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Generalized Conditional Gradient with Augmented Lagrangian for Composite Minimization

Dans ce travail, nous proposons un schéma d'éclatement en optimisation non lisse, hybridant le gradient conditionnel avec une étape proximale que nous appelons CGALP , pour minimiser la somme de fonctions propres fermées et convexes sur un compact de R n . La minimisation est de plus sujette à une contrainte affine, que nous prenons en compte par un Lagrangien augmenté, en qui permet en particulier de traiter des problèmes composites à plusieurs fonctions par une technique d'espace produit. Certaines fonctions sont autorisées à être non lisses mais dont l'opérateur proximal est simple à calculer. Notre analyse et garanties de convergence sont assurées pour un large choix de paramètres "en boucle ouverte". Comme résultats principaux, nous montrons la faisabilité asymptotique de la variable primale, la convergence de toute sous-suite vers une solution du problème primal, la convergence de la variable duale à une solution du problème dual, et la convergence du Lagrangien. Des taux de convergence sont aussi fournis. Les implications et illustrations de l'algorithme en traitement des données sont discutées.

Introduction

Problem Statement

In this work, we consider the composite optimization problem, min x∈C⊂R n {f (x) + g(T x) : Ax = b} , (P)

where A : R n → R m and T : R n → R l are linear operators, b ∈ Im (A), f and g are closed, convex, and proper functions, and C is a compact subset of R n . While g is assumed to be prox-friendly it is not necessarily differentiable, however f is assumed to be differentiable with ∇f Lipschitz-continuous. Problem (P) can be seen as a generalization of the classical Frank-Wolfe (or conditional gradient) problem in [START_REF] Franke | An algorithm for quadratic programming[END_REF] of minimizing a differentiable function f with Lipschitz-continuous gradient ∇f on a convex closed bounded subset C ⊂ R n , which is recovered by setting A ≡ 0, b ≡ 0, and g ≡ 0.

Contribution

The structure of (P) generalizes Frank-Wolfe in two important ways. We consider a possibly nonsmooth term g for which the prox operator is easily computable and problems with an affine constraint which means that our framework can be applied to the splitting of a wide range of composite optimization problems, through a product space technique, including those involving sums of finitely many nonsmooth functions g i , and, in particular, the intersection of finitely many nonempty compact convex sets C i which will be accessed separately; see Section 3.2.1.

We develop and analyze a novel algorithm to solve (P) which combines penalization for the nonsmooth function g with the augmented Lagrangian method for the affine constraint Ax = b. In turn, this achieves full splitting of all the parts in the composite problem (P) by using the proximal mapping of g (assumed prox-friendly) and a linear oracle for C of the form min s∈C v, s . This combination of methods provides significant flexibility for the algorithm to be efficiently applied to a wide range of structured problems in both signal processing and machine learning, e.g. problems involving sparsity, low-rank, etc. The linear oracle can be significantly cheaper than proximal alternatives to compute, e.g. projecting on the nuclear ball, and in practice can often be exploited for memory efficient storage, c.f. [START_REF] Bach | Duality Between Subgradient and Conditional Gradient Methods[END_REF], [START_REF] Yurtsever | Sketchy Decisions: Convex Low-Rank Matrix Optimizationwith Optimal Storage[END_REF].

Our analysis shows asymptotic feasibility for the affine constraint, convergence of the dual variable to a solution of the dual problem, convergence of the classical Lagrangian to optimality, and establishes convergence rates for a family of sequences of step sizes and sequences of smoothing/penalization parameters which satisfy so-called "open loop" rules, i.e. the allowable sequences of parameters do not depend on the iterates, in contrast to a "closed loop" rule, e.g. line search or other adaptive step sizes. Our analysis also shows, when (P) admits a unique minimizer, convergence of the primal variable to a solution of (P).

Algorithm and Theoretical Guarantees

Algorithm

As described in the introduction, we combine penalization with the augmented Lagrangian approach to form the following functional

J k (x, y, µ) = f (x) + g (y) + ι C (x) + µ, Ax -b + ρ 2 Ax -b 2 + 1 2β k y -T x 2 , (2.1) 
where ι C is the indicator function for the set C, µ is the dual variable, and ρ and β k are non-negative parameters. The steps of our scheme, then, are summarized in Algorithm 1.

Algorithm 1: Conditional Gradient with Augmented Lagrangian and Proximal-step (CGALP )

Input: x 0 ∈ C; µ 0 ∈ Im (A); (γ k ) k∈N , (β k ) k∈N ∈ ℓ + ; ρ > 0; k = 0. repeat y k = prox β k g (T x k ) z k = ∇f (x k ) + T * (T x k -y k ) /β k + A * (µ k + ρ (Ax k -b)) s k ∈ Argmin s∈C { z k , s } x k+1 = x k -γ k (x k s k ) µ k+1 = µ k + γ k (Ax k+1 -b) k ← k + 1 until convergence; Output: x k+1 .
For the interpretation of the algorithm, notice that the first step is equivalent to

{y k } = Argmin y∈R l J k (x k , y, µ k ) . (2.2) Now define the functional E k (x, µ) def = f (x) + g β k (T x) + µ, Ax -b + ρ 2 Ax -b 2 .
It is an augmented Lagrangian where we do not consider the non-differentiable function ι C and we replace g by its Moreau envelope g β k . One can immediately verify that z k is just ∇ x E k (x k , µ k ) and the first three steps of the algorithm can be condensed in

s k ∈ Argmin s∈C { ∇ x E k (x k , µ k ) , s } . (2.3)
Thus the primal variable update of each step of our algorithm boils down to conditional gradient applied to the function

E k (•, µ k ),
where the next iterate is a convex combination between the previous one and the new direction s k . By convexity of the set C and the definition of x k+1 as a convex combination of x k and s k , the sequence (x k ) k∈N remains in C for all k ∈ N. Meanwhile, the affine constraint Ax k = b might only be satisfied asymptotically. A standard update of the Lagrange multiplier µ k follows.

Assumptions

Assumptions on the functions

We define the classical Lagrangian, 

L (x, µ) def = f (x) + g (T x) + ι C (x) + µ, Ax -b (2.4) Recall that (x ⋆ , µ ⋆ ) ∈ R n × R m is a saddle-point for the La- grangian L if, for every (x, µ) ∈ R n × R m , L (x ⋆ , µ) ≤ L (x ⋆ , µ ⋆ ) ≤ L (x, µ ⋆ ) . (2.
min µ∈R m (f + g • T + ι C ) * (-A * µ) + µ, b . (D)
The following assumptions on the problem will be necessary for the theoretical guarantees: (A.5) There exists a saddle-point (x ⋆ , µ ⋆ ) ∈ R n × R m for the Lagrangian L.

(A.6) The following holds

     A -1 (b) ∩ relint (dom (g • T )) ∩ relint (C) = ∅ and Im (A * ) ∩ par (dom (g • T ) ∩ C) ⊥ = {0} . (2.6)
where int denotes the interior, relint the relative interior, A -1 (b) the pre-image of b under A, and par denotes the parallel subspace.

Assumptions on the parameters

We also use the following assumptions on the parameters of Algorithm 1:

(P.1) ∀k ∈ N, γ k ∈]0, 1] and the sequences γ 2 k k∈N ,

γ 2 k β k k∈N and (γ k β k ) k∈N belong to ℓ 1 + with (γ k ) k∈N / ∈ ℓ 1 .
(P.2) (β k ) k∈N ∈ ℓ + is non-increasing and converges to 0.

(P.3) There exist positive constants M and M such that,

1 ≤ M ≤ inf k (γ k /γ k+1 ) ≤ sup k (γ k /γ k+1 ) ≤ M .
(P.4) ρ > 2M where M is defined above.

There is a large class of sequences that fulfill the requirements (P.1)-(P.4). A typical one is as follows.

Example 2.1. Take, ∀k ∈ N,

γ k = (log(k + 2)) a (k + 1) 1-b , β k = 1 (k + 1) 1-δ , with a ≥ 0, 0 ≤ 2b < δ < 1, δ < 1 -b, and ρ > 2 2-b .
(2.7)

One can then take the crude bounds M = (log(2)/ log(3)) a and M = 2 1-b .

Main results

Theorem 2.2. Suppose that assumptions (A.1)-(A. [START_REF] Raguet | Generalized forwardbackward splitting[END_REF]) and (P.1)-(P.4) hold. Let (x ⋆ , µ ⋆ ) be a saddle-point pair for the Lagrangian. Then, (i) Asymptotic feasibility:

lim k→∞ Ax k = b.
(2.8)

(ii) Convergence of the Lagrangian:

lim k→∞ L (x k , µ ⋆ ) = L (x ⋆ , µ ⋆ ) . (2.9) 
(iii) Every cluster point x of (x k ) k∈N is a solution of the primal problem (P), and (µ k ) k∈N converges to μ a solution of the dual problem (D), i.e., (x, μ) is a saddle point of L.

(iv) Pointwise rate: there exists a subsequence x kj j∈N such that

L x kj , µ ⋆ -L (x ⋆ , µ ⋆ ) + ρ 2 Ax kj -b 2 ≤ 1 Γ kj .
(2.10) 

(v) Ergodic rate: let xk def = k i=0 γ i x i /Γ k , then L (x k , µ ⋆ ) -L (x ⋆ , µ ⋆ ) ∈ O 1 Γ k . ( 2 
L (x k , µ ⋆ ) -L (x ⋆ , µ ⋆ ) ≤ 1 Γ k and Ax k -b ≤ 1 √ Γ k .
For obvious space limitations, the proofs of all these results can be found in the long version [START_REF] Silveti-Falls | Generalized Conditional Gradient with Augmented Lagrangian for Composite Minimization[END_REF].

Example 2.4. Suppose that the sequences of parameters are chosen according to Example 2.1. Then one can show that

Γ -1 k ∈          o 1 (k+2) b a = 1, b > 0, O 1 (k+2) b a = 0, b > 0, O 1 log(k+2) a = 0, b = 0.
(2.12)

Numerical Experiments

In this section we present some numerical experiments exemplifying the applicability of Algorithm 1 to some compoosite problems in signal processing. First, a simple problem to demonstrate the effect of the parameters on convergence. After, an inverse problem which demonstrates the flexibility of CGALP by employing the linear oracle for a constraint which would otherwise be computationally intense, e.g. when using proximal methods.

Projection problem

First, we consider a simple projection problem,

min x∈R 2 1 2
xy

2 2 : x 1 ≤ 1, Ax = 0 , (3.1) 
where y ∈ R 2 is the vector to be projected and A : R 2 → R 2 is a rank-one matrix. To exclude trivial projections, we choose randomly y / ∈ B 1 1 ∩ker(A), where B 1 1 is the unit ℓ 1 ball centered at the origin. Then Problem (3.1) is nothing but Problem (P) with f (x) = 1 2 xy The assumptions mentioned previously, i.e. (A.1)-(A.6), all hold in this setting as f is a closed, convex, and proper function, ∇f is Lipschitz-continuous on C, g has full domain, and 0 ∈ ker(A) ∩ int(C). Regarding the parameters and the associated assumptions, we choose γ k according to Example 2.1 with (a, b) ∈ {(0, 0), (0, 1/3 -0.01), (1, 1/3 -0.01)} and ρ = 2 2-b + 1. The ergodic convergence profiles of the Lagrangian are displayed in Figure 1 along with the theoretical rates (see Theorem 2.2 and Example 2.4). The observed rates agree with the predicted ones of O 

Matrix completion problem

We consider the following more complicated matrix completion problem,

min X∈R N ×N ΩX -y 1 : X * ≤ δ 1 , X 1 ≤ δ 2 , (3.2)
where δ 1 and δ 2 are positive constants, Ω : R N ×N → R l is a masking operator, y ∈ R l is a vector of observations, and • * and • 1 are respectively the nuclear and ℓ 1 norms. The mask operator Ω is generated randomly by specifying a sampling density, in our case 0.8, i.e. 80% of entries were kept. We generate the vector y randomly in the following way. We first generate a sparse vector ỹ ∈ R N with N/5 non-zero entries independently uniformly distributed in [-1, 1]. We take the exterior product ỹ ỹ⊤ = X 0 to get a rank-1 sparse matrix which we then mask with Ω. The radii of the contraints in (3.2) are chosen according to the nuclear norm and ℓ 1 norm of X 0 , δ 1 = X0 * 2 and δ 2 = X0 1 2 .

CGALP

Problem (3.2) can be posed in a product space in the following way. Denote

X def = X (1) X (2) ∈ R (N ×N ) 2 , f = 0, g (ΩX) = 1 2 2 i=1 ΩX (i) -y 1 , C = B δ1 * × B δ2
1 where B δ1 * and B δ2 1 are the nuclear and ℓ 1 balls of radii δ 1 and δ 2 . Then problem (3.2) is equivalent to

min X∈C⊂R (N ×N ) 2 g (ΩX) : Π V ⊥ X = 0 , (3.3) 
where 2) . It is trivial to show that our assumptions (A.1)-(A.6) hold. Indeed, g is closed, convex, and proper and thus (A.1) and (A.2) are verified. The set C = B δ1 * × B δ2 1 is a non-mepty convex compact set. We also have ΩC ⊂ dom(∂g) = R l × R l , and for any

Π V ⊥ is the orthogonal projection onto V ⊥ , the orthogo- nal complement of V def = X ∈ R (N ×N ) 2 : X (1) = X (
z ∈ R l × R l , ∂g(z) ⊂ B 1/2 ∞ × B 1/2
∞ and thus (A.4) is verified. We also have, since dom(g

• Ω) = R (N ×N ) 2 , 0 ∈ V ∩ int (dom(g • Ω)) ∩ int (C) = V ∩ int(B δ1 * ) × int(B δ2 1 ), (3.4) 
which shows that (A.6) is verified. The latter is nothing but the condition in [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Fact 15.25(i)] which, when combined with (A.6), ensures (A.5).

We use Algorithm 1 by choosing the sequence of parameters

γ k = 1 k+1 , β k = 1 √ k+1
, and ρ = 15, which verify all our assumptions (P.1)-(P.4) in view of Example 2.1.

GFB

We will use a similar product space to apply GFB. Denote

W def =   W (1) W (2) W (3)   ∈ R (N ×N ) 3 , Q (W ) = ΩW (1) -y 1 +ι B δ 1 • * W (2) + ι B δ 2 • 1 W (3) . Then we reformulate problem (3.2) as min W ∈Hp Q (W ) : W ∈ V , (3.5) 
which fits the framework to apply the GFB algorithm proposed in [START_REF] Raguet | Generalized forwardbackward splitting[END_REF] (in fact Douglas-Rachford since the smooth part vanishes). We choose the step sizes λ k = γ = 1.

Results

We compare the performance of CGALP with GFB for varying dimension, N , using their respective ergodic convergence criteria. For CGALP this is the quantity L Xk , µ * -L (X ⋆ , µ ⋆ )

where Xk = k i=0 γ i X i /Γ k . Meanwhile, for GFB, we know from [START_REF] Molinari | Convergence rates of Forward-Douglas-Rachford splitting method[END_REF] that the Bregman divergence

D v ⋆ Q Ū k = Q( Ū k ) - Q(W ⋆ ) -v ⋆ , Ū k -W ⋆ , with Ū k = k i=0 U i /(k + 1) and v ⋆ = (W ⋆ -Z ⋆ )/γ, converges at the rate O(1/(k + 1)).
To compute the convergence criteria, we first run each algorithm for 10 5 iterations to approximate the optimal variables (X ⋆ and µ ⋆ for CGALP , and Z ⋆ and W ⋆ for GFB). Then, we run each algorithm again for 10 5 iterations, this time recording the convergence criteria at each iteration. The results are displayed in Figure 2. It can be observed that our theoretically predicted rate is in close agreement with the observed one. On the other hand, as is very well-known, employing a proximal step for the nuclear ball constraint will necessitate computing an SVD which is much more time consuming than computing the linear minimization oracle for large N . For this reason, even though the rates of convergence guaranteed for CGALP are worse than for GFB per iteration, one can expect CGALP to be a more time computationally efficient algorithm for large N as each iteration is cheaper.
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 1 The functions f and g • T are closed, convex, and proper. (A.2) The gradient ∇f is Lipschitz continuous on the set C. (A.3) The set C ⊂ R n is compact. (A.4) T C ⊂ dom(∂g) and sup x∈C inf g ′ ∈∂g(T x) g ′ < ∞.
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