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A Variable-Length Cell Transmission Model

for Road Traffic Systems

Carlos Canudas-de-Wit∗, and Antonella Ferrara�

Abstract

In this paper we propose a new aggregated Variable-Length cell transmission Model (VLM) for

traffic systems consisting of only three lumped state variables. The first two state variables are the lumped

(or averaged) densities associated with the two cells of variable length into which the considered road

section is subdivided. These cells are, respectively, a downstream congested cell, of length l, and an

upstream free cell, of length L − l, L being the total length of the section. The third state, namely l,

describes the position of the congestion wave front. The paper, apart from providing the new traffic model

formulation, also investigates several mathematical properties of this model, ensuring the consistency

with respect to its inherent mass (or vehicle) conservation law. Two case studies, a ring road and a urban

road with traffic lights, are considered to assess the proposed model validity also relying on simulation

evidence.

Keywords. Road Traffic models, Cell-Transmission model, Variable-length model.

I. INTRODUCTION

Physicists, mathematicians and engineers have developed models of vehicular traffic for almost

fifty years [25], [26], [27], [44]. Models differ and can be classified on the basis of the level

of detail they adopt in describing traffic phenomena. An enlightening and well documented

overview of the development of traffic flow models in a form of a model tree is given in

[45]. They classify traffic models in the four well identified families: the fundamental relation,

microscopic, mesoscopic and macroscopic models.

Selecting a particular model depends on the type of usage. For traffic operation and planning,

a coarse representation of traffic suffices, for instance by resorting to models only describing
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the stationary traffic behaviour [6], [37]. In contrast, for forecasting traveling times and for

traffic control purposes, mesoscopic or macroscopic dynamical models are often preferred as

they capture the traffic evolution in time and space necessary for dynamic traffic assignment

and for control design. However, There are fundamental differences in the type of model choice

when the models are used either for traffic prediction or for traffic control.

For real-time traffic prediction, models with high-refinement level are often preferred as

they can be run in “open-loop” and can be efficiently coded either as “algorithms” or as

numerical time/space discretization of PDEs or/and ODEs representing the traffic evolution.

They can be mesoscopic or macroscopic, and eventually include multi-classes and complex

specific components for optimal merging/diverging phases modeling. Finally they can include

“high-frequency” components (i.e.stop-and-go behaviour) for instance by adding new variables

(i.e. velocities) to the model in addition to the standard densities or traveling time. Among high-

order models, the generic second order models family originally proposed in [31] is a good

example covering many other special cases of second-order models.

In contrast to the traffic prediction, model for control design require different attributes which

are less addressed in the literature on traffic modelling, but are of crucial importance for model-

based traffic control design (see, e.g., [8]). They should:

i) be consistent with the actuator dynamics,

ii) have reduced/limited complexity, and

iii) be described in closed-forms

Let illustrate such a characteristics.

i) Actuator dynamic consistency implies that the model does not need to capture higher

frequencies beyond the frequency response of the selected actuator. For instance, in the case

of variable speed limit control (VSC), the change of rate (in time and space) of the “controlled”

speed limit cannot be modified too fast (order of several minutes), otherwise the drives cannot

follow such regulated speed limitations. Therefore high-frequency effects (i.e. stop-and-go high-

frequency waves which occur at frequencies of less than a minute) produced during congestion

cannot be attenuated by this mean (but it may be if the car speeds are controlled individually).

However, the “low-frequency” (or average) component of the shockwave can be indeed effec-

tively influenced by VSC or other similar control action like ramp metering. Under such actuator

limitations, first-order macroscopic models are preferable as models to be used for control design

purposes. A popular example of such a macroscopic model is the LWR model by Lighthill and
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Whitham [34], and Richards [41] which describes the evolution of traffic over time and space

relying on the analogy between traffic evolution and flows dynamics in fluids. Similarly, when it

comes to controlling traffic lights in urban networks, only the “average” or “aggregate” evolution

of the road densities counts, as the traffic light operates on a time-basis of about 100s which is

not enough to cope with high-frequency congestion effects.

ii) Reduced/limited complexity refers to the capacity of a model to capture the main effect

to be controlled while preserving a certain degree of simplicity in its use. For instance, the

LWR which satisfies property i), so as its discretized in space counterpart named the the Cell

Transmission Model (CTM) [14], [30], well captures the “low-frequency” traffic evolution. In

particular, resolving the CTM (in open-loop) is straightforward and not computationally difficult,

even if many small cells are considered. However, using the the CTM for model predictive

closed-loop control [12], [16], [17], [22] may results in a NP-complete optimization problem

in particular when large optimization time-horizon and many cell are considered. Specifically,

when using the CTM for control, the model is represented in its state-space switching form:

x(k + 1) = A(x(k))x(k) +B(x(k))u(k)

Where x(k) ≥ 0 is the n-dimensional vector of all densities in the n-cells, u(k) are the bound-

ary (demands/supply) flows and A(x(k)), B(x(k)) are state-dependent matrices with coefficient

dependent on physical parameters of the system (FD, split ratios, etc.). The number of possible

instances of those matrix is 2n−1. For large-scale traffic networks, the system state increases

substantially and its combinatory nature may render the on-line model-based optimal control

design highly-complex, and, as such, incompatible with the online implementation, even for

short time-horizon. These considerations strongly motivates the search for models with further

level of state aggregation.

iii) Models with closed forms are “explicit” mathematic expressions, such as differential or

finite difference equations, that can be solved using only information about initial conditions

(i.e. initial densities) and external inputs (boundary demands and supplies). Note that there are

some other models that are “implicit” in the sense that one part of the model is described by

some optimization process and not by explicit differential or partial equations.

Closed forms are suited for control design as they allows for analysis of the specific control

properties of the model like: equilibrium points, stability of the equilibria, controllability of

July 8, 2018 DRAFT



4

the state variables, etc. They are also necessary for the control synthesis since they enables to

determine the explicit expression of the associated feedback laws.

The model presented in this paper belongs to the class of models for control design with the

attributes mentioned before. It is not intended as a general purpose model (it does not model

separate lines, neither multi-modalities for instance), but it can be used in scenarios where control

design is fundamental, such as when bottlenecks are present in highways, as well as in urban

networks inclined to congest. It is derived with the aim of complying with considerations i)−iii).

Having in mind the large variety of traffic models published in the literature, it is useful to

briefly review some of the models that were proposed in the literature with the same spirit of the

model presented in this paper, making reference in particular to the aggregation aspect addressed

in ii). They are first-order models having limited complexity, and link models with an explicit

modelling of queues.

A. Examples of first-order models with limited complexity and explicit queue modeling

One natural way to limit the model complexity is to reduce the variables number by using

“averaged” variables that aggregate the behaviour of some particular areas of the road. For

instance by modelling the “queues” (areas that are congested) and their propagation along the

network instead of modelling the whole density distribution as in the LWR, or modelling many

small cells as in the CTM.

A possible way to do this is to describe the LWR dynamics at the level of a “link” in terms

of cumulative vehicle numbers at the link end, rather than using a fine spatial discretization

as proposed by the CTM. Such a model was proposed in the original works of Yperman

and coworkers [48] and was named Link Transmission Model (LTM), making reference to the

transposition from cell in the CTM to the one-cell version in the LTM. The authors showed that

this process reduce the model complexity of a factor proportional to the number of cell in the

CTM. Several extensions to the basic version of LTM have been proposed, including the use of

a sort of vertical virtual queue to model intersection delays. The LTM can also be conveniently

adopted to model multi-commodity traffic systems [46], [47]. Its more recent versions have

overcome possible limitations to temporal discretization due to computational reasons of the

basic formulation [24].

Store and forward models (SFMs) are simple models integrating the difference between the

total inflows and outflows in a link. The first SFM traces back to the original works of Gazis
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and Potts (1963) [18] and has been used in various subsequent works, especially for road traffic

control optimization [1]. The model states describe the cumulated number of vehicles in a link.

The SFM introduces several simplifications (i.e. model linearization, average of the traffic light

duty cycle, manual track of the queue bounds, etc. ) at the cost of the loss of many of the model

original kinematic properties (shock wave propagation, boundedness of the solutions, etc.).

Similar queue models inspired by data transmission have also been proposed in the literature

and used for control design. Those models aims to describe the “queue” evolution in a link by

integrating the differences between inflows and outflows. However, as in the case of the SFM,

the queue models are “autonomous” as they depends only on the link queue state and not on

the state of the neighbor links. In some studies, the vehicle inflows and outflows are described

by time-dependent functions that, in some cases, are assumed to be stochastic [49].

A common limitation in many of the SFMs is that the queues are “vertical” with unlimited

capacity, which does not permit saturation of a downstream link that blocks the movement of

vehicles from an upstream link. This may result in motion-blocking problems [49], [2], and in

a substantial deviation from waves propagations as predicted by the original LWR model.

A possible alternative is the Two-regime transmission model (TTM) based on the first-order

traffic flow theory. The TTM is designed to be efficient and accurate enough for planning

purposes, as the authors clearly claim [3]. The TTM considers the time-dependent density states

of network links over two regimes namely, free-flowing and congested regimes, and dynamically

models the time-dependent queue length, but without splitting the link into cells. The model is

not expressible in closed form but tracks the time-space evolution of the in/out flows relying on

the solutions of the wave propagation equation.

Note that with this brief overview we do not pretend to have surveyed the entire bunch of

literature on vehicular traffic modelling. As previously mentioned, the aim here was only to

mention some models with similar features with respect to those of the model presented in this

paper. A more comprehensive comparison among different models, relying on simulated and

possibly real data, will be done in a future work.

B. Paper contribution

The model proposed in the present paper is an aggregated Variable-Length cell transmission

Model (VLM) based in some of the ideas originally introduced in [9]. Its derivation results from
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averaging the density in the original LWR model and ensuring that the wave propagations are

suitable considered.

In the proposed VLM each link is described by three main lumped state variables. The first two

state variables are the lumped (or averaged) densities associated with the two cells of variable

length into which the considered road section is subdivided. These cells are, respectively, a

downstream congested cell, of length l, and an upstream free cell, of length L− l, L being the

total length of the section. The third state, namely l, describes the position of the congestion wave

front. The model also consider specific singular cases when the link is either fully congested or

fully free. As the model is given in closed-form, the mathematical properties of the model can be

formally addressed. Among these, the consistency with respect to its inherent mass (or vehicle)

conservation law, and the capability of accurately describing the occurrence and propagation

of both shock and rarefaction waves not only inside of the link (this is an intrinsic property),

but also between links. The paper also analyses several stability and invariant properties of the

model fundamental for control design. In that the model satisfies all the desired attributes for

the control design. Finally, the structure of the model is indeed adaptable to several modeling

and control scenarios that are briefly described at the end of the paper.

The paper is organized as follows. Some preliminary issues on the continuous LWR model

and the continuous-time formulation of the CTM are reported in Section II. The new Variable-

Length Cell model is presented in Section III and its mathematical properties are discussed in

Section IV. The proposed model is further developed to be able to correctly describe rarefaction

waves, thus attaining the whole model formulation reported in Section V. A discussion of the

proposed model features versus those of the classical LWR traffic flow model and the standard

Cell Transmission Model has been provided in Section VI, also focusing on the capability of the

different models to describe the evolution of shock-waves. The proposed model is then assessed

through two case studies analyzed in Section VII: a ring road and a urban road with traffic lights,

discussed in Subsection VII-A and Subsection VII-B, respectively, also relying on simulation

evidence. The two case studies provide a demonstration of how the model can be conveniently

used for optimal control design. Some conclusions are finally reported in Section VIII.
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Fig. 1. Schematic representation of the triangular piece-wise fundamental diagram, where ϕM is the the maximum flow, ρM

is the maximum density, ρ∗ is the critical density, v is the free-flow velocity, and −w is the congested velocity. C(ρ) is the

chord used to study the Oleinik’s entropy condition (50)

II. PRELIMINARIES

The simplest continuous macroscopic traffic model is the so-called LWR model, proposed by

Lighthill, Whitham [34], and Richards [41]. It is based on the vehicle conservation’s principle,

and on the assumption that the traffic can be described by the empiric relation between the flow,

ϕ, and density, ρ, as: ϕ = Φ(ρ), where the function Φ(·) is called Fundamental Diagram. The

constitutive assumption of this model, motivated by experimental data, is that the vehicles tend

to travel at an equilibrium speed and that ϕ = V (ρ)ρ, where V (ρ) is the flow speed depending

on the density. V (ρ) varies in the range [0, v], where v is the maximum velocity at free-flow.

As shown in Fig. 1, the fundamental diagram can be defined, in its simplest form, as a triangle

with its maximum at ϕM = Φ(ρ∗) describing the maximum capacity of the road. The critical

density ρ∗ defines the boundary between the decongested and the congested modes, while ρM

is the maximum density that the road can withstand. The slope −w defines the speed at which

congestion travels upstream.

The evolution of the number of vehicles, N , within any spatial section (0, L) is given by the

following mass (vehicles) conservation law

d
dt
N = ϕin − ϕout, N =

∫ L

0

ρ(x, t)dx (1)
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where ϕin and ϕout are the input (at x = L) and output (at x = 0) flows at the boundaries of

the road section of length L. Equation (1) can be rewritten (see [34]) as a hyperbolic equation

involving only the density

∂tρ+ ∂xΦ(ρ) = ∂tρ+ ∂ρΦ · ∂xρ = 0 (2)

The macroscopic continuous density dynamics is then given by the LWR Cauchy problem

described by (2) with the initial condition ρ(x, 0) = ρ0(x). The model has been shown to

be consistent with hydrodynamic theory [14]. Validation tests with real data have been reported

in [35].

A. Cell-Transmission Model: continuous-time formulation

Assume now that the road section is subdivided into n-cells of constant length ∆li. Let us

denote by ρi the density of the ith cell of the section. Then, the number of vehicles per cell can

be computed as Ni = ρi∆li.

As conservation laws generate irregular flows, they cannot be integrated numerically using

standard methods (see [14], [32]). An efficient first-order numerical method to treat such con-

servation laws is the Godunov scheme [19]. It reproduces correctly the propagation of the shock

waves, avoiding oscillating behavior and having a physical interpretation. Using the Godunov

mathematical formalism, the conservation law (1) takes the following form, which can be

regarded as the continuous-time version of the discrete-time Cell-Transmission Model (CTM),

see [14], [30]

ρ̇1(t) =
1

∆l1

(
ϕin(t)− ϕ1(t)

)
ρ̇2(t) =

1

∆l2

(
ϕ1(t)− ϕ2(t)

)
...

ρ̇i(t) =
1

∆li

(
ϕi−1(t)− ϕi(t)

)
(3)

...

ρ̇n(t) =
1

∆ln

(
ϕn−1(t)− ϕout(t)

)
where ϕi is the interface flow between the cells i and i+ 1 given as

ϕi = min{Di, Si+1} (4)

July 8, 2018 DRAFT



9

with

Di = min{viρi, ϕM,i},

Si+1 = min{ϕM,i+1, wi+1(ρM,i+1 − ρi+1)}
where the demand Di is the flow that can be delivered by the cell i to the cell i+ 1, while the

supply Si+1 is the flow that can be received by the cell i+1 from the cell i; ϕM,i is the maximum

flow allowed by the capacity of cell i, ρM,i is the jam density (i.e. the maximum density that

can be reached), vi corresponds to the free flow speed and wi is the congestion wave speed in

cell i. This continuous-time description is suitable for the comparison with the variable-length

model presented next, and generality of the analysis is not lost.

L l

Free cell Congested cell

Nf , ρf Nc, ρc

0

ϕin ϕI ϕout

Fig. 2. Schematic diagram of the two-cell variable-length model VLM consisting of three lumped state variables: ρf , ρc and

l. ϕI is the interface flow between the two cells.

III. NEW MACROSCOPIC MODEL WITH VARIABLE-LENGTH CELLS

Consider first a simple road section described by two cells of variable length: a downstream

congested cell, of length l, and an upstream free cell, of length L − l, where L is the total

length of the section. The former cell is characterized by the lumped (or averaged) “congested

density” ρc, the latter by the lumped (or averaged) “free density” ρf . Note that l = l(t) is time-

varying and specifies the position of the congestion wave front, see Fig. 2. Then, in contrast to

the n-fixed cells model (3), the new macroscopic traffic model introduced in this paper, named

Variable-Length cell Model (VLM), consists only of three lumped state variables, i.e. ρf , ρc and

l. Its derivation is done under the assumption that the fundamental diagram is described by the

bilinear triangular form shown in Fig. 1.

In the proposed model, the interface flow between the free and the congested cells, denoted as

ϕI , plays a central role. Indeed, in this section we will present the model derivation in two steps.
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First, we will write the conservation equation adapted to our specific case of variable-length cells

as a function of ϕI , and the variation law of l. Due to the time-varying nature of cells length,

ϕI cannot be computed as in the fixed-length cell case by (4), but needs to be redefined using

a relative velocity frame to preserve consistency with the evolution in time of the congestion

front. This will be performed in the second step of the model derivation.

Remark 1 Note that the model presents three degenerate cases when l = 0, l = L, and ρf = ρc.

Those cases concern the situations in which the constituent separation assumption between the

free and congested modes is violated. The treatment of such cases will be addressed at the end

of the section.

A. Conservation law for the variable-length cells

Consider, for consistency with the grow direction of l shown in Fig. 2, that the x-axis is

oriented with l from right (downstream) to left (upstream). Therefore, the conservation law (2)

now can be written as ∂tρ = ∂xΦ(ρ), where we have changed ∂x by −∂x. Moreover, let s(t)

be the continuous variable describing the time-varying shock wave position along the x axis.

Relying on s(t), the following lumped (averaged) densities variables ρf and ρc are defined:

ρf =
1

L− s

∫ L

s

ρ(x, t)dx (5a)

ρc =
1

s

∫ s

0

ρ(x, t)dx (5b)

Note that the density distribution is discontinuous at the boundary x = s. Its left, ρ−, and right,

ρ+, limits can be written as

ρ− = ρ−(t) = lim
x→s−

ρ(x, t), and ρ+ = ρ+(t) = lim
x→s+

ρ(x, t)

The time-derivatives of the lumped variables are given by

ρ̇f =
1

L− s

[∫ L

s

∂tρ(x, t) dx− ρ− ṡ
]

+
ṡ

(L− s)2

∫ L

s

ρ(x, t)dx (6)

ρ̇c =
1

s

[∫ s

0

∂tρ(x, t) dx+ ρ+ ṡ

]
− ṡ

s2

∫ s

0

ρ(x, t)dx (7)

Using ∂tρ(x, t) = ∂xΦ(ρ) in the previous integrals, and the definitions (5a)-(5b), ρ̇f rewrites as

ρ̇f =
1

L− s
[
Φ(ρ(L))− Φ(ρ−)− ρ− ṡ

]
+

ṡ

(L− s)ρf

=
1

L− s
[
ϕin − Φ(ρ−)− ρ− ṡ

]
+

ṡ

(L− s)ρf (8)
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whith the boundary upstream flow Φ(ρ(L)) = ϕin. Similarly, we get for ρ̇c

ρ̇c =
1

s

[
Φ(ρ+)− Φ(ρ(0)) + ρ+ ṡ

]
− ṡ

s
ρc

=
1

s

[
Φ(ρ+)− ϕout + ρ+ ṡ

]
− ṡ

s
ρc (9)

where Φ(ρ(0)) = ϕout, and the boundary densities and flows at the shock wave front are denoted

as ρ−, ρ+, and Φ(ρ+),Φ(ρ−), respectively. From the Rankine-Hugoniot jump condition, the shock

wave speed, ṡ can be written, in the l coordinates, as

ṡ =
Φ(ρ−)− Φ(ρ+)

ρ+ − ρ− (10)

implying that Φ(ρ−) + ρ− ṡ = Φ(ρ+) + ρ+ ṡ. The balance between the first term (left-flow) and

the second term (out-flow) is a direct consequence of the principle of vehicle conservation at

the interface. The “moving” interface flow ϕI is given by

ϕI = Φ(ρ+) + ρ+ ṡ = Φ(ρ−) + ρ− ṡ (11)

Therefore, equations (8) and (9) can be rewitten as

ρ̇f =
1

L− s [ϕin − ϕI + ṡρf ] (12)

ρ̇c =
1

s
[ϕI − ϕout − ṡρc] (13)

Note that all the variables in the previous equations, except for s, are expressed in the lumped

form. In order to arrive at a description which only depends on lumped variables, an approxi-

mation of the shock wave position s(t), denoted with l(t), is introduced. The time evolution of

l(t) ∈ (0, L) is proposed to be

l̇ =
Φ(ρf )− Φ(ρc)

ρc − ρf
(14)

which can be regarded as the lumped version of (10). More specifically, in (14) we assume

that Φ(ρ−) and Φ(ρ+) are approximated by Φ(ρf ) and Φ(ρc), respectively. This approximation

makes sense as the densities in each of the variable cells are assumed to be scalar and constant

over the space variables, and not distributions.

Then on the basis of (14), equations (12) and (13) can be rewritten as

ρ̇f =
1

L− l
[
ϕin − ϕI + l̇ρf

]
(15)

ρ̇c =
1

l

[
ϕI − ϕout − l̇ρc

]
(16)
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Remark 2 Note that the same type of equations can be obtained by considering the number of

vehicles in the free part, Nf = (L − l)ρf , and in the congested part, Nc = lρc, and applying

the conservation law Ṅ = ϕin − ϕout to each of the two parts, i.e.

Ṅf = ϕin − ϕI (17)

Ṅc = ϕI − ϕout (18)

Substitution of the definition of Nf and Nc in these equations leads to (12) and (13). The

derivation of these equations presented in this paper explicitly formalizes the interpretation of

the “lumped” variables as being the average values of the distributed densities in the respective

cells.

B. Full dynamics

Note that the lumped model provides a piece-wise value of the traffic density for each of the

two portions (the free and the congested one) of the road section, in opposition to the spatially

distributed formulation. The boundary density values in the lumped case are then given as

ρ+ = ρc, and ρ− = ρf

so that equation (11) writes now as

ϕI = Φ(ρc) + ρc l̇ = Φ(ρf ) + ρf l̇ (19)

from which we get

−ϕI + ρf l̇ = −Φ(ρf ) and ϕI − ρc l̇ = Φ(ρc) (20)

Substitution of these expression into (15) and (16), together with (14), gives

ρ̇f =
1

L− l [ϕin − Φ(ρf )] (21)

ρ̇c =
1

l
[Φ(ρc)− ϕout] (22)

l̇ =
Φ(ρf )− Φ(ρc)

ρc − ρf
(23)

Equations (21)-(23) define the new macroscopic traffic model we propose. This model is a

lumped variables model based on three state variables only. As for its structure, it is simpler

than that of classical continuous macroscopic models and n-fixed cells models. Nevertheless,
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as discussed in the next section, it features interesting properties which allow it to capture the

relevant phenomena of traffic dynamics.

Remark 3 Equations (21)-(22) describe a non-linear set of ordinary differential equations with

”state-dependent” convergence proprieties induced by the terms 1/(L − l) in (21), and 1/l in

(22), respectively. To efficiently solve these equations it is then advised to use variable-step

ODEs solvers (i.e. ode45, ode23). Note that at the exact boundaries when l = 0 or to l = L, the

Equations (21)-(22) formally become a differential algebraic equations. To prevent this situation

we add (see next section) further features to the model to limit the evolution of l to the set

l ∈ [ε, L− ε], and thus be able to solve the equation with simpler ODE solvers. It is also worth

to observe that when l = ε and l = L − ε equations (21)-(22) will exhibit a ”stiff” behavior

displaying an important time-scale separation between the slow and the fast modes. Using ODEs

solvers1 for stiff equations are then highly recommended.

IV. MATHEMATICAL PROPERTIES

In this section we present some of the main mathematical properties of the proposed model

with the bilinear triangular form for the fundamental diagram as shown in Fig. 1. We first

show that the model provides time-solutions consistent with the constructive assumptions (i.e.

states remain in their definition domain). This property is named “consistency” and can also be

understood as an invariant property. Then we analyze equilibrium points and their associated

stability. Finally, we treat the singular points where l is equal to either 0 or L.

A. Model consistency

Let first define the following sets

Ωf = {ρ : ρ ∈ [0, ρ∗]} (24)

Ωc = {ρ : ρ ∈ [ρ∗, ρM ]} (25)

Ωl = {l : l ∈ (0, L)} (26)

Property 1 (Density invariance) Assume that l ∈ Ωl for all t ≥ 0, then the following holds:

1Examples of ODEs solvers for stiff equations are: Backward differentiation formulae, Gear methods, LSODE, VODE, etc.

Some of those are freely distributed evolving into ODEPACK or Sundials packages, while other are options in the MatLab

sotfware
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i) If ρf (0) ∈ Ωf , then ρf (t) ∈ Ωf ,∀t ≥ 0

ii) If ρc(0) ∈ Ωc, then ρc(t) ∈ Ωc,∀t ≥ 0

along the time-solutions of the equation set (21)-(22)

Proof. The proof follows by inspecting the time-derivative of ρf and ρc at the closure of their

respective sets.

Consider first the dynamics of ρf . Property i) is equivalent to

ρ̇f ≥ 0 at ρf = 0 (27)

ρ̇f ≤ 0 at ρf = ρ∗ (28)

Note that 0 ≤ ϕin ≤ ϕM = vρ∗, and Φ(ρf ) = vρf . For the first case (ρf = 0), we have:

ρ̇f =
1

L− lϕin ≥ 0

while, for the second case (ρf = ρ∗), we have

ρ̇f =
1

L− l [ϕin − vρ∗] ≤ 0

which follows by virtue of the property ϕin ≤ vρ∗. Consider now the dynamics of ρc. Property

ii) is equivalent to

ρ̇c ≥ 0 at ρf = ρ∗ (29)

ρ̇c ≤ 0 at ρf = ρM (30)

note that 0 ≤ ϕout ≤ ϕM = −w(ρ∗ − ρM), and Φ(ρc) = −w(ρc − ρM). For ρc = ρ∗, we have

ρ̇c =
1

l
[−w(ρ∗ − ρM)− ϕout] ≥ 0

while at ρc = ρM , we have

ρ̇c = −1

l
ϕout ≤ 0

which concludes the proof. � � �

B. Equilibrium points

We now study the equilibrium points of the proposed lumped model and compare them, for

consistency, to the equilibrium points of the LWR distributed model.

Property 2 (Equilibrium points) Assume that the inflow and the outflow are constant and given

by ϕin = ϕout = ϕ̄, then
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i) The equilibrium points for the densities (ρ̄f , ρ̄c) are:

ρ̄f = ϕ̄/v, ρ̄c = ρM − ϕ̄/w (31)

ii) The equilibrium set (ρ̄f , ρ̄c) belongs to the manifold: vρ̄f + wρ̄c = wρM

iii) Let ρ̄f < ρ̄c. The admissible equilibrium set for l and N is:

Ωl̄,N̄ =

{
(l̄, N̄) : l̄ ∈ Ωl, N̄ > 0, l̄ =

N̄ − ρ̄fL
ρ̄c − ρ̄f

}
(32)

where N̄ is the number of vehicles in the section at the equilibrium.

Proof. Property i) directly follows from inspection of equations (21)-(22), by noticing that

equilibrium is only possible when ϕin = ϕout = ϕ̄, which implies that Φ(ρ̄f ) = Φ(ρ̄c) = ϕ̄.

Property ii) is obtained by eliminating ϕ̄ from the equilibrium equations (31). The admissible

set as defined in iii) derives from the admissible set of l, the positive-definitiveness of N , and

from the vehicle conservation property

N(t) = ρf (t) (L− l(t)) + ρc(t)l(t) (33)

at the equilibrium. � � �

Remark 4 Note that, under the assumption ϕin = ϕout = ϕ̄, the equilibrium of the lumped

model, is also an equilibrium of the LWR equation (2) if the initial distribution ρ0(x) in the

LWR model is taken piece-wise constant with values given by (31), with a congested part length

given by (32).

Because (23) is undefined at the equilibrium, the equilibria point of this equations are derived

from the conservation property of the model. In that, the following study of equilibrium points

resumes to look at the stability of the density evolution around their equilibrium points, and then

analyze the asymptotic values of l at those points.

C. Stability of equilibrium points

As for the stability of the VLM, the following result can be proved.

Theorem 1 (Equilibrium points stability) Let ϕin = ϕout = ϕ̄. Assume also that l(t) ∈ Ωl.

Consider the equilibrium density values in (31), and any couple (l̄, N̄) ∈ Ωl̄,N̄ , then the following

holds:

i) limt→∞ ρf (t) = ρ̄f , exponentially fast with a rate e
−vt
L
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ii) limt→∞ ρc(t) = ρ̄c, exponentially fast with a rate e
−wt
L

iii) limt→∞ l(t) = l̄, exponentially fast with a rate e
−wt
L

Proof. Let introduce the error variables: ρ̃f = ρf − ρ̄f , ρ̃c = ρc − ρ̄c. The error dynamics along

the solutions of (21)-(22) can be easily computed as

˙̃ρf = − v

L− l ρ̃f ≤ −
v

L
ρ̃f (34)

˙̃ρc = −w
l
ρ̃c ≤ −

w

L
ρ̃c (35)

where the inequalities derive from the fact that l(t) ∈ Ωl. From here we have that ρ̃f (t) ≤
ρ̃f (0)e

−vt
L , and ρ̃c(t) ≤ ρ̃c(0)e

−wt
L . Evaluation of the conservation equation (33) at its limit, for

t→∞, gives

N(∞) = ρf (∞) (L− l(∞)) + ρc(∞)l(∞)

Under the assumption ϕin = ϕout = ϕ̄, we have that Ṅ = 0, hence N(t) is constant and

N(t) = N(∞) = N̄ . Due to the exponential stability of the densities, we have that ρf (∞) = ρ̄f ,

and ρc(∞) = ρ̄c. The previous equation exponentially converge to

N̄ = ρ̄f (L− l(∞)) + ρ̄cl(∞)

with a rate given by min
{
e

−vt
L , e

−wt
L

}
= e

−wt
L . This gives,

l(∞) =
N̄ − ρ̄fL
ρ̄c − ρ̄f

= l̄

which proves iii).

� � �

D. Treatment of singular points

Model (21)-(22), can also be rewritten as:

(L− l)ρ̇f = ϕin − Φ(ρf )

lρ̇c = Φ(ρc)− ϕout

(ρc − ρf )l̇ = Φ(ρf )− Φ(ρc)

describing a set of non-linear ordinary differential equations (ODEs). However, at the three

degenerate cases when l = 0, l = L, and ρf = ρc, the model formally become a differential

algebraic equations (DAEs) as at the singularities the time-differential equation transforms to an
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algebraic relation. It is still possible to treat the model as a DAE, at the price of a complexity

increase in terms of analysis and numerical solutions. Instead, it is possible (as we propose in

this section), to modify the model to cope with this singularities while preserving the continuity

and the typology of the solutions. With these modifications the model can still be solved with

standard ODEs solvers.

In this subsection we shown how the original model can be reformulated to treat such singular

cases. We first present the solution for the cases when l = 0, l = L, and show that the proposed

modifications preserve the time-continuity of the solutions for ρ. Then, we present the treatment

of the second class of singularity arriving when ρf = ρc, and show that the regularization also

preserve continuity of the solution of l.

L l

Free cell Congested cell

Nf , ρf Nc, ρc
0

ϕin ϕI ϕout

ǫL− ǫ

Fig. 3. Modification of the original VLM with two small constant cells at the boundaries introduced to avoid singularities at

l = 0, and l = L.

1) Singular points for l(t): Consider first the case where the variable length l(t) approaches

one of the two possible boundary values. In those cases, the idea is to create a ε-boundary layer at

the two extremes of the considered road section and to stop the evolution of l(t) when it reaches

the ε-boundary layer borders. When this happens, the model collapses into the standard CTM

model with fixed length cells, and the density variables evolve according to the conventional

“Demand-Supply” mechanism, with the standard notation

D(ρ) = min{vρ, ϕM}, S(ρ) = min{−w(ρ− ρM), ϕM}

This idea is sketched in Fig. 3.

Let us consider an arbitrarily small ε such that 0 < ε� L. Then the following two conditions

can be introduced:

C0 = {(l = ε) ∩ (D(ρf ) ≤ S(ρc))} (36)

CL = {(l = L− ε) ∩ (D(ρf ) ≥ S(ρc))} (37)
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Condition C0 implies that the lower extreme is reached while the congestion front wave is

moving downstream. Symmetrically, condition CL indicates that the upper extreme is reached

while the congestion front wave is moving upstream. For those specific cases, the following

model modification is proposed:

• If C0 holds, the interface flow is ϕI = min{D(ρf ), S(ρc)} = D(ρf ), and then the model

becomes

ρ̇f =
1

L− ε [ϕin −D(ρf )] (38)

ρ̇c =
1

ε
[D(ρf )− ϕout] (39)

l̇ = 0 (40)

Note that in this case, the variation domain of the state variables is partially modified. The

congested density variable can now take values smaller than the critical density ρ∗, i.e.

ρc ∈ [0, ρM ], while the free density variable remains in its original domain, i.e. ρf ∈ Ωf .

• If CL holds, the interface flow is ϕI = min{D(ρf ), S(ρc)} = S(ρc), and then the model

becomes

ρ̇f =
1

ε
[ϕin − S(ρc)] (41)

ρ̇c =
1

L− ε [S(ρc)− ϕout] (42)

l̇ = 0 (43)

In this case, the free density variable can take values larger than the critical density ρ∗,

i.e. ρf ∈ [0, ρM ], while the congested density variable remains in its original domain, i.e.

ρc ∈ Ωc.

Property 3 (Continuity of the solution at the transitions) The time-evolution of the solutions

when the model switches from regular operation to/from operation under conditions C0 or CL is

continuous in time.

Proof. Consider the case of condition C0. Equation (38) remains the same when the transition

occurs at l = ε. The right-hand side of (39) undergoes a discontinuity due to the transition

S(ρc)→ D(ρf ). This can be quantified as follows

ρ̇c =
1

ε
[S(ρc)− ϕout] +

1

ε
[D(ρf )− S(ρc)]

=
1

ε
[S(ρc)− ϕout] + δ(ρf , ρc)
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where δ(ρf , ρc) captures the transition effect. It can be easily shown that δ(ρf , ρc) is bounded

as: |δ(ρf , ρc)| ≤ ϕM/ε, and therefore its contribution to the solution ρc(t) (namely ∆ρc(t)) is

also bounded as

|∆ρc(t)| ≤
ϕM
ε

(t− tT )

where tT is the time instant at which the transition occurs. This implies the continuity of the

solution at the transition time instant. The same type of analysis can be carried out for the

solutions of equation (40).

Similar considerations are due for the case of CL, with the exception that in this case equation

(42) remains the same when the transition occurs at l = L − ε, whereas the right-hand side of

(41) undergoes a discontinuity, now due to the transition D(ρf )→ S(ρc).

� � �
2) Singular points at ρf = ρc: Now consider the third singular point, i.e. ρf = ρc. From

the fundamental diagram in Fig. 1, it is apparent that this singularity only occurs at ρf = ρc =

ρ∗, where Φ(ρf ) = Φ(ρc) = ϕM . This implies that equation (23) becomes undetermined. As

a consequence, in order to extend the proposed model validity to this case, a regularization

mechanism needs to be introduced. To this end, let ef = ρf − ρ∗ ≤ 0 and ec = ρc − ρ∗ ≥ 0, we

have that ef = −|ef |, and ec = |ec|. Hence equation (23) can be rewritten as,

l̇ =
−v|ef |+ w|ec|
|ef |+ |ec|

Let us denote with V (ef , ec) = |ef | + |ec|, and with σ(ef , ec) = εe−αV
2(ef ,ec), ε and α being

strictly positive coefficients, a suitable regularizing term. Then, the following regularization for

(23)

l̇ =
−v|ef |+ w|ec|

V (ef , ec) + σ(ef , ec)
, lim

V (ef ,ec)→0
l̇ = 0

is proposed, which in the original system coordinates writes as

l̇ =
Φ(ρf )− Φ(ρc)

ρc − ρf + σ(ρc, ρf )
(44)

with σ(ρc, ρf ) = εe−α(ρf−ρc)2 .
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E. Singularity-free full VLM

Considering the different regularizations introduced previously, and noticing that l = ε, and

l = L− ε, at C0 and CL, respectively, the full model can be compactly written as follows

ρ̇f =
1

L− l


ϕin −D(ρf ) if C0

ϕin − S(ρc) if CL
ϕin − Φ(ρf ) else

(45)

ρ̇c =
1

l


D(ρf )− ϕout if C0

S(ρc)− ϕout if CL
Φ(ρc)− ϕout else

(46)

l̇ =

 0 if C0

⋃ CL
Φ(ρf )−Φ(ρc)

ρc−ρf+σ(ρc,ρf )
else

(47)

with this model, the definition domains (Ωε
f ,Ω

ε
c,Ω

ε
l ) for this model are now:

ρf ∈ Ωε
f =

 Ωf

⋃
Ωc if CL

Ωf else

ρc ∈ Ωε
c =

 Ωf

⋃
Ωc if C0

Ωc else

l ∈ Ωε
l = {l : l ∈ [ε, L− ε]}

and it is straightforward to see that if initial conditions (ρf (0), ρc(0), l(0)) are taken in this

domain (Ωε
f × Ωε

c × Ωε
l ), and the boundary flows are consistent with this initial conditions,

then the solutions of the (45)-(45) will remain in this domain. Note that as mention before, ρf

(respectively ρc) can take any value when CL (respectively C0) is active as the model in that

modes, behaves as a standard CTM with two cells (one very large, and other very small).

V. INCLUDING RAREFACTION WAVES IN THE VLM

Model (45)-(47) has been designed under the implicit assumption of the existence of a

bottleneck originating an important change of capacity at the boundary l = 0, and producing a

congestion whose origin in the space remains fixed. This is typically the case when the congestion

is originated at some fixed spatial localization (i.e. at a merging/splitting node, by a red traffic

light, by a car accident, etc.) and the congestion is built upstream from this point. However, there

are other situations in which both spatial boundaries of the congestion may evolve in time. This
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is the case when a suddenly change from congested to free occurs at the downstream boundary

(i.e. because of the traffic light switching from red to green, or of the car accident eventually

resolved) producing a rarefaction (or fan) wave at the downstream boundary, as shown in Fig. 4.

In this section, we first formalize the conditions for the existence of shock and rarefaction

waves for characteristic curves which are piece-wise linear (triangular) functions, and then we

propose an extension of model (45)-(47) to include the rarefaction case as well. The overall

model results in being a model with a time-varying downstream and upstream boundaries as

illustrated in Fig. 4.

t

ρ(x)

x

ρ∗

ρM

xU xD

Free-flow Free-flow

xxU xD

t ∼
−
x
v

shock wave t = x−xU

ṡ
t = − (x−xD)

w

t = (x−xD)
v

CONGESTED

t ∼
x
v

rarefaction wave zone

Fig. 4. Illustration of characteristics corresponding to the shock and the rarefaction waves occurring at the upstream and

downstream boundaries located at xU and xD respectively. The solutions are continuous and non-unique in the rarefaction wave

zone if Φ(ρ) is continuously differentiable. For those cases, the density takes values in the set ρ ∈ [ρ−, ρ+]. If Φ(ρ) is piece-wise

triangular, then the method of characteristics does not allow to identify a solution in this region. However, the solutions are now

defined in the weak-sense, unique, and given by ρ = ρ∗ for all (x, t) in the cone C[t = −x−xD
w

, t = x−xD
v

].

A. Shock and rarefaction waves at the boundaries

Shock waves at the upstream boundary xU . Consider the Riemann problem with initial

distributions as shown in Fig. 4 with 0 < ρ− < ρ∗ < ρ+ < ρM at the upstream boundary uU .
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Then a shock exist and the discontinuity will propagate with the speed ṡx = Φ(ρ−)−Φ(ρ+)
ρ−−ρ+ in the

left-to-right x-direction under the following conditions:

a) For continuously differentiable functions Φ(ρ) the Lax entropy condition:

Φ′(ρ−) > ṡx > Φ′(ρ+) (48)

holds, where Φ′(ρ) = ∂Φ(ρ)/∂ρ. For concave functions Φ(ρ) the entropy condition is

satisfied if ρ− < ρ+, and solutions are uniquely defined.

b) For piece-wise continuous functions Φ(ρ), as the triangular form adopted here, the Lax

entropy condition (48) is no longer valid. In that case, the Oleinik entropy condition [40]

is more appropriate. The simplest form of this condition, as proposed by Dafermos [13], is

given by

Φ(ρ) ≥ C(ρ),∀ρ ∈ [ρ−, ρ+], if ρ− < ρ+ (49)

Φ(ρ) ≤ C(ρ),∀ρ ∈ [ρ−, ρ+], if ρ− > ρ+ (50)

where C(ρ) = Φ(ρ−) + ṡx(ρ− ρ−) is the chord between ρ− and ρ+.

For concave piece-wise triangular functions Φ(ρ), the chord is always below Φ(ρ) and thus

condition (49) always holds. Hence the (entropy weak) solution always exists and is uniquely

defined [23] by

ρ(x, t) =

 ρ− (x− xU) < ṡxt

ρ+ (x− xU) ≥ ṡxt

Rarefaction waves at the downstream boundary sD. Consider now the Riemann problem

with initial distributions as shown in Fig. 4, but now at the downstream boundary uD, where

0 < ρ+ < ρ∗ < ρ− < ρM .

c) Let Φ(ρ) be a continuously differentiable function. It can be easily verified that for Φ(ρ)

concave, the entropy condition (48) is never verified, and hence shocks cannot formally

exist. Instead a rarefaction wave solution will appear at the downstream boundary, whose

general form is given by,

ρ(x, t) =


ρ− (x− xD) < Φ′(ρ−)t,

Φ′(x
t
)−1 Φ′(ρ−)t ≤ (x− xD) < Φ′(ρ+)t,

ρ+ (x− xD) ≥ Φ′(ρ+)t.
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giving rise to multiple continuous solutions with density values in the set Φ′(x
t
)−1 ∈ [ρ−, ρ+],

as shown through the characteristics locus (doted-lines) in Fig. 4. Φ′(·)−1 is the inverse map

of the characteristics Φ′(ρ) = x
t
.

d) Let Φ(ρ) be a piece-wise triangular function. Then we can see that the Oleinik entropy

condition (50) does not hold for an original distribution of form (66) as the chord C(q) will

never be above Φ(ρ). However, as shown in [23], there exist an unique entropy solution,

if one considers the intermediate value of density ρ∗. In that case, the two discontinuities

ρ− | ρ∗, and ρ∗ | ρ+ satisfy the entropy condition (50) as an equality, and give raise to the

following solution

ρ(x, t) =


ρ− (x− xD) < Φ′(ρ−)t,

ρ∗ Φ′(ρ−)t ≤ (x− xD) < Φ′(ρ+)t,

ρ+ (x− xD) ≥ Φ′(ρ+)t.

(51)

For the triangular piece-wise linear fundamental diagram, we have Φ′(ρ−) = −w, and

Φ′(ρ+) = v. Then, we have the formation of two shock waves: one traveling at velocity

−w, and another traveling at velocity v, with critical density as the intermediate state.

B. Model including rarefactions waves

l

ρ∗

ρuf

lu ld

ρ(x)

lr

l̇r = w

ρc

ρr

ρdf

l̇d = −v

l̇u =
Φ(ρc)−Φ(ρuf )

ρu
f
−ρc

Fig. 5. Illustration of the variables involved in the model including rarefaction waves.

Consider the variables as defined in Fig. 5, with ρuf , ρc, ρr, ρ
d
f being the densities, and lu, lr, ld

being the associated cell lengths subject to the following constraints: L > lu ≥ lr ≥ ld > 0. The

left boundary of the rarefaction wave is indicated by lr, with density ρr = ρ∗, as indicated by

(51).
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The model can now be constructed by following the same ideas on vehicles conservation laws

used in previous sections,

Ṅu
f = ϕin − ϕuI (52)

Ṅc = ϕuI − ϕrI (53)

Ṅr = ϕrI − ϕdI (54)

Ṅd
f = ϕdI − ϕout (55)

with Nu
f = (L− lu)ρuf , Nc = (lu− lr)ρc, Nr = (lr −Ld)ρr, Nd

f = ldρ
d
f , and ϕuI , ϕ

r
I , ϕ

d
I being the

interface flows at lu, lr, ld, respectively. As before, each interface flow can be computed using

the speed function l̇−/+ = f(ρ−, ρ+) = Φ(ρ+)−Φ(ρ−)
ρ−−ρ+ of each interface, and its respective left and

right densities ρ−, ρ+. This gives: ϕ−/+I = ρ−l̇−/+ + Φ(ρ−) = ρ+l̇−/+ + Φ(ρ+). The full model

is now given by

ρ̇uf =
1

L− lu
[
ϕin − Φ(ρuf )

]
(56)

ρ̇c = 0, (57)

ρ̇r = 0 (58)

ρ̇df =
1

ld

[
Φ(ρdf )− ϕout

]
(59)

l̇u =

 f(ρuf , ρc) if lu > lr

f(ρuf , ρr) = −v if lu = lr
(60)

l̇r =

 f(ρc, ρr) = w if lu > lr

f(ρuf , ρr) = −v if lu = lr
(61)

l̇d = f(ρr, ρ
d
f ) = −v if lr ≥ ld (62)

with initial conditions ρuf (0), ρc(0), ρr(0) = ρ∗, ρdf (0), and luf (0) > lr(0) = ldf (0).

Remark 5 Because of the particular initial density distribution, and of equations (57)-(58), both

densities ρc(t) = ρc(0), and ρr(t) = ρ∗ remain constant. The rarefaction wave reaches in finite

time the upstream free state (i.e. lu = lr), giving raise to a new shock wave whose amplitude is

below the critical density and which moves to the right with velocity v, i.e. l̇u = l̇r = −v.
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VI. DISCUSSION ON THE VLM VERSUS THE LWR AND CTM MODELS

In this section, we compare the proposed model, namely the VLM, with the LWR model and

the CTM, in order to put into evidence similarities and differences. To this end, the dynamic

properties of the three models are first analyzed under specific conditions (fully free-flow and

fully congested). Then, the capability of the different models to describe the evolution of shock-

waves is discussed.

A. Free-flow and congested behavior: I/O-flow maps

Input-to-Output (I/O) flow maps are suitable tools to compare the different models. These

operators describe, in some particular cases, how the boundaries inflows and outflows are

related. However, those maps are only defined under the specific conditions of fully free-flow

(GF (s) : ϕin 7→ ϕout), or fully congested (GC(s) : ϕout 7→ ϕin), because of the particular

downstream/upstream observability property inherent to the fully free/congested modes. In fact,

in such modes, the ”output” variables (ϕout in the first case, and ϕin in the second) are linearly

related to the system states.

Lemma 1 (Fully free-flow case) Let the I/O flow map be defined as a linear operator, ϕout(s) =

GF (s)ϕin(s), then, GF (s) is given as:

i) GF (s) = e−τF s, for the LWR-model

ii) GF (s) = 1
(
τF
n

s+1)n
, for the CTM

iii) GF (s) ≈ 1
(τF s+1)

, for the VLM,

where n is the number of cells of the CTM, τF = L/v is the transmission delay in i), while it is the

time constant in ii)-iii), and the approximation in the VLM model comes from L/v ≈ (L− ε)/v.

Proof:

Condition i. In free-flow (2) writes as ∂tρ+v ·∂xρ = 0, and has the solution ρ(x, t) = ρ0(x−vt).

The boundary flows can be written as a function of the boundary densities, and hence only as

a function of the initial density distribution:

ϕin(t) = vρ(0, t) = vρ0(−vt) (63)

ϕout(t) = vρ(L, t) = vρ0(L− vt) (64)
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Shifting the outflow of an amount of L/v in time, gives ϕout(t + L/v) = vρ0(−vt). Therefore

we have that,
ϕin(t)

ϕout(t+ L/v)
= 1,

or equivalently that, ϕout(t) = ϕin(t− L/v) = ϕin(t− τF ), whose Laplace transform is

ϕin(s) = e−τF sϕout(s) (65)

Condition ii. Evaluation of the CTM model (3), with ∆li = L/n, for i = 1, ..n, at free-flow

gives

ρ̇1(t) =
v

τF/n

(
− ρ1(t) + ϕin(t)

)
...

ρ̇i(t) =
v

τF/n

(
− ρi(t) + ρi−1(t)

)
...

ρ̇n(t) =
v

τF/n

(
− ρn(t) + ρn−1(t)

)
ϕout(t) = vρn(t)

which describes a forward cascade of n linear first-order filters with transfer function GF (s) =

1
(
τF
n

s+1)n
.

Condition iii. The VLM in fully free-flow is given by Equation (38), that is

ρ̇f =
1

L− ε (ϕin − vρf ) ≈
1

τF

(
−ρf +

ϕin
v

)
ϕout(t) = vρf (t)

which describes a linear first-order filter with transfer function GF (s) ≈ 1
(τF s+1)

. � � �
The dual lemma for the congested case can be stated and proven by analogy with Lemma 1.

In this case, the relevant map of interest is the one from outflows to inflows, as the congestion

waves moves upwards (upstream).

Lemma 2 (Fully congested case) Let the O/I flow map be defined as a linear operator, ϕin(s) =

GC(s)ϕout(s) + δ(s), then, GC(s) is given as:

i) GC(s) = e−τCs, and δ(s) = 0 for the LWR-model

ii) GC(s) = 1

( τCn s+1)
n , and δ(s) = wρM(1−GC) for the CTM
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iii) GC(s) ≈ 1
(τCs+1)

, and δ(s) = wρM(1−GC) for the VLM,

where τC = L/w is the transmission time-delay, and the approximation in the VLM model comes

from L/w ≈ (L− ε)/w.

In these special cases, while the LWR behaves as a simple delay line, the CTM approaches

the LWR model behavior as the number of cell increases, i.e.

lim
n→∞

1

( τF
n

s + 1)n
= e−τF s

On the other hand, the VLM, in the two considered cases, behaves like a 1-cell CTM. The

precision increase which can be obtained with the CTM implies a cost in terms of complexity,

in particular in case of large traffic networks. The above analysis confirms the natural intuition

one may have about how the models behave in such particular cases. However, those specific

cases exclude the shock wave evolution and congestion dynamics. In the next section, we provide

some further comparison in several scenarios where congestion and shock occurs.

B. Shock wave behavior

Traffic jam shock behavior can be studied by considering initial distribution of the form

ρ(l, 0) =

 ρ− if l < l0

ρ+ if l > l0
(66)

with l0 ∈ (0, L), and with the constant left and right densities, ρ−, ρ+, satisfying 0 < ρ− < ρ∗ <

ρ+ < ρM . In this case the shock speed, ṡ (in the l-direction2),

ṡ =
Φ(ρ−)− Φ(ρ+)

ρ+ − ρ−

can be either positive or negative depending on the values of ρ−, ρ+. For instance, if Φ(ρ−) −
Φ(ρ+) > 0, the shock wave propagates upstream increasing the congestion. Conversely, if

Φ(ρ−) − Φ(ρ+) < 0, the shock wave propagates downstream, and congestion is reduced. With

the initial distribution (66), the shock speed is constant, and can be computed analytically from

the above equation. The shock propagation in the space-time coordinates (l, t) is then given by

t = (l − l0)/ṡ =
ρ+ − ρ−

Φ(ρ−)− Φ(ρ+)
(l − l0)

As illustrated in Fig.6.

2Note that shock speed in the x natural coordinates writes as ṡx = Φ(ρ−)−Φ(ρ+)

ρ−−ρ+ . In the l-coordinates the sign of ṡ is reversed.
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ṡ

l

t

t =
−
l
v

l0

Fig. 6. Illustration of a space-time shock propagation given by the shock line t = (l − l0)/ṡ. Congestion starts at location

l = l0, and propagates backwards. The other lines indicate the motion of the vehicles (particles) with slope −1/v.

The purpose of the following simulation analysis is to evaluate the capability of the VLM

model to track the evolution of the shock waves, as well as to compare its behavior with that

of the CTM. In the simulations were done under the following conditions:

• LWR (or True solution). Is computed analytically when possible.

• CTM is numerically implemented in matlab using fixed time-steep, by using the standard

recursive equations in time. Spatial steeps are of the order of 500m each.

• High-order CTM. Is numerically implemented as a CTM model but discretized with a very

small spatial steps of the order of 5m. This leads to a large number of states and is intended

for numerical comparisons when the true solutions can not be computed analytically.

• VLM is implemented using standard variable-step solvers in matlab (Simulink).

Simulation parameters are: L = 5km, v = 80Km/h, w = 20Km/h, ρ∗ = 50V eh/Km,

ρM = 250V eh/Km, ϕM = 4000V eh/h. In the left plots of Fig. 7, we illustrate first the

consistency between the shock evolution of the original LWR-PDE, named the “true solution”,

which partitioned the space-time area into the free-flow area in green, and the congested one

in red. The plots in the left column of Fig. 7 confirm that the original true solution perfectly

coincide with that of the high resolution CTM for both shock traveling directions. The figures

at the right confirm that the VLM perfectly tracks the shock waves in this particular case, while

the CTM does it in the average with a small phase shift.
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Fig. 7. Simulation of a space-time shock propagation. Left figures show the consistency between the true solution and the one

predicted by the high resolution CTM. Right figures compare the true solutions with those of the CTM and the VLM. The upper

curves show congestion reduction, with parameters: ρ− = 0.15ρ∗, ρ+ = 0, 75ρM , l0 = 4L/5, and ṡ = −3.611Km/h. The

lower curves show the congestion spill-over case with parameters: ρ− = 0.5ρ∗, ρ+ = 0, 68ρM , l0 = L/5, and ṡ = 2.758Km/h

C. Bode-plots for the congestion propagation

As shown in the previous simulations, the VLM and to some extent the CTM well describe

the shock wave propagation. However, both models are inherently low-order and some low-pas

filtering effects are to be expected. The purpose of this subsection is to evaluate such attenuation

and understand the cut-off frequency spectrum of the models. The simulations are conducted

starting from the initial conditions at the equilibrium: ρ̇f = ρ̇c = l̇ = 0, and with l(0) = L/2.

In addition, the initial condition for the congested part is selected so that the congested density

remains time-invariant, i.e. ρc(0) = ρM − ϕM
2w

> 0 =⇒ ρc(t) = ρc(0). The outflow was limited

by a bottleneck at ϕout = ϕM/2, while the inflow was periodic ϕin = ϕM/2 + A(ω) sin(ωt).
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Fig. 8. Bode plots for the map ϕin 7→ l for the VLM, and maps between ϕin and the front congestion wave for the CTM and

the high resolution CTM.

A(ω) was selected, so that the variation of l remains within the natural boundaries (0, L) to

preserve a certain degree of linearity of the analysis. Note also that under such conditions, the

map ϕin 7→ l can be approximated by

l ≈ K

s(τs + 1)
ϕin

with K ≈ 1/(ρ̄c − ρ̄f ), and τ = (L − l̄)/v, where (ρ̄c, ρ̄f , l̄) are the values around which the

linearization is performed.

Fig. 8 shows the Bode plots of the map between the inflow and the congestion front. These

plots depict the frequency response of the map, i.e. the magnitude and phase variation of the

complex-valued function which describes the considered map as a function of the frequency.

Several observations are in order. First, it is worth noting that magnitude and phase plots of both

the CTM and the VLM well match the Bode locus of the true solution (represented here by

the high resolution CTM) at low frequencies. Then, around 10−3Hz, the CTM saturates in gain

and phase, and finally its gain dramatically drops to zero just thereafter. This means that the

CTM fails to suitably track the shown waves at medium-high frequencies. On the other hand,

the VLM does not display such behavior, but it shows a discrepancy with respect to the true

solution. As expected, the discrepancy increases as the frequency grows because of the low-pass

filtering effect of the VLM.
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VII. CASE STUDIES

The practical utility of the proposed model is now illustrated by reference to two case studies:

a ring road and a urban road with traffic lights. they are discussed in the next two subsections,

respectively, by making reference to simulation results.

A. Case study 1: Ring-road scenario

θd
θr

θu

ρr

ρf

ρc

θ̇r =
w
R

θ̇d =
−v
R

θ̇u

θd

θu = θu

ρr

ρf

θ̇ r
=
θ̇ u

=
−v R

θ̇d =
−v
R

θd

θr

ρr

ρc

θ̇u = θ̇d =
w
R

θ̇r =
w
R

θu

Fig. 9. Illustration of the ring-road scenario. Left figure shown the scenario with the associated variables. Center and right

figures show the two possible equilibria

In this subsection, a case study of a closed ring-road scenario shown in Fig. 9 is presented.

We first give the main model control properties, and then we show how those properties can be

used for variable speed optimization.

Specifically, the ring-road in Fig. 9 is considered, with lu = Rθu, lr = Rθr,ld = Rθd,

ρuf = ρdf = ρf , ϕin = ϕout. Model (56)-(62), in the set Ωθ = {(θu, θr, θd) : θu ≥ θr ≥ θd} −
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{(θu, θr, θd) : θu = θr = θd}, can be written in the circular coordinates as,

ρ̇f = 0, ρf (0) = ρ0
f (67)

ρ̇c = 0, ρc(0) = ρ0
c (68)

ρ̇r = 0, ρr(0) = ρ∗f (69)

θ̇u =
l̇u
R

=
1

R

 f(ρf , ρc) if θu > θr

f(ρf , ρr) = −v if θu = θr
(70)

θ̇r =
l̇r
R

=
1

R

 f(ρc, ρr) = w if θu > θr

f(ρf , ρr) = −v if θu = θr
(71)

θ̇d =
l̇d
R

=
1

R

 f(ρr, ρf ) = −v if θr ≥ θd

f(ρr, ρc) = w if θd = θu
(72)

with initial conditions (θ0
u, θ

0
r , θ

0
d) ∈ Ωθ.

1) Equilibrium points, stability and optimal speed limits design: The model (67)-(72), has in

general two classes of equilibrium points depending on the initial conditions. One class (Class

A) is composed of one part in free-flow and the other at the critical density, while the second

class (Class B) consists of one part in congested mode, and the other at the critical density, see

Fig. 9. Consider the following definitions:

∆θf (t) = 2π + θd(t)− θu(t)

∆θc(t) = θu(t)− θr(t)

∆θ∗(t) = θr(t)− θd(t)

with the notation ∆θ(·)(0) = ∆θ0
(·).

Lemma 3 Consider the ring-road model (67)-(72), with initial conditions θ0
u > θ0

r ≥ θ0
d. Let

a =
ρ0
f

ρ0
c − ρ0

f

, b =
Φ(ρ0

c)

ρ0
c − ρ0

f

, β =
∆θ0

f

∆θ0
c

c(β, a, b) =
b(1 + β) + βw

a(1 + β) + 1
, f0 = f(ρ0

f , ρ
0
c)

Then:

A) The system converges in a finite time t1 = R ∆θ0
c

w−f0
, to the Class-A equilibrium points if initial

conditions satisfy:
f0 + v

w − f0

< β
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with the final angles given as:

∆θc(t1) = 0,

∆θf (t1) = ∆θ0
f −

v + f0

w − f0

∆θ0
c

∆θ∗(t1) = ∆θ0
∗ +

v + w

w − f0

∆θ0
c

with ∆θf (t1) + ∆θ∗(t1) = 2π.

B) The system converges in a finite time t2 = R
∆θ0

f

v+f0
, to the Class-B equilibrium points if initial

conditions satisfy:
f0 + v

w − f0

> β

with the final angles given as:

∆θc(t2) = ∆θ0
c −

w − f0

v + f0

∆θ0
f ,

∆θf (t2) = 0,

∆θ∗(t2) = ∆θ0
∗ +

v + w

v + f0

∆θ0
f

with ∆θc(t2) + ∆θ∗(t2) = 2π.

Proof. The proof is straightforward by computing the angle evolutions of the solutions

θr(t) = θ0
r +

w

R
t

θu(t) = θ0
u +

f0

R
t

θd(t) = θ0
d −

v

R
t

and noticing that f0 can be rewritten as

f0 =
φ(ρ0

f )− Φ(ρ0
c)

ρ0
c − ρ0

f

= v
ρ0
f

ρ0
c − ρ0

f

− Φ(ρ0
c)

ρ0
c − ρ0

f

= av − b

For Class A, we require the existence of a finite time t1 such that: i) θr(t1) = θu(t1), and

ii) θu(t1) < 2π + θd(t1). Now, from the above solutions, we get

θ0
r +

w

R
t1 = θ0

u +
f0

R
t1

θ0
u +

f0

R
t1 < 2π + θ0

d −
v

R
t1

Then, t1 is obtained from the first equation. The velocity range comes from the second equations

where we replace t1, and noting the fact that f0 < 0, and hence av − b < 0.
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β
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c(β, a, b)
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a+1

Class-A

Class-B

Optimal velocity

Fig. 10. Admissible velocity domain as a function of the initial conditions. The domain is limited by v ∈ (vm, vM ), where

vm = b/(a+ 1), vM = (b+ w)/a

For Class B, we require the existence of a finite time t2 such that: i) θu(t2) = 2π + θd(t2),

and ii) θu(t2) > θr(t2). Now, from the above solutions, we get

θ0
u +

f0

R
t2 = 2π + θ0

d −
v

R
t2

θ0
u +

f0

R
t2 > θ0

r +
w

R
t2

As before, t2 is obtained from the first equation. The velocity range comes from the second equa-

tion where we replace t2. � � �
Fig. 10 shows the velocity admissible domain as a function of the initial angles defined

by β. Note this domain corresponds to free-flow velocities which are consistent with the model

densities definition. For instance, the lower admissible value vm = b/(a+1) is equal to Φ(ρ0
c)/ρ

0
c ,

and maximum velocity bound vM = (b + w)/a is equal to −w(1 − ρM/ρ
0
f ). As long as v ∈

Ωv = (vm, vM) the evolution of ρf (t), ρc(t) will remain in the corresponding free and congested

part of the fundamental diagram. The curve c(β, a, b) is the velocity boundary between the two

possible equilibria classes.

Note that this allows for some flexibility in the selection of v ∈ Ωv, and therefore opens the

possibility to optimize the network operation. For instance by minimizing the lap time, i.e.

vopt = min
v∈Ωv ,i∈1,2

J(v, i),
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where

J(v, i) = R

[
∆θ∗(ti)

v
+

∆θf (ti)

v
+

∆θc(ti)

vm

]
.

A particular case of interest is to find the optimal free-speed for the Class-A equilibria, which

can be easily computed by observing Fig. 10, that is

vopt = min
v∈Ωv ,i=1

J(v, 1) = c(β, a, b)

leading to J(vopt, 1) = 2πR/c(β, a, b).

TABLE I

SIMULATION PARAMETERS

Parameter Description Value Unit

L section length 1 km

v free-flow speed 80 km/h

w congestion propagation speed 20 km/h

ρM jam density 250 veh/km

ρ∗ critical density 50 veh/km

ϕM maximum flow 4000 veh/h

ρ0
f initial free-flow cell density 30 veh/km

ρ0
c initial congested cell density 150 veh/km

l0 initial congestion length [0.4L, 0.4L, 0.2L] km

2) Simulation results: The two possible cases (A and B) mentioned in Subsection VII-A1

can be reproduced in simulation. The considered physical parameters of the model are given in

Table VII-A1. The initial conditions are ρ0
f = 30veh/km, ρ0

c = 150veh/km for case A, and

ρ0
f = 10veh/km, ρ0

c = 100veh/km for case B. In both cases the radius is equal to R = 0.8km,

and the initial congestion length is lu = 2π
3
R = 1.67km (with θu(0) = 2π

3
, andθr(0) = 0).

Vehicles are assumed to flow in a clockwise direction. Due to these initial conditions, in case

A the rotation speed is θ̇u = 3.33km/h, while in case B is θ̇u = −24.44km/h. Results are

shown in Fig. 11 for both cases. Six different snapshots are reported. From them, it is possible

to observe how the rarefaction process evolves and the reached equilibrium. As expected, two

possible equilibria may occur. In case A, after that the rarefaction wave is produced, θu reaches

θr and the equilibrium is given by a zone at ρ∗ and by one at ρ0
f . In case B, θu reaches θd and

the equilibrium is given by a zone at ρ0
c and by one at ρ∗.
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Fig. 11. Snapshots of time evolution of the ring road traffic: left figures show the results in case A, whereas right figures those

in case B. Free-flow zones are indicated in green, critical-density zones in orange and congested zones in red.

B. Case Study 2: urban road with traffic lights

This second scenario corresponds to a classical urban homogeneous road including traffic

lights at the upstream and downstream extremes.

Before proceeding to analyze this second case study, it is useful to observe that it is possible

to approximate the two-shock waves (51) by a single shock by using the so-called “equal area

rule”, as shown in Fig. 12. This is formally stated in the theorem below.

ρ−

x

ρ∗

ρ+

xC xF

ρ(x)

xM

ẋM = Φ(ρ−)−Φ(ρ+)
ρ−−ρ+

ẋC = Φ′(ρ−) = −w

ẋF = Φ′(ρ+) = v

AC

AF

Fig. 12. Illustration of the approximation of the three-valued solution (solid line) of the rarefaction wave by a single shock at

xM using the equal area rule (dashed-doted line).
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Theorem 2 Consider a triangular piece-wise fundamental diagram Φ(ρ), and a distribution of

the form shown in Fig. 4, with a unique solution at the downstream boundary xD given by (51).

Then the two-shock waves evolution can be approximated by an uniquely defined single shock

located at the point xM with velocity

ẋM =
Φ(ρ−)− Φ(ρ+)

ρ− − ρ+

The approximation holds in the sense that the area AC (number of vehicles) at the congested

part separated by xM equals the area (number of vehicles) at the free part AF .

Proof 1 Define the areas AC = ∆ρC∆xC , and AF = ∆ρF∆xF , with ∆ρC = ρ− − ρ∗, ∆ρF =

ρ∗ − ρ+, ∆xC = xM − xC , ∆xF = xF − xM . Imposing the “equal area rule” AC = AF , with

AC(x, 0) = AF (x, 0) = 0 is equivalent to ȦC = ȦF , which yields,

∆ρC
d

dt
∆xC = ∆ρF

d

dt
∆xF

noticing that the wave velocities at the edges are: dxC
dt

= Φ′(ρ−), and dxF
dt

= Φ′(ρ+), we have

d

dt
∆xC = ẋM − Φ′(ρ−), and

d

dt
∆xF = Φ′(ρ+)− ẋM

replacing this expression into the one above, with some simplification, gives,

ẋM =
Φ′(ρ−)(ρ− − ρ∗)− Φ′(ρ+)ρ+

ρ− − ρ+

using the fact that Φ(ρ) has a maximum at ρ = ρ∗ where the two lines intersect, i.e. Φ′(ρ+)ρ∗ =

Φ′(ρ−)(ρ∗ − ρM), the above equations simplifies to

ẋM =
Φ(ρ−)− Φ(ρ+)

ρ− − ρ+

where we have used the equalities: Φ(ρ−) = Φ′(ρ−)(ρ− − ρM), and Φ(ρ+) = Φ′(ρ+)ρ+.

Remark 6 Note that for the triangular form, ẋM = −w(ρ−−ρM )−vρ+

ρ−−ρ+ is constant. Its direction is

determined by the sign of the difference between left and right flows at the initial distribution.

Finally note that ẋM satisfies the Rankine-Hugoniot jump condition. The approximation can thus

be understood as a shock located at xM(t) = xM(0) + ẋM t, with xM(0) = xD.

Making reference to Fig. 13, the following variables and definitions are introduced.

• (·)i- index used to denote the considered i-section. Sections are regarded in increasing order

in the downstream direction. For simplicity in the notation, indexes will only be used to

indicate sections other than the current i-section, i.e. li = l, l(i+1) = l(i+1), etc.
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Fig. 13. Illustration of the real solution with upstream/downstream rarefaction waves (solid line), and the proposed approximation

of the rarefaction (dashed-red line).

• (ϕin, ϕout, ϕI), are the fixed in/out flows, and the moving interface flow of the ith-section,

respectively.

• (ρf , ρc)- are the density distributions of the ith-section as original produced by the rarefaction

waves

• (ρ̄f , ρ̄c)- are the averaged densities of the ith-section, including the effects of the multiple

rarefaction waves.

• α ∈ {0, 1} is the traffic light boolean variable. α = 1 indicates green light, whereas α = 0

indicates red light.

• tk is the time-instant when the rarefaction wave starts at the downstream part of the ith-

section. It correspond to the time instant when the green light is turned on, i.e. α : 0→ 1,

or equivalently when ∆αk = αk − αk−1 = 1.

• Ck is the rarefaction wave triggering condition for the ith-section. C̄k is its negation. It can

be written in several forms. We propose the following one:

C =
{

(ρc > ρ∗)
⋂

(ϕout = ϕM)
⋂

(α = 1)
}

with tk = {t ≥ 0, s.t. C⋂(∆αk = 1)} ,∀k ≥ 1.

In this case the model can be written relying on the following set of equations

˙̄ρf =
1

L− l
[
ϕin + f(ρ−, ρ+)(ρ̄f − ρ−)− Φ(ρ−)

]
(73)

˙̄ρc =
1

l

[
−ϕout + f(ρ−, ρ+)(ρ+ − ρ̄c) + Φ(ρ+)

]
(74)

l̇ = f(ρ−, ρ+) =
Φ(ρ+)− Φ(ρ−)

ρ− − ρ+
(75)
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with

ϕin = α ·min
{
D(ρ̄(i−1)

c ), S(ρ̄if )
}

(76)

ϕout = α ·min
{
D(ρ̄ic), S(ρ̄

(i+1)
f )

}
(77)

where ρ−, ρ+ are the left and right density at l, given by a

(ρ−, ρ+) =



(ρ̄f , ρ̄c(t
i
k)) if Ci⋂ C̄(i−1)(

ρ̄f (t
(i−1)
k ), ρ̄c

)
if C̄i⋂ C(i−1)

⋂
(ρ̄f < ρ∗)(

ρ̄f (t
(i−1)
k ), ρ̄c(t

i
k)
)

if Ci⋂ C(i−1)
⋂

(ρ̄f < ρ∗)

(ρ̄f , ρ̄c) else

(78)

The different definitions for the boundary densities, and hence for the time-evolution of the

congestion fronts, correspond to the different cases included in this scenario. The first 3 cases

are the following: i) the rarefaction occurs at the downstream boundary of the the current section,

ii) the rarefaction wave is produced at the previous section, and iii) the rarefaction wave takes

place at both the current and the previous section. The last case corresponds to the situation

when one of the extreme of the rarefaction wave reaches the point l. In this case, the section

becomes either fully-free or fully-congested. The various cases are illustrated in Fig. 14. The

details of the model derivation are given next. The average model (73)-(78) is derived from

the vehicle conservation equations, with N̄f = (L − l)ρ̄f , and N̄c = lρ̄c, constrained with the

following two conditions:

a) Same amount of vehicles. That is N̄f = Nf , and N̄c = Nc. This constraint is ensured if the

in/out flows of the sections are the same for both the real and the approximated solution.

b) The time-evolution of the shock wave l should be the same for both the real and the

approximated solution.

The rate of vehicles variations can now be computed as

˙̄Nf = ϕin − ϕI
˙̄Nc = ϕI − ϕout

⇒ −l̇ρ̄f + (L− l) ˙̄ρf = ϕin − ϕI
l̇ρ̄c + l ˙̄ρc = ϕI − ϕout

and the state-variable representation is given by

˙̄ρf =
1

L− l
[
ϕin + f(ρ−, ρ+)ρ̄f − ϕI

]
˙̄ρc =

1

l

[
−ϕout − f(ρ−, ρ+)ρ̄c + ϕI

]

July 8, 2018 DRAFT



40

L l

ρf

ρ̄f

ρ̄c
ρc

ρ(i−1)
c

ρ
(i+1)
f

ρ
(i+1)
f = ρ̄

(i+1)
f

0

ρ∗ ρ∗

Section i− 1 Section i Section i+ 1

ρf = ρ̄f

ρc = ρ̄c

ρ∗

ρ
(i−1)
c = ρ̄

(i−1)
c

−v

w

−v −v

ρc = ρ̄c

ρf

ρ̄f

l

l

l

ρ∗ ρ∗

ρf = ρ̄f

ρ̄c
ρc

w w

ρ∗ρ∗

ρ(i−1)
c

ρ(i−1)
c

ρ
(i+1)
f

ρ
(i+1)
f

a)

b)

c)

d)

t = t0

t = t1

t = t2-a

t = t2-b

ρ∗

Fig. 14. Illustration of the density evolution under the effect of the upstream and downstream rarefaction waves. Real solution

(solid line), averaged solution (dashed-red line). At t0 both solutions coincide before rarefaction waves are produced. At t = t1,

the rarefaction waves are triggered. At t = t2-a, the section becomes fully congested, or alternatively at t = t2-b the section

becomes fully free depending on which boundary the position l reaches first.

where we have replaced the evolution of l, by its definition, l̇ = f(ρ−, ρ+) = Φ(ρ+)−Φ(ρ−)
ρ−−ρ+ . It

remains to be defined the interface flows (ϕin, ϕout, ϕI) for all the possible cases produced by

this scenario, and shown in Fig. 14.

Determination of ϕin, ϕout is straightforward as it resorts to the case of a fixed interfaces,

when interface flows can be computed using the demand/supply formalism as given by the

expressions (87)-(77). Note that this general expression perfectly covers also the rarefaction

wave case for which maximum output flow is reached. For instance, looking at the upstream

densities distributions in Fig. 14-b, the inflow at l = L for the real solution is computed simply

by ϕin = Φ(ρ∗) = ϕM , and for the “approximated” solution, with α = 1, ρ∗ ≤ ρ̄
(i−1)
c ≤ ρM , and
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0 ≤ ρ̄
(i)
f ≤ ρ∗, by

ϕin = min
{
D(ρ̄(i−1)

c ), S(ρ̄if )
}

= min {ϕM , ϕM} = ϕM .

Determination of ϕI is more involved and requires the analysis of several separated cases.

There is a simple case where there are not rarefaction waves, where congestion front velocity

is typically given by the well-known shown wave speed. This case is accounted by setting

(ρ−, ρ+) = (ρ̄f , ρ̄c). For other cases when a rarefaction wave is created, it is instructive to look

at Fig. 14, in particular for the case shown in Fig. 14-b.

Consider first the case of a single rarefaction wave produced downstream (α(i−1) = 0, and

α(i) = 1). In this case, ρf = ρ̄f , and ρc 6= ρ̄c. In this notation, we understand ρc(x) in general as

a distribution and not as a scalar, except for its initial distribution which is constant before the

rarefaction wave start, i.e. ρc(x, 0) = ρc(tk) = ρ̄c. It is worth noting that during all the phases

shown in Fig. 14-b until the rarefaction wave is fully absorbed (from time t1 till t2−a, or t2−b),
the evolution of l̇ is dictated by the initial value ρc(tk) as the right density ρ+ remains constant

during all this phase. The evolution of l is then given by

l̇ = f(ρf , ρc) = f(ρ̄f , ρc(t
i
k)) = f(ρ̄f , ρ̄c(t

i
k))

which corresponds to the first value at the right-hand side of (78), and allows one to have an

autonomous equation independent from the “real solution” as it is expected.

The second case where the rarefaction wave is produced only at the upstream boundary

(α(i−1) = 1, and α(i) = 0), is symmetric with respect to the previous one, and the evolution of

l can be determined along the same lines, i.e.

l̇ = f(ρf , ρc) = f(ρf (t
(i−1)
k ), ρ̄c) = f(ρ̄f (t

(i−1)
k ), ρ̄c)

In third case, we account for rarefaction waves produced at the same time, at both up and

downstream boundaries. It basically capture the combination of the previous two solutions.

l̇ = f(ρf , ρc) = f(ρf (t
(i−1)
k ), ρc(t

i
k)) = f(ρ̄f (t

(i−1)
k ), ρ̄c(t

i
k))

Finally, in the last case the rarefaction wave will be absorbed and will produce a shock with

speed given by the standard Rankine-Hugoniot jump condition. In the case shown in Fig. 14-c,

the rarefaction wave from downstream is absorbed first, with the congested density approaching

the critical density value, ρc → ρ∗, and the shock speed being given by l̇ = −v. In the other case

shown in Fig. 14-d, the rarefaction wave from the upstream is absorbed first, and the free density
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reaches its critical value, ρf → ρ∗. The shock speed is given by l̇ = w. Those computations

can be easily verified by noticing that l̇ is nothing but the slope of the triangular characteristic

function evaluated at the density of interest. Those cases, as well as the case where there is no

rarefaction waves can be coded using the expression given in the last expression of right-hand

side of (78).

1) Introduction of the ε-boundaries: Handling singularities at the boundaries can be done

along the same lines as described in Section IV-D. We then first define the conditions for stopping

the time-evolution of the variable l. These conditions, C0, CL are already given by equation (36)

for the downstream boundary, and by (37) for the upstream boundary. The second step consists

in defining the interface flows at the respective boundaries: l = ε, and l = L − ε. As before,

those flows are given by the standard demand and supply formulation, ϕI = min {D(ρf ), S(ρc)}
when one of the two conditions C0, or CL hold. The last step is the integration of such conditions

into the model formulated in Section VII-B, which yields

˙̄ρf =
1

L− l
[
ϕin + f(ρ−, ρ+)(ρ̄f − ρ−)− Φf

]
(79)

˙̄ρc =
1

l

[
−ϕout + f(ρ−, ρ+)(ρ+ − ρ̄c) + Φc

]
(80)

l̇ = f(ρ−, ρ+) =


Φ(ρ+)−Φ(ρ−)

ρ−−ρ++σ(ρ−,ρ+)
else

0 if C0

⋃ CL (81)

Φf =

 Φ(ρ−) else

min {D(ρf ), S(ρc)} if C0

⋃ CL (82)

Φc =

 Φ(ρ+) else

min {D(ρf ), S(ρc)} if C0

⋃ CL (83)

with ϕin ϕout, σ(·, ·), and ρ−, ρ+ as defined before.

C. Simulation of the urban road with traffic lights

The simulated scenario concerns a road of three sections of length L with the same fundamental

diagram and parameters indicated in Table VII-C. At the end of each section there is a traffic

light represented by the variables αi ∈ 0, 1. The traffic light sequences are assumed not to be

synchronized in order to generate a more complex and illustrative scenario, with rarefaction waves

produced at different (non correlated) times. The inflow at the first section (upstream boundary

demand) is set to be constant and equal to ϕ1
in = Φ

(
ρ0
f

)
= 2400veh/h while the outflow at
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the last section (downstream boundary supply) is set equal to ϕ3
out = α3 min

{
D(ρ3

c), S(ρ4
f )
}

=

α3D(ρ3
c), i.e. all the demand at the last section is satisfied. A full model with ε-boundaries is

associated with each section following the mathematical modelling steps previously described.

The system is simulated during one hour. The goal of this evaluation is to compare how the

model behaves in front to the “real solution” which is simulated using a high resolution CTM

(hr-CTM) with very small cell lengths (5m). In particular, we will evaluate the evolution of the

front congestions (variable li) in these two models.

TABLE II

SIMULATION PARAMETERS

Parameter Description Value Unit

L section length 1 km

v free-flow speed 80 km/h

w congestion propagation speed 20 km/h

ρM jam density 250 veh/km

ρ∗ critical density 50 veh/km

ϕM maximum flow 4000 veh/h

ρ0
f initial free-flow cell density 30 veh/km

ρ0
c initial congested cell density 150 veh/km

l0 initial congestion length [0.4L, 0.4L, 0.2L] km

The results are reported in Fig. 15. Note that each subplot shows the evolution of the variable

of a different section. It can be observed that the time evolution of the variable l of the proposed

VLM suitably tacks the corresponding congestion front of the hr-CTM. Note that the position

of this front is not given directly by CTM model but need to be computed by an additional front

tracking algorithm added to the CTM in simulation. In the same figures, it can also be observed

the time-periods when the light is green (red lines along the time-axis), and the congestion

formation just after the out-flows are stopped.

In the next sub-section, we present an illustrative example of the use of the VLM model for

control design.

D. Optimal steady-state speed limits for eco-driving in urban networks

The problem of finding steady-state speed limits optimizing a trade-off between global traffic

energy consumption(Eco-Driving), traveling time and infrastructure utilization, can be can be
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Fig. 15. time evolution of state l of the VLM and congestion front obtained through a hr-CTM.

addressed at macroscopic level using the proposed an averaged version of the two-cells variable

length model adapted to the urban setup.

Average model. Let consider the simplest ”averaged” version of the model (75)-(78) repre-

senting the ith Section3

˙̄ρf = [ϕ̄in − ρfvf ]
1

L− l (84)

˙̄ρc = [w(ρm − ρc)− ϕ̄out]
1

l
(85)

˙̄l =
ρfvf − w(ρm − ρc)

ρc − ρf
(86)

3For simplicity of the notation, the current section index i is drop. When needed the index of the upstream and the downstream

section are noted by the subscripts (i− 1), and (i+ 1), respectively.
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whith the corresponding ”averaged” boundary flows are defined as:

ϕ̄in = ᾱ(i−1) ·min
{
D(ρ̄(i−1)

c ), S(ρ̄if )
}

(87)

ϕ̄out = ᾱi ·min
{
D(ρ̄ic), S(ρ̄

(i+1)
f )

}
(88)

the signification of the ”average” model here refers to the solutions of the equations above whith

the time-varying bi-valued variable α(t) ∈ {0, 1},∀t ∈ [t, t+ Tcycle] replaced by its average over

a traffic light time-cycle Tcycle, i.e.

ᾱ =
1

Tcycle

t+Tcycle∫
t

α(τ) dτ =
Tgr

Tcycle
(89)

This simplification is also consistent with the store-and-forward modeling approach [1]. The

continuous-time behavior of the system, induced by the traffic lights, is then replaced by a

continuous flow passing through a bottleneck (with a “capacity drop” (in average) proportional

to ᾱ), as long as demand and supply functions of upstream and downstream cells, respectively,

are capacious enough. As a natural consequences of this approximation, no oscillations of the

congestion length, due to the green/red alternation, are represented by the model, and the notions

of cycle time and offset for the traffic lights lose significance, see more details at [15] and [10].

Steady-state operation points. Holding the hypothesis of constant and equal boundary flows

smaller than maximum flow, such a system converges to the following equilibrium states:

ρ∗f =
ϕ̄in
vf

(90)

ρ∗c = ρm −
ϕ̄out
w

(91)

l∗ =
N0 − ρ∗fL
ρ∗c − ρ∗f

=
wvfN0 − ϕ̄inLw

wvfρm − ϕ̄outvf − ϕ̄inw)
(92)

where N0 is the initial number of total vehicles in the whole cell. and it will remain unchanged

given the assumption of equal boundary flows. Assuming that the speed limit vf is the same

both upstream and downstream, then the boundary flows are only determined by the maximum

value of the demand/supply function: ϕ̄in = ϕ̄out = ᾱ wρm
vf+w

vf which allows for a more convenient

written of the equilibrium, as an explicit function of the speed limit to be optimized, vf , i.e.,

ρ∗f = ϕ̄out = ᾱ
wρm
vf + w

(93)

ρ∗c = ρm − ᾱ
vfρm
vf + w

(94)

l∗ =
N0(vf + w)− ᾱρmLw
ρm(vf + w)(1− ᾱ)

(95)
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Traffic metrics. Informative traffic metrics assessing traffic and vehicles performance in terms

of traveling time, infrastructure utilization and energy consumption, can be adapted to the average

variable length traffic model.

Instantaneous Travel Time (ITT) could be simply defined, in the VLM coordinates, as:

ITT(ρ) =
L− l
vf

+
l

vc
(96)

with vc = −w(1 − ρm
ρc

) =. Similarity, the Total Travel Distance (TTD) in steady-state is, is a

measure of how efficiently the infrastructure is used in terms of occupancy and traveling velocity.

It is defined and adapted to VLM in this framework, evaluated over the traffic light cycle time,

as:

TTD(ρ) = Tcycle {vfρfL+ [w(ρm − ρc)− vfρf ] l}

Energy metrics. Another important metric, usually not considered at macroscopic level, is

the energy consumption of the vehicles. The energy cost functional, over a time horizon Tcycle,

for one section for the VLM can be formulated as follows (see [15] for details).

E = Ef + Ec (97)

where Ef , and Ec are the energy consumptions in steady state in the free and congested cells,

respectively. Minimizing the ”average” energy per cycle under constant velocity and steady-state

model values, then then respective energy consumption per cycle P̄ (v) become a static function

of the velocity.The energy functions at the different states of the section can be now computed

as follows.

Ef = TcycleP̄f (vf ) · ρf (L− l) (98)

where ρf (L− l) is the average number of vehicles in the free part during the traffic light cycle.

Similarly, the energy consumption in the congested cell for a constant velocity (vc) is:

Ec = TcycleP̄c(vc) · ρcl (99)

P̄ (v) is in general quadratic in v. It specific form depends on depends on the type of vehicle

considered.

Optimal steady-state operation. Considering admissible demands in a road section, the

system is stable and many different equilibrium points can be reached via variable speed limits.

The problem can be stated as follows:
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Fig. 16. Left) Total cost function of Problem 2 for system Σ3 and for an arbitrary choice of weights σ. A minimum is found

for a value v∗f of velocity in the free cell. Right) Time evolution of the two systems Σ2 and Σ3 for the optimal value of velocity

v∗f .

Problem 1 Given system Σ3 and a constant ᾱ for every traffic light, find the optimal speed limit

v∗f = argmin
vf

{E + σ1ITT− σ3TTD}

under: equilibrium steady-sate set (93), and

vf ∈ Uv = {vf : vmin ≤ vf ≤ vmax}

l ∈ Ul = {l : lmin ≤ l ≤ lmax}

Making the weights choice [σ1, σ3] = [1.2, 0.2], it is found that v∗f = 26 km/h (see Fig.(16), left

figure) solves the above optimization problem, resulting in a reduction of energy consumption

of about 29%, paying in terms of ITT which increases by 27% and of TTD which decreases by

22%, with respect to the case vf = vmax. The total objective function is reduced by 17% w.r.t.

the worst choice of vf , and by 6.5% w.r.t. the standard speed limit of 50 km/h.

It is natural at this point to apply the optimal velocity v∗f for the average system Σ3, to

the original system Σ2 in which the traffic lights are modeled with the switching variable α.

Imposing the same hypothesis of equal boundary flows, achievable by using traffic lights with

same phase and cycle times, it is possible to compare the time evolution of the state variables

and to note how the average system tracks closely the true average of (see Fig.16 right figure).

For more details, see [15].
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VIII. CONCLUSIONS

A new macroscopic vehicular traffic model, named Variable-Length cell transmission Model

(VLM), has been presented in this paper. It consists of only three lumped state variables: two

lumped densities, associated with the two cells of variable length into which the considered road

section is subdivided, and a third state variable which describes the position of the congestion

wave front. The paper provides a rigorous formulation of the new traffic model, as well as a

detailed analysis of its mathematical properties. As highlighted in the analysis, the VLM naturally

encompasses shock waves representation, while it is suitably extended to be able to capture also

the phenomenon of wave rarefaction. A comparison with the solution to the classical LWR traffic

flow model and the standard Cell Transmission Model has been provided.

Two case studies, a ring road and a urban road with traffic lights, have been considered and

thoroughly discussed. First we have illustrated how the VLM can be conveniently exploited to

verify the existence of different classes of equilibrium points. Then, we have shown how the

proposed model can be used as a tool to facilitate the design of control strategies to optimize

the traffic systems operations.

The proposed model can be regarded as a valid alternative to well-established macroscopic

models whenever model simplicity is a strict requirement. Apart from being appropriate for

optimal speed control design based on the analysis of the equilibria, as seen in the considered

case studies, it can be exploited to develop low complexity observers and shockwave front

tracking algorithms. The aggregated, low complexity nature of the VLM can give advantage

also in traffic forecast and monitoring activities which require the real-time usage of the model.
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