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TRANSLATIONAL RELEVANCE  

When there is more than one potential predictive biomarker, new targeted agents are often 

evaluated across several biomarker-defined subpopulations without any correction for multiple 

testing. This may result in a high risk of false positive findings. In this study, we calibrate the 

Cross-Validated Adaptive Signature Design (CVASD) and investigate the new design as an 

alternative to overcome the multiplicity problem. In the modified CVASD, one first evaluates the 

treatment effect in a sensitive subset of patients identified by a classification algorithm. When 

there is no effect in this subset, the trialist proceeds to evaluate the treatment effect on the broad 

population. Type I error is corrected as proposed in the original CVASD. Simulation results 

show that this slight calibration makes the so-called modified CVASD successfully outweigh the 

conventional approach, not only in terms of adequately controlling the type I error but also in 

terms of correctly identifying the predictive biomarker(s). 
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ABSTRACT  

Purpose: When there is more than one potentially predictive biomarker for a new drug, the drug 

is often evaluated in different subpopulations defined by different biomarkers. We aim to (i) 

estimate the risk of false-positive findings with this approach and (ii) evaluate the Cross-

Validated Adaptive Signature Design (CVASD) as a potential alternative. 

Experimental Design:  By using numerically simulated data, we compare the current approach 

and the CVASD across different settings and scenarios. We consider 3 strategies for CVASD. 

The two first CVASD strategies are different in terms of the partitioning of the overall 

significance level (between the population test and the subgroup test). In the third CVASD 

strategy, the order of the two tests is reversed, i.e. the population test is realized when the 

prioritized subgroup test is not statistically significant. 

Results: The current approach results in a high risk of false positive findings, whereas this risk is 

close to the nominal level of 5% once applying the CVASD, regardless of the strategy. When the 

treatment is equally effective to all patients, only the CVASD strategies could specify correctly 

the absence of a sensitive subgroup. When the treatment is only effective for some sensitive 

responders, the third CVASD strategy stands out by its ability to correctly identify the predictive 

biomarker(s).   

Conclusion: The drug-biomarker co-evaluation based on a series of independent enrichment 

trials can result in a high risk of false positive findings. CVASD with some appropriate 

adjustments can be a good alternative to overcome this multiplicity issue. 
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INTRODUCTION 

Precision medicine, also known as stratified or personalized medicine is an emerging approach 

for disease treatment and prevention that takes into account individual variability in genes, 

environment, and lifestyle for each person (1–4). One fundamental challenge in precision 

medicine is to identify a subset of patients with specific biomarkers that will respond adequately 

to a new targeted agent/regimen. Design strategies have evolved in the past few years to deal 

with this challenge (4–7). Of all these designs, the biomarker-stratified randomized controlled 

trial permits to rigorously evaluate the clinical utility of the proposed marker in terms of 

correctly guiding the treatment selection (8,9). Recent evidence otherwise shows that most 

trialists are using an enrichment design, in which only biomarker positive patients are eligible 

and are randomized to receive either the new drug or an appropriate control (7,10). 

One common issue of biomarker-stratified and biomarker-enriched designs is that they can only 

evaluate a single biomarker at a time. In practice, the situation is more complicated. As the 

development and validation of biomarkers is a complex process that requires considerable time 

and resources, it often lags behind the therapeutic development of the targeted agent (11). When 

a treatment is ready to be assessed in clinical trials, early phase data might propose more than 

one potential predictive biomarker. A recent review finds out that in such a case, the drug is 

often assessed in a series of independent enrichment trials. For instance, in colon and rectum 

cancers, panitumumab has been evaluated across 3 biomarker-defined subpopulations, namely 

BRAF-mutated subpopulation (1 trial), EGFR-positive subpopulation (2 trials) and KRAS wild-

type subpopulation (12 trials) (12).  

This "testing-in-all-direction" approach (TIADA) has several limitations. First, it reduces the 

chance that a patient could participate in trials, as biomarker-negative patients (who are thus not 
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eligible for one enriched RCT) are usually not simultaneously evaluated for eligibility for 

another trial. Second, this approach may result in an inflation of the type I error. When there is 

no treatment effect in the whole population and one biomarker-enriched trial is performed, the 

false positive rate is well controlled at a level of 5%. However, when several biomarkers are 

independently evaluated in several studies, the chance of incorrectly stating the treatment effect 

under the null hypothesis can be much higher than this conventional threshold of 5%. New 

designs such as umbrella and basket trials have been recently proposed to overcome the first 

challenge (10,13–16). Nonetheless, the multiplicity issue still remains, as strata in an umbrella 

trial are often analyzed separately without much consideration to the overall risk of false positive 

findings. In fact, multiplicity is less serious when early-phase trials are just for explanatory 

purposes, as in such a case the findings do not entirely rely on statistical testing. However, recent 

evidence shows that licensing decisions of regulatory authorities like the FDA are often based on 

statistical inference carried out in early-phase trials (17–20). As a consequence, the type I error 

inflation must be taken into account to prevent the risk of restricting the drug indications to an 

inappropriate sub-population. 

The Cross-Validated Adaptive Signature Design (CVASD) has the potential to overcome the 

issue of multiplicity. Such a design was first proposed by Freidlin et al. to detect signatures in 

some large multi-dimensional genetic datasets (e.g. more than 10.000 genes) (21). In this setting, 

CVASD increases the empirical power compared to the traditional broad eligibility approach of 

RCTs (21).  However, it is unclear whether CVASD can also be useful in the context of latter-

phase drug-biomarker co-evaluation, especially when the number of biomarker candidates is not 

considerably large. In other words, it is questionable whether CVASD can be superior to a series 
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of independent enrichment trials, in terms of controlling the type I error without substantially 

deteriorating the power of correctly identifying the right predictive biomarker(s). 

This study aims to (i) estimate the risk of false-positive findings of the current approach of 

cancer drug development (TIADA) and (ii) investigate statistical properties of the Cross-

Validated Adaptive Signature Design (CVASD) as a potential alternative to the current approach. 

METHODS 

Data Generation Process 

Numerical simulations are conducted to emulate phase III oncology trials evaluating the impact 

of a new targeted agent versus a standard therapy with respect to a time to event outcome. In 

practice, this outcome can be either the progression-free survival or the overall survival. In the first 

scenario, we assume that early-phase data identifies three biomarker candidates that can 

potentially characterize the drug responders. This scenario mimics the real situation of 

panitumumab in colon and rectum cancer found previously (12). However, some other 

biomarkers might have been assessed after the publication of our previous work. Furthermore, 

non-genetic factors such as gender or age group (e.g. more than 60 years of age) can also be 

taken into account. Because of this, a second scenario (scenario 2) with up to six biomarker 

candidates is also considered.  

In both scenarios, the status of the binary biomarker i is denoted by Zi (Zi = 0 or 1), where i = 1 

to 3 for scenario 1 and i = 1 to 6 for scenario 2. Zi are supposed to be mutually correlated 

(Appendix 1). Apart from Zi’s, the survival time is also influenced by a continuous non-

predictive factor L. The effects of treatment T, of biomarkers Zi’s and of the prognostic factor L 

are simulated by using a Cox proportional hazard model: where  is the linear predictor of the Cox 

model.  
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In scenario 1, data are generated such that all three biomarkers are prognostic. By contrast, in 

scenario 2, only the first four candidates (i.e. Z1 to Z4) are prognostic. To generate the predictive 

effect for a biomarker, a two-way interaction term between treatment T and this biomarker is 

added into the model (1). For instance, when Z1 and Z2 are predictive, the data-generating 

mechanism proposed for scenario 1 is:  and for scenario 2 is:  

A biomarker Zi is considered as strongly, moderately and weakly predictive when the hazard 

ratio  equals to 0.35, 0.5 and 0.65, respectively. In both scenarios, the survival time for a patient 

profile with  = 0 is simulated by using a Weibull distribution with a shape parameter of 2 and a 

median survival of 14. For generating the censoring time, we applied a Weibull distribution with 

a shape parameter of 2 and a scale parameter of 30. This results in a censoring rate of 25 – 35% 

across the settings. 

We consider 3 settings in each scenario. In setting 1, there is no predictive biomarker due to no 

treatment effect in the whole population (Table 1 - 1.1), or because the treatment works equally 

well for all patients (Table 1 - 1.2). Setting 2 and 3 consider the situation where predictive 

biomarker(s) is/are present. The new targeted agent is more effective than the standard care for 

sensitive patients (i.e. those having at least one predictive biomarker positive). In contrast, the 

two treatments are equally effective for non-sensitive patients. In setting 2, the sensitive 

subgroup is characterized by one predictive biomarker (Z1). The predictive value of this 

biomarker () decreases gradually from sub-setting 2.1 to sub-setting 2.3 (Table 1). In setting 3, 

the sensitive subgroup is characterized by two predictive biomarkers (Z1 and Z2). In sub-setting 

3.1, both of them are moderately predictive. In sub-setting 3.2, the first predictive biomarker (Z1) 

is moderately predictive and the second one (Z2) is weakly predictive ( and).  
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The proportion of patients being positive to each biomarker at the population level is given in 

Table 1. Across three settings, this is fixed at 30% for every non-predictive biomarker. For 

predictive biomarkers, data is generated such that their positive status will become less frequent 

when they are more predictive. 

Strategy A: performing a series of biomarker-enriched RCTs. 

In each simulation, the biomarker-enriched RCTs are independently generated with N patient 

profiles screened for eligibility per trial. Treatments are then randomized for those who are 

biomarker-positive. We consider 2 values for N, i.e. N = 500 and N = 1000. The randomization 

ratio in all enrichment trials is 1:1. The treatment and control groups are compared by a log-rank 

test at a significance level of 5%. No adjustment for multiplicity is considered since trials are 

conducted and analyzed separately.  

Strategies B1, B2 and B3: applying the CVASD with different partitioning of type I error risk  

We investigate 3 different strategies for CVASD. The first two ones (i.e. B1 and B2) apply the 

original CVASD proposed by Freidlin et al, in which the final analysis begins with an overall 

comparison between two arms using the data from all patients. If the comparison is statistically 

significant at a pre-specified significance level α1 (α1 < α), the new treatment is considered 

beneficial to the whole population. Otherwise, the design proceeds to the signature development 

– validation stage to identify a subgroup that is potentially sensitive. The statistical test for the 

identified subset is carried out at a significance level α – α1 (21,22). We consider α1 = 0.04 for 

strategy B1 and α1 = 0.01 for strategy B2. Strategy B1 therefore prioritizes the overall 

comparison, whereas strategy B2 prioritizes the subgroup one. 

In strategy B3, we modify the original CVASD by reversing the order of the two testing levels. 

The subgroup comparison is performed first, at a pre-specified significance level of α2 (α2 < α). 
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The overall comparison in the broad population is only performed (at a significance level of α – 

α2) when the subgroup test is not statistically significant. We evaluate this strategy when α2 = 

0.01. 

To ensure that the two approaches are compared on a fair basis, a sample of N profiles is 

simulated for one CVASD trial. To detect the sensitive responders, we apply the same 

identification algorithm as previously used by Friedlin et al (Appendix 2) (21). Due to this 

algorithm, the true predictive biomarker(s) will over-represent in the detected subgroup, in the 

sense that most of the sensitive patients will possess a positive status of the predictive 

biomarker(s). Based on this, we propose a classification rule that helps to identify the biomarker 

characterizing the sensitive responders. For each Zi, if the proportion of Zi-positive patients in 

the identified subgroup Pr(Zi = 1| sensitive) is maximal among all candidates, Zi is considered as 

the biomarker that characterizes the sensitive responders.  

Main outcomes 

We first focus on the risk of a false positive finding of the four strategies when there is no 

treatment effect in the whole population. This false positive risk can be estimated in sub-setting 

1.1, by calculating the proportion of simulations that show statistical significance. 

When the treatment is equally effective for all patients in the population (sub-setting 1.2), the 

chance of correctly identifying the absence of predictive biomarkers is the main outcome of 

interest. For strategy A, this requires all enrichment trials showing no statistical significance. For 

the CVASD strategies, the population test must show statistical significance. 

For setting 2 and 3 (i.e. the treatment is only effective for some patients in the population), we 

compare the four strategies with respect to the chance of identifying a correct sensitive subgroup. 

In setting 2 (i.e. one predictive biomarker – Z1), a correct sensitive subgroup is found by strategy 
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A if the trial enriched on the predictive biomarker Z1 is the only one showing statistical 

significance. In contrast, a correct sensitive subgroup is found by the CVASD if the subgroup 

test is statistically significant and the identified subgroup is characterized by the biomarker Z1.  

In setting 3 (i.e. two predictive biomarkers – Z1 and Z2), a correct sensitive subgroup is found by 

strategy A if at least one out of two predictive biomarker-enriched trials show statistical 

significance, whereas all trials enriched on a non-predictive biomarker do not. For the CVASD 

strategies, the subgroup test must be statistically significant and the identified subgroup is 

characterized by either Z1 or Z2. 

Ethical Statement 

This is a numerical simulation study. No humans nor animals were involved in this study. 

Thus there were no ethical guidelines applicable to this study and it did not need institutional 

review board (IRB) nor written consent.  

RESULTS 

We first discuss the results when the sample size is N = 1000 patients. 

Setting 1.1 – No treatment effect in the whole population 

When there is no treatment effect in the whole population, the false positive risk of the current 

approach (strategy A - series of enrichment trials) inflates up to 12.4% in scenario 1 (i.e. 3 

candidates) and 20.0% in scenario 2 (i.e. 6 candidates). By contrast, this risk is close to the 

nominal level of 5% when applying the CVASD strategies, regardless of the scenario (figure 1 

and 2). 

Setting 1.2 – Treatment is equally effective for all patients 
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The current approach (strategy A) has a modest chance to correctly specify the absence of a 

sensitive subgroup. In scenario 1 (3 candidates), only 51.9% of replicates consist of all 

enrichment trials showing statistical significance. This proportion in scenario 2 (6 candidates) is 

36.4%. 

For the original CVASD, an incorrect sensitive subgroup is found in a minor percentage of runs. 

Instead, the design often comes up with a population-level finding, even when the subgroup test 

is prioritized (strategy B2). In both scenarios, the population test of strategy B2 is statistically 

significant in about 99% of the replicates.  

When the subgroup test is performed before the population test (strategy B3 – modified 

CVASD), the percentage of correct population findings decreases but still lies in an acceptable 

range, e.g. 82% in scenario 2 (6 candidates). 

Setting 2 – One sensitive subgroup characterized by one predictive biomarker (Z1) 

Simulation results show that the original CVASD will perform better when most of the type I 

error is dedicated to the subgroup test (strategy B2 vs. B1). However, this is not enough for 

CVASD to outperform the current approach (strategy A - series of enrichment trials). For 

instance, in sub-setting 2.2 of scenario 1 (i.e. one moderately predictive biomarker out of 3 

candidates), the percentage of picking up the true predictive biomarker is 24.7% for strategy A, 

but only 3.5% for strategy B1 (original CVASD favoring the population test) and 9.2% for 

strategy B2 (original CVASD favoring the subgroup test). Meanwhile, the modified CVASD 

(strategy B3) stands out by its high performance. In the same sub-setting 2.2 (scenario 1), the 

proportion of correct subgroup findings for B3 is 47.9%, twice and four times higher than for 

strategy A and B2, respectively.  
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When there are two predictive biomarkers among the candidates (setting 3), the original CVASD 

hardly detect well at least one predictive biomarker. This is worse when the subgroup test is not 

prioritized (strategy B1 vs. B2). By contrast, the modified CVASD (strategy B3) still behaves 

properly and outperforms the other strategies. Consider for example the sub-setting 3.2 (i.e. one 

moderate and one weak predictive biomarker). In this sub-setting, the rate of correct subgroup 

findings of four strategies is 11.5% (A), 3.2% (B1), 9.0% (B2) and 90.7% (B3), respectively. 

Reasons of incorrect findings across the settings 2 and 3 

When a sensitive subgroup exists (setting 2 and 3), the most frequent reason for a wrong finding 

of strategy A (series of enrichment trials) is that it fails to identify an adequate sensitive 

subgroup (i.e. trials enriched on a non-predictive biomarker also show statistical significance). In 

contrast, the CVASD strategies often show no findings when coming up with a wrong 

conclusion. 

Impact of candidate number on the performance of different strategies 

The CVASD's performance remains stable when the number of biomarker candidates increases. 

As can be seen from figure 1 & 2, the percentage of each type of findings for the CVASD 

strategies only varies slightly when passing from scenario 1 (3 biomarker candidates) to scenario 

2 (6 biomarker candidates). By contrast, results of strategy A change substantially when there are 

more biomarkers: the percentage of incorrect subgroup findings increases greatly, whereas the 

percentage of incorrect population findings decreased quite remarkably (setting 2 and 3). 

Impact of sample size on the performance of different strategies 

We compare the performance of different strategies when the sample size increases from 500 to 

1000 (Figure 1 and 2). Strategy A (series of enrichment trials) does not perform more effectively: 
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the chance of correctly specifying the predictive biomarker(s) among the candidates decreases, 

but the chance of an incorrect finding (due to either picking up the incorrect predictive 

biomarker(s) or showing statistical significance on the population level) increases considerably. 

This can be seen in both of the two settings 2 and 3. For the original CVASD (strategy B1 and 

B2), the population test performed in advance will largely take advantage of the increased 

sample size. As a result, the correct subgroup findings proportion decreases. In contrast, the 

modified CVASD (strategy B3) is remarkably more effective when the sample size is larger, not 

only in the settings 2 and 3 (predictive biomarker(s) present) but also in the setting 1.2 (treatment 

equally effective to the broad population). 

DISCUSSION 

The drug-biomarker co-evaluation based on a testing-in-all-direction approach has several 

shortcomings. First, using this approach inflates considerably the risk of finding a false positive 

result due to the fact that no adjustment for multiplicity issue is realized. The more biomarkers 

are evaluated and tested in the independent studies, the higher and more serious the risk of false 

positive findings can be. This approach, however, is common in practice. A new targeted agent 

can be evaluated across different biomarker-defined subpopulations in several studies addressing 

one type of cancer, or for the same biomarker in different cancer types (12,23). While the public 

health community implicitly accepts multiplicity inflation due to independent phase III testing of 

a new anticancer agent in different stages of the same disease, independent testing of a new agent 

in multiple biomarker-defined subgroups of the same clinical setting is apparently problematic 

and should be adjusted for. 

Second, if the treatment works well in the whole population and there is no requirement for a 

guide of treatment selection, performing a series of enrichment trials hardly indicates the absence 
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of a sensitive subset due to no comparison on a population level. This shortcoming results from 

the well-known disadvantage of enrichment designs. As the new agent is only evaluated in the 

biomarker-positive subpopulation, part of the picture regarding the treatment effect in the 

biomarker-negative subgroup is concealed. Hence, evidence to evaluate the predictivity of a 

candidate becomes inadequate and negative patients that also gain benefice from the new 

treatment will apparently be undertreated. 

Third, the testing-in-all-direction approach has a quite modest ability to correctly pick up the 

predictive biomarker (among the candidates) when this presents. In such a situation, the 

approach often shows either a broad population finding or a wrong subgroup finding. These 

wrong findings are more apparent when the number of biomarker candidates is high. This is due 

to the fact that biomarker candidates can be strongly correlated.  When the study is enriched on a 

non-predictive biomarker that is correlated with a predictive one, a remarkable proportion of the 

participants will be positive to both biomarkers and will respond to the new treatment, since they 

are actually sensitive responders. As a result, the trial will have a high chance to show statistical 

significance but leads to a potential misunderstanding that the non-predictive biomarker is 

actually predictive.   

The aforementioned shortcomings of the current approach call for a more appropriate method to 

evaluate several biomarkers at a time. In this study, we find out that the Cross-Validated 

Adaptive Signature Design controls well the Family-Wise Type I Error in the weak sense and 

could be a solution to overcome the multiplicity issue. CVASD behaves stably when the number 

of biomarker candidates increases. Besides, as the subgroup identification procedure of CVASD 

has a relatively good specificity, this design guarantees that when no sensitive subgroup exists, 

the risk of inadequately restricting the drug indications to a subset of patients is minimized.  
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However, the performance of the original CVASD in terms of identifying the true predictive 

marker if this presents is quite modest. In such a situation, CVASD often comes up with a 

conclusion of a broad treatment effect although the targeted agent is only beneficial for certain 

patients. This result, however, is not surprising. The population test of CVASD actually 

evaluates the treatment by averaging its effect over the whole population. When the treatment is 

effective for some but not for others, there is indeed an effect on average. This average effect can 

be even considerable if the treatment is strongly effective in the sensitive subgroup. Considering 

this, one might argue about the necessity of the population test. The sensitive patients will be 

more easily detected when all study power is dedicated for the subgroup identification. However, 

one can hardly expect the trialists not to carry out a population test but only a subgroup-level 

test, given that patients are broadly recruited and randomized. Besides, the population test is a 

gate-keeper which prevents any inadequate findings when there is no predictive biomarker. 

Keeping the population test is hence necessary, but apparently leads to an important risk of 

overtreating the patients who do not benefit. This still happens when a large part of the type I 

error risk is dedicated to the subgroup-level test. In view of this problem, we consider a 

recalibration for the original CVASD. Simulation results show that by simply changing the 

orders of the two tests, one can minimize effectively the probability of recommending treatment 

to the overall population when it is only effective in a subset. Further, this simple calibration has 

a minor impact on the ability of the design to correctly specify the absence of the predictive 

biomarker if this is the case, and hence minimize the chance of undertreating any patient 

subgroups. 

Other concerns could be raised over the fact that CVASD includes biomarker-negative patients, 

which might be unethical in practice. In fact, the question of whether we need to include or not 
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biomarker-negative patients in targeted therapy evaluation is a complex and debated question 

(24,25). This depends on the confidence in the absence of effect in the biomarker-negative 

patients based on biological rationale, knowledge of the drug’s mechanism, preclinical data, the 

seriousness of the disease treated (i.e. delaying approval for biomarker-positive patients is often 

considered as not acceptable), etc. (26). For many indications of targeted therapies (e.g., 

vemurafenib in melanoma), it would be unethical to include “biomarker-negative” patients (in 

this example, patients with BRAF-wild type tumors) in a randomized clinical trial. However, it 

could still be possible to include patients with BRAF-mutated tumors in a CVASD to search for 

one or some additional predictive biomarkers beyond BRAF. On the other hand, there are several 

drugs for which the relevant predictive biomarker is less straightforward, and hence several trials 

with different biomarkers evaluated have been conducted (12). In these cases, our key message is 

that conducting an all-comer design like the (modified) CVASD would be wiser and more 

appropriate. 

This study suffers from some limitations. First, the data generating mechanism is probably 

oversimplifying the real-life situation. For instance, the simulated biomarkers are all binary, 

although in practice some markers might classify patients into more than two subgroups (e.g. 

low-, intermediate- or high-risk subgroup). Besides, we only evaluate in this study one fixed 

correlation structure among the biomarkers, whereas this can be an important factor that affects 

the strategies’ performance. Future frameworks should therefore address these aspects to develop 

insight into how different strategies behave in more complicated settings. Second, the 

performance of the subgroup identification algorithm in CVASD might be suboptimal, due to the 

fact that the best set of tuning parameters for each development cohort in the main cross 

validation is not chosen by the leave-one-out cross-validation method recommended by Freidlin 
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et al (21). In the context of a simulation study, this approach prolongs considerably the overall 

simulation time and hence, becomes practically infeasible. Our approach is to choose for each 

sub-setting only one set of parameters that can maximize the empirical power of the algorithm. 

This set is chosen via an extra simulation of 2000 runs (Appendix 2). Such an approach might be 

less effective but it limits the simulation time in an acceptable duration. Finally, this paper only 

deals with the clinical utility of the potential predictive biomarkers, assuming that the other 

dimensions of the biomarkers’ evidence (i.e. the analytic and clinical validity of the test, the 

ethical, legal and social implications of the use of the biomarkers (27)) are fulfilled. This 

assumption may not always be the case in practice. 

Several propositions could also be considered to further improve the modified CVASD. First, a 

large variety of methods to identify sensitive patients have been recently suggested, such as the 

SIDES algorithm (28,29) or other approaches for individualized treatment rules (30–33). These 

methods should be evaluated to ascertain whether they can help to further increase the modified 

CVASD performance. Second, this study only focused on randomized trials and compared 

different design strategies that involve treatment randomization. Further simulation studies 

should also be conducted to evaluate whether the modified CVASD can assist in the situation 

where only observational data (i.e. no treatment randomization) is available. Third, one can also 

think about the application of the cross-validation approach in the context of multistate adaptive 

enrichment design. In such a design, an intermediate analysis takes place based on first-stage 

subjects to decide whether the second stage should be enriched on a biomarker (34). This 

biomarker needs to be pre-specified at the beginning of the trial. If several biomarkers are 

proposed as in our context, the CVASD can be nested in the first stage and one biomarker that 

forms the sensitive subset is chosen for the second stage. However, the type I error in such a 
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design is controlled by using the closure principle rather than splitting the significance level as in 

the original CVASD (35,36).  

CONCLUSION 

When several biomarkers are proposed for a new targeted therapy, the current approach of 

evaluating a drug in a series of independent biomarker-enriched trials can yield a high risk of 

false-positive findings. CVASD with an appropriate split of type I error risk and a simple 

recalibration is a good alternative to overcome the problem of multiplicity in several settings. 
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TABLES 

Table 1 – Definition of different settings and sub-settings 

 

Setting 1 – No predictive biomarker (pre-BMK) 

1.1 No treatment effect in the broad population. 

1.2 The targeted agent applies equally to all patients. The treatment effect is weak. 

Setting 2 – One pre-BMK (Z1) & no treatment effect for non-sensitive patients 

2.1 The pre-BMK (Z1) has a high predictive value and a positive proportion of 25% in the 

population. 

2.2 The pre-BMK (Z1) has a moderate predictive value and a positive proportion of 35% in 

the population. 

2.3 The pre-BMK (Z1) has a low predictive value and a positive proportion of 50% in the 

population. 

Setting 3 – Two pre-BMKs (Z1 and Z2) & no treatment effect for non-sensitive patients 

3.1 Both pre-BMKs (Z1 and Z2) have a moderate predictive value and a positive proportion 

of 25% in the population.  

3.2 One pre-BMK (Z1) has a low predictive value and the other (Z2) has a moderate 

predictive value. The positive proportion in the population is 25% and 35%, 

respectively.  

BMK: biomarker, pre-BMK: predictive biomarker 
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Table 2 – Parameter setup for the outcome generating mechanism (1) in the different sub-

settings 

 and are the positive proportions of the two biomarkers Z1 and Z2, respectively. The proportion of 

patients being positive to each non-sensitive biomarker is fixed at 30% in all sub-settings. 

Sub-setting  
 

 

 

 
 

1.1 1 1 

0.3 

1 

0.3 

0.85 

1.2 0.65 1 

0.3 

1 

0.3 

0.85 

2.1 1 0.35 

0.25 

1 

0.3 

0.85 

2.2 1 0.5 

0.35 

1 

0.3 

0.85 

2.3 1 0.65 

0.5 

1 

0.3 

0.85 

3.1 1 0.5 

0.25 

0.5 

0.25 

0.85 

3.2 1 0.5 

0.25 

0.65 

0.35 

0.85 
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Figures Legends 

Figure 1 

Overall comparison of four strategies: A (series of enrichment trials), B1 (CVASD P4/S1 – 

original CVASD favoring the population test P), B2 (CVASD P1/S4 – original CVASD favoring 

the subgroup test S) and B3 (CVASD S4/P1 – modified CVASD: the subgroup test S is 

performed before the population test P) across three settings: 1 (no sensitive subgroup), 2 (one 

predictive biomarker) and 3 (two predictive biomarkers) in scenario 1 (three biomarker 

candidates). Note that the correct findings are represented in stripe for sub-setting 1.1, in grey for 

sub-setting 1.2 and in white for setting 2 and 3. 

 

Abbreviations: CVASD, cross-validated adaptive signature design;  
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Figure 2 

Overall comparison of four strategies: A (series of enrichment trials), B1 (CVASD P4/S1 – 

original CVASD favoring the population test P), B2 (CVASD P1/S4 – original CVASD favoring 

the subgroup test S) and B3 (CVASD S4/P1 – modified CVASD: the subgroup test S is 

performed before the population test P) across three settings: 1 (no sensitive subgroup), 2 (one 

predictive biomarker) and 3 (two predictive biomarkers) in scenario 2 (six biomarker candidates). 

Note that the correct findings are represented in stripe for sub-setting 1.1, in grey for sub-setting 

1.2 and in white for setting 2 and 3. 

 

Abbreviations: CVASD, cross-validated adaptive signature design;  
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Figure 1

CVASD P4/S1. original CVASD − the population test (P)

is performed first,at an alpha level 4%. If this is

not significant,the subgroup test (S) is then performed 

at an alpha level 1% (strategy B1) 

CVASD P1/S4: original CVASD − the population test (P)

is performed first, at an alpha level 1%. If this is

not significant, the subgroup test (S) is then performed

at an alpha level 4% (strategy B2) 

CVASD S1/P4: modified CVASD − the subgroup test (S)

is performed first, at an alpha level 4%. If this is

not significant, the population test (P) is then performed 

at an alpha level 1% (strategy B3).
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Figure 2

CVASD P4/S1. original CVASD − the population test (P)

is performed first,at an alpha level 4%. If this is

not significant,the subgroup test (S) is then performed 

at an alpha level 1% (strategy B1) 

CVASD P1/S4: original CVASD − the population test (P)

is performed first, at an alpha level 1%. If this is

not significant, the subgroup test (S) is then performed

at an alpha level 4% (strategy B2) 

CVASD S1/P4: modified CVASD − the subgroup test (S)

is performed first, at an alpha level 4%. If this is

not significant, the population test (P) is then performed 

at an alpha level 1% (strategy B3).


	Article File
	1
	2
	Page vierge

