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Abstract—This paper deals with channel estimation
and equalization, as well as noise variance estimation
in uplink narrowband-internet of things (NB-IoT) sys-
tem. Different techniques are studied in the context of
NB-IoT, such as least square (LS) and linear minimum
mean square error (LMMSE) for channel estimation,
and zero forcing (ZF) and MMSE for equalization. It
is shown that a low-complexity application of MMSE-
based methods is made possible in NB-IoT by taking
advantage of the small number of subcarriers. Further-
more, a noise variance estimator is suggested based
on the combination of two successive observations of
pilots, assuming slowly varying channel. We also prove
that the proposed estimator is efficient, and confirm by
simulations that both LMMSE channel estimator and
MMSE equalizer can use the estimated noise variance
instead of the exact value without loss of performance.

I. Introduction

NarrowBand-internet of things (NB-IoT) system is
a newly introduced 3rd generation partnership project
(3GPP) standard designed to provide connectivity for a
wide range of cellular devices and enable new internet
of things services [1]. It was introduced to cope with the
growing market of machine-type communication where the
usage of connected devices will exponentially increase due
to the expansion of applications proposed for individuals
and industries. At the same time, this new system was
conceived to provide IoT services through the legacy wide-
area cellular networks such as LTE. To this end, the
NB-IoT system was inherited from Long Term Evolution
(LTE) system (see overviews about NB-IoT in [2]–[5]).
It is designed to be easily integrated in LTE networks
to provide fast and flexible deployment. However, it was
adapted to take into account the constraints related to IoT
devices. In particular, very good indoor coverage, support
of huge number of connected devices, low device cost, low
computation capacity and low power consumption.

The design of NB-IoT system is based on the orthogo-
nal frequency division multiplexing (OFDM) modulation
scheme. The NB-IoT downlink signal only occupies 12 sub-
carriers of 15 kHz each, which corresponds to one resource
block (RB) in LTE. For uplink transmission, the single-
carrier frequency division multiple access (SC-FDMA)
modulation scheme is also kept from LTE. Moreover,
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the same framing structure is kept from LTE but with
difference in channels and signals mapping. Therefore,
the NB-IoT system has a frame duration of 10 ms and
comprises 10 sub-frames of 1 ms each, which corresponds
to 20 slots of 0.5 ms. However, there is no extended cyclic
prefix option and thus each slot is strictly composed of 7
OFDM symbols.

In this respect, the NB-IoT system inherited almost the
same issues in terms of signal processing due to the reuse
of the same transmission techniques. However, the addi-
tional challenge here is to achieve a deep indoor coverage
especially when dealing with the NB-IoT UE modules that
are far from the base station. Moreover, this challenge is
amplified since SC-FDMA is sensitive to residual errors of
channel estimation and equalization, since the decoding
step inherent to SC-FDMA spreads errors over all the
subcarriers.

To reveal this challenge, efficient algorithms are required
for the uplink channel estimation accuracy. In the liter-
ature, several channel estimation and equalization tech-
niques were proposed to improve the reliability of uplink
transmission in LTE [6]. Most of techniques are based
on the use of demodulation reference signal (DMRS) also
called pilots. Moreover, these techniques were extensively
studied for multicarrier systems with high bandwidth such
as LTE, but not much considered for narrow-band system.

In this work, we consider different channel estimation
and equalization techniques that we adapt to NB-IoT
system. Among others, the most commonly used are:
least square (LS) and linear minimum mean square error
(LMMSE) for channel estimation, and zero forcing (ZF)
and MMSE for equalization. Generally, LS and ZF tech-
niques are simple but are sensitive to the noise, whereas
LMMSE and MMSE methods are more complex but
show better performance. In addition to their complexity,
MMSE-based methods require the knowledge of the noise
variance, which is a priori unknown. These two drawbacks
limit the practical application of MMSE-based estimation
and equalization techniques.

We suggest to take advantage of NB-IoT features to
make MMSE-based techniques applicable in practice to
NB-IoT system. In this respect, we show that the low
number of subcarriers leads to a reduction in complexity.
Moreover, the environment is supposed to be slowly vary-
ing, which is consistent with the commercial applications



Fig. 1. Simplified block diagram of TX/RX chain. TX corresponds
to UE side, RX to evolved node B (eNB) side.

of NB-IoT. Thus, we can combine the observations of
different received pilots to reduce the noise disruptions,
and to estimate the noise variance, which is required in
MMSE-based methods. Finally, the performance of the dif-
ferent estimators are theoretically analyzed and compared
through simulations, and the assumptions on the channel
model are discussed.

The rest of this paper is organized as follow. In section
II, we present the model of the uplink NB-IoT signal
and describe the considered estimation and equalization
techniques. In section III, we show how to adapt these
techniques to the characteristics of NB-IoT signal. Section
IV is dedicated to simulation results. In section V , a
complexity analysis is presented to compare the considered
techniques. Conclusions and future works are presented in
section VI.

Notation: The scalars are written in normal font X,
vectors in boldface X, and matrices in underlined bold-
face X. The superscripts (.)−1, (.)T , and (.)H denote
the inverse, the transpose, and the Hermitian (conjugate)
transpose operators, respectively. Furthermore, E{.} is the
mathematical expectation, ln(.) the natural logarithm,
and ‖.‖ and |.| the Euclidian norm and the modulus,
respectively.

II. System Model

This section is dedicated to the description of the
NB-IoT uplink signal model, as well as usual channel
estimation and equalization techniques in multicarrier
systems such as LS and LMMSE (for estimation), and
ZF and MMSE (for equalization). Both single-carrier and
multicarrier configuration modes are allowed for uplink
transmission in 3GPP TS 36.211 [1]. However, we focus
here on multicarrier mode since the aim of this paper
is to deal with SC-FDMA modulation. Furthermore, the
single-carrier mode involves almost trivial processes at the
receiver, which can be simply deduced from the hereby
presented results.

A. Uplink Received Signal Model

The general transmission/reception (TX/RX) chain in
uplink NB-IoT is depicted in Fig. 1, where channel estima-
tion and equalization blocks are highlighted. According to

[1], and in the same way as in LTE [7], all the subcarriers
of the fourth symbol of each uplink slot (a slot 1 com-
posed of 7 consecutive OFDM symbols) are pilot elements.
Therefore, in order to perform per-subcarrier estimation,
these pilot elements are not precoded (contrarily to data
elements that are precoded in SC-FDMA). Thus, the M×1
received signal vector in frequency domain (i.e. at the
output of the OFDM demodulation block), denoted by
Yn, can be expressed as

Yn =

{

HnXn + Wn, if n = 3

HnFXn + Wn, if n 6= 3
, (1)

where n is the index of the symbol within a slot (n =
0, 1, .., 6). We denote by m = 0, 1, .., M − 1 the subcarrier
index, by Xn = [Xn,0, .., Xn,m, .., Xn,M−1]T the M × 1
complex vectors of the transmitted signal (precoded data
or pilots) and by Wn = [Wn,0, .., Wn,m, .., Wn,M−1]T

the additive white Gaussian noise (AWGN). Note that
Wn,m ∼ CN (0, σ2

W ) for any m = 0, 1, .., M − 1, Hn

is the M × M diagonal matrix containing the complex
frequency response of the channel, and F is the M × M

DFT precoding matrix.
For clarity purpose, we define the variable Zn = FXn

and we use the subscript p to highlight pilot symbols, i.e.
Yp = HpXp + Wp if n = p = 3. Moreover, since we focus
on channel estimation and equalization, we consider the
following assumptions in the remaining of the paper:

• The maximum delay spread of the channel is shorter
than the CP, in such a way that no intersymbol
interference (ISI) occurs. Furthermore, it is supposed
to be quasi-static, i.e. static over at least one slot (this
will be further discussed). Thus, channel equalizer
uses the same estimate over at least one slot.

• Time and frequency synchronization is perfect, then
no intercarrier interference (ICI) occurs.

Based on these assumptions, we describe in the next
sub-section the usual channel estimation and equalization
techniques considered in this paper.

B. Channel Estimation and Equalization

1) Channel Estimation: As a prerequisite to channel
estimation, it is noteworthy that Yp can be rewritten as
Yp = XpHp + Wp, where Xp is the diagonal matrix
containing the elements of Xp, and Hp is the vector
containing the frequency response of the channel. From
this, we derive the expression of the channel estimate using
LS and LMMSE methods, such as presented in [8]–[11].

a) Least Square (LS): LS method is based on the
minimization of the cost function JLS = ‖Yp − XpHp‖2,
which yields to:

Ĥ
LS

p = X
−1
p Yp = Hp + X

−1
p Wp. (2)

Note that in the case of preamble (or midamble) pilot
scheme, (i.e. when a whole OFDM symbol is composed



of pilots such as in uplink NB-IoT) the LS estimate in (2)
can also be obtained by the maximum likelihood (ML)
estimator. In fact, it is known that the maximization

of the likelihood function L = C.exp(−
‖Yp−X

p
Hp‖2

2σ2

W

) =

C.exp(− ‖JLS‖2

2σ2

W

) is strictly equivalent the minimization of

JLS , since the function e−x2

reaches its maximum when
x reaches its minimum. This assumption does not hold
anymore when pilots and data are multiplexed in an
OFDM symbol. The LS estimator is easy to implement,
but it is sensitive to noise, which is highlighted by the
term X

−1
p Wp in (2).

b) Linear Minimum Mean Square Error (LMMSE):
LMMSE method is based on the minimization of the
cost function JLMMSE = ‖Hp − DYp‖2, where D is a
matrix whose expression is given below. The minimization
of JLMMSE with respect to D finally leads to (see [11] for
details):

Ĥ
LMMSE

p =

D

︷ ︸︸ ︷

RH(RH + (XpX
H
p )−1σ2

W )−1X
−1
p Yp

= RH(RH + (XpX
H
p )−1σ2

W )−1Ĥ
LS

p , (3)

where RH is the channel covariance matrix. The matrix
RH(RH + (XpX

H
p )−1σ2

W )−1 acts like a smoothing filter

on Ĥ
LS

p , leading to a reduction of noise disruption in the

estimate Ĥ
LMMSE

p .
In fact, the mean square error (MSE) analysis as in

[12], [13] has proved that LMMSE estimator shows better
performance than LS estimator. This feature will also be
shown in Section IV. We can notice from (3) that LMMSE
estimator involves matrix inversion and multiplication,
which is much more complex than LS estimation. In
addition, it requires the prior knowledge of RH and σ2

W ,
which limits its practical application.

In order to overcome this drawback, it has been pro-
posed by Edfors et al. in [12], [14] to substitute the exact
channel covariance matrix RH by an approximated matrix
R̃H , whose eigenvalues λm, with m = 0, 1, .., M − 1, are
set in advance. It remains that σ2

W is still an unknown
parameter. This is the reason why we propose an estimator
of σ2

W in Section III. Moreover, the complexity of LMMSE
will be discussed in Section V.

2) Channel Equalization: The goal of channel equal-
ization is to invert the channel in order to estimate the
symbols Zn. In fact, since we are considering a multicarrier
system, we can use a per-subcarrier equalizer. In this
respect, we define the M ×M diagonal equalization matrix
Q, such that the estimated symbols can be expressed as

Ẑn = QYn.
a) Zero Forcing (ZF): The ZF equalizer is defined as

follows:

Q = H
−1
p ≈ Ĥ

−1

p , (4)

where Ĥp is the M ×M diagonal matrix that contains the
estimated channel values. This is the simplest equalization
technique, but the gain of the equalizer may be high at
some subcarriers if Hp,m is weak, which amplifies the
noise. In fact, the exact frequency response should not
be available at the receiver. Thus, in practice, the exact
frequency response is substituted by the estimated one,
such as suggested in (4).

b) Minimum Mean Square Error (MMSE): The aim
of MMSE equalizer is to find the diagonal matrix Q that

minimizes the error function e = E{‖Xn − X̂n‖2}, where
E{.} is the mathematical expectation, and X̂n = QZn.
The minimization of e leads to

Q = H
H
n (HnH

H
n + (E{XnX

H
n })−1σ2

W )−1

≈ Ĥ
H

p (ĤpĤ
H

p + (E{XpX
H
p })−1σ2

W )−1, (5)

where the exact frequency response should be substituted
by the estimated one. Unlike ZF, the MMSE equalizer does
not tend to amplify the noise, due to the contribution of
the term (E{XpX

H
p })−1σ2

W . However, it is more complex
than ZF, even if matrix inversion and multiplications
involve only diagonal matrices. Moreover, similarily to
LMMSE channel estimator in (3), the MMSE equalizer
requires the knowledge of σ2

W . As a consequence, the
complexity and the estimation of the noise variance can
be considered as the two key features of MMSE-based
methods.

III. Adaptation of Estimation Methods in

NB-IoT

A. Observation Over Two Slots

We consider a channel model with a coherence time at
least equal to 1 ms. This assumption is reasonable for NB-
IoT applications, where the UE modules are supposed to
be static (e.g. sensors in smart cities or home automation),
or slowly moving (e.g. machines or other industrial appli-
cations). The validity and the limit of such assumption
are discussed in Section V. Based on this, the channel
frequency response does not change during two consecutive
slots such as illustrated in Fig. 2, with M = 12. For
clarity purpose, but without loss of generality, we write
Hp = H in order to highlight the quasi-static nature of
the channel. In addition, we can suppose that the same
midamble X is transmitted in two consecutive slots (rather
than using Xp1 and Xp1). This is because pilot values in
two consecutive slots only differ by their phase, which does
not affects the statistic of the observation.

Thus, we can now consider a system of linear equations:

{

Yp1 = HX + Wp1

Yp2 = HX + Wp2

, (6)

where p1 and p2 indicates that the observation corre-
sponds to midamble in first and second slot, respectively. It



Fig. 2. Channel estimation over two slots, with M = 12. Channel
Hp = H is supposed constant over two slots.

can be noticed from (6) that the vectors of received pilots
only differ by the additive noise. Then, it is intuitive to
combine Yp1 and Yp2 to improve the channel estimation
process. Therefore, to find the best combination, let us
consider the likelihood function of the system (6), denoted
by L. Since Wp1 and Wp2 are independent complex
AWGN vectors, L can be written as:

L = C. exp
(

−
‖Yp1 − HX‖2

σ2
W

)

. exp
(

−
‖Yp2 − HX‖2

σ2
W

)

= C. exp
(

−
‖Yp1‖2 + ‖Yp2‖2 + 2‖HX‖2

σ2
W

+
2Re{(HX)H .(Yp1 + Yp2)}

σ2
W

)

, (7)

where C = 1
(πσ2

W
)2M . From (7), we deduce that the

maximization of L according to H depends on Yp1 + Yp2,
which means that the exhaustive information of the system
(6) is included in Yp1 + Yp2. In other words, the best
combination of Yp1 and Yp2 for channel estimation is the
addition, and thus we can define a new observation:

Y
+ =

Yp1 + Yp2

2
= HX +

Wp1 + Wp2

2
, (8)

to perform the channel estimation (as previously pre-
sented). It is noteworthy that over two slots, the
variance of the equivalent noise in (8) is given by

E{ Wp1,m+Wp2,m

2 (
Wp1,m+Wp2,m

2 )∗} =
σ2

W

2 for any m =
0, 1, .., M −1, i.e. the noise power in Y

+ is reduced by 3 dB
compared to Yp. We deduce that the usage of Y

+ instead
of Yp should improve the channel estimation performance.

B. Noise Variance Estimator

It has been mentioned in Section II that LMMSE esti-
mation and MMSE equalization require the knowledge of
the noise variance σ2

W , which could limit their practical
implementation. The ML estimation of the noise variance
deduced from (7) leads to

σ̂2
W =

‖Yp1 − HX‖2 + ‖Yp2 − HX‖2

2M
. (9)

We deduce that this estimator requires the channel fre-
quency response. Therefore, it cannot be implemented in
practice. It is then interesting to suggest an efficient noise
variance estimator that is independent of the channel, and
that makes MMSE-based methods applicable in practice.

1) Expression of the Estimator: In addition to the
improvement of the channel estimation performance by
using Y

+, we also deduce a noise variance estimator from
(6). Thus, we can define a new observation denoted by Y

−

and expressed as

Y
− = Yp1 − Yp2 = Wp1 − Wp2, (10)

where E{|Y −
m |2} = 2σ2

W for any m = 0, 1, .., M − 1. Then,
we deduce a noise variance estimator:

σ̂2
W =

1

2M

M−1∑

m=0

|Y −
m |2. (11)

It must be noted that, unlike Y
+, Y

− does not a priori
guarantee the optimality of the estimator (11), since the
exhaustive information of the system (6) is not included
in Y

−. In fact, an a posteriori performance analysis of
the suggested estimator shows that it does not reach the
Cramer-Rao bound (CRB).

2) Performance Analysis: We straightforwardly show
that the noise variance estimator is unbiased. Thus, we
express the bias, denoted B(σ̂2

W ), as

B(σ̂2
W ) = E{σ2

W − σ̂2
W }

= σ2
W −

1

2M

M−1∑

m=0

E{|Y −
m |2} = 0. (12)

In addition, we derive the variance of the estimator,
denoted V (σ̂2

W ), as

V (σ̂2
W ) = E{(σ2

W − σ̂2
W )2}

= E{σ4
W + (σ̂2

W )2 − 2σ2
W σ̂2

W }

=
σ4

W

M
, (13)

since we have



E{(σ̂2
W )2} = E

{ 1

4M2

(M−1∑

m=0

|Y −
m |2

)2}

=
1

4M2

M−1∑

k=0

8σ4
W +

1

4M2

M−1∑

m=0

M−1∑

n=0
n6=m

4σ4
W

=
2

M
σ4

W +
M − 1

M
σ4

W . (14)

We can now show that the variance of the estimator is
equal to its CRB, which means that the suggested noise
variance is efficient. In appendix, we first show that the
estimation of the noise variance is independent of the
estimation of the M channel frequency coefficients. Math-
ematically, this is highlighted by the fact that the Fisher
information matrix is block diagonal, where one block is
the scalar corresponding to the noise variance. Then, the
CRB of the noise variance is obtained through the inver-
sion of a scalar, and does not require the inversion of the
whole Fisher information matrix. Accordingly, the CRB
of the noise variance estimator, denoted by CRB(σ̂2

W ), is
given by the scalar:

CRB(σ̂2
W ) = −E

{ ∂2

∂(σ2
W )2

ln(L)
}−1

=
σ4

W

2M
, (15)

where L is defined in (7). The detailed development
are provided in Appendix. We verify that V (σ̂2

W ) >

CRB(σ̂2
W ), which highlights the non-optimality of the

suggested estimator. However, it must be reminded that
this estimator is implementable in practice, since it does
not require any knowledge of the channel, contrarily to
ML noise variance estimator in (9).

IV. Simulations Results

As simulations parameters, we consider a NB-IoT uplink
SC-FDMA signal with M = 12 subcarriers of 15 kHz spac-
ing, and carrying QPSK data elements (according to [1],
no higher order constellation is allowed in NB-IoT). The
signal is transmitted through a typical urban channel such
as described in TR 25.943 [15]. It is composed of 20 paths,
with a maximum delay spread of 2.14 µs. The different
techniques presented for estimation and equalization are
compared in terms of bit error rate (BER) and normalized

MSE (NMSE), defined as NMSE = E{‖Ĥm−Hm‖2}
E{‖Hm‖2} . In our

case, we approximate the expectation by an average over
1000 simulation runs.

A. BER Performance Over One Slot

In Fig. 3, we start by comparing LS and LMMSE estima-
tion combined to ZF and MMSE equalization techniques
in terms of BER versus SNR (dB) over one slot. To
apply LMMSE and MMSE, we suppose that the noise
variance is known at the receiver. The curve corresponding
to perfect channel estimation (denoted by perfect chest.)
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LMMSE+ZF
LMMSE+MMSE

Fig. 3. BER performance vs SNR of LS, LMMSE, ZF, and MMSE
over 1 slot.

is considered as a lowest bound reference (an MMSE
equalization is used here).

If we denote the four possible combinations LS+ZF
(A), LS+MMSE (B), LMMSE+ZF (C), LMMSE+MMSE
(D), then we can observe that, for any SNR, the BER
performance is (A)≤(B)≤(C)≤(D). More precisely, we
notice that, at BER=10−4, a performance gain of 1.1
dB is achieved by LMMSE+ZF compared to LS+ZF,
and a performance gain of 1.8 dB is achieved by
LMMSE+MMSE compared to LS+MMSE. This result
highlights the smoothing effect of LMMSE in comparison
with LS channel estimate, which reduces the noise distor-
tion.

Moreover, Fig. 3 shows that the better the channel
estimate, the better the MMSE equalizer compared with
ZF. In fact, at BER=10−4, the SNR gain is of 0.2 dB using
LS estimator, and 0.9 dB using LMMSE estimator. This is
due to two reasons, the first one is that we use the channel
estimates instead of the exact channel frequency response
in (4) and (5). The second one is that ZF tends to amplify
the noise compared with MMSE, in particular in presence
of channel estimation errors.

Another observation is that perfect channel estimation
outperforms LMMSE+MMSE of more than 1 dB. How-
ever, we can notice in papers such as [11] that LMMSE
is very close to perfect estimation. The reason is that we
are using SC-FDMA contrarily to [11] where OFDM is
considered. In OFDM, an error of estimation and equaliza-
tion only induce self-interference, whereas in SC-FDMA,
such errors also induce intercarrier interference due to the
transform decoding stage.

B. Performance Over Two Slots

In the following, we focus on the adaptation of estima-
tion methods to NB-IoT over 2 slots. Thus, to show the
advantage of estimating over 2 slots rather than 1 slot, we
show in Fig. 4 the NMSE of LS and LMMSE estimators
versus SNR (dB). Note that LMMSE is performed with the



0 2 4 6 8 10 12 14

SNR (dB)

10-2

10-1

100

N
M

S
E

LS over 1 slot
LS over 2 slots
LMMSE over 2 slots
LMMSE over 1 slot

Fig. 4. Channel estimation NMSE vs SNR (dB) for LS and LMMSE.
Comparison of estimation over 1 slot and 2 slots.

exact noise variance. It can be observed that a gain of 3
dB is achieved using 2 slots compared with 1 slot for both
LS and LMMSE. This is consistent with the theoretical
results deduced from (8). Moreover, we can notice that
the performance of LMMSE over one slot coincides with
the NMSE of LS over two slots. We can then concludes
that the smoothing effect of LMMSE also reduces the noise
variance by half and thus improves the BER performance
as observed in Fig. 3.

In Fig. 5, we compare the BER versus SNR (dB) of
the worst combination (LS+ZF) and the best combination
(LMMSE+MMSE) over 1 and 2 slots. We observe that
at BER=10−3 the LS+ZF methods over 2 slots achieve
a SNR gain of 1.4 dB compared to the same methods
performed over 1 slot. However, the gain is only 0.3 dB for
LMMSE+MMSE methods. This result shows that the esti-
mation over 2 slots is more beneficial for low-performance
methods such as LS+ZF, whereas LMMSE+MMSE seems
to reach a BER lower bound. Once again, this limit can
be explained by the modulation scheme, which is sensitive
to channel estimation errors, since these errors induce
intercarrier interference.

C. Performance of the Noise Variance Estimator

Further series of simulations investigate the performance
of the suggested noise variance estimation and its effects
on LMMSE and MMSE methods. Fig. 6 depicts the MSE
of the noise variance estimator in (11) versus SNR (dB),
the ML in (9), and the corresponding CRB. It can be
observed that the MSE of ML matches the CRB, whereas
the MSE of the proposed estimator is twice the CRB,
such as predicted in (13) and (15). However, we will show
that the noise variance estimator is efficient, even for low
subcarriers number, and can then be used to feed LMMSE
and MMSE techniques.

To show the performance of the proposed noise variance
estimator when used in LMMSE and MMSE, we plot in
Fig. 7 the BER versus SNR (dB) of LMMSE+MMSE
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Fig. 5. BER performance vs SNR (dB) of LS+ZF and
LMMSE+MMSE over 1 slot and 2 slots.
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Fig. 6. MSE of noise variance estimation versus SNR (dB). Compar-
ison of theoretical CRB and simulation.

using exact noise variance and estimated noise variance.
It can be noticed that the two curves match, and thus we
conclude that both LMMSE and MMSE can be used in
practice, since the noise variance is efficiently estimated.
However, the only remaining limitation is the complexity
of these methods, which is left to be discussed in next
section.

V. Discussion

A. Complexity Analysis

In this section, we analyze the complexity of the pre-
sented methods through the number of complex multi-
plications. From (2), we deduce that the complexity of
LS is M multiplications. For LMMSE, we consider that
the known approximated channel covariance matrix R̃H

is used in (3). To obtain R̃H , a constant channel gain
delay profile is assumed. Thus, the complexity of matrix
inversion and multiplication is reduced from 2M3 to M2

(see [11] for details). Moreover, it must be noticed that
pilots have a constant modulus, thus (XpX

H
p )−1 is a
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Fig. 7. BER performance versus SNR (dB) of LMMSE+MMSE using
exact noise variance and estimated noise variance.

diagonal matrix. This makes the complexity of LMMSE
using R̃H is equal to M2 + 2M , where 2M corresponds to
the complexity of the estimation of noise variance using
(11) combined with that of the LS estimator.

Despite the number of multiplications grows by the
square of M , the complexity of such technique is tightly
related to the technology being used. Therefore, in NB-
IoT M ≤ 12, the relative complexity of LMMSE compared
with LS is low (168 operations), and thus it is practically
implementable in eNBs. For instance, M in digital video
broadcasting-terrestrial 2 (DVB-T2) is up to 32K. In this
respect, LMMSE requires a high computation cost for
such technology (about 109 operations). To summarize,
it is possible to take advantage of the low number of
subcarriers in NB-IoT to implement LMMSE in eNBs, in
particular since it significantly improves the performance
of the receiver.

For equalization, ZF involves M operations, whereas
MMSE requires 4M multiplications: M for noise variance

estimation, M for ĤpĤ
H

p , M for the inversion, and M

for the multiplication by Ĥp. We conclude that MMSE is
slightly more complex than ZF, but it is very suitable to
be used in NB-IoT eNBs.

B. Coherence Time Validity

The coherence time of a channel is defined as the
duration over which the propagation channel can be con-
sidered as not varying. Different models are given in [16],
according to more or less restrictive conditions on the term
"not varying". In this paper, we assume that the channel
is constant over at least a subframe (i.e. 1 ms). Then the
coherence time Tc can be expressed as

10−3 ≤ Tc =
9

16πfD

, (16)

where fD = v.f0

c
is the Doppler frequency, with v the

relative velocity between transmitter and receiver, f0 the
central frequency of the signal, and c the light speed. If f0

is of order of 1 GHz, then the speed v corresponding to 1
ms coherence time is upper bounded as v ≤ 53.7 m.s−1, or
190 km.h−1. We conclude that the considered assumption
holds for a mobility of about a hundred kilometers per
hour, which validates the developments in Section III.

VI. Conclusion

In this paper, we addressed the uplink estimation and
equalization techniques used in LTE system and their pos-
sible adaptation to NB-IoT system. To this end, we briefly
presented how NB-IoT system frame is inherited from
the LTE one, and showed the main differences between
their uplink signals. Two estimation (LS and LMMSE) and
two equalization (ZF, MMSE) techniques were considered.
The adaptation of these techniques was demonstrated by
taking into account the characteristics of the NB-IoT
uplink signal. Furthermore, a noise variance estimator,
which uses observations over two slots, has been proposed.
Simulations were performed for all the combinations of
the estimation and equalization techniques. Results re-
vealed that the use of the LMMSE estimator with MMSE
equalization techniques lead to the best performance, in
particular when the estimation is done over 2 slots. In
contrast, the LMMSE estimation combined to MMSE
equalization lead to higher computation complexity (but it
is tightly related to the number of subcarriers). However,
the complexity analysis showed that since the NB-IoT
system has a bandwidth of only 180 KHz (12 subcarriers of
15 KHz), the LMMSE estimation combined to MMSE can
be the best to be used for such system. In future works, we
will extend the analysis to the single carrier modulation
mode, including 15 kHz and 3.75 kHz subcarrier spacing.

Appendix

The appendix aims to prove the CRB given in (15)
for noise variance estimation. We base our proof on the
CRB analysis for complex parameters as in [17], but
we extend the developments in [17] to the case of non-
holomorphic functions by using Wirtinger’s derivative [18],
[19] instead of usual complex derivative. Let us denote
T the vector of the complex parameters of the system
(6), i.e. T = [H0, H∗

0 , H1, H∗
1 , .., HM−1, H∗

M−1, σ2
W ], where

Hm, m = 0, 1, .., M −1, are the channel frequency response
coefficients. We first show that the channel and the noise
variance can be estimated independently by proving that

E

{
∂

∂H∗

m∂
ln(L)∗ ∂

∂σ2

W

ln(L)
}

= 0, for any m = 0, 1, .., M−1.

In that case, the Fisher information matrix K, whose
elements at u-th row and v-th column (u, v = 0, 1, .., M)
are defined (see (11) in [17]) by

Ku,v = E

{ ∂

∂T ∗
u

ln(L)∗ ∂

∂Tv

ln(L)
}

, (17)

is block diagonal, where one block corresponds to the
channel, and the other block is the scalar corresponding
to the noise variance. Thus, the CRB of the noise variance



is only defined by a scalar given in (15), and it is not
mandatory to calculate the whole matrix K.

It must be noted that the following developments in-
volve non-holomorphic functions. Therefore, Wirtinger’s
derivative [18], [19] is used instead of usual complex
derivative. Thus, the log-likelihood function ln(L) can be
developed as follows:

ln(L) = ln(C) −
1

σ2
W

[M−1∑

m=0

|Yp1,m|2 + |Yp2,m|2

+ 2|HmXm|2 − 2Re
{

H∗
mX∗

m(Yp1,m + Yp2,m)
}]

.

(18)

Then, since for z ∈ C, Re{z} = z+z∗

2 , and ∂z∗

∂z
= 0

(Wirtinger’s derivative), for any m = 0, 1, .., M − 1, we
have:

∂

∂H∗
m

ln(L)∗ = −
2Hm|Xm|2 − X∗

m(Yp1,m + Yp2,m)

σ2
W

, (19)

and

∂

∂σ2
W

ln(L) =
−2M

σ2
W

+

∑M−1
m=0 |Yp1,m − HmXm|2

σ4
W

+

∑M−1
m=0 |Yp2,m − HmXm|2

σ4
W

. (20)

It can be noted that E{Xm(Yp1,m+Yp2,m)∗} = 2H∗
m|Xm|2,

since E{Wp1,m} = E{Wp2,m} = 0. After some mathemat-
ical developments that are not detailed in this paper, it

follows that E

{
∂

∂H∗

m
ln(L)∗ ∂

∂σ2

W

ln(L)
}

= 0. Furthermore,

it is straightforward that the regularity condition holds.

As consequence, we can focus on −E

{
∂2

∂(σ2

W
)2 ln(L)

}

to

calculate the CRB of the noise variance estimator:

∂2

∂(σ2
W )2

ln(L) =
2M

σ4
W

−
2

σ6
W

[M−1∑

m=0

|Yp1,m − HmXm|2

+ |Yp2,m − HmXm|2
]

. (21)

We have

E{|Ypi,m − HmXm|2} = σ2
W ,

for i = 1, 2, hence we deduce the CRB as

CRB(σ̂2
W ) = − E

{ ∂2

∂(σ2
W )2

ln(L)
}−1

=
σ4

W

2M
, (22)

which concludes the proof.
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