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Abstract. In this paper we propose a splitting scheme which hy-

bridizes generalized conditional gradient with a proximal step which

we call CGALP algorithm, for minimizing the sum of closed, convex,

and proper functions over a bounded subset of Hp. The minimization

is subject to an affine constraint, which we address by the augmented

Lagrangian approach, that allows in particular to deal with composite

problems of sum of three or more functions by the usual product space

technique. We allow for possibly nonsmooth functions which are simple,

i.e., the associated proximal mapping is easily computable. Our analysis

is carried out for a wide choice of algorithm parameters satisfying so

called open loop rules. As main results, under mild conditions, we

show asymptotic feasibility with respect to the affine constraint, weak

convergence of the dual variable to a solution of the dual problem,

and convergence of the Lagrangian values to the saddle-point optimal

value. We also provide (subsequential) rates of convergence for both the

feasibility gap and the Lagrangian values. Experimental results in signal

processing are finally reported.

I. Introduction

A. Problem Statement

In this work, we consider the composite optimization problem,

min
x∈Hp

{f(x) + g(Tx) + h(x) : Ax = b} , (P)

where Hp,Hd,Hv are real Hilbert spaces (the subindices p, d and

v denoting the “primal”, the “dual” and an auxiliary space - respec-

tively), endowed with the associated scalar products and norms (to be

understood from the context), A : Hp →Hd and T : Hp →Hv are

bounded linear operators, b ∈ range (A) and f , g, h are proper,

convex, and lower semi-continuous functions with C def
= dom (h)

being a bounded subset of Hp (or equivalently, since C is also closed

and convex and using [2, Lemma 3.29 and Theorem 3.32], that C is

weakly compact). We allow for some asymmetry in regularity between

the functions involved in the objective. While g is assumed to be

prox-friendly, for h we assume that it is easy to compute a linearly-

perturbed oracle (see (I.2)). On the other hand, f is assumed to

be differentiable and satisfies a condition that generalizes Lipschitz-

continuity of the gradient (see Definition II.1).

Problem (P) can be seen as a generalization of the classical Frank-

Wolfe problem in [10] of minimizing a Lipschitz-smooth function f
on a convex closed bounded subset C ⊂ Hp,

min
x∈Hp

{f(x) : x ∈ C} (I.1)

In fact, if A ≡ 0, b ≡ 0, g ≡ 0, and h ≡ ιC is the indicator function

of C then we recover exactly (I.1) from (P).

B. Contribution

We develop and analyze a novel algorithm to solve (P) which com-

bines penalization for the nonsmooth function g with the augmented

Lagrangian method for the affine constraint Ax = b. In turn, this

achieves full splitting of all the parts in the composite problem (P) by

using the proximal mapping of g (assumed prox-friendly) and a linear

oracle for h of the form (I.2). Our analysis shows that the sequence

of iterates is asymptotically feasible for the affine constraint, that the

sequence of dual variables converges weakly to a solution of the dual

problem, that the associated Lagrangian converges to optimality, and

establishes subsequential convergence rates for a family of sequences

of step sizes and sequences of smoothing/penalization parameters

which satisfy so-called "open loop" rules in the sense of [21] and

[9]. This means that the allowable sequences of parameters do not

depend on the iterates, in contrast to a "closed loop" rule, e.g. line

search or other adaptive step sizes. Our analysis also shows, in the

case where (P) admits a unique minimizer, weak convergence of the

whole sequence of primal iterates to the solution.

The structure of (P) generalizes (I.1) in several ways. First, we

allow for a possibly nonsmooth term g. Second, we consider h beyond

the case of an indicator function where the linear oracle of the form

min
s∈H

h (s) + 〈x, s〉 (I.2)

can be easily solved. Observe that (I.2) has a solution over dom(h)
since the latter is weakly compact. This oracle is reminiscent of that in

the generalized conditional gradient method [4], [5], [3], [1]. Third,

the regularity assumptions on f are also greatly weakened to go

far beyond the standard Lipschitz gradient case. Finally, handling an

affine constraint in our problem means that our framework can be

applied to the splitting of a wide range of composite optimization

problems, through a product space technique, including those involv-

ing finitely many functions hi and gi, and, in particular, intersection

of finitely many nonempty bounded closed convex sets; see Section

III. These generalizations allow one to apply the algorithm to a

plethora of problems arising in signal processing with structure, e.g.

sparsity, low-rank, etc.

C. Relation to prior work

In the 1950’s Frank and Wolfe developed the so-called Frank-

Wolfe algorithm in [10], also commonly referred to as the conditional

gradient algorithm [16], [8], [9], for solving problems of the form

(I.1). The main idea is to replace the objective function f with a linear

model at each iteration and solve the resulting linear optimization

problem; the solution to the linear model is used as a step direction

and the next iterate is computed as a convex combination of the

current iterate and the step direction. We generalize this setting to



include composite optimization problems involving both smooth and

nonsmooth terms, intersection of multiple constraint sets, and also

affine constraints.

Frank-Wolfe algorithms have received a lot of attention in the

modern era due to their effectiveness in fields with high-dimensional

problems like machine learning and signal processing (without being

exhaustive, see, e.g., [13], [15], [12], [27], [18], [7]). In the past,

composite, constrained problems like (P) have been approached us-

ing proximal splitting methods, e.g. generalized forward-backward as

developed in [22] or forward-douglas-rachford [17]. Such approaches

require one to compute the proximal mapping associated to the

function h. The computation of the proximal step can be prohibitively

expensive; for example, when h is the indicator function of the nuclear

norm ball, computing the proximal operator of h requires a full

singular value decomposition while the linear minimization oracle

over the nuclear norm ball requires only the leading singular vector

to be computed ([14], [26]). Unfortunately, the regularity assumptions

required by classical Frank-Wolfe style algorithms are too restrictive

to apply to general problems like (P).

The recent work of [25], who independently developed a condi-

tional gradient-based framework which allows one to solve composite

optimization problems involving a Lipschitz-smooth function f and

a nonsmooth function g,

min
x∈C
{f(x) + g (Tx)} . (I.3)

Like our algorithm, that of [25] is able to handle problems involving

both smooth and nonsmooth terms, intersection of multiple constraint

sets and affine constraints, however the algorithms employ different

methods for these situations. Our algorithm uses an augmented

Lagrangian to handle the affine constraint while the conditional

gradient framework treats the affine constraint as a nonsmooth term g
and uses penalization to smooth the indicator function corresponding

to the affine constraint. It is possible to treat the affine constraint

as a nonsmooth term g in CGALP and forego the augmented

Lagrangian, such that CGALP fully encompasses the conditional

gradient framework.

Another recent and parallel work to ours is that of [11], where

the Frank-Wolfe via Augmented Lagrangian (FW-AL) is developed

to approach the problem of minimizing a Lipschitz-smooth function

over a convex, compact set with a linear constraint,

min
x∈C
{f(x) : Ax = 0} . (I.4)

The problem they consider is a particular case of (P), and the algo-

rithm they develop is such that CGALP encompasses this algorithm

as well.

II. Algorithm and assumptions

A. Algorithm

As described in the introduction, we combine penalization with the

augmented Lagrangian approach to form the following functional

Jk (x, y, µ) = f (x) + g (y) + h (x) + 〈µ, Ax− b〉 + ρk
2
‖Ax− b‖2

+
1

2βk
‖y − Tx‖2 ,

(II.1)

where µ is the dual multiplier, and ρk and βk are non-negative

parameters. The steps of our scheme, then, are summarized in

Algorithm 1.

Algorithm 1: Conditional Gradient with Augmented La-

grangian and Proximal-step (CGALP )

Input: x0 ∈ C = dom (h); µ0 ∈ range(A); (γk)k∈N
,

(βk)k∈N
, (θk)k∈N

, (ρk)k∈N
∈ ℓ+.

k = 0
repeat

yk = proxβkg
(Txk)

zk =
∇f(xk)+T ∗ (Txk − yk) /βk+A∗µk+ρkA

∗ (Axk − b)

sk ∈ Argmins∈Hp

{

h (s) + 〈zk, s〉
}

xk+1 = xk − γk (xk − sk)

µk+1 = µk + θk (Axk+1 − b)

k ← k + 1

until convergence;

Output: xk+1.

For the interpretation of the algorithm, notice that the first step is

equivalent to

{yk} = Argmin
y∈Hv

Jk (xk, y, µk) .

Now define the functional Ek (x, µ) def
= f (x) + gβk (Tx) +

〈µ,Ax− b〉 + ρk
2
‖Ax− b‖2 . By convexity of the set C and the

definition of xk+1 as a convex combination of xk and sk, the

sequence (xk)k∈N
remains in C for all k, although the affine constraint

Axk = b might only be satisfied asymptotically. It is an augmented

Lagrangian, where we do not consider the non-differentiable function

h and we replace g by its Moreau envelope. Notice that

∇xEk (x, µk) = ∇f(x) + T ∗[∇gβk ](Tx) + A∗µk + ρkA
∗ (Ax− b)

= ∇f(x) + 1

βk
T ∗ (Tx− proxβkg

(Tx)
)

+ A∗µk

+ ρkA
∗ (Ax− b) .

(II.2)

Then zk is just ∇xEk (xk, µk) and the first three steps of the

algorithm can be condensed in

sk ∈ Argmin
s∈Hp

{

h (s) + 〈∇xEk (xk, µk) , s〉
}

. (II.3)

Thus the primal variable update of each step of our algorithm boils

down to conditional gradient applied to the function Ek (·, µk), where

the next iterate is a convex combination between the previous one and

the new direction sk. A standard update of the Lagrange multiplier

µk follows.

B. Assumptions

1) Assumptions on the functions: Let L denote the classical

Lagrangian, i.e. L (x,µ) = f (x) + g (Tx) + h (x) + 〈µ,Ax− b〉.
Recall that (x⋆, µ⋆) ∈ Hp×Hd is a saddle-point for the Lagrangian

L if for every (x, µ) ∈ Hp ×Hd,

L (x⋆, µ) ≤ L (x⋆, µ⋆) ≤ L (x, µ⋆) . (II.4)

It is well-known from standard Lagrange duality, see e.g. [2, Proposi-

tion 19.19] or [20, Theorem 3.68], that the existence of a saddle point

(x⋆, µ⋆) ensures strong duality, that x⋆ solves (P) and µ⋆ solves the

dual problem,

min
µ∈Hd

(f + g ◦ T + h)∗(−A∗µ) + 〈µ, b〉 . (D)



As was mentioned in Section I, it is not necessary to assume

Lipschitz-continuity of the gradient ∇f as in traditional conditional

gradient methods. Instead, we have the following generalization.

Definition II.1. ((G, ζ)-smoothness) Let G : H → R ∪ {+∞} and

ζ :]0, 1] → R+. The pair (g, C), where g : H → R ∪ {+∞} and

C ⊂ dom(g), is said to be (G, ζ)-smooth if there exists an open set

C0 such that C ⊂ C0 ⊂ int (dom(G)) and

(i) G and g are differentiable on C0;

(ii) G − g is convex on C0;

(iii) it holds

K(G,ζ,C)
def
= sup

x,s∈C; γ∈]0,1]
z=x+γ(s−x)

DG(z, x)

ζ (γ)
< +∞. (II.5)

where DG is the Bregman divergence associated to G.

The constant K(G,ζ,C) is a far-reaching generalization of the stan-

dard curvature constant widely used in the literature of conditional

gradient.

The following assumptions on the problem will be used throughout

the convergence analysis (for some results only a subset of these

assumptions will be needed):

(A.1) f, g ◦T , and h belong to Γ0 (Hp) (the space of proper, convex,

lower-semicontinuous functions).

(A.2) The pair (f, C) is (F, ζ)-smooth (see Definition II.1), where we

recall C def
= dom (h).

(A.3) C is bounded (and thus contained in a ball of radius R > 0).

(A.4) TC ⊂ dom(∂g) and sup
x∈C

∥

∥[∂g (Tx)]0
∥

∥ < ∞ where [·]0 is the

minimal norm selection.

(A.5) h is Lipschitz continuous relative to its domain C with constant

Lh ≥ 0, i.e., ∀(x, z) ∈ C2, |h(x)− h(z)| ≤ Lh ‖x− z‖.
(A.6) There exists a saddle-point (x⋆, µ⋆) ∈ Hp × Hd for the

Lagrangian L.

(A.7) range(A) is closed.

(A.8) One of the following holds:

(a) A−1 (b)∩ int (dom (g ◦ T ))∩ int (C) 6= ∅, where A−1 (b) is

the pre-image of b under A.

(b) Hp and Hd are finite dimensional and










A−1 (b) ∩ relint (dom (g ◦ T )) ∩ relint (C) 6= ∅
and

range (A∗) ∩ par (dom (g ◦ T ) ∩ C)⊥ = {0} ,
(II.6)

where par denotes the parallel subspace.

At this stage, a few remarks are in order.

Remark II.2.
(i) By Assumption (A.1), C is also closed and convex. This together

with Assumption (A.3) entail, upon using [2, Lemma 3.29 and

Theorem 3.32], that C is weakly compact.

(ii) Since the sequence of iterates (xk)k∈N
generated by Algorithm 1

is guaranteed to belong to C under (P.1), we have from (A.4)

sup
k

∥

∥[∂g (Txk)]
0
∥

∥ ≤M. (II.7)

where M is a positive constant.

(iii) Assumption (A.5) will only be needed in the proof of conver-

gence to optimality (Theorem II.7). It is not needed to show

asymptotic feasibility (Theorem II.6).

(iv) Assume that A−1(b) ∩ dom(g ◦ T ) ∩ C 6= ∅, which entails

that the set of minimizers of (P) is a non-empty convex

closed bounded set under (A.1)-(A.3). Then there are various

domain qualification conditions, e.g., one of the conditions in

[2, Proposition 15.24 and Fact 15.25], that ensure the existence

of a saddle-point for the Lagrangian L (see [2, Theorem 19.1

and Proposition 9.19(v)]).

(v) Observe that under the inclusion assumption of Lemma II.3,

(A.8)(a) is equivalent to A−1 (b) ∩ int (C) 6= ∅.
The uniform boundedness of the minimal norm selection on C,

as required in Assumption (A.4), is important in our proofs to get

meaningful estimates. The following result gives some sufficient

conditions under which (A.4) holds (in fact an even stronger claim).

Lemma II.3. Let C be a nonempty bounded subset of Hp, g ∈
Γ0 (Hv) and T : Hp → Hv is a bounded linear operator. Suppose

that TC ⊂ int (dom (g)). Then the assumption (A.4) holds.

Proof: Since g ∈ Γ0 (Hv), it follows from [2, Proposition 16.21]

that

TC ⊂ int (dom(g)) ⊂ dom(∂g).

Moreover, by [2, Corollary 8.30(ii) and Proposition 16.14], we have

that ∂g is locally weakly compact on int (dom (g)). In particular,

as we assume that C is bounded, so is TC, and since TC ⊂
int (dom (g)), it means that for each z ∈ TC there exists an open

neighborhood of z, denoted by Uz , such that ∂g (Uz) is bounded.

Since (Uz)z∈C is an open cover of TC and TC is bounded, there

exists a finite subcover (Uzk)
n
k=1. Then,

⋃

x∈C
∂g (Tx) ⊂

n
⋃

k=1

∂g (Uzk) .

Since the right-hand-side is bounded (as it is a finite union of bounded

sets),

sup
x∈C, u∈∂g(Tx)

‖u‖ < +∞,

whence the desired conclusion trivially follows.

2) Assumptions on the parameters: We also use the following

assumptions on the parameters of Algorithm 1 (recall the function ζ
in Definition II.1):

(P.1) (γk)k∈N
⊂]0, 1] and the sequences (ζ (γk))k∈N

,
(

γ2
k/βk

)

k∈N

and (γkβk)k∈N
belong to ℓ1+.

(P.2) (γk)k∈N
/∈ ℓ1.

(P.3) (βk)k∈N
∈ ℓ+ is non-increasing and converges to 0.

(P.4) (ρk)k∈N
∈ ℓ+ is non-decreasing with 0 < ρ ≤ infk ρk ≤

supk ρk ≤ ρ < +∞.

(P.5) For some positive constants M and M , M ≤ infk (γk/γk+1) ≤
supk (γk/γk+1) ≤M .

(P.6) (θk)k∈N
satisfies θk = γk

c
for some c > 0 such that M

c
− ρ

2
< 0.

(P.7) (γk)k∈N
and (ρk)k∈N

satisfy ρk+1 − ρk − γk+1ρk+1 +
2
c
γk −

γ2
k

c
≤ γk+1 for c in (P.6).

Remark II.4.
(i) One can recognize that the update of the dual multiplier µk

in Algorithm 1 has a flavour of gradient ascent applied to

the augmented dual with step-size θk. However, unlike the

standard method of multipliers with the augmented Lagrangian,

Assumption (P.6) requires θk to vanish in our setting. The

underlying reason is that our update can be seen as an inexact

dual ascent (i.e., exactness stems from the conditional gradient-

based update on xk which is not a minimization of over x of the

augmented Lagrangian Lk). Thus θk must annihilate this error

asymptotically.



(ii) A sufficient condition for (P.7) to hold consists of taking ρk ≡
ρ > 0 and γk+1 ≥ 2

c(1+ρ)
γk. In particular, if (γk)k∈N

satisfies

(P.5), then, for (P.7) to hold, it is sufficient to take ρk ≡ ρ >
2M/c as supposed in (P.6).

There is a large class of sequences that fulfill the requirements

(P.1)-(P.7). A typical one is as follows.

Example II.5. Take, for k ∈ N,

ρk ≡ ρ > 0, γk =
(log(k + 2))a

(k + 1)1−b
, βk =

1

(k + 1)1−δ
, with

a ≥ 0, 0 ≤ 2b < δ < 1, δ < 1− b, ρ > 22−b/c, c > 0.

In this case, one can take the crude bounds M = (log(2)/ log(3))a

and M = 21−b.

C. Main results

Theorem II.6 (Asymptotic feasibility). Suppose that Assump-

tions (A.1)-(A.4) and (A.6) hold. Consider the sequence of iter-

ates (xk)k∈N
from Algorithm 1 with parameters satisfying Assump-

tions (P.1)-(P.6). Then,

(i) Axk converges strongly to b, i.e., the sequence (xk)k∈N
is

asymptotically feasible for (P) in the strong topology.

(ii) Pointwise rate:

inf
0≤i≤k

‖Axi − b‖ = O

(

1√
Γk

)

. (II.8)

Furthermore, ∃ a subsequence
(

xkj

)

j∈N
such that

‖Axkj
− b‖ ≤ 1

√

Γkj

,

where Γk
def
=

∑k
i=0 γi.

(iii) Ergodic rate: let x̄k
def
=

∑k
i=0 γixi/Γk . Then

‖Ax̄k − b‖ = O

(

1√
Γk

)

. (II.9)

Proof: In lieu of the actual proof, which can be found in the full

paper [23], we present a sketch of the proof for the sake of brevity.

We define two gap-like quantities, one for the primal and one for the

dual,

∆p
k = Lk (xk+1, µk)−min

x
Lk (x,µk) ,

∆d
k = L (x⋆, µ⋆)−min

x
Lk (x, µk) ,

and we estimate the quantity ∆p
k+1+∆d

k+1−∆p
k−∆d

k using standard

convex analysis arguments and deduce the convergence and pointwise

subsequential rate of convergence of ‖Axk − b‖2 from the resulting

inequalities. The ergodic rate follows from the pointwise rates and

Jensen’s inequality.

Theorem II.7 (Convergence to optimality). Suppose that assump-

tions (A.1)-(A.8) and (P.1)-(P.7) hold, with M ≥ 1. Let (xk)k∈N

be the sequence of primal iterates generated by Algorithm 1 and

(x⋆, µ⋆) a saddle-point pair for the Lagrangian. Then, in addition to

the results of Theorem II.6, the following holds

(i) Convergence of the Lagrangian:

lim
k→∞

L (xk, µ
⋆) = L (x⋆, µ⋆) . (II.10)

(ii) Every weak cluster point x̄ of (xk)k∈N
is a solution of the primal

problem (P), and (µk)k∈N
converges weakly to µ̄ a solution of

the dual problem (D), i.e., (x̄, µ̄) is a saddle point of L.

(iii) Pointwise rate:

inf
0≤i≤k

L (xi+1, µ
⋆)−L (x⋆, µ⋆) = O

(

1

Γk

)

Furthermore, ∃ a subsequence
(

xkj

)

j∈N
such that

L
(

xkj+1, µ
⋆)− L (x⋆, µ⋆) ≤ 1

Γkj

.

(iv) Ergodic rate: let x̄k
def
=

∑k
i=0 γixi+1/Γk. Then

L (x̄k, µ
⋆)− L (x⋆, µ⋆) = O

(

1

Γk

)

. (II.11)

Proof: As in the previous theorem, we present only a sketch of

the proof here; the full proof can be found in [23]. We first show

that the dual variable µk is bounded by a coercivity argument which

strongly depends on (A.8). Let wk = L (xk+1, µ
⋆) − L (x⋆, µ⋆) +

ρk
2
‖Axk − b‖2. Then, with the bounded µk result we can have an

inequality of the form,

rk+1 − rk + γkwk ≤ εk,

with εk ∈ ℓ1+ and rk uniformly bounded from below. We are also

able to show that ∃α > 0 such that

wk − wk+1 ≤ αγk.

The fact that γk 6∈ ℓ1 combined with the above inequalities directly

gives lim
k→∞

wk = 0 as well as the susequential rate of convergence

as a consequence of the Abel-Dini theorem on divergent series (see

[24]); the ergodic rate following by Jensen’s inequality. Finally, we

use a technical argument involving Mosco convergence of functionals

(see [6]) and Opial’s lemma (see [19]) to show that the dual variable

µk weakly converges to a solution µ⋆ of the dual problem.

It is important to note that Theorem II.7 actually shows that

lim
k→∞

[

L (xk+1, µ
⋆)− L (x⋆, µ⋆) +

ρk
2
‖Axk+1 − b‖2

]

= 0,

and subsequentially,

L
(

xkj+1, µ
⋆
)

−L (x⋆, µ⋆) +
ρkj

2
‖Axkj+1 − b‖2 ≤ 1

Γkj

. (II.12)

This means, in particular, that the pointwise rate for feasibility and

optimality hold simulatenously for the same subsequence.

The following corollary is immediate.

Corollary II.8. Under the assumptions of Theorem II.7, if the

problem (P) admits a unique solution x⋆, then the primal-dual pair

sequence (xk, µk)k∈N
converges weakly to a saddle point (x⋆, µ⋆).

Proof: By uniqueness, it follows from Theorem II.7(ii) that

(xk)k∈N
has exactly one weak sequential cluster point which is the

solution to (P). Weak convergence of the sequence (xk)k∈N
then

follows from [2, Lemma 2.38].

Example II.9. Suppose that the sequences of parameters are chosen

according to Example II.5. Let the function σ : t ∈ R
+ 7→ (log(t+

2))a/(t+1)1−b. We obviously have σ(k) = γk for k ∈ N. Moreover,

it is easy to see that ∃k′ ≥ 0 (depending on a and b), such that σ is

decreasing for t ≥ k′. Thus, ∀k ≥ k′, we have

Γk ≥
k

∑

i=k′

γi ≥
∫ k+1

k′

σ(t)dt ≥
∫ k+2

k′+1

(log(t))atb−1dt

=

∫ log(k+2)

log(k′+1)

taebtdt.



It is easy to show, using integration by parts for the first case, that

Γ−1
k =



















o
(

1
(k+2)b

)

a = 1, b > 0,

O
(

1
(k+2)b

)

a = 0, b > 0,

O
(

1
log(k+2)

)

a = 0, b = 0.

III. Numerical Experiments

In this section we present some numerical experiments exemplify-

ing the applicability of Algorithm 1 to some composite problems in

signal processing. First, a simple problem to demonstrate the effect

of the parameters on convergence. After, an inverse problem which

demonstrates the flexibility of CGALP by employing the linear oracle

for a constraint which would otherwise be computationally intense,

e.g. when using proximal methods.

A. Projection problem

First, we consider a simple projection problem,

min
x∈R2

{

1

2
‖x− y‖22 : ‖x‖1 ≤ 1, Ax = 0

}

, (III.1)

where y ∈ R
2 is the vector to be projected and A : R

2 → R
2

is a rank-one matrix. To exclude trivial projections, we choose

randomly y /∈ B
1
1 ∩ ker(A), where B

1
1 is the unit ℓ1 ball centered

at the origin. Then Problem (III.1) is nothing but Problem (P) with

f (x) = 1
2
‖x− y‖22, g = 0, and C = B

1
1.
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Fig. 1: Ergodic convergence profiles for CGALP applied to the simple

projection problem.

The assumptions mentioned previously, i.e. (A.1)-(A.8), all hold

in this setting as f is a closed, convex, and proper function, ∇f
is Lipschitz-continuous on C, g has full domain, and 0 ∈ ker(A) ∩
int(C). Regarding the parameters and the associated assumptions, we

choose γk according to Example II.5 with (a, b) ∈ {(0, 0), (0, 1/3−
0.01), (1, 1/3− 0.01)} and ρ = 22−b + 1. The ergodic convergence

profiles of the Lagrangian are displayed in Figure 1 along with the

theoretical rates (see Theorem II.7 and Example II.9). The observed

rates agree with the predicted ones of O
(

1
log(k+2)

)

, O
(

1
(k+2)b

)

and o
(

1
(k+2)b

)

for the respective choices of (a, b).

B. Matrix completion problem

We now consider the following more complicated matrix comple-

tion problem,

min
X∈RN×N

{

‖ΩX − y‖1 : ‖X‖∗ ≤ δ1, ‖X‖1 ≤ δ2
}

, (III.2)

where δ1 and δ2 are positive constants, Ω : R
N×N → Hv is a

masking operator, y ∈ Hv is a vector of observations, and ‖·‖∗ and

‖·‖1 are respectively the nuclear and ℓ1 norms. The mask operator Ω
is generated randomly by specifying a sampling density, in our case

0.8, i.e. 80% of entries were kept. We generate the vector y randomly

in the following way. We first generate a sparse vector ỹ ∈ R
N

with N/5 non-zero entries independently uniformly distributed in

[−1, 1]. We take the exterior product ỹỹ⊤ = X0 to get a rank-1

sparse matrix which we then mask with Ω. The radii of the contraints

in (III.2) are chosen according to the nuclear norm and ℓ1 norm of

X0, δ1 =
‖X0‖∗

2
and δ2 =

‖X0‖1
2

.

1) CGALP : Problem (III.2) can be posed in a product space in

the following way. Denote X
def
=

(

X(1)

X(2)

)

∈ R
(N×N)2 , f = 0,

g (ΩX) = 1
2

2
∑

i=1

∥

∥

∥
ΩX(i) − y

∥

∥

∥

1
, C = B

δ1∗ ×B
δ2
1 where B

δ1∗ and B
δ2
1

are the nuclear and ℓ1 balls of radii δ1 and δ2. Then problem (III.2)

is equivalent to

min
X∈C⊂R(N×N)2

{

g (ΩX) : ΠV⊥X = 0
}

, (III.3)

where ΠV⊥ is the orthogonal projection onto V⊥, the orthogonal

complement of V def
=

{

X ∈ R
(N×N)2 : X(1) = X(2)

}

. It is trivial

to show that our assumptions (A.1)-(A.8) hold. Indeed, g is closed,

convex, and proper and thus (A.1) and (A.2) are verified. The set

C = B
δ1∗ × B

δ2
1 is a non-mepty convex compact set. We also have

ΩC ⊂ dom(∂g) = Hv × Hv , and for any z ∈ R
l × R

l, ∂g(z) ⊂
B

1/2
∞ ×B

1/2
∞ and thus (A.4) is verified. We also have, since dom(g ◦

Ω) = R
(N×N)2 ,

0 ∈ V ∩ int (dom(g ◦Ω)) ∩ int (C) = V ∩ int(Bδ1
∗ )× int(Bδ2

1 ),
(III.4)

which shows that (A.8) is verified. The latter is nothing but the

condition in [2, Fact 15.25(i)] which, when combined with (A.8),

ensures (A.6).

We use Algorithm 1 by choosing the sequence of parameters γk =
1

k+1
, βk = 1√

k+1
, and ρ = 15, which verify all our assumptions

(P.1)-(P.7) in view of Example II.5.

2) GFB: We will use a similar product space to apply GFB.

Denote W
def
=





W (1)

W (2)

W (3)



 ∈ R
(N×N)3 , Q (W ) =

∥

∥

∥ΩW (1) − y
∥

∥

∥

1
+

ι
B
δ1
‖·‖∗

(

W (2)
)

+ι
B
δ2
‖·‖1

(

W (3)
)

. Then we reformulate problem (III.2)

as

min
W∈Hp

{

Q (W ) : W ∈ V
}

, (III.5)

which fits the framework to apply the GFB algorithm proposed in [22]

(in fact Douglas-Rachford since the smooth part vanishes). We choose

the step sizes λk = γ = 1.

3) Results: We compare the performance of CGALP with GFB

for varying dimension, N , using their respective ergodic convergence

criteria. For CGALP this is the quantity L
(

X̄k, µ
∗) − L (X⋆,µ⋆)

where X̄k =
k
∑

i=0

γiXi/Γk . Meanwhile, for GFB, we know from



[17] that the Bregman divergence Dv
⋆

Q

(

Ūk

)

= Q(Ūk)−Q(W ⋆)−
〈

v⋆, Ūk −W ⋆
〉

, with Ūk =
k
∑

i=0

Ui/(k + 1) and v⋆ = (W ⋆ −
Z⋆)/γ, converges at the rate O(1/(k + 1)). To compute the con-

vergence criteria, we first run each algorithm for 105 iterations to

approximate the optimal variables (X⋆ and µ⋆ for CGALP , and

Z⋆ and W ⋆ for GFB). Then, we run each algorithm again for

105 iterations, this time recording the convergence criteria at each

iteration. The results are displayed in Figure 2.
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Fig. 2: Ergodic convergence profiles for CGALP (above) and GFB

(below) for N = 32, N = 64, and N = 128.

It can be observed that our theoretically predicted rate is in close

agreement with the observed one. On the other hand, as is very well-

known, employing a proximal step for the nuclear ball constraint

will necessitate computing an entire SVD which is much more time

consuming than computing the linear minimization oracle for large

N . For this reason, even though the rates of convergence guaranteed

for CGALP are worse than for GFB per iteration, one can expect

CGALP to be a more time computationally efficient algorithm for

large N as each iteration is cheaper.
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