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Abstract
Purpose – Fluid flows in pipes whose cross-sectional area are increasing in the stream-wise direction are
prone to separation of the recirculation region. This paper aims to investigate such fluid flow in expansion
pipe systems using direct numerical simulations. The flow in circular diverging pipes with different diverging
half angles, namely, 45, 26, 14, 7.2 and 4.7 degrees, are considered. The flow is fed by a fully developed
laminar parabolic velocity profile at its inlet and is connected to a long straight circular pipe at its
downstream to characterise recirculation zone and skin friction coefficient in the laminar regime. The flow is
considered linearly stable for Reynolds numbers sufficiently below natural transition. A perturbation is added
to the inlet fully developed laminar velocity profile to test the flow response to finite amplitude disturbances
and to characterise sub-critical transition.
Design/methodology/approach – Direct numerical simulations of the Navier–Stokes equations have
been solved using a spectral element method.
Findings – It is found that the onset of disordered motion and the dynamics of the localised
turbulence patch are controlled by the Reynolds number, the perturbation amplitude and the half
angle of the pipe.
Originality/value – The authors clarify different stages of flow behaviour under the finite amplitude
perturbations and shed more light to flow physics such as existence of Kelvin–Helmholtz instabilities as well
as mechanism of turbulent puff shedding in diverging pipe flows.

Keywords Diverging pipe flows, Localized turbulence, Transitional flow,
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1. Introduction
The transition from laminar to turbulent flow in pipes with circular cross-section is a basic
research problem that is of both fundamental and practical importance. The mechanisms
that cause flow instabilities and the dramatic increase in mixing, heat transfer and drag
friction coefficients are still poorly understood. The laminar expansion flow is characterised
by a long thin recirculation region. A critical issue in this problem is related to separation-
induced transition. Indeed, due to low-frequency unsteadiness in the separated region, a
significant energy loss is incurred along the transition (Dupont et al., 2006;
Ganapathisubramani et al., 2007; Rodríguez et al., 2013). This phenomenon is critical in
many industrial situations such as enclosed wind turbines, pipeline transports, thrust-
vectoring nozzles, diffusers and turbo-machines.

The emergence of low-frequency oscillations of the laminar separation bubble is
sometimes responsible for the fluctuating pressure in the global flow field (Nguyen et al.,
2002; Sajben et al., 1984). At later stages of the transitional regime, laminar-turbulent
patterns and properties of the localised turbulence have been studied in plane Poiseuille flow
(Farano et al., 2015; Lemoult et al., 2012). However, there is a scarcity of the data for
diverging pipe flows. For such geometries, when the flow at the inlet is turbulent, it may
undergo relaminarisation downstream. If the inlet flow is laminar, for some range of
subcritical Reynolds numbers, localised disordered patches are observed depending on the
exact geometry of the expansion region. In the past decades, many studies have been
performed for the flow in the case of two-dimensional abrupt expansion (Drikakis, 1997;
Fearn et al., 1990; Milos et al., 1987), which showed consistently that the axial length of the
recirculation region increases linearly, from the expansion, with the Reynolds number. Here
the Reynolds number, Re =Ud/!, whereU is the bulk velocity, d, the inlet pipe diameter and
! is the kinematic viscosity of the fluid. The existence of breaking of symmetry at a critical
Re confirmed the existence of a bifurcation. The experimental studies (Mullin et al., 2009;
Sreenivasan and Strykowski, 1983) revealed that the reattachment point oscillates by a
complex interaction of flow oscillations and the re-establishment of the recirculation region
downstream of the expansion region. The mean flow interacts with the recirculation region
creating shear. Latornell et al. (Latornell and Pollard, 1986) observed experimentally the
shear instability and proposed that the existence of unstable mode might be explained by
instabilities arising due to the streamline curvature or centrifugal instability. Later, studies
performed on the backward facing step by Beaudoin et al. (2004) further supported the
detached flow is consistent with the centrifugal instability.

For sudden pipe 1:2 expansion, the global flow stability analysis (Cliffe et al., 2011;
Sanmiguel-Rojas et al., 2010) suggests the critical Re for linear instability is at least 5000.
Moreover, a detailed study of transient growth stability was performed by Cantwell et al.
(2010), which showed that the sudden expansion can amplify the energy of infinitesimal
perturbations up to six orders of magnitude before its decay. The difference between
the critical Re in experiments and simulations may be explained by imperfections in the
experiment. Therefore, the values of critical Re should be dependent both on the
perturbation nature and its amplitude. Hence, numerical simulations with well-defined finite
amplitude perturbation are required to better understand the underlying mechanism. Three-
dimensional direct numerical simulations (DNS) have been carried out for sudden expansion
pipe flows by several authors (Moallemi and Brinkerhoff, 2018; Sanmiguel-Rojas andMullin,
2012; Selvam et al., 2015; Sparrow et al., 2009) with different perturbations:

! the transverse velocity component (tilt) perturbation at the inlet, via a uniform
cross-flow, added to the Hagen–Poiseuille flow (Sanmiguel-Rojas and Mullin, 2012;
Selvam et al., 2015); and



The last vortex perturbation has been implemented to observe a less abrupt transition to
localised disordered. It also reproduced the finite amplitude thresholds for transition
experiments in the subcritical regime (Lebon et al., 2018) and the bursting or breathing mode
often described also in experiments (Latornell and Pollard, 1986; Lebon et al., 2018).

For diverging flows, a general two-dimension stability problem, known as the Jefferey–
Hamel problem, is known to have infinite number of solutions. Specifically, Haines et al.
(2011) obtained sequences of nested neutral curves corresponding to steady flow solutions.
Two-dimensional axisymmetric Navier–Stokes simulations also reported the effect of the
diverging angle and Re on the onset of the laminar recirculations (Peixinho and Besnard,
2013). In diverging channel flow, Jobkar et al. (Jotkar and Govindarajan, 2019; Jotkar et al.,
2015) further showed the effect of the angle and the expansion ratio. Small angles delay the
onset of the critical Re and small expansion ratios also delay the critical Re. For diverging
expansion pipe flow, the tilt perturbation has been tested (Selvam et al., 2015) for a diverging
pipe, with diverging half angle u ^ 27° with expansion ratio 2, which showed the existence
of hysteresis behaviour as a function of Re. In the related problem of stenotic flow, a
common perturbation is the offsets of the stenosis throat (Samuelsson et al., 2015; Vétel et al.,
2008). The present paper presents new simulation results for different diverging angles and
Re numbers. The perturbation superimposed to the initial laminar flow creates an
asymmetry in the recirculation region downstream, which oscillates due to the Kelvin–
Helmholtz instability, similar to that of a wake behind axisymmetric bluff bodies (Bobinski
et al., 2014; Le Clainche et al., 2016). At higher Re, the recirculation breaks to form a localised
disordered patch.

The goal of the present investigation is to numerically model the diverging expansion
pipe flow with a controlled localised vortex perturbation added at the inlet. In Section 2, the
numerical method is presented. Next, in Section 3, the results for the thresholds and the
spatio-temporal dynamics of the disordered patches are discussed. Finally, the conclusions
are stated in Section 4.

2. Numerical method and problem setup
The simulations are performed by solving the unsteady incompressible three-dimensional
Navier–Stokes equations for viscous Newtonian fluids in its non-dimensional form as:

r " u ¼ 0; (1)

@u
@t

þr " uuð Þ ¼ 'rpþ 1
Re

r2u; (2)

where u = (ux, uy, uz) is the velocity vector, t is the time and p is the pressure. The equation is
made non-dimensional by the inlet diameter d, kinematic viscosity ! and the inlet bulk
velocity U which will lead to the time scale of d/U. The pressure p is also scaled with
dynamic pressure rU2, r being the fluid density.

The laminar Poiseuille flow through the inlet of the gradual expansion is characterised
by the appearance of a recirculation region sketched on Figure 1, noted Lr, localised along
the wall near the expansion. The expansion region is characterised either by the expansion
length L1 or by its half-angle u . The following boundary conditions are imposed:



uz ¼ 2U 1' 4r2ð Þ x 2 Inlet (3)

u ¼ 0 x 2 Wall (4)

p " n' n "ru=Re ¼ 0 x 2 Outlet (5)

Equation (3) corresponds to fully developed Hagen–Poiseuille flow at the inlet, equation (4)
imposes no-slip boundary condition at the wall, and equation (5) enforces a weak Neumann
boundary condition for the velocity at the outlet. The latter has been well documented and
known to minimise the possibility of numerical oscillations and reflections of the outgoing
waves, normal to the outlet and directed outside of the domain.

The linear growth of the recirculation length for gradually expansion pipe flows, with an
expansion ratio of D/d=2 for seven different diverging angles u are considered, where D is
the diameter of the downstream pipe. Re is ranging from 20 to 3500.

The spatial discretisation of equations (1) and (2) is done based on the spectral element
method (Patera, 1984) solver, called NEK5000 (Fischer et al., 2008). Spectral element method
is a subclass of Galerkin and the equations are reduced to their weak form and spatially
approximated by Galerkin approximation. In each element, both velocity and pressure space
are solved with same Nth order Legendre polynomial approximation, integrals are
discretized with Gauss–Legendre quadrature on Gauss–Lobatto–Legendre points to obtain
PN ' PN splitting-scheme formulation. The spectral mesh is created with NEK5000 having
different diverging lengths as shown in the Table I.

For the time integration, semi-implicit time stepping method with third-order accuracy is
used, where viscous terms treated with implicit backward differentiation formula of third
order and non-linear terms are approximated with explicit extrapolation scheme of third
order (Fischer et al., 2008).

3. Results and discussion
The code used here, NEK5000 (Fischer et al., 2008), have been extensively validated in the
literature and acknowledged in the turbulence community, several studies have been
performed on transitional and separated flows (Ducoin et al., 2017; Méndez et al., 2018;
Mollicone et al., 2017).

3.1 Numerical convergence
The grid convergence is performed by keeping the total number of spectral elements
constant and increasing the polynomial orders of N=5 to 7. Two different criteria are
validated: the recirculation length, Lr, and the average wall skin friction, Cz. While the
former is simply calculated by knowing the stream-wise location at the wall where the

Figure 1.
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stream-wise velocity changes its sign, the latter is calculated, in the cylindrical coordinate,
from:

Cz tð Þ ¼
!

4pd2LU
2

ðL

z¼0

ð2p

u¼0

@uz
@r

" #

r¼d
rdu dz: (6)

The results of mesh convergence are presented in Table II. It is found that the polynomial
order N=5 is sufficient to resolve both the recirculation length, Lr, and the drag coefficient
Cz. The same is observed for the critical Re of transition with the less than 1 per cent
deviation. It is noted that each hexahedral element consists of P3 number of Gauss–
Legendre–Lobatto points which gives more than five solution points under yþ = 1.
Therefore, the mesh is suitable to capture the flow physics appearing from near wall to the
centreline flows. Noted that the presented mesh is similar to the one used by Selvam et al.
(2015) and Nguyen et al. (2019).

The tests indicate that the downstream length, L0, have a small effect on Lr and a
significant influence on the drag coefficient. This is done for the diverging pipe with the
diverging half angle of u = 458 because it has the longest recirculation length for Re = 1000.
One shorter and one longer downstream pipe lengths, i.e. 125d and 175d, are investigated.
Results showed no significant changes in the recirculation length confirming that the extent
of the domain is sufficient to avoid the influence from outlet boundaries. However, the Cz
increased with increasing the pipe length. This is mainly because of extended surface
length, which appears in the integration equation (6) for larger domain length and increases
the wall shear drag force.

3.2 Laminar flow
The laminar Poiseuille flow through a gradual expansion is characterised by the appearance
of a recirculation region localised along the wall near the expansion, see Figure 1. Here, the
length of reattachment zones in downstream pipe, Lr, are calculated for all the geometries
and plotted as a function of L1 at Re = 1000 and 2000 as shown in the Figure 3(a). It is seen
that the pipe with the diverging half angle of u = 458 has the largest recirculation length,

Table I.
Numerical setup and
mesh resolution for
different diverging

pipes

Case L1/d u (radians) Elem. numb. Mesh (millions)

1 0.5 45.0 (0.25 p ) 74 640 9.33
2 1 26.56 (0.145 p ) 74 880 9.36
3 2 14.04 (0.078 p ) 75 360 9.42
4 4 7.181 (0.039 p ) 76 320 9.54
5 6 4.78 (0.026 p ) 77 280 9.66

Table II.
Convergence results

for L1 = 0.5d (u =
45°) at Re = 1000

Case N L0/d Elem. num. Mesh (million) Lr/d Cz

1a 5 150 74 640 9.33 43.5 0.343
1b 6 150 74 640 16.1 43 0.354
1c 7 150 74 640 25.6 43.5 0.35
1d 5 125 62 640 7.83 43.5 0.184
1e 5 175 86 640 10.83 43.5 0.508



which is around Lr = 45d for Re= 1000 and Lr = 88d for Re= 2000. L1 is decreasing with the
diverging length or the angle as well as Re. It is also found that for a given Reynolds number
the recirculation length has a linear relationship with the diverging length or half angle.
This relationship for two concerned Reynolds number is depicted in Table II.

The skin friction coefficient, Cz, for different diverging lengths L1 or angle u at Reynolds
numbers of Re = 1000 and 2000 are also shown in Figure 3(b). It is noted that the
recirculation bubble in the case of lower half diverging angles (for instance L1 = 6d with the
half diverging angle of u = 78) are much thinner than of those with higher half diverging
angles (for instance for L1 = 0.5d with the half diverging angle of u = 458), where the Cz
increases as L1 increases. The reason for the differences in the mean flow is much closer to
the wall, and the shear inside the bubble is higher. Another reason is due to the fact that the
recirculation length and as consequence, the negative component of shear is decreasing by
decreasing the pipe diverging half angle. Once more a linear relationship is observed.
Additionally, it can be seen that all of the skin friction coefficients are negative for the case
of Re = 2000, which is due to their larger recirculation lengths and their counter flow

Figure 2.
Spectral element
mesh

Figure 3.
Effect of the non-
dimensional
expansion length L1/d
as a function of (a) the
non-dimensional
recirculation length,
Lg/d, (b) the skin
friction coefficient, Cz

(a) (b)

1,000
2,000

Note: The non-dimensional expansion length can also be expressed in terms of angle, θ,
indicated on the second vertical axis graduated on the right



participation in the skin friction coefficients. Similar to recirculation lengths, a linear
behaviour for Cz as a function of L1 is found and is presented in Table III.

It is useful to know the effect of Re on the recirculation length, LR and skin friction
coefficient, Cz. The linear growth of the recirculation length for different gradually expanded
pipe flows as a function of Re (ranging from Re = 10 to 2000 based on the inlet diameter) are
presented in Figure 4(a). The recirculation length increases linearly as a function of Re and
the slope is almost independent of the diverging half angle (see also Table III). Additionally,
the simulation results of u = 26.6° (L1 = 1d) recovered a similar slope as in the work of
Peixinho and Besnard (Peixinho and Besnard, 2013) for diverging pipe with the expansion
ratio of D/d=7.3. Surprisingly, for the range of reported Re, the skin friction coefficient Cz
decreases monotonically with an increment in the Re as is illustrated in Figure 4(b). This is
due to the fact that the recirculation length expands significantly in the outlet pipe.

Clearly, the recirculation cannot continue to grow linearly with Re. This raises the
question of the flow naturally transitioning. Many studies such as Furuichi et al. (2003) have
shown this behaviour for sudden expansion flows. However, there are many ambiguities for
the critical Reynolds number. For instance, the numerical study on the global stability
analysis by Sanmiguel–Rojas et al. (Sanmiguel-Rojas and Mullin, 2012) have shown the
symmetry up to Re ( 3273, which are a comparatively much higher value than the
experimental studies reported by Sreenivasan and Strykowski (1983). In the current work,
the Reynolds number is increased gradually and the changes in recirculation length and
skin friction coefficient are monitored to pin point the natural transition Reynolds number.

Results for two extreme cases, i.e. L1 = 0.5d and 6d, are presented in Figure 5. The critical
Re for natural transition in present cases are found to be around Re ( 3000 for all
geometries, where, from this point on, the Lr and Cz start to decrease and increase,
respectively. The reason for decreasing the Lr is that the flow gains enough energy to
pushes the recirculation bubble back and to finally break it. On the other hand, it causes
higher shear gradient at the wall and as a consequence an augmentation in the skin friction
coefficient. It is noted that the results for different diverging angle pipe flow in laminar
regimes indicate that the presence of a gradual diverging section has limited influence on the

Table III.
Results of least-
square fits of the

simulations results
for the relationship

between L1 versus Lr
and Cz

Re L1/d

1000 '0.71)Lr þ 31.21
1000 49.05)Cz þ 10.85
2000 '0.59)Lr þ 52.77
2000 96.83)Cz þ 10.85

Table IV.
Recirculation length
Lr and skin friction
coefficient Cz as a
function of Re for

different L1 or
diverging angles

L1/d Lr/d Cz

0.5 0.044)Re – 0.706 979.4)Re'1 – 0.543
1 0.044)Re – 1.183 1000)Re'1 – 0.491
2 0.043)Re – 2.122 971.9)Re'1 – 0.505
4 0.043)Re – 3.746 855.2)Re'0.97 – 0.643
6 0.041)Re'4.133 865.8)Re'0.97 – 0.503

Note: The fits are valid for 100# Re# 2000



recirculation length as well as critical naturally transiting Reynolds number. However, this
necessarily provides the Re limit to study the induced sub-critical transition in the next
section, where the fully developed laminar simulations will be used as the base flow (in
another word as the initial condition) for the simulations with different perturbation
amplitudes.

3.3 Sub-critical transition
The sub-critical transition is achieved by adding a vortex perturbation to the converged
laminar solution. It takes around t=500 s to reach steady state for the lowest studied Re.
Therefore, results are reported at t=1000 s where the initial unsteadiness are left the
computational domain. Here, the time-step is kept constant at D t=0.001 which yielded
Courant’s number less than 0.3. Now, a vortex perturbation at the inlet as in previous
simulations in sudden expansion flow (Nguyen et al., 2019; Selvam et al., 2016). It a radius of
0.25d and its centre is located at off-centre to break the symmetry of the flow and deflects the
recirculation regions. The magnitude of the perturbation amplitude A can be varied from
0.01 to 1. In the present simulations, the perturbation of finite amplitude A is added to the
base laminar flow calculated withA ¼ 0 at t=900 s where the flow propagates through the
pipe. Overall, more than 120 DNSs are performed for different A, 5 different diverging
angles, L1 or u and 6 values of Re. The simulation results are summarised in Figure 6. First,

Figure 4.
(a) Non-dimensional
length of the
recirculation region
as a function of Re for
different diverging
lengths, L1; (b)
change in skin
friction, Cz, as a
function ofRe for
different diverging
lengths, L1

Figure 5.
The non-dimensional
length of the
recirculation, Lg/d,
and the drag, Cz, as a
function ofRe for (a)
L1 = 0.5d and (b) L1 =
6d



at low Reynolds numbers, sharper diverging angles are more receptible to the inlet
perturbation and flow becomes turbulent at lower A. However, this is inverse for larger
Reynolds numbers, i.e. the flow becomes more receptible for more gentle angles. Second, the
critical perturbation amplitude for the flow transition not only depends on the Reynolds
number but also is sensitive to the angle of diverging pipe. Third, the critical perturbation
amplitude can be fitted using a power-law scaling as a function of Reynolds number, i.e.
A / Re'a, where a being a constant. These functions are illustrated in Figure 6 and are
summarised in Table V. Noted that the results for the sudden expansion pipe flow (i.e. L1 =
0) is taken from Nguyen et al. (2019).

Interestingly, the sudden expansion pipe flows show higher stability, i.e. larger negative
coefficient for a. This is probably due to the fact that the recirculation bubble is attached to
the expansion position unlike the cases of diverging pipes, here with L1 = 0.5d for the sake of

Figure 6.
CriticalA as a

function of Re for (a)
L1 = 0.5d, (b) L1 = 1d,

(c) L1 = 2d and
(d) L1 = 6d

Table V.
Results of the least-

squares fit of the
power-law exponent,
a, for the dependence

of the critical
amplitudeA as a
function of Re for

different diverging
pipe lengths:
A / Re'a

L1/d 0 0.5 1 2 6

a 2.8 2.1 3.6 4.6 4.6



comparison, which slips downstream, i. e. its beginning is somewhere between the start and
the end of diverging area. However, the power law constant a increases, in its absolute sense
with decreasing the pipe diverging half angle.

It is noted that both skin friction coefficient [equation (6)] and the space-time diagram are
used to identify the state of flow. The flow is visualised using space time diagram which is
computed by plotting axial velocity difference at the centre line between perturbed and base
flow (calculated withA ¼ 0) as:

uz0 0; 0; z; tð Þ ¼ uz 0; 0; z; tð Þ ' uz;b 0; 0; zð Þ (7)

Here, 1,500 equidistant probes are used to record the centre-line velocity at particular
interval depending on the resolution. The base flow, uz,b (0,0, z), is the closest laminar state
without any perturbation for a given Reynolds number. The skin friction coefficient is
another criterion that shows a good indication of the turbulent state. Therefore, in all of
presentations, the average skin friction coefficient is superimposed on the space time
diagram in this section.

Examples of space-time diagrams for the L1 = 1d case at Re= 1600 are shown in Figure 7
for three different perturbation amplitudes, where the colour is the indication that the flow at
the centre line has been changed from its reference value, which can be used as an indication
for the transitional and turbulent flows. In Figure 7(a) one can see dark blue colour at initial
times that fades away downstream and by passing time. This is the signature of the initial
perturbation which was for this case A ¼ 0:02. It can be seen that this signature leaves the
computational domain at t=500 s. At this time, the initial jump in the skin friction
coefficient, caused by the initial perturbation, decreases and flow stays laminar (for the
reported simulation time).

By increasing the perturbation amplitude to A ¼ 0:04, the finite amplitude perturbation
is accumulated and amplified inside of the domain and breaks the flow symmetry long after
the initial perturbation signature left the domain [Figure 7(b)]. This state is considered as a
turbulent state as both space-time diagram and skin friction coefficient show strong velocity
fluctuations and rise in value, respectively. It is noted that the states shown in Figure 6 by)
sign are laminar in the reported period time (here is t=900 s), but they finally they break the
flow symmetry and make it turbulent if we wait long enough (here is t=1500 s). Such

Figure 7.
Space-time diagram
for L1 = 1d atRe=
1600 for different
perturbation
amplitudeA at (a)
A ¼ 0:02
(b)A ¼ 0:04 and
(c)A ¼ 0:08



behaviour is also reported in detail for sudden expansion pipe flows in (Nguyen et al., 2019)
by discussing the possibilities of hysteresis in such configuration and is not in the scope of
current work.

Further increment in the perturbation amplitude toA ¼ 0:08 is shown in Figure 7(c). The
perturbation amplitude is strong enough to break the flow symmetry andmakes it turbulent
even before leaving the computational domain. The intermittent behaviour is clearly
observed for this case from the space-time diagram. If the amplitude of added perturbation
is slightly higher than the critical value, the periodic breakdown can be observed for all the
cases. It is noted that although such behaviour was reported before for sudden expansion
pipe flows (Lebon et al., 2018; Lebon et al., 2018; Nguyen et al., 2019), to the authors’ best
knowledge, it is the first time that is shown for the diverging pipe flows. This intermittency
is not limited to the present case, i.e. L1 = 1d, and it also presents for other diverging angles.

Coherent structures visualised using l 2 criteria coloured with the vorticity magnitude
for the Figure 8 are presented in Figure 10 to visualise the vortical structures. Three
different regions correspond to:

(1) initial vortical perturbation structure;
(2) birth/growth of the perturbation disturbance; and
(3) the decay of turbulent patch are highlighted in this figure.

The flow is energetic and the turbulent patch is long enough to cause substantial difference in
its pressure field upstream and downstream, which interacts with the velocity field upstream
repeatedly recovering the recirculation zone. This in return causes the periodic movement of
the patch itself such as the one reported in Figure 7(c). The intermittent behaviour of the
turbulent patch was studied experimentally and numerically in the case of sudden expansion
pipe flows by Sreenivasan et al. (Sreenivasan and Strykowski, 1983) and more recently by
Nguyen et al. (2019), respectively. If the amplitude of perturbation is slightly higher than the
critical, the flow exhibits periodic appearance as shown in the Figure 7(b). It is then followed by
periodic movement of the turbulent patch. Further increase in the perturbation amplitude, will
lead to stationary turbulent flow due to the nature of the added perturbation. It is noted that
only one appearance of turbulent patch is reported in Figure 7(b). Similar behaviours were
reported recently for sudden expansion pipe flows, where more details on such behaviour can
be found in Lebon et al. (2018) and Nguyen et al. (2019).

Peculiar behaviour is found for the case of L1 = 0.5d and to some extent for L1 = 1d.
Surprisingly, for this case, the critical disturbance amplitude increased up from Re = 1200 to

Figure 8.
l 2 iso-surface

structures coloured
with vorticity

magnitude showing
the localised

turbulent patch for
the case of L1 ¼ 1d,

Re= 1600 with
A ¼ 0:08



2000 and then decreased, see Figure 6. This is because, at this moderate ranges of Re, the
flow behaves highly unstable for considerably small perturbation amplitudes and the
instability creeps in if enough time is provided. This can be seen, for instance, in the space-
time diagram of Figure 9. This can be suspected to be due to the fact that although the flow
has less energy, the streamline curvatures are higher close to the expansion zone when
compared to higher Reynolds number flows (i.e. for Re > 2000); however, the flow is still
possessing high enough energy to cause the instability. On the contrary, for flows with Re<
1200, although the curvature increases close to the expansion area, the flow possessing
lesser energy to transit the flow. Therefore, higher values of perturbation amplitudes are
needed. Finally, for more energetic flows, i.e. for Re> 2000, though the streamline curvature
close to the expansion area are very small, a small perturbation can cause a turbulent state
instantly after inserting the perturbation. Similar behaviour was observed in the case of
sudden expansion pipes (Cantwell et al., 2010).

Figure 9(b) and (c) shows the space-time diagrams at the critical amplitudes of
perturbation for a Reynolds number below this range, i.e. at Re = 1000, for the flow
inside diverging pipes with the diverging length of L1 = 1d and 0.5d, respectively. As
can be seen in these figures, flow needs a relatively large perturbation amplitude to
break the flow symmetry. Noted that for higher Reynolds numbers, i.e. Re > 2000 and
1600 for L1 = 0.5d and 1d, respectively, the turbulent signature in space-time diagrams
at critical amplitudes are the same as Figure 9(b) and (c); therefore, for brevity, they are
not shown here.

Coherent structures visualised using l 2 criteria coloured with the vorticity magnitude
correspond for this specific [i.e. Figure 9(b)] case is presented in Figure 10. Here, we choose
the flow inside diverging pipe with the diverging length of L1 = 0.5d at Re = 1200 for the
perturbation amplitude of A ¼ 0:025 as an example. In this case, the flow was laminar in
the reported time, i.e. t=900 s after adding the perturbation on the base flow; therefore, we
waited till t=1200 s to see themanifested turbulent patch.

Comparing with Figure 12, one can see that the birth and growth of coherent
structures are almost similar in both cases, which are due to Kelvin–Helmholtz
instabilities at the beginning of the patches. However, the turbulent patch is
considerably smaller in Figure 8 when compared to its counterpart in Figure 9(a). For

Figure 9.
Space-time diagrams
at critical amplitude
of (a)A ¼ 0:04 for
L1 = 1d at Re= 1200,
(b)A ¼ 0:175 for
L1 = 1d at Re= 1000
and (c)A ¼ 0:155 for
L1 = 0.5d at Re=
1000



the latter case, however, the flow possesses less energy and the patch is not sufficiently
elongated to cause a strong pressure difference along it. Here, the active part of the
turbulent patch is relatively short, and the flow has a behaviour very similar to the one
presented in Figure 9(a).

Figure 11 presents the time evolution of the centreline fluctuation velocity, uz0, for
diverging pipe of different u corresponding to L1 = 0.5d (u = 458) and L1 = 6d (u = 4.88)

Figure 11.
Space-time of the

axial velocity
fluctuation, uz 0, for (a)
L1 = 0.5d, Re= 1000
withA ¼ 0:165 and

(b) L1 = 6d, Re=
2000, withA ¼ 0:165

Figure 10.
l 2 iso-surface

structures coloured
with vorticity

magnitude showing
the localised

turbulent patch for
the case of L1 = 0.5d,

Re= 1200 with
A ¼ 0:025



at Reynolds number of Re = 1000 and 2000, respectively. In both cases, A ¼ 0:165 is
above the threshold of the critical perturbation amplitude. Again, the early time of the
perturbation evolution looks similar with a typical cusp shape that grows and decays
and re-manifest again at Re = 1000 and remains before it leaves the domain and grows
at Re = 2000.

The main difference between the case at Re = 1000 and 2000 is that the localised
turbulence patch has smaller sweep length in stream-wise direction for Re = 1000. For this
case, the begging of the turbulence patch moves back and forward around the z/d ^ 15.
Whereas for Re = 2000, the localised turbulent patch moves axially upstream and
downstream within the pipe with between the z/d ^ 25 to z/d ^ 80. The reason for this
behaviour seems to be due to the perturbation amplitude level with respect to its critical
amplitude for the given pipe geometry and at the given Reynolds number.

For Re = 1000, the effect of the perturbation ofA ¼ 0:165 in the diverging pipe L1 = 0.5d
is better observed using the vorticity field as depicted in Figure 12. The lower part of the
recirculation region grows towards the centreline of the pipe and Kelvin–Helmholtz like
waves appear downstream with a wavelength similar to the pipe diameter. They seem to be
first symmetric at 400 s, then asymmetric at 450 s and they breakup into a localised
turbulent patch at 500 s, which partially decays at 550 s. The process described above
repeats with the period of t( 250 s.

For the diverging pipe with L1 = 6d, the axial position of the subcritical turbulent patch is
located further downstream than in the previous case and the case of sudden expansion pipe
flows (Nguyen et al., 2019; Selvam et al., 2016). Figure 13 presents the vorticity field
indicating that the same type of Kelvin–Helmholtz waves appear downstream. The active
part of the turbulent patch is relatively short, typically 8 to 10d and its intermittent time
period is almost twice as the previous case t( 530 s. As can be seen, although many
similar phenomena exist for different diverging pipe flows, the consequent subcritical
turbulent patch topology and dynamics are strongly depend on the diverging half angle,
Reynolds number and the perturbation amplitude with respect to the critical value.

Figure 13.
Vorticity field of the
turbulent patch for
L1 = 6d, Re= 2000
andA ¼ 0:025 at
time 400, 500, 700,
800 and 900 s

Figure 12.
Vorticity maps of the
turbulent patch for
L1 = 0.5d, Re= 1000,
andA ¼ 0:0165 at
time 400, 450, 500,
550 and 650 s



Therefore, several detailed works are needed to characterise each of these factors. This is the
subject of our future works.

4. Conclusion
In the current work, DNS of separated flows inside diverging pipes was investigated. Five
diverging lengths of L1 =0.5d, 1d, 2d, 4d and 6d corresponding to diverging half angles of
u = 45, 26.5, 14, 7.2 and 4.7°, respectively, were studied for Reynolds numbers ranging from
20<Re< 3500. Several DNSs were performed for the laminar and transitional (both critical
and sub-critical transitions) flows.

In the laminar regime, it was found that for a given Reynolds number both normalised
recirculation length Lr/d and skin friction coefficient Cz are linear functions of expansion
length L1/d. Noted that the slope of these linear functions are different at different Reynolds
numbers. Additionally, it was found that for a given diverging pipe, the normalised
recirculation length Lr/d is linearly depends on Re, for Reynolds numbers ranging from 100
to 2000. Although, Lr/d increases with decreasing L1/d, the slope of proposed linear
correlations are the same regardless of pipes’ diverging half angle. It was also found that Cz
is monotonically decreasing with an increment in the Reynolds number with Cz ! Re'1,
regardless of pipes’ diverging half angles.

By increasing the Reynolds number natural transition to turbulent appeared at Re (
3000 in our system. This critical Reynolds number for natural transition was independent of
pipes’ diverging half angle and was in close agreement with the previous finding of
Sanmiguel–Rojas (Sanmiguel-Rojas andMullin, 2012) and Nguyen et al. (Nguyen et al., 2019)
for sudden expansion pipe flows.

Finite amplitude vortical perturbations were then added to the steady state laminar flow
in order to disturb the flow and study the sub-critical transition in diverging pipes. Different
states of flow were characterised, basically by space-time diagrams and skin friction
coefficient magnitudes. It was found that the sub-critical Reynolds number of transition can
be described by a power-law relation with the perturbation amplitude in the form of
A / Re'a.

Additionally, different flow regimes were reported using two-dimensional vorticity maps
as well as three-dimensional coherent structures using l 2 criterion. Although, the
mechanism of the birth and growth of turbulent patches were look liked the same for
different flow parameters, the size and the patches dynamics were quite different and were
related to the diverging half angle, perturbation amplitude and Reynolds number. The later
needs detailed investigation that is postponed to our future works.
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