. For instance, these 

polymorphisms may predict LOAD because they are associated with a lower cognitive reserve 

and thus may be associated with lower cognitive outcomes in a cross-sectional study of old 

people. Or, these polymorphisms may predict LOAD because they accelerate neurodegeneration 

and so, may predict a faster cognitive decline in a longitudinal setting. 

We tested the hypothesis that genes involved in LOAD were associated with lower average initial 

cognitive level and with faster cognitive decline in initially non-demented individuals. Therefore, 

we used a large, prospective community-based cohort of initially non-demented French elderly to 
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assess whether the 10 top LOAD-associated SNPs also predicted average difference of cognitive 

level or rate  of cognitive decline, measured by five neuropsychological outcomes. 

Subjects and Methods 

Study sample 

We used data from the three-city (3C) study cohort. Between 1999 and 2001, the 3C study 

enrolled 9 294 non-institutionalized persons aged 65 years and over, sampled from the electoral 

rolls of three French cities: Bordeaux (South-West), Dijon (North-East) and Montpellier (South-

East). Health-related data were collected during face-to-face interviews using standardized 

questionnaires. The study protocol was approved by the ethical committee of the University 

Hospital of Kremlin-Bicêtre. Each participant signed an informed consent and was free to refuse 

any specific part of the examination (such as blood sampling or MRI); partial refusals did not 

constitute an exclusion criterion. The study was conducted according to the principles expressed 

in the Declaration of Helsinki. Details about the study design of 3C were previously reported.17 

For the current paper, analyses were restricted to the Dijon center (n=4 931),  because this site 

used the same tests across the study waves. 

Outcome Measures 

Respondents were assessed up to 5 times over 10 years with a neuropsychological test battery 

including: Mini Mental State Examination (MMSE) for global cognition;18 Isaac’s Set Test after 

30s (IST30) for verbal fluency; 19 National Adult Reading Test (NART), only at baseline and at 4-

year follow-ups, for premorbid mental ability; 20 Trail Making Test B (TMTB) for visual attention 

and speed of information processing;21 and Benton Visual Retention Test (BVRT) for visual 

memory.22  
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Total MMSE score varies between 0 and 30, a lower score corresponding to worse 

performances.18 Until a few years ago, the cut-off of 23 was recommended for screening for 

dementia, especially in epidemiological studies.23, 24 There are several reports, mainly from 

epidemiological studies, showing that lower MMSE scores predict future dementia (including of 

Alzheimer’s type) onset, and also that it predicts rate of cognitive decline.24-26 Isaac's set test 

(IST) consists in naming words during 15s first and then to go on up to 30s in different semantic 

categories consecutively: colors, animals, fruits, and cities.27 Lower performances in IST have 

been shown to predict dementia risk and others neuropsychological tests assessing verbal fluency 

have shown similar predictive values.25, 28 The BVRT consists in 15 stimulus cards and 15 

multiple-choice cards. After the presentation of a stimulus card for 10 seconds, the participants 

are asked to choose the initial figure among four options.22 The NART is an untimed measure, 

consisting of 50 words with atypical phonemic pronunciation. Each word is presented 

individually and subjects are required to read each aloud. It is a marker of premorbid functioning 

and the maximum score is 50.20 The Trail Making Test B(TMTB) consists of 25 circles including 

both numbers (1 – 13) and letters (A – L) and the participants has to draws lines to connect the 

circles in an ascending pattern, but with alternating between the numbers and letters (i.e., 1-A-2-

B-3-C, etc.) as quickly as possible, without lifting the pen or pencil from the paper.21 TMTB 

scores were calculated as the ratio of time to task completion divided by the number of correct 

connections.  

Ascertainment of Genotypes 

DNA samples were transferred to the French Centre National de Génotypage for genotyping. 

DNA samples that passed DNA quality control were genotyped with “Illumina Human610-Quad 

BeadChips” for the following polymorphisms: CR1 (rs3818361), BIN1 (744373), CLU 
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(rs11136000), PICALM (rs541458), ABCA7 (rs3764650), MS4A6A (rs610932), CD33 

(rs3865444), MS4A4E (rs670139) and CD2AP (rs9296559). Genotype data were retained in the 

study for samples that had been successfully genotyped for >98% of the SNP markers. SNPs with 

call rates of <98%, with MAF <1% or showing departure from Hardy-Weinberg equilibrium in 

the control population (P < 10-6) were excluded. APOE genotyping was performed using the 

fluorogenic 5'-nuclease assay with TaqMan chemistry. The sequences of the primers and probe 

oligonucleotides were designed as previously described.29 Amplification was performed in a final 

volume of 5 µL containing 20 ng/L of DNA solution, 900 nM of each primer, 200 nM of each 

probe, and 2 TaqMan Universal PCR master mix (Applied Biosystems, Foster City, CA). 

Statistical Analyses 

Due to missing data on genotypes or cognitive assessment, the analytic sample varied slightly 

across models. Among the 4 931 eligible participants, a maximum of 4 599 (accounting for 17 

593 observations) were included for the MMSE–APOE epislon-4 analysis whereas a minimum of 

4 461 (17 039 observations) were included for the IST30–ABCA7 analysis. Cognitive 

performances outliers were transformed by recoding any values more than 3 standard deviations 

above or below the mean as a z score of 3 (or −3). 

We estimated the relationship between each SNP and cognitive outcomes using nonlinear mixed 

models with latent process.30 We did this in order to take in account curvilinearity of the link 

between cognitive tests and underlying cognitive functioning.31 These models assume that there 

is a latent cognitive process (representing the cognition level) evaluated by the 

neuropsychological tests. The model has two parts: firstly, a standard linear mixed model with the 

latent cognitive process as dependent variable and secondly, a model for the link between this 
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latent cognitive process and the neuropsychological test which allows us to consider the 

metrological properties of the tests (in a standard linear mixed model, this measurement link is 

linear). These two parts of the models are estimated simultaneously by maximum of likelihood 

with the function “lcmm” of the homonymous R package. We specified a family of 

transformations to estimate the measurement link between neuropsychological test and the latent 

cognitive process. For each outcome (except TMTB), we choose a beta cumulative distribution 

function as recommended previously.31 For TMTB, due to convergence problem, we used I-

splines with three nodes at tertiles. Analyses were performed with R version 2.15.2. 

The estimated effects computed from the models are standardized betas (one SD in the outcome). 

SNPs were coded as binary indicator variables for the risk allele and presence of epsilon-4 for 

APOE, assuming a dominant inheritance model (i.e., homozygous for non-risk alleles vs. 

heterozygous or homozygous for risk alleles). Age was centered so a value of 0 represented age 

77 years (the grand mean over all visits). We reversed coding for TMTB by multiplying all 

regression coefficients by −1. Models were adjusted for sex and use current age as the time scale. 

In order to take into account practice effects, an indicator for the first wave of cognitive measures 

was added into the models.   

Effect sizes of individual SNPs on cognition may be small.14 Risk scores combining information 

on individual genetic loci may improve statistical power to detect genetic associations. Therefore, 

in addition to examining individual SNPs, we created a genetic risk score (GRS) combining all 

SNPs by multiplying the allele count for each polymorphism by the reported beta coefficient 

from AlzGene2 and summing the result for each gene. 

Based on previous findings for LOAD, we had strong prior evidence for all of our hypotheses, so 
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we did not adjust for multiple comparisons; a p-value <0.05 was considered statistically 

significant. To explore the possible role of selective survival in our findings, we modeled the 

association between each SNP and mortality in a Cox model, with age as the time scale and 

delayed entry, adjusted for sex and education level.  

Results 
 
Participants’ characteristics 

Demographics are displayed in Table 1 for each assessment, from baseline (4 931 participants) to 

the final visit (2 283 participants). Median (Interquartile Range) age at baseline was 74 years 

(70.0-78.2), a larger fraction of participants were women (62% at baseline) and one third of the 

sample had 9-12 years of education (i.e,. secondary school or more). Frequencies of genotypes of 

baseline participants are displayed in Table 2. One fifth of participants carried at least one APOE-

epsilon-4 allele; for others SNPs, the prevalence of the risk allele ranged from 18% from ABCA7 

to more than 90% for CD33. 

Association between polymorphisms and rate of change in each cognitive domain  

The genetic risk score (Table 3), including all 10 SNPs, was associated with higher rate of decline 

in global cognition (MMSE: β =-0.21, 95% CI [-0.35; -0.08]), verbal fluency (IST30: -0.25, 95% 

CI [-0.43; -0.07]), and visual memory (BVRT: β =-0.13, 95% CI [-0.25, -0.01] ). It was not 

associated with information processing (TMTB: β =-0.09, 95% CI [-0.23;0.05]) or NART: β =-

0.06, 95% CI [-0.31;-0.20]). These associations were no longer significant when the genetic risk 

score was constructed without the APOE allele.  

Table 4 shows the association of individual polymorphisms with cognitive level (at age 77) and 

rate of cognitive change  (over ten years) for each tests. Decline in global cognition (measured by 
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the MMSE) was faster among carriers of APOE epsilon-4 (β =-0.14, 95% CI [-0.25;-0.02]) and 

BIN1-G (β =-0.10, 95% CI [-0.19;-0.01] ) alleles. Faster decline in verbal fluency performances 

(measured by the IST30) were observed in APOE epsilon4 carriers (β =-0.22, 95% CI [-0.37;-

0.07] and CR1-C allele carriers (β =-0.15, 95% CI [-0.27;-0.02]). None of the loci was associated 

with cognitive decline in visual memory (BVRT), information processing (TMTB) or premorbid 

mental abilities (NART).  

Association between polymorphisms and survival 

Over follow-up, 989 deaths occurred; mortality was higher for APOE epsilon-4 carriers (hazard 

ratio (HR) =1.16, 95% CI [1.04-1.30], p=0.01).  None of  the other LOAD-associated SNPs 

predicted survival (CR1: HR=1.11, 95% CI [0.97-1.27], p=0.13; CLU: HR=1.07, 95% CI [0.89-

1.28], p=0.46; BIN1: HR=1.04, 95% CI [0.92-1.18], p=0.52); PICALM: HR=1.05, 95% CI [0.93-

1.20], p=0.42).  

Discussion 

In this sample of older community dwelling French adults, APOE predicted faster cognitive 

decline in both global cognition (MMSE) and verbal fluency (IST). CR1 predicted rate of change 

in verbal fluency and BIN1 predicted rate of change in global cognition. Visual attention and 

speed of information processing (TMTB) was only associated with APOE for cognitive level at 

age 77 and was not associated with faster rate of cognitive decline.  Visual processing (BVRT) 

and literacy (NART, a supposed surrogate of cognitive reserve) were not associated with any of 

the LOAD-associated alleles. Further, polymorphisms in 7 of the 10 loci (in CLU, PICALM, 

ABCA7, MS4A6A,  CD33, MS4A4E and CD2AP) did not predict level or rate of change in any 

cognitive domain.  
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Summary of findings of previous published studies is displayed in Table 5 with SNPs as rows and 

cognitive measures as columns.  Associations with APOE haplotype are not displayed since they 

are widely acknowledged and hence, not always tested. CR1 was associated with cognition in 

four studies in three cognitive domains: general cognition13, attention16 and episodic memory32, 33. 

In our study, CR1 was also associated with cognition albeit only in one domain, verbal fluency. 

CLU was associated with cognition in three domains in four studies : general cognition (3MS 16 

and a composite score 34), episodic memory 35 and verbal memory.36 However, in the study 

reported by Mengel-From et al., CLU was not associated with MMSE,34 as in our study and the 

association with verbal memory was observed only in the subset of patients subsequently 

developed LOAD or Mild Cognitive Impairment (MCI).36 This latter result was interpreted as 

reflecting an association between CLU and pre-symptomatic stage of LOAD but not between 

CLU and normal ageing.36  PICALM was associated with general cognition (3MS) in the study 

reported by Sweet et al.,16 whereas we did not found any association between PICALM and 

cognitive function. Furthermore, previous studies did not reported any positive associations for 

BIN1 whereas we found an association between BIN1 and general cognition (MMSE). These 

discrepancies could be explain by differences in design (e.g., use of case/control design as in 

Pedraza et al.35), choice of model for cognitive decline (e.g, Sweet et al. use a Bayesian analysis 

to model cognitive decline trajectory, 16 whereas we use linear mixed model with latent process 

and others generally use linear mixed model), use of different cognitive instruments or 

genotyping measures, different populations or by chance. 

Several studies reported negative associations and, because of plausible publication bias,  it is 

likely than some negatives studies are not published. By example, a report found no association 

between any SNPs among CLU, PICALM, EXOC3L2, CR1, and BIN1 and verbal fluency, 
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logical memory, or general cognitive ability (evaluated by the Moray House Test) in the Lothian 

Birth Cohort of 1936 (at age 70) and  in the Lothian Birth Cohort of 1921 (at age 79).37 Authors 

did found an interaction between BIN1 and APP in APOE epsilon-4 positive subset of one cohort 

(the 1936 birth cohort) on verbal declarative memory. However, this discovery was not replicated 

in the replication cohort, nor in the joint analysis of the two cohorts.37 In two non-demented large 

prospective cohorts, CR1 was associated with faster decline in both global cognition and episodic 

memory, but neither CLU nor PICALM predicted either cognitive outcome.13  

Consistent with our findings, most prior research identifies APOE as the most relevant gene, 

often fully accounting for associations between any polygenic risk score and cognitive function. 

For instance, in 5 171 non demented people (age 45–99 years) from the population-based 

Rotterdam Study, it was found that a genetic AD risk score constructed from APOE, EPHA1, 

ABCA7, BIN1, CD2AP, CLU, CR1, MS4A4E, MS4A6A, and PICALM genotypes predicted 

both baseline global cognition and baseline memory function.14 However, after excluding APOE 

from the score, these associations were no longer statistically significant. 14  A cross-sectional 

study across five cohorts find no associations between five polygenic risk scores (created using 

different thresholds for p-values of  SNP– LOAD association) and cognitive ability in later life or 

age-related cognitive change.38 

A major challenge in examining cognitive change is the imperfect correspondence between 

neuropsychological test score changes and actual cognitive function.  In particular for measures 

such as MMSE, it is known that the tests are not equally sensitive to changes in cognitive 

function among very high functioning and low functioning individuals. 24, 39 To address this, we 

used latent process models, which better describe changes in the true cognitive function 

accounting for the limitations of the observed neuropsychological test scale.30 In our study, we 
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chose to study each outcome in order to find domain-specific associations.  We anticipated that 

genes strongly associated with LOAD would have broad cognitive consequences, but this was not 

the case. In fact, global cognition and verbal fluency showed the clearest associations with 

LOAD genes, although even these associations were modest.  Encouragingly, literacy showed no 

association with any LOAD-associated allele; this is consistent with prior work using literacy 

related measures to proxy for premorbid ability.40 

Our study has several important strengths including the large sample size, the simultaneous study 

of a large number of the identified LOAD genes, and longitudinal modeling of cognitive 

outcomes. Indeed, many but not all prior studies of the LOAD genetics have been based on cross-

sectional or retrospective study designs. Study designs based on prevalent, rather than incident, 

cases conflate the predictors of incidence with those of duration/survival, even in genetic 

research. For example, any allele differentially associated with longer survival among LOAD 

patients would be more common among LOAD patients than non-patients in an analysis of 

prevalent cases, even if the allele had no effect on the development of the disease. Therefore, it is 

important to assess the associations between the LOAD risk alleles and prospectively assessed 

cognitive change or incidence of cognitive impairment, as in the analyses reported here. The 

finding that several alleles previously confirmed to predict LOAD do not predict cognitive 

change in any domain opens the possibility that study design may have contributed to prior 

findings.  This concern is partially allayed by our finding that APOE epsilon-4 was the sole 

polymorphism associated with mortality, and this association was similar in the whole study 

sample as in participants with LOAD. 

This study has nonetheless some limitations. One of them is that some of the analyses where 

underpowered. Wide confidence intervals in some of the estimated effect sizes mean that the 
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study does not provide sufficient evidence to show that some LOAD-associated alleles are related 

to cognitive outcomes. However, in addition to large confidence intervals, it should be noted that 

the associated magnitudes of effects estimated were low in most cases and therefore the 

interpretation of the clinical meaning of such effect sizes is debatable. 

Conclusion 

APOE, CR1, and BIN1 were associated with rate of change in cognitive function, measured as 

global cognition or verbal fluency.  Seven of the 10 loci we examined, CLU, PICALM, ABCA7, 

MS4A6A, CD33, MS4A4E and CD2AP—all previously implicated in LOAD—were not 

associated with average level or rate of change in any cognitive domain. Cognitive domains 

related to premorbid ability, visual memory and information processing were not associated with 

any LOAD risk alleles. In most cases, APOE had by far the largest effects dwarfing the 

importance of other genes.   
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Table 1. Participants' characteristics over the follow-up visits. The three-city study, Dijon, France 
 
  Baseline Visit 1 Visit 2 Visit 3 Visit 4 
N 4931 4352 3889 2961 2283 
Follow-up years, Median (IQR) 1.8 (1.7-1.9) 3.6 (3.5-3.7) 6.9 (6.7-7.2) 8.6 (8.4-8.9) 
Age (years), Median (IQR) 74.0 (70.0-78.2) 75.5 (71.6-79.7) 77.0 (73.2-81.1) 79.4 (75.9-83.7) 80.6 (77.3-84.8) 
Female, n (%) 3043 (62) 2702 (62) 2443 (63) 1894 (64) 1478 (65) 
More than 9 years of education, n (%) 1758 (36) 1572 (36) 1417 (36) 1110 (38) 884 (39) 
MMSE, Median (IQR) 28 (26-29) 28 (27-29) 28 (26-29) 27 (25-28) 27 (26-28) 

IST, Median (IQR) 48 (41-55) 50 (42-57) 49 (42-57) 48 (41-55) 48 (41-56) 

TMTB, Median (IQR) 4.8 (3.4-8.3) Not done 5.0 (3.4-9.2) 5.7 (3.8-11.0) 5.6 (3.8-9.8) 

BVRT, Median (IQR) 11 (10-13) 12 (10-13) 11 (10-13) 11 (10-13) 12 (10-13) 
NART, Median (IQR) 25 (20-28) Not done 24 (20-28) Not done Not done 
 
Abbreviations: MMSE, Mini-Mental state Examination; IST, Isaac Set Test; TMTB, Trail Making Test B; BVRT, Benton Visual Retention 
test; NART, National Adult Reading Test; IQR, Inter-Quartiles Range 
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Table 2. Description of genotypes for top LOAD-associated SNPs. The three-city study, Dijon, France. 
 
SNPs Risk Allele Genotoypes (n) N RAF (%) OR

APOE E4  E4+ (3625) E4- (977) 4602 21.2 1.76 

CR1 (rs3818361) A AA (163) AG (1414) GG (3011) 4588 34.3 1.17

CLU (rs11136000) C CC (1690) TC(2153) TT(676 4519 85.0 1.14

BIN1 (rs744373) G AA(2315) GA (1852) GG(350) 4577 48.1 1.16

PICALM (rs541458) C TT (2162) CT(1940) CC (483) 4585 52.8 1.14

ABCA7 (rs3764650) G TT(3664) GT(753) GG(47) 4464 17.9 1.23

MS4A4E(rs670139) G GG(1741) TG(2211) TT(623) 4575 61.9 1.08

CD33 (rs3865444) C AA(438) AC(1926) CC(2217) 4581 90.4 1.12

MS4A6A (rs610932) T GG (1341) TG (2331) TT(911) 4583 80.1 1.11

CD2AP (rs9296559) C CC(330) CT(1813) TT(2352) 4495 47.7 1.12

 
Abbreviations: OR: odds ratio; RAF: risk allele frequency; SNP: single nucleotide polymorphism.
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Table 3. Association between genetic risk scores (GRS), and cognitive outcomes. The three-city study, 
Dijon, France. Data are standardized betas [95% CI]. 
 
 
Cognitive  tests  GRS GRS without APOE 

MMSE Difference at age 77  -0.27*** [-0.37; -0.17]  -0.22** [-0.36; -0.08]  

 Slope for 10 years  -0.21** [-0.35; -0.08]   -0.13 [-0.31; 0.06]       

IST Difference at age 77  -0.22* [-0.39; -0.05]   -0.06 [-0.30; 0.17]       

 Slope for 10 years  -0.25** [-0.43; -0.07]   -0.12 [-0.37; 0.12]       

Benton Difference at age 77  -0.06 [-0.14; 0.03]        -0.06 [-0.18; 0.06]       

 Slope for 10 years  -0.13* [-0.25; -0.01]   -0.05 [-0.21; 0.11]       

TMTB Difference at age 77 -0.18*** [-0.29; 0.08] -0.11 [-0.26; 0.03] 

 Slope for 10 years -0.09 [-0.23; 0.05] -0.04 [-0.23; 0.15] 

NART Difference at age 77  0.05 [-0.15; 0.24]         -0.08 [-0.35; 0.20]       

 Slope for 10 years  -0.06 [-0.31; 0.20]        0.00 [-0.25; 0.26]        
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Table 4. Associations between LOAD-associated SNPs and cognitive outcomes. The three-city study, Dijon, France. Data are standardized 
betas [95% CI]. 
 
Cognitive tests  APOE CR1 CLU BIN1 PICALM 

MMSE Difference at age 77  -0.17 ***[-0.26; -0.09]   -0.02[-0.09; 0.06]        -0.02 [-0.12; 0.08]     0.01 [-0.06; 0.08]         0.02 [-0.05; 0.09]        

 Slope for 10 years  -0.14 [-0.25; -0.02]   -0.02 [-0.11; 0.08]        -0.09 [-0.21; 0.04]     -0.10* [-0.19; -0.01]   -0.01 [-0.11; 0.09]       

IST Difference at age 77  -0.19 *[-0.33; -0.05]   0.04 [-0.08; 0.16]         -0.13 [-0.29; 0.03]     -0.01 [-0.15; 0.13]        0.09 [-0.02; 0.21]        

 Slope for 10 years  -0.22** [-0.37; -0.07]   -0.15 *[-0.27; -0.02]   0.00 [-0.14; 0.15]       -0.08 [-0.19; 0.04]        -0.04 [-0.15; 0.08]       

Benton Difference at age 77  -0.03 [-0.01; 0.04]        -0.00 [-0.03; 0.03]        -0.01 [-0.09; 0.08]     -0.01 [-0.07; 0.05]        0.02 [-0.03; 0.08]        

 Slope for 10 years  -0.09 [-0.19; 0.01]        -0.00 [-0.08; 0.08]        -0.04 [-0.15; 0.08]     -0.06 [-0.14; 0.02]        0.02 [-0.07; 0.10]        

TMTB Difference at age 77 -0.15* [-0.23;-0.06] 0.03 [-0.04; 0.11] -0.02 [-0.12; 0.08] -0.01 [-0.07; 0.06] 0.02 [-0.05; 0.09] 

 Slope for 10 years -0.07 [-0.19; 0.04] -0.02 [-0.12; 0.08] 0.09 [-0.04; 0.22] -0.09 [-0.18; 0.00] -0.08 [-0.17; 0.01] 

NART Difference at age 77  0.10 [-0.07; 0.26]      -0.01 [-0.13; 0.12]     -0.06 [-0.24; 0.12]    0.10 [-0.03; 0.23]      -0.03 [-0.16; 0.11]    

 Slope for 10 years  -0.05 [-0.27; 0.17]     -0.02 [-0.21; 0.17]     0.04 [-0.20; 0.28]     -0.13 [-0.30; 0.05]     -0.12 [-0.30; 0.05]    

 
Table 4 (continued). Associations between LOAD-associated SNPs and cognitive outcomes. The three-city study, Dijon, France. Data are 
standardized betas [95% CI]. 
 
Cognitive tests  ABCA7 MS4A6A CD33 MS4A4E CD2AP 

MMSE Difference at age 77  -0.02 [-0.11; 0.07]    -0.05 [-0.14; 0.04]    -0.12 [-0.24; 0.02]    -0.05 [-0.14; 0.04]    -0.04 [-0.11; 0.03]   

 Slope for 10 years  -0.04 [-0.17; 0.08]   -0.08 [-0.19; 0.03]    -0.03 [-0.17; 0.11]    -0.08 [-0.19; 0.03]    -0.00 [-0.09; 0.09]   

IST Difference at age 77  -0.13 [-0.28; 0.03]   0.11 [-0.04; 0.03]     -0.11 [-0.31; 0.08]    0.11 [-0.04; 0.25]     -0.01[-0.15; 0.12]    
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 Slope for 10 years  0.09 [-0.07; 0.24]     0.04 [-0.11; 0.19]     -0.17 [-0.37; 0.03]    0.04 [-0.11; 0.19]     0.05 [-0.07; 0.17]    

Benton Difference at age 77  -0.07 [-0.14; 0.07]   0.04 [-0.03; 0.11]     -0.09 [-0.18; 0.01]    0.04 [-0.03; 0.11]     -0.05 [-0.11; 0.08]   

 Slope for 10 years  -0.05 [-0.16; 0.05]   -0.00 [-0.15; 0.15]    0.03 [-0.10; 0.16]     -0.00 [-0.15; 0.15]    -0.01 [-0.09; 0.08]   

TMTB Difference at age 77 -0.06 [-0.16; 0.03] -0.04 [-0.13; 0.05] -0.10 [-0.22; 0.02] -0.04 [-0.13; 0.05] 0.00 [-0.05; 0.06] 

 Slope for 10 years 0.06 [-0.06; 0.18] 0.01 [-0.11; 0.12] -0.04 [-0.19; 0.11] 0.01 [-0.11; 0.12] 0.05 [-0.05; 0.14] 

NART Difference at age 77  -0.02 [-0.19; 0.15]   -0.02 [-0.18; 0.16]    -0.02 [-0.23; 0.19]    -0.02 [-0.18; 0.15]    0.00 [-0.05; 0.05]    

 Slope for 10 years  0.08 [-0.15; 0.31]     0.08 [-0.14; 0.30]     0.05 [-0.24; 0.35]     0.08 [-0.14; 0.30]     0.00 [-0.25; 0.26]    
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Table 5. Published studies reporting positive associations between LOAD-associated SNPs (rows) and cognitive measures (columns). 
 

 General cognition Attention Episodic memory Verbal memory 

 MMSE 3MS Composite score DSST Composite score California Verbal Learning Test

CR1   Chibnik32 Sweet16 Chibnik32, Keenan33  

CLU  Sweet16 Mengel-From34  Pedraza35 Thambisetty41 

BIN1       

PICALM  Sweet16     

ABCA7 
      

MS4A4E 
      

CD33 
      

MS4A6A 
      

CD2AP 
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