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Nonlocal p-Laplacian variational problems on graphs

Yosra Hafiene∗ Jalal M. Fadili∗ Abderrahim Elmoataz∗

Abstract. In this paper, we study a nonlocal variational problem which consists of minimizing in L2

the sum of a quadratic data fidelity and a regularization term corresponding to the Lp-norm of the nonlocal
gradient. In particular, we study convergence of the numerical solution to a discrete version of this nonlocal
variational problem to the unique solution of the continuum one. To do so, we derive an error bound and
highlight the role of the initial data and the kernel governing the nonlocal interactions. When applied
to variational problem on graphs, this error bound allows us to show the consistency of the discretized
variational problem as the number of vertices goes to infinity. More precisely, for networks in convergent
graph sequences (simple and weighted deterministic dense graphs as well as random inhomogeneous graphs),
we prove convergence and provide rate of convergence of solutions for the discrete models to the solution of
the continuum problem as the number of vertices grows.

Key words. Variational problems, nonlocal p-Laplacian, discrete solutions, error bounds, graph limits.
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1 Introduction

1.1 Problem statement

Let Ω ⊂ R be a bounded domain, and without loss of generality we take Ω = [0, 1], and
the kernel K is a symmetric, nonnegative, measurable and bounded function on Ω2. Denote the
nonlocal gradient operator

∇K : u ∈ L2(Ω) 7→
(
K(x, y)1/p(u(y)− u(x))

)
(x,y)∈Ω2

∈ L2(Ω2).

We study the following variational problem for p ∈ [1,+∞[

min
u∈L2(Ω)

{
Eλ(u, g,K)

def
=

1

2λ

∥∥u− g∥∥2

L2(Ω)
+Rp(u,K)

}
. (VPλ,p)

The nonlocal regularizer Rp is defined as

Rp(u,K)
def
=

{
1
2p

∫
Ω2

∣∣∇Ku(x, y)
∣∣pdxdy if | · |p ◦ ∇Ku ∈ L1(Ω2),

+∞ otherwise.
(1)

Here λ is a positive regularization parameter. The chief goal of this paper is to study numerical
approximations of the nonlocal variational problem (VPλ,p), which in turn, will allow us to establish
consistency estimates of the discrete counterpart of this problem on graphs.
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Discretization of continuum models based on nonlocal regularization such as in (VPλ,p) has
proven very effective in various tasks in signal/image/data processing, machine learning and com-
puter vision. Such models have the advantage of better mathematical modeling, connections with
physics and better geometrical approximations.

In many real-world problems where the data in practice is discrete, graphs constitute a natural
structure suited to their representation. Each vertex of the graph corresponds to a datum, and
the edges encode the pairwise relationships or similarities among the data. For the particular case
of images, pixels (represented by nodes) have a specific organization expressed by their spatial
connectivity. Therefore, a typical graph used to represent images is a grid graph. For the case
of unorganized data such as point clouds, a graph can also be built by modeling neighborhood
relationships between the data elements. For these practical reasons, recently, there has been a
surge of interest in adapting and solving nonlocal variational problems such as (VPλ,p) on data
which is represented by arbitrary graphs and networks. Using this framework, problems are directly
expressed in a discrete setting. This way to proceed encompasses local and nonlocal methods in
the same framework by using appropriate graph topologies and edge weights depending on the data
structure and the task to be performed.

Thus, handling such data necessitates a discrete counterpart of (VPλ,p). One can intuitively
propose the following problem

min
un∈Rn

{
En,λ

def
=

1

2λn

∥∥un − gn∥∥2

2
+Rn,p(un,Kn)

}
, (VPλ,pn )

where

Rn,p(un,Kn)
def
=

1

2n2p

n∑
i,j=1

Knij

∣∣unj − uni∣∣p. (2)

Since the discrete nonlocal problem (VPλ,p) was only intuitively inspired as a numerical approxi-
mation to (VPλ,p), several legitimate questions then arise:

(Q.1) Is there any continuum limit to the (unique) minimizer u?n of (VPλ,pn ) as n → +∞ ? If yes,
in what sense ? The graphs considered in (VPλ,pn ) are rather general and it is not obvious at
first glance what a continuum model should be.

(Q.2) What is the rate of convergence to this limit and what is its relation to the (unique) minimizer
u? of (VPλ,p) ?

(Q.3) What are the parameters involved in this convergence rate (in particular the interplay between
n, p and properties of the graph), and what is their influence in the corresponding rate ?

(Q.4) Can this continuum limit help us get better insight into discrete models/algorithms and how
they may be improved ?

It is our primary motivation to answer these questions rigorously. Our perspective stands at the
interface of numerical analysis and data processing.

1.2 Contributions

In this work we focus on studying the consistency of (VPλ,p) in which we investigate function-
als with a nonlocal regularization term corresponding to the p-Laplacian operator. We first give
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a general error estimate in L2(Ω) controlling the error between the continuum extension of the
numerical solution u?n to the discrete variational problem (VPλ,pn ) and its continuum analogue u?

of (VPλ,p). The dependence of the bound on the error induced by discretizing the kernel K and
the initial data g is made explicit. Under very mild conditions on K and g, typically belonging to
a large class of Lipschitz functional spaces (see Section 2.3 for details on these spaces), convergence
rates can be exhibited by plugging Lemma 4.1 and Lemma 2.2 into the bounds of Theorem 4.1.
It is worth pointint out that at this stage, though we have focused on the 1D case, these results
hold true if Ω is any bounded domain in Rd. This would allow for instance the application of our
results to a variety of situations, typically image or point cloud processing (see Section 7 for a de-
tailed example). Here the nodes/vertices of the graph are the pixels/points locations, and the edge
weights model the neighborhood relationships. The neighbourhood can be thought of as spatial or
also include value similarity such as in patch-based methods.

Secondly, we apply these results, using the theory graph limits (for instance graphons), to
dynamical networks on simple and weighted dense graphs to show that the approximation of min-
imizers of the discrete problems on simple and weighted graph sequences converge to those of the
continuum problem. This sets the question that solving a discrete variational problem on graphs
has indeed a continuum limit. Under very mild conditions on K and g, typically belonging to
Lipschitz functional spaces, precise convergence rates can be exhibited. These functional spaces
allow one to cover a large class of graphs (through K) and initial data g, including those func-
tions of bounded variation. For simple graph sequences, we also show how the accuracy of the
approximation depends on the regularity of the boundary of the support of the graph limit.

Finally, building upon these error estimates, we study networks on random inhomogeneous
graphs. We combine them with sharp deviation inequalities to establish nonasymptotic convergence
claims and give the rate of convergence of the discrete solution to its continuum limit with high
probability under the same assumptions on the kernel K and the initial data g.

1.3 Relation to prior work

Graph-based regularization in machine learning Semi-supervised learning with a weighted
graph to capture the geometry of the unlabelled data and graph Laplacian-based regularization is
now popular; see [36] for a review. Pointwise and/or spectral convergence of graph Laplacians were
studied by several authors including [6, 32, 31, 16, 43, 53, 50, 44].

Graph-based p-Laplacian regularization has also found applications in semi-supervised learning
such as clustering; see e.g. [57, 20, 13]. For instance, the authors of [19] obtained iterated pointwise
convergence of rescaled graph p-Laplacian energies to the continuum (local) p-Laplacian as the
fraction of labelled to unlabelled points is vanishingly small. The authors in [25] studied the
consistency of rescaled total variation minimization on random point clouds in Rd for a clustering
application. They considered the total variation on graphs with a radially symmetric and rescaled
kernel K(x, y) = ε−dJ(|x−y|/ε), ε > 0. This corresponds to an instance of Rn,p for d = 1 and p = 1.
Under some assumptions on J , and for an appropriate scaling of ε with respect to n, which makes
the method become localised in the large data limit, they proved that the discrete total variation on
graphs Γ-converges in an appropriate topology, as n→∞, to weighted local total variation, where
the weight function is the density of the point cloud distribution. Motivated by the work of [19],
the authors of [45] studied consistency of the graph p-Laplacian for semi-supervised learning in Rd.
They considered both constrained and penalized minimization of Rn,p with a radially symmetric
and rescaled kernel as explained before. They uncovered regimes of p and ranges on the scaling of ε
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with respect to n for the asymptotic consistency (in the sense of Γ-convergence) to hold. Continuing
along the lines of [19], the work of [14] studies the consistency of Lipschitz semi-supervised learning
(i.e., p→∞) on graphs in the same asymptotic limit. This work proves that Lipschitz learning is
well-posed and showed that the learned functions converge to the solution of an ∞-Laplace type
equation, depending on the choice of weights in the graph.

The Ginzburg-Landau functional has been adapted in [7] to weighted graphs in an application
to machine learning and data clustering. In [26], the authors study Γ-convergence of the graph
based Ginzburg-Landau functional, both the limit for zero diffusive interface parameter or when
the number of graph vertices increases.

However, all the above results are asymptotic and do not provide any error estimates for finite
n.

Nonlocal and graph-based regularization in imaging Several edge-aware filtering schemes
have been proposed in the literature [56, 46, 51, 47]. The nonlocal means filter [12] averages pixels
that can be arbitrary far away, using a similarity measure based on distance between patches.
As shown in [48, 40], these filters can also be interpreted within the variational framework with
nonlocal regularization functionals. They correspond to one step of gradient descent on (VPλ,pn )
with p = 2, where Knij = J(|xi − xj |) is computed from the noisy input image g using either a
distance between the pixels xi and xj [56, 51, 47] or a distance between the patches around xi
and xj [12, 49]. This nonlocal variational denoising can be related to sparsity in an adapted basis
of eigenvector of the nonlocal diffusion operator [17, 49, 40]. This nonlocal variational framework
was also extended to handle several linear inverse problems [48, 27, 11, 28, 20, 21]. In [41, 22, 55],
the authors proposed a variational framework with nonlocal regularizers on graphs to solve linear
inverse problems in imaging where both the image to recover and the graph structure are inferred.

Consistency of the ROF model For local variational problems, the only work on consistency
with error bounds that we are aware of is the one of [54] who studied the numerical approximation
of the Rudin-Osher-Fatemi (ROF) model, which amounts to minimizing in L2(Ω2) the well-known
energy functional

E(v)
def
=

1

2λ

∥∥u− g∥∥2

L2(Ω2)
+
∥∥v∥∥

TV(Ω2)
,

where g ∈ L2(Ω2), and
∥∥ ·∥∥

TV(Ω2)
denotes the total variation seminorm. They bound the difference

between the continuum solution and the solutions to various finite-difference approximations (in-
cluding the upwind scheme) to this model. They gave an error estimate in L2(Ω2) of the difference

between these two solutions and showed that it scales as n
− s

2(s+1) , where s ∈]0, 1] is the smoothness
parameter of the Lipschitz space containing g.

However, to the best of our knowledge, there is no such error bounds in the nonlocal variational
setting. In particular, the problem of the continuum limit and consistency of (VPλ,pn ) with error
estimates is still open in the literature. It is our aim in this work to rigorously settle this question.

1.4 Paper organisation

The rest of this paper is organized as follows. Section 2 collects some notations and pre-
liminaries that we will need in our exposition. In Section 3 we briefly discuss well-posedness of
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problems (VPλ,p) and (VPλ,pn ) and recall some properties of the corresponding minimizers. Sec-
tion 4 is devoted to the main result of the paper (Theorem 4.1) in which we give a bound on the
L2-norm of the difference between the unique minimizers of (VPλ,p) and (VPλ,pn ). In this section,
we also state a key regularity result on the minimizer u? of (VPλ,p). This result is then used to
study networks on deterministic dense graph sequences in Section 5. First we deal with networks
in simple graphs, and show in Corollary 5.1 the influence of the regularity of the boundary of the
support of the graphon on the convergence rate. Secondly, in Section 5.2 we study networks on
weighted graphs. Section 6 deals with networks on random inhomogeneous graphs. We quantify
the rate of convergence with high probability. Numerical results are finally reported in Section 7
to illustrate our theoretical findings.

2 Notations and preliminaries

To provide a self-contained exposition, we will recall two key frameworks our work relies on. The
first is the limit graph theory which is the notion of convergence for graph sequences developed for
the analysis of networks on graphs. The second is that of Lipschitz spaces that will be instrumental
to quantify the rate of convergence in our error bounds.

2.1 Projector and injector

Let n ∈ N∗, and divide Ω into n intervals

Ω
(n)
1 =

[
0,

1

n

[
,Ω

(n)
2 =

[
1

n
,

2

n

[
, . . . ,Ω

(n)
j =

[
j − 1

n
,
j

n

[
, . . . ,Ω(n)

n =

[
n− 1

n
, 1

[
,

and letQn denote the partition of Ω, Qn = {Ω(n)
i , i ∈ [n]

def
= {1, · · · , n}}. Denote Ω

(n)
ij

def
= Ω

(n)
i ×Ω

(n)
j .

Without loss of generality, we assume that the points are equispaced so that |Ω(n)
i | = 1/n, where

|Ω(n)
i | is the measure of Ω

(n)
i . The discussion can be easily extended to non-equispaced points by

appropriate normalization; see Section 6.
We also consider the operator Pn : L1(Ω)→ Rn

(Pnv)i
def
=

1

|Ω(n)
i |

∫
Ω

(n)
i

v(x)dx.

This operator can be also seen as a piecewise constant projector of u on the space of discrete
functions. For simplicity, and with a slight abuse of notation, we keep the same notation for the
projector Pn : L1(Ω2)→ Rn×n.

We assume that the discrete initial data gn and the discrete kernel Kn are constructed as

gn = Png
def
= (gn1, · · · , gnn)> and Kn = PnK

def
= (Knij)1≤i,j≤n, (3)

where

gni = (Png)i =
1

|Ω(n)
i |

∫
Ω

(n)
i

g(x)dx and Knij = (PnK)ij =
1

|Ω(n)
ij |

∫
Ω

(n)
ij

K(x, y)dxdy. (4)

Our aim is to study the relationship between the minimizer u? of Eλ(·, g,K) and the discrete
minimizer u?n of En,λ(·, gn,Kn) and estimate the error between solutions of discrete approximations
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and the solution of the continuum model. But the solution of problem (VPλ,pn ) being discrete, it
is convenient to introduce an intermediate model which is the continuum extension of the discrete
solution. Towards this goal, we consider the piecewise constant injector In of the discrete functions
u?n and gn into L2(Ω), and of Kn into L∞(Ω2), respectively. This injector In is defined as

Inun(x)
def
=

n∑
i=1

uniχΩ
(n)
i

(x),

Ingn(x)
def
=

n∑
i=1

gniχΩ
(n)
i

(x),

InKn(x, y)
def
=

n∑
i=1

n∑
j=1

KnijχΩ
(n)
i ×Ω

(n)
j

(x, y),

(5)

where we recall that χC is the characteristic function of the set C, i.e., takes 0 on C and 1 otherwise.
With these definitions, we have the following well-known properties whose proofs are immediate.

We define the
∥∥ · ∥∥

q,n
norm, for a given vector u = (u1, · · · , un)> ∈ Rn, q ∈ [1,+∞[,

∥∥u∥∥
q,n

=

(
1

n

n∑
i=1

|ui|q
) 1

q

with the usual adaptation for q = +∞.

Lemma 2.1. For a function v ∈ Lq(Ω), q ∈ [1,+∞], we have∥∥Pnv∥∥q,n ≤ ∥∥v∥∥Lq(Ω)
; (6)

and for vn ∈ Rn ∥∥Invn∥∥Lq(Ω)
=
∥∥vn∥∥q,n. (7)

In turn ∥∥InPnv∥∥Lq(Ω)
≤
∥∥v∥∥

Lq(Ω)
. (8)

It is immediate to see that the composition of the operators In and Pn yields the operator

projVn = InPn which is the orthogonal projector on the subspace Vn
def
= Span

{
χ

Ω
(n)
i

: i ∈ [n]
}

of

L1(Ω).

2.2 Graph limit theory

We now briefly review some definitions and results from the theory of graph limits that we
will need later since it is the key of our study of the discrete counterpart of the problem (VPλ,p)
on dense deterministic graphs. We follow considerably [9, 34], in which much more details can be
found.

An undirected graph G = (V (G), E(G)), where V (G) stands for the set of nodes and E(G) ⊂
V (G)× V (G) denotes the edges set, without loops and parallel edges is called simple.

Let Gn = (V (Gn), E(Gn)), n ∈ N∗, be a sequence of dense, finite, and simple graphs, i.e;
|E(Gn)| = O(|V (Gn)|2), where |.| now denotes the cardinality of a set.
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For two simple graphs F and G, hom(F,G) indicates the number of homomorphisms (adjacency-
preserving maps) from V (F ) to V (G). Then, it is worthwhile to normalize the homomorphism
numbers and consider the homomorphism densities

t(F,G) =
hom(F,G)

|V (G)||V (F )| .

(Thus t(F,G) is the probability that a random map of V (F ) into V (G) is a homomorphism).

Definition 2.1. (cf.[34]) The sequence of graphs {Gn}n∈N∗ is called convergent if t(F,Gn) is con-
vergent for every simple graph F .

Convergent graph sequences have a limit object, which can be represented as a measurable
symmetric function K : Ω2 → Ω, here Ω stands for [0, 1]. Such functions are called graphons.

Let K denote the space of all bounded measurable functions K : Ω2 → R such that K(x, y) =
K(y, x) for all x, y ∈ [0, 1]. We also define K0 = {K ∈ K : 0 ≤ K ≤ 1} the set of all graphons.

Proposition 2.1 ([9, Theorem 2.1]). For every convergent sequence of simple graphs, there is
K ∈ K0 such that

t(F,Gn)→ t(F,K)
def
=

∫
Ω|V (F )|

∏
(i,j)∈E(F )

K(xi, xj)dx (9)

for every simple graph F . Moreover, for every K ∈ K0, there is a sequence of graphs {Gn}n∈N∗
satisfying (9).

Graphon K in (9) which is uniquely determined up to measure-preserving transformations, is
the limit of the convergent sequence {Gn}n∈N∗ . Indeed, every finite simple graph Gn such that
V (Gn) = [n] can be represented by a function KGn ∈ K0

KGn(x, y) =

{
1 if (i, j) ∈ E(Gn) and (x, y) ∈ Ω

(n)
ij ,

0 otherwise.

Hence, geometrically, the graphonK can be interpreted as the limit ofKGn for the standard distance
(called the cut-distance), see [9, Theorem 2.3]. An interesting consequence of this interpretation is
that the space of graphs Gn, or equivalently pixel kernels KGn , is not closed under the cut distance.
The space of graphons (larger than the space of graphs) defines the completion of this space.

2.3 Lipschitz spaces

We introduce the Lipschitz spaces Lip(s, Lq(Ωd)), for d ∈ {1, 2}, q ∈ [1,+∞], which contain
functions with, roughly speaking, s ”derivatives” in Lq(Ωd) [18, Ch. 2, Section 9].

Definition 2.2. For F ∈ Lq(Ωd), q ∈ [1,+∞], we define the (first-order) Lq(Ωd) modulus of
smoothness by

ω(F, h)q
def
= sup

z∈Rd,|z|<h

(∫
x,x+z∈Ωd

|F (x + z)− F (x)|q dx
)1/q

. (10)

The Lipschitz spaces Lip(s, Lq(Ωd)) consist of all functions F for which

|F |Lip(s,Lq(Ωd))
def
= sup

h>0
h−sω(F, h)q < +∞.
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We restrict ourselves to values s ∈]0, 1] since for s > 1, only constant functions are in Lip(s, Lq(Ωd)).
It is easy to see that |F |Lip(s,Lq(Ωd)) is a semi-norm. Lip(s, Lq(Ωd)) is endowed with the norm

∥∥F∥∥
Lip(s,Lq(Ω2))

def
=
∥∥F∥∥

Lq(Ω2)
+ |F |Lip(s,Lq(Ωd)) .

The space Lip(s, Lq(Ω2)) is the Besov space Bs
q,∞ [18, Ch. 2, Section 10] which are very popular

in approximation theory. In particular, Lip(s, L1/s(Ωd)) contains the space BV(Ωd) of functions of
bounded variation on Ωd, i.e. the set of functions F ∈ L1(Ωd) such that their variation is finite:

VΩ2(F )
def
= sup

h>0
h−1

d∑
i=1

∫
Ωd
|F (x + hei)− F (x)| dx < +∞,

where ei, i ∈ {1, d} are the coordinate vectors in Rd; see [18, Ch. 2, Lemma 9.2]. Thus Lipschitz
spaces are rich enough to contain functions with both discontinuities and fractal structure.

Let us define the piecewise constant approximation of a function F ∈ Lq(Ω2) (a similar reasoning
holds of course on Ω) on a partition of Ω2 into cells

Ωnij
def
=
{

]xi−1, xi]×]yj−1, yj ] : (i, j) ∈ [n]2
}

of maximal mesh size δ(n)
def
= max

(i,j)∈[n]2
max(|xi − xi−1| , |yj − yj−1|),

Fn(x, y)
def
=

n∑
i,j=1

FnijχΩnij (x, y), Fnij =
1

|Ωnij |

∫
Ωnij

F (x, y)dxdy.

One may have recognized in these expressions non-equispaced versions of the projector and injector
defined above.

We now state the following error bounds whose proofs use standard arguments from approxi-
mation theory; see [30, Section 6.2.1] for details.

Lemma 2.2. There exists a positive constant Cs, depending only on s, such that for all F ∈
Lip(s, Lq(Ωd)), d ∈ {1, 2}, s ∈]0, 1], q ∈ [1,+∞],

‖F − Fn‖Lq(Ωd) ≤ Csδ(n)s |F |Lip(s,Lq(Ωd)) . (11)

Let p ∈]1,+∞[. If, in addition, F ∈ L∞(Ωd), then

‖F − Fn‖Lp(Ωd) ≤ C
(
p, q, s, ‖F‖L∞(Ωd)

)
δ(n)smin(1,q/p). (12)

where C
(
p, q, s, ‖F‖L∞(Ωd)

)
is a positive constant depending only on p, q, s and ‖F‖L∞(Ωd).

3 Well posedness

We start by proving existence and uniqueness of the minimizer for (VPλ,p) and (VPλ,pn ).
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Theorem 3.1. Suppose that p ∈ [1,+∞[, K is a nonnegative measurable mapping, and g ∈ L2(Ω).
Then, Eλ(·, g,K) has a unique minimizer in{

u ∈ L2(Ω) : Rp(u,K) ≤ (2λ)−1
∥∥g∥∥2

L2(Ω)

}
,

and En,λ(·, gn,Kn) has a unique minimizer.

Proof : The arguments are standard (coercivity, lower semicontinuity and strict convexity) but
we provide a self-contained proof (only for Eλ(·, g,K)). First observe that from [3, Proposition 9.32
and Proposition 9.5], we infer that Rp(·,K) in (1) is proper convex and lower semicontinuous. Let
{u?k}k∈N be a minimizing sequence in L2(Ω). By optimality and Jensen’s inequality, we have∥∥u?k∥∥2

L2(Ω)
≤ 2

(
2λEλ(u?k, g,K) +

∥∥g∥∥2

L2(Ω)

)
≤ 2

(
2λEλ(0, g,K) +

∥∥g∥∥2

L2(Ω)

)
= 4
∥∥g∥∥2

L2(Ω)
< +∞.

(13)

Moreover

Rp(u
?
k,K) ≤ Eλ(u?k, g,K) ≤ Eλ(0, g,K) =

1

2λ

∥∥g∥∥2

L2(Ω)
< +∞. (14)

Thus
∥∥u?k∥∥L2(Ω)

is bounded uniformly in k so that the Banach-Alaoglu theorem for L2(Ω) and

compactness provide a weakly convergent subsequence (not relabelled) with a limit ū ∈ L2(Ω).
By lower semicontinuity of the L2(Ω) norm and that of Rp(·,K), ū must be a minimizer. The
uniqueness follows from strict convexity of ‖·‖2L2(Ω) and convexity of Rp(·,K). �

Remark 3.1. Theorem 3.1 can be extended to linear inverse problems where the data fidelity
in Eλ(0, g,K) is replaced by

∥∥g − Au
∥∥2

L2(Σ)
, and where A is a continuous linear operator. The

case where A : L2(Ω) → L2(Σ) is injective is immediate. The general case is more intricate and
would necessitate appropriate assumptions on A and a Poincaré-type inequality. For instance, if
A : Lp(Ω) → L2(Σ), and the kernel of A intersects constant functions trivially, then using the
Poincaré inequality in [1, Proposition 6.19], one can show existence and uniqueness in Lp(Ω), and
thus in L2(Ω) if p ≥ 2. We omit the details here as this is beyond the scope of the paper.

We now turn to provide useful characterization of the minimizers u? and u?n. We stress that the
minimization problem (VPλ,p) that we deal with is considered over L2(Ω) (L2(Ω) ⊂ Lp(Ω) only for
p ∈ [1, 2]) over which the function Rp(·,K) may not be finite (see (1)). In correspondence, we will
consider the subdifferential of the proper lower semicontinuous convex function Rp(·,K) on L2(Ω)
defined as

∂Rp(u,K)
def
=
{
η ∈ L2(Ω) : Rp(v,K) ≥ Rp(u,K) +

〈
η, v − u

〉
L2(Ω)

, ∀v ∈ L2(Ω)
}
,

and ∂Rp(u,K) = ∅ if Rp(u,K) = +∞.

Lemma 3.1. Suppose that the assumptions of Theorem 3.1 hold. Then u? is the unique solution
to (VPλ,p) if and only if

u? = proxλRp(·,K)(g)
def
= (I + λ∂Rp(·,K))−1 (g). (15)
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Moreover, the proximal mapping proxλRp(·,K) is non-expansive on L2(Ω), i.e., for g1, g2 ∈ L2(Ω),

the corresponding minimizers u?1, u
?
2 ∈ L2(Ω) obey∥∥u?1 − u?2∥∥L2(Ω)

≤
∥∥g1 − g2

∥∥
L2(Ω)

. (16)

A similar claim is easily obtained for (VPλ,pn ) as well.

Proof : The proof is again classical. By the first order optimality condition and since the
squared L2(Ω)-norm is Fréchet differentiable, u? is the unique solution to (VPλ,p) if, and only if
the following monotone inclusion holds

0 ∈ u? − g + λ∂Rp(u
?,K).

The first claim then follows. Writing the subgradient inequality for u?1 and u?2 we have

Rp(u
?
2,K) ≥ Rp(u?1,K) +

1

λ

〈
g1 − u?1, u?2 − u?1

〉
L2(Ω)

Rp(u
?
1,K) ≥ Rp(u?2,K) +

1

λ

〈
g2 − u?2, u?1 − u?2

〉
L2(Ω)

.

Adding these two inequalities we get∥∥u?2 − u?1∥∥2

L2(Ω)
≤
〈
u?2 − u?1, g2 − g1

〉
L2(Ω)

,

and we conclude upon applying Cauchy-Schwartz inequality. �

We now formally derive the directional derivative of Rp(·,K) when p ∈]1,+∞[. For this the
symmetry assumption on K is needed as well. Let h ∈ L2(Ω). Then the following derivative exists

d

dt
Rp(u+ th,K)|t=0 =

1

2

∫
Ω2

K(x, y) |u(y)− u(x)|p−2 (u(y)− u(x))(v(y)− v(x))dxdy.

Since K is symmetric, we apply the integration by parts formula in [30, Lemma A.1] (or split the
integral in two terms and apply a change of variable (x, y) 7→ (y, x)), to conclude that

d

dt
Rp(u+ th,K)|t=0 = −

∫
Ω2

K(x, y) |u(y)− u(x)|p−2 (u(y)− u(x))v(x)dxdy =
〈
∆K
p , v

〉
L2(Ω)

,

where

∆K
p = −

∫
Ω2

K(x, y) |u(y)− u(x)|p−2 (u(y)− u(x))dy

is precisely the nonlocal p-Laplacian operator, see [1, 30]. This shows that under the above as-
sumptions, Rp(·,K) is Fréchet differentiable (hence Gâteaux differentiable) on L2(Ω) with Fréchet
gradient ∆K

p .

10



4 Error estimate for the discrete variational problem

4.1 Main result

Our goal is to bound the difference between the unique minimizer of the continuum functional
Eλ(·, g,K) defined on L2(Ω) and the continuum extension by In of that of En,λ(·, gn,Kn). We are
now ready to state the main result of this section.

Theorem 4.1. Suppose that g ∈ L2(Ω) and K is a nonnegative measurable, symmetric and bounded
mapping. Let u? and u?n be the unique minimizers of (VPλ,p) and (VPλ,pn ), respectively. Then, we
have the following error bounds.

(i) If p ∈ [1, 2], then

∥∥Inu?n − u?∥∥2

L2(Ω)
≤ C

(∥∥g − Ingn∥∥2

L2(Ω)
+
∥∥g − Ingn∥∥L2(Ω)

+ λ
∥∥K − InKn

∥∥
L

2
2−p (Ω2)

+ λ
∥∥u? − InPnu?∥∥

L
2

3−p (Ω)

)
,

(17)

where C is a positive constant independent of n and λ.

(ii) If inf(x,y)∈Ω2 K(x, y) ≥ κ > 0, then for any p ∈ [1,+∞[,∥∥Inu?n − u?∥∥2

L2(Ω)
≤ C

(∥∥g − Ingn∥∥2

L2(Ω)
+
∥∥g − Ingn∥∥L2(Ω)

+
∥∥K − InKn

∥∥
L∞(Ω2)

+ λ1/p
∥∥u? − InPnu?∥∥Lp(Ω)

)
,

(18)

where C is a positive constant independent of n.

A few remarks are in order before proceeding to the proof.

Remark 4.1.

(i) Observe that 2/(3− p) ≤ p for p ∈ [1, 2]. Thus by standard embeddings of Lq(Ω) spaces for Ω
bounded, we have for p ∈ [1, 2]∥∥K − InKn

∥∥
L

2
2−p (Ω2)

≤
∥∥K − InKn

∥∥
L∞(Ω2)

and
∥∥u? − InPnu?∥∥

L
2

3−p (Ω)
≤
∥∥u? − InPnu?∥∥Lp(Ω)

,

which means that our bound in (17) not only does not require an extra-assumption on K but
is also sharper than (18). The assumption on K in the second statement seems difficult to
remove or weaken. Whether this is possible or not is an open question that we leave to a
future work.

(ii) We have made the dependence of the bound on λ explicit on purpose. To see our motivation,
assume that g = u†+ε, where u† ∈ L2(Ω) is some true function and ε ∈ L2(Ω) is some noise.
Assume that ∂Rp(u

†,K) 6= ∅, and let η ∈ ∂Rp(u†,K), which is known in the inverse problem
literature as a dual multiplier or certificate [52]. Then∥∥Inu?n − u†∥∥L2(Ω)

≤
∥∥Inu?n − u?∥∥L2(Ω)

+
∥∥u? − u†∥∥

L2(Ω)
.

11



From [42, Proposition 3.41], one can show that∥∥u? − u†∥∥
L2(Ω)

≤ 2
(
‖ε‖L2(Ω) + λ ‖η‖L2(Ω)

)
.

With the standard choice λ ∼ ‖ε‖L2(Ω) we have
∥∥u? − u†∥∥

L2(Ω)
= O(‖ε‖L2(Ω)), and thus∥∥u? − u†∥∥

L2(Ω)
→ 0 as ‖ε‖L2(Ω) → 0. Combining this with Theorem 4.1 and the fact that∥∥g − Ingn∥∥L2(Ω)

≤
∥∥u† − InPnu†∥∥L2(Ω)

+ 2
∥∥ε∥∥

L2(Ω)
,

one obtains an error bound of
∥∥Inu?n−u†∥∥L2(Ω)

as function of ‖ε‖L2(Ω) and the discretization

error of u† and K. This error bound is dominated by that of u† and K as ‖ε‖L2(Ω) → 0 fast
enough. Having said this, as our focus here is on numerical consistency, in the rest of the
paper, the dependence of the error bound on λ will be absorbed in the constants.

Proof :

(i) Since Eλ(·, g,K) is a strongly convex function, we have

1

2λ

∥∥Inu?n − u?∥∥2

L2(Ω)

≤ Eλ(Inu
?
n, g,K)− Eλ(u?, g,K)

≤
(
Eλ(Inu

?
n, g,K)− En,λ(u?n, gn,Kn)

)
−
(
Eλ(u?, g,K)− En,λ(u?n, gn,Kn)

)
.

(19)

A closer inspection of Eλ and En,λ and equality (7) allows to assert that

Eλ(Inu
?
n, Ingn, InKn) = En,λ(u?n, gn,Kn). (20)

Now, applying the Cauchy-Schwarz inequality and using (20), we have

Eλ(Inu
?
n, g,K) =

1

2λ

∥∥Inu?n − g∥∥2

L2(Ω)
+Rp(Inu

?
n,K)

=
1

2λ

∥∥Inu?n − Ingn∥∥2

L2(Ω)
+

1

λ

〈
Inu

?
n − Ingn, Ingn − g

〉
L2(Ω)

+
1

2λ

∥∥Ingn − g∥∥2

L2(Ω)
+Rp(Inu

?
n,K)

≤ 1

2λ

∥∥Inu?n − Ingn∥∥2

L2(Ω)
+

1

λ

∥∥Inu?n − Ingn∥∥L2(Ω)

∥∥Ingn − g∥∥L2(Ω)

+
1

2λ

∥∥Ingn − g∥∥2

L2(Ω)
+Rp(Inu

?
n,K)

≤ En,λ(u?n, gn,Kn) +
1

2λ

∥∥Ingn − g∥∥2

L2(Ω)

+
1

λ

∥∥Inu?n − Ingn∥∥L2(Ω)

∥∥Ingn − g∥∥L2(Ω)
+
(
Rp(Inu

?
n,K)−Rp(Inu?n, InKn)

)
≤ En,λ(u?n, gn,Kn) +

1

2λ

∥∥Ingn − g∥∥2

L2(Ω)

+
1

λ

∥∥Inu?n − Ingn∥∥L2(Ω)

∥∥Ingn − g∥∥L2(Ω)

+
1

2p

∣∣∣∣∫
Ω2

(
K(x, y)− InKn(x, y)

)∣∣Inu?n(y)− Inu?n(x)
∣∣pdxdy∣∣∣∣ .

(21)
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As we suppose that g ∈ L2(Ω) and since u?n is the (unique) minimizer of En,λ(·, gn,Kn), it is
immediate to see, using (20) and (8), that

1

2λ

∥∥Inu?n − Ingn∥∥2

L2(Ω)
≤ En,λ(u?n, gn,Kn)

≤ En,λ(0, gn,Kn) = Eλ(0, Ingn, InKn)

=
1

2λ

∥∥Ingn∥∥2

L2(Ω)
=

1

2λ

∥∥InPng∥∥2

L2(Ω)
≤ 1

2λ

∥∥g∥∥2

L2(Ω)
< +∞,

and thus ∥∥Inu?n − Ingn∥∥L2(Ω)
≤
∥∥g∥∥

L2(Ω)

def
= C1. (22)

Since p ∈ [1, 2], by Hölder and triangle inequalities, and (13) applied to Inu
?
n, we have that

∣∣∣∣∫
Ω2

(
K(x, y)− InKn(x, y)

)∣∣Inu?n(y)− Inu?n(x)
∣∣pdxdy∣∣∣∣

≤
∥∥K − InKn

∥∥
L

2
2−p (Ω2)

(∫
Ω2

∣∣Inu?n(y)− Inu?n(x)
∣∣2dxdy)p/2

≤ 2p
∥∥Inu?n∥∥pL2(Ω)

∥∥K − InKn

∥∥
L

2
2−p (Ω2)

≤ 22p
∥∥InPng∥∥pL2(Ω)

∥∥K − InKn

∥∥
L

2
2−p (Ω2)

≤ 22p
∥∥g∥∥p

L2(Ω)

∥∥K − InKn

∥∥
L

2
2−p (Ω2)

= C2

∥∥K − InKn

∥∥
L

2
2−p (Ω2)

,

(23)

where C2
def
= 22pCp1 .

We now turn to bounding the second term on the right-hand side of (19). Using (8) and the
fact that u?n is the (unique) minimizer of (VPλ,pn ), we have

Eλ(Inu
?
n, Ingn, InKn) ≤ Eλ(InPnu

?, Ingn, InKn)

=
1

2λ

∥∥InPnu? − InPng∥∥2

L2(Ω)
+Rp(InPnu

?, InKn)

≤ 1

2λ

∥∥u? − g∥∥2

L2(Ω)
+Rp(u

?,K) +Rp(InPnu
?, InKn)−Rp(u?,K)

≤ Eλ(u?, g,K) + (Rp(InPnu
?,K)−Rp(u?,K))

+ (Rp(InPnu
?, InKn)−Rp(InPnu?,K)).

(24)

We bound the second term on the right-hand side of (24) by applying the mean value theorem
on [a(x, y), b(x, y)] to the function t ∈ R+ 7→ tp with a(x, y) = |u?(y) − u?(x)| and b(x, y) =

|InPnu?(y)−InPnu?(x)|. Let η(x, y)
def
= ρa(x, y)+(1−ρ)b(x, y), ρ ∈ [0, 1], be an intermediate
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value between a(x, y) and b(x, y). We then get∣∣Rp(InPnu?,K)−Rp(u?,K)
∣∣

=
∣∣ ∫

Ω2

K(x, y)
(∣∣InPnu?(y)− InPnu?(x)

∣∣p − ∣∣u?(y)− u?(x)
∣∣p) dxdy∣∣

= p
∣∣ ∫

Ω2

K(x, y)η(x, y)p−1
(∣∣InPnu?(y)− InPnu?(x)

∣∣− ∣∣u?(y)− u?(x)
∣∣) dxdy∣∣

≤ pC3

∫
Ω2

η(x, y)p−1
∣∣ (InPnu?(y)− u?(y))− (InPnu

?(x)− u?(x))
∣∣dxdy

≤ 2pC3

∫
Ω2

η(x, y)p−1
∣∣InPnu?(x)− u?(x)

∣∣dxdy,

(25)

where we used the triangle inequality, symmetry after the change of variable (x, y) 7→ (y, x),

and boundedness of K, say
∥∥K∥∥

L∞(Ω2)

def
= C3. Thus using Hölder and Jensen inequalities as

well as (8), and arguing as in (23), leads to∣∣Rp(InPnu?,K)−Rp(u?,K)
∣∣

≤ 2pC3

∥∥η∥∥p−1

L2(Ω2)

∥∥u? − InPnu?∥∥
L

2
3−p (Ω)

≤ 2pC3

(
ρ
∥∥a∥∥

L2(Ω2)
+ (1− ρ)

∥∥b∥∥
L2(Ω2)

)p−1 ∥∥u? − InPnu?∥∥
L

2
3−p (Ω)

≤ 2pC3

∥∥a∥∥p−1

L2(Ω2)

∥∥u? − InPnu?∥∥
L

2
3−p (Ω)

≤ 22p−1pC3

∥∥g∥∥p−1

L2(Ω)

∥∥u? − InPnu?∥∥
L

2
3−p (Ω)

= C4

∥∥u? − InPnu?∥∥
L

2
3−p (Ω)

(26)

where C4
def
= 22p−1pCp−1

1 C3.

To bound the last term on the right-hand side of (24), we follow the same steps as for
establishing (23) and get

|Rp(InPnu?, InKn)−Rp(InPnu?,K)|

≤
∫

Ω2

∣∣K(x, y)− InKn(x, y)
∣∣∣∣InPnu?(y)− InPnu?(x)

∣∣pdxdy
≤ C2

∥∥K − InKn

∥∥
L

2
2−p (Ω2)

.

(27)

Finally, plugging (21), (22), (23), (24), (26) and (27) into (19), we get the desired result.

(ii) The case p ≥ 2 follows the same proof steps, except that now, we need to modify inequali-
ties (23), (26) and (27) which do not hold anymore.

Under our assumption on K, and using (14), (23) now reads∫
Ω2

∣∣K(x, y)− InKn(x, y)
∣∣∣∣Inu?n(y)− Inu?n(x)

∣∣pdxdy
≤ κ−1

∥∥K − InKn

∥∥
L∞(Ω2)

∫
Ω2

InKn(x, y)
∣∣Inu?n(y)− Inu?n(x)

∣∣pdxdy
= κ−1

∥∥K − InKn

∥∥
L∞(Ω2)

Rp(Inu
?
n, InKn)

≤ (2λκ)−1C2
1

∥∥K − InKn

∥∥
L∞(Ω2)

,

(28)
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where C1 =
∥∥g∥∥

L2(Ω)
as in the proof of (i).

We embark from the last line of (25) to which we apply Hölder inequality and then Jensen
inequality as well as (8) to get∣∣Rp(InPnu?,K)−Rp(u?,K)

∣∣
≤ 2pC3

∥∥η∥∥(p−1)

Lp(Ω2)

∥∥u? − InPnu?∥∥Lp(Ω)

≤ 2pC3

∥∥a∥∥(p−1)

Lp(Ω2)

∥∥u? − InPnu?∥∥Lp(Ω)

= 2pC3

(∫
Ω2

∣∣u?(y)− u?(x)
∣∣pdxdy)(p−1)/p ∥∥u? − InPnu?∥∥Lp(Ω)

.

Now, by assumption on K and using again (14), we obtain∣∣Rp(InPnu?,K)−Rp(u?,K)
∣∣

≤ 2κ(1−p)/ppC3

(∫
Ω2

K(x, y)
∣∣u?(y)− u?(x)

∣∣pdxdy)(p−1)/p ∥∥u? − InPnu?∥∥Lp(Ω)

= 2κ(1−p)/ppC3 (Rp(u
?,K))(p−1)/p

∥∥u? − InPnu?∥∥Lp(Ω)

≤ 2(2λκ)(1−p)/ppC3C
2(p−1)/p
1

∥∥u? − InPnu?∥∥Lp(Ω)
.

(29)

To get the new form of (27), we use (8), (14) and the assumption on K to arrive at

|Rp(InPnu?, InKn)−Rp(InPnu?,K)|

≤
∫

Ω2

∣∣K(x, y)− InKn(x, y)
∣∣∣∣InPnu?(y)− InPnu?(x)

∣∣pdxdy
≤
∥∥K − InKn

∥∥
L∞(Ω2)

∫
Ω2

∣∣u?(y)− u?(x)
∣∣pdxdy

≤ κ−1
∥∥K − InKn

∥∥
L∞(Ω2)

∫
Ω2

K(x, y)
∣∣u?(y)− u?(x)

∣∣pdxdy
= κ−1

∥∥K − InKn

∥∥
L∞(Ω2)

Rp(u
?,K)

≤ (2λκ)−1C2
1

∥∥K − InKn

∥∥
L∞(Ω2)

.

(30)

Plugging now (21), (22), (24), (28), (29) and (30) into (19), we conclude the proof.

�

4.2 Regularity of the minimizer

The error bound of Theorem 4.1 contain three terms: one which corresponds to the error in
discretizing g, the second is the discretization error of the kernel K, and the last term reflects the
discretization error of the minimizer u? of the continuum problem (VPλ,p). Thus, this form is not
convenient to transfer our bounds to networks on graph and establish convergence rates. Clearly,
we need a control on the term

∥∥InPnu?−u?∥∥Lq(Ω)
on the right-hand side of (17)-(18). This is what
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we are about to do in the following key regularity lemma. In a nutshell, it states that if the kernel
K only depends on |x− y| (as is the case for many kernels used in data processing), then as soon
as the initial data g belongs to some Lipschitz space, so does the minimizer u?.

Lemma 4.1. Suppose g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)) with s ∈]0, 1] and q ∈ [1,+∞]. Suppose fur-
thermore that K(x, y) = J(|x − y|), where J is a nonnegative bounded measurable mapping on
Ω.

(i) If q ∈ [1, 2], then u? ∈ Lip(sq/2, Lq(Ω)).

(ii) If q ∈ [2,+∞], then u? ∈ Lip(s, L2(Ω)).

The boundedness assumption on g can be removed for q ≥ 2.

Proof : We denote the torus T def
= R/2Z. For any function u ∈ L2(Ω), we denote by ū ∈ L2(T)

its periodic extension such that

ū(x) =

{
u(x) if x ∈ [0, 1],

u(2− x) if x ∈]1, 2],
(31)

In the rest of the proof, we use letters with bars to indicate functions defined on T.

Let us define

Ēλ/2(v̄, ḡ, J̄)
def
=

1

λ

∥∥v̄ − ḡ∥∥2

L2(T)
+ R̄p(v̄, J̄)

where

R̄p(v̄, J̄)
def
=

1

2p

∫
T2

J̄(|x− y|)
∣∣v̄(y)− v̄(x)

∣∣pdxdy.
Consider the following minimization problem

min
v̄∈L2(T)

Ēλ/2(v̄, ḡ, J̄), (32)

which also has a unique minimizer by arguments similar to those of Theorem 3.1. Since u? is the
unique minimizer of (VPλ,p), we have, using (31),

Ēλ/2(u?, ḡ, J̄) =
2

λ

∥∥u? − g∥∥2

L2(Ω)
+ 4Rp(u

?, J)

= 4Eλ(u?, g, J)

< 4Eλ(v, g, J),∀v 6= u?

= Ēλ/2(v̄, ḡ, J̄),∀v̄ 6= u?,

(33)

which shows that u? is the unique minimizer of (32). Then, we have via Lemma 3.1

u? = proxλ/2R̄p(·,J̄)(ḡ). (34)

We define the translation operator

(Thv)(x) = v(x+ h),∀h ∈ R.
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Now, using our assumption on the kernel K, that is K(x, y) = J(|x − y|) (then invariant by
translation), and periodicity of the functions on T, we have

Ēλ/2(v̄, Thḡ, J̄) =
1

λ

∥∥v̄ − Thḡ∥∥2

L2(T)
+ R̄p(v̄, J̄)

=
1

λ

∥∥Th(T−hv̄ − ḡ)
∥∥2

L2(T)

+

∫
T2

J̄(|x− y|)
∣∣v̄((y + h)− h)− v̄((x+ h)− h)

∣∣pdxdy
=

1

λ

∥∥T−hv̄ − ḡ∥∥2

L2(T)
+

∫
T2

J̄(|x− y|)
∣∣T−hv̄(y)− T−hv̄(x)

∣∣pdxdy
= Ēλ/2(T−hv̄, ḡ, J̄).

This implies that the unique minimizer v̄? of Ēλ/2(·, Thḡ, J̄) given by (see Lemma 3.1)

v̄? = proxλ/2R̄p(·,J̄)(Thḡ), (35)

is also the unique minimizer of Ēλ/2(T−h·, ḡ, J̄). But since Ēλ/2(·, ḡ, J̄) has a unique minimizer u?,
we deduce from (34) and (35) that

Th proxλ/2R̄p(·,J̄)(ḡ) = proxλ/2R̄p(·,J̄)(Thḡ). (36)

That is, the proximal mapping of λ/2R̄p(·, J̄) commutes with translation.
We now split the two cases of q.

(i) For q ∈ [1, 2]: combining (34), (36), (16), [30, Lemma C.1] and that L2(Ω) ⊂ Lq(Ω), we have∥∥Thu? − u?∥∥Lq(T)
=
∥∥proxλ/2R̄p(·,J̄)(Thḡ)− proxλ/2R̄p(·,J̄)(ḡ)

∥∥
Lq(T)

≤ 21/q−1/2
∥∥proxλ/2R̄p(·,J̄)(Thḡ)− proxλ/2R̄p(·,J̄)(ḡ)

∥∥
L2(T)

≤ 21/q−1/2
∥∥Thḡ − ḡ∥∥L2(T)

≤ 21/q−1/2
(
2
∥∥g∥∥

L∞(Ω)

)1−q/2∥∥Thḡ − ḡ∥∥q/2Lq(T)

= 21/2
(∥∥g∥∥

L∞(Ω)

)1−q/2
= C1

∥∥Thḡ − ḡ∥∥q/2Lq(T)
.

(37)

Let Ωh
def
= {x ∈ Ω : x+ h ∈ Ω}. Recalling the modulus of smoothness in (10), we have

w(u?, t)q
def
= sup
|h|<t

∥∥Thu? − u?∥∥Lq(Ωh)
≤ C2 sup

|h|<t

∥∥Thu? − u?∥∥Lq(T)

≤ C1C2

(
sup
|h|<t

∥∥Thḡ − ḡ∥∥Lq(T)

)q/2
= C1C2w(ḡ, t)q/2q

≤ C1C2(C3w(g, t)q)
q/2.

(38)

We get the last inequality by applying the Whitney extension theorem [18, Ch. 6, Theo-
rem 4.1]. Invoking Definition 2.2, there exists a constant C > 0 such that

|u?|Lip(sq/2,Lq(Ω))
def
= sup

t>0
t−sq/2w(u?, t)q ≤ C

(
sup
t>0

t−sw(g, t)q

)q/2
≤ C |g|q/2Lip(s,Lq(Ω)) , (39)
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whence the claim follows after observing that u? ∈ L2(Ω) ⊂ Lq(Ω).

(ii) For q ∈ [2,+∞], we combine (34), (36), (16), and that now Lq(Ω) ⊂ L2(Ω), to get∥∥Thu? − u?∥∥L2(T)
≤
∥∥Thḡ − ḡ∥∥L2(T)

≤ 21/2−1/q
∥∥Thḡ − ḡ∥∥Lq(T)

.

The rest of the proof is similar to that of (i).

�

In view of the regularity Lemma 4.1 and Theorem 4.1, one can derive convergence rates but only
for p ∈ [1, 2]. Indeed, the approximation bounds of Lemma 2.2 cannot be applied to u? − InPnu?
for p ≥ 2 since the bound in Theorem 4.1(ii) is in the Lp(Ω) norm while Lemma 4.1 proves that
u? is only in Lip(sq/2, L2(Ω)). In particular, one cannot invoke (12) since there is no guarantee
that u? is bounded. This is the reason why in the rest of the paper, we will only focus on the case
p ∈ [1, 2].

5 Application to dense deterministic graph sequences

The graph models we will consider here were used first in [37] and then [30] to study networks
on graphs for the evolution Cauchy problem, governed by the p-Laplacian in [30]. Throughout the
section, we suppose that p ∈ [1, 2].

5.1 Networks on simple graphs

We first consider the case of a sequence of simple graphs converging to a {0, 1} graphon. Briefly
speaking, we define a sequence of simple graphs Gn = (V (Gn), E(Gn)) such that V (Gn) = [n] and

E(Gn) =
{

(i, j) ∈ [n]2 : Ω
(n)
ij ∩ supp(K) 6= ∅

}
,

where supp(K) is the closure of the support of K

supp(K) =
{

(x, y) ∈ Ω2 : K(x, y) 6= 0
}
. (40)

As we have mentioned in Section 2.2, the kernel K represents the corresponding graph limit, that
is the limit as n→∞ of the function KGn : Ω2 → {0, 1} such that

KGn(x, y) =

{
1, if (i, j) ∈ E(Gn) and (x, y) ∈ Ω

(n)
ij ,

0 otherwise.

As n→∞, {KGn}n∈N∗ converges to the {0, 1}-valued mapping K whose support is defined by (40).

With this construction, the discrete counterpart of (VPλ,p) on the graph Gn is then given by

min
un∈Rn

En,λ(un, gn,Kn)
def
=

1

2λn

∥∥un − gn∥∥2

2
+

1

2pn2

∑
(i,j)∈E(Gn)

∣∣unj − uni∣∣p
 , (VPλ,ps,n)

where the initial data gn is given by (4).
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For this model, InKn(x, y) is the piecewise constant function such that for (x, y) ∈ Ω
(n)
ij , (i, j) ∈

[n]2

InKn(x, y) =


1

|Ω(n)
ij |

∫
Ω

(n)
ij

K(x, y)dxdy if Ω
(n)
ij ∩ supp(K) 6= ∅,

0 otherwise.

(41)

Relying on what we did in [30], the rate of convergence of the solution of the discrete problem to
the solution of the limiting problem depends on the regularity of the boundary bd(supp(K)) of the
closure of the support. Following [37], we recall the upper box-counting (or Minkowski-Bouligand)
dimension of bd(supp(K)) as a subset of R2:

ρ
def
= dimB(bd(supp(K))) = lim sup

δ→0

logNδ(bd(supp(K)))

− log δ
, (42)

where Nδ(bd(supp(K))) is the number of cells of a (δ × δ)-mesh that intersect bd(supp(K)) (see
[24]).

Theorem 5.1. Assume that p ∈ [1, 2], g ∈ L2(Ω). Let u? and u?n be the unique minimizers of
(VPλ,p) and (VPλ,ps,n), respectively. Then, the following hold.

(i) We have ∥∥Inu?n − u?∥∥L2(Ω)
−→

n→+∞
0.

(ii) For p ∈ [1, 2[: assume moreover g ∈ L∞(Ω)∩Lip(s, Lq(Ω)), with s ∈]0, 1] and q ∈ [2/(3−p), 2],
that ρ ∈ [0, 2[ and that K(x, y) = J(|x − y|), ∀(x, y) ∈ Ω2, with J a nonnegative bounded
measurable mapping on Ω. Then for any ε > 0 there exists N(ε) ∈ N such that for any
n ≥ N(ε) ∥∥Inu?n − u?∥∥2

L2(Ω)
≤ Cn−min(sq/2,(2−p)(1− ρ+ε2

)),

where C is a positive constant independent of n.

Proof :

(i) In view of (4), by the Lebesgue differentiation theorem (see e.g. [39, Theorem 3.4.4]), we
have

Ingn(x) −→
n→∞

g(x), InPnu
?(x) −→

n→∞
u?(x) and InKn(x, y) −→

n→∞
K(x, y)

almost everywhere on Ω and Ω2, respectively. Combining this with Fatou’s lemma and (8),
we have ∥∥g∥∥2

L2(Ω)
=

∫
Ω

∣∣∣ lim
n→∞

Ingn(x)
∣∣∣2 dx =

∫
Ω

lim inf
n→∞

|Ingn(x)|2dx

≤ lim inf
n→∞

∥∥Ingn∥∥2

L2(Ω)

≤ lim sup
n→∞

∥∥InPng∥∥2

L2(Ω)
≤
∥∥g∥∥2

L2(Ω)
,
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which entails that limn→∞
∥∥Ingn∥∥L2(Ω)

=
∥∥g∥∥

L2(Ω)
. Similarly, we have

lim
n→∞

∥∥InPnu?∥∥
L

2
3−p (Ω)

=
∥∥u?∥∥

L
2

3−p (Ω)
.

Since g ∈ L2(Ω), u? ∈ L2(Ω) ⊂ L
2

3−p (Ω) (Theorem 3.1), we are in position to apply the
Riesz-Scheffé lemma [33, Lemma 2] to deduce that∥∥Ingn − g∥∥L2(Ω)

−→
n→∞

0 and
∥∥InPnu? − u?∥∥

L
2

3−p (Ω)
−→
n→∞

0.

Observe that for simple graphs, InKn is not an orthogonal projection of K (see (41)) and
thus, the above argument proof used for g and u? does not hold. We argue however using the
fact that K is bounded, |Ω| < ∞, and that ∀n and (x, y) ∈ Ω2, |InKn(x, y)| ≤

∥∥K∥∥
L∞(Ω)

.

We can thus invoke the dominated convergence theorem to get that∥∥InKn −K
∥∥
L

2
2−p (Ω2)

−→
n→∞

0.

Passing to the limit in (17), we get the claim.

(ii) In the following C is any positive constant independent of n. Since g ∈ L∞(Ω)∩Lip(s, Lq(Ω)),

q ≤ 2, and we are dealing with a uniform partition of Ω (|Ω(n)
i | = 1/n, ∀i ∈ [n]), we get using

inequality (12) that ∥∥Ingn − g∥∥L2(Ω)
≤ Cn−smin(1,q/2) = Cn−sq/2. (43)

By Lemma 4.1(i), we have u? ∈ Lip(sq/2, Lq(Ω)), and it follows from (11) and the fact that
q ≥ 2/(3− p) that∥∥InPnu? − u?∥∥

L
2

3−p (Ω)
≤
∥∥InPnu? − u?∥∥Lq(Ω)

≤ Cn−sq/2. (44)

Combining (43) and (44), we get∥∥Ingn − g∥∥2

L2(Ω)
+
∥∥Ingn − g∥∥L2(Ω)

+
∥∥InPnu? − u?∥∥

L
2

3−p (Ω)
≤ C

(
n−sq + n−sq/2

)
≤ Cn−sq/2.

(45)

It remains to bound
∥∥K − InKn

∥∥
L

2
2−p (Ω2)

. For that, consider the set of discrete cells Ω
(n)
ij

overlying the boundary of the support of K

S(n) =
{

(i, j) ∈ [n]2 : Ω
(n)
ij ∩ bd(supp(K)) 6= ∅

}
and C(n) =

∣∣S(n)
∣∣.

For any ε > 0 and sufficiently large n, we have

C(n) ≤ nρ+ε.

It is easy to see that K and InKn coincide almost everywhere on cells Ω
(n)
ij such that (i, j) /∈

S(n). Thus, for any ε > 0 and all sufficiently large n, we have∥∥K − InKn

∥∥ 2
2−p

L
2

2−p (Ω2)
≤ C(n)n−2 ≤ n−2(1− ρ+ε

2
). (46)

Inserting (45) and (46) into (17), the desired result follows.

�
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5.2 Networks on weighted graphs

We now turn to the more general class of deterministic weighted graph sequences. The kernel K
is used to assign weights to the edges of the graphs considered below, we allow only positive weights.
These weights Knij are obtained by averaging K over the cells in the partition Qn following (4),
and InKn is given by (5).

Proceeding similarly to the proof of statement (i) of Theorem 5.1, we conclude immediately
that ∥∥Inu?n − u∥∥L2(Ω)

−→
n→+∞

0.

We are rather interested now in quantifying the rate of convergence in (17). To do so, we need to
add some regularity assumptions on the kernel K.

Theorem 5.2. Let p ∈ [1, 2[, and assume that g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)), with s ∈]0, 1] and
q ∈ [2/(3− p), 2]. Suppose moreover that K(x, y) = J(|x− y|), ∀(x, y) ∈ Ω2, with J a nonnegative
bounded measurable mapping on Ω. Let u? and u?n be the unique minimizers of (VPλ,p) and (VPλ,pn ),
respectively. Then, the following error bounds hold.

(i) If p ∈ [1, 2[, K ∈ Lip(s′, Lq
′
(Ω2)) and (s′, q′) ∈]0, 1]× [1,+∞[, then∥∥Inu?n − u?∥∥2

L2(Ω)
≤ Cn−min(sq/2,s′,s′q′(1−p/2)). (47)

where C is a positive constant independent of n.

In particular, if g ∈ L∞(Ω) ∩ BV(Ω) and K ∈ L∞(Ω2) ∩ BV(Ω2), then∥∥Inu?n − u∥∥2

L2(Ω)
= O

(
np/2−1

)
. (48)

(ii) If p ∈ [1, 2], K ∈ Lip(s′, Lq
′
(Ω2)) and (s′, q′) ∈]0, 1]× [2/(2− p),+∞], then∥∥Inu?n − u?∥∥2

L2(Ω)
≤ Cn−min(sq/2,s′). (49)

where C is a positive constant independent of n.

In particular, if g ∈ L∞(Ω) ∩ BV(Ω) then∥∥Inu?n − u∥∥2

L2(Ω)
= O

(
n−min(1/2,s′)

)
. (50)

Proof : In the following C is any positive constant independent of n. Under the setting of the
theorem, for all cases, (45) still holds. It remains to bound

∥∥K − InKn

∥∥
L

2
2−p (Ω2)

. This is achieved

using (12) for case (i) and (11) for case (ii), which yields
∥∥K − InKn

∥∥
L

2
2−p (Ω2)

≤ Cn−s′min(1,q′(1−p/2)) for case (i),∥∥K − InKn

∥∥
L

2
2−p (Ω2)

≤
∥∥K − InKn

∥∥
Lq′ (Ω2)

≤ Cn−s′ for case (ii).
(51)

Plugging (45) and (51) into (17), the bounds (47) and (49) follow.
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We know that BV(Ω) ⊂ Lip(1/2, L2(Ω)). Thus setting s = s′ = 1/2 and q = q′ = 2 in (47), and
observing that 1− p/2 ∈ [0, 1/2], the bound (48) follows. That of (50) is immediate. �

When p = 1 (i.e., nonlocal total variation), g ∈ L∞(Ω) ∩ Lip(s, L2(Ω)) and K is a sufficiently
smooth function, one can infer from Theorem 5.2 that the solution to the discrete problem (VPλ,pn )
converges to that of the continuum problem (VPλ,p) at the rate O(n−s). Moreover, if g ∈ L∞(Ω)∩
BV(Ω), then the best convergence rate is O(n−1/2) which is attained precisely for p = 1.

6 Application to random inhomogeneous graph sequences

We now turn to applying our bounds of Theorem 5.2 to networks on random inhomogeneous
graphs.

We start with the description of the random graph model we will use. This random graph
model is motivated by the construction of inhomogeneous random graphs in [5, 8]. It is generated
as follows.

Definition 6.1. Fix n ∈ N∗ and let K be a symmetric measurable function on Ω2. Generate the

graph Gn = (V (Gn), E(Gn))
def
= Gqn(n,K) as follows:

1) Generate n independent and identically distributed (i.i.d.) random variables X
def
= (X1, · · · ,Xn)

from the uniform distribution on Ω. Let
{
X(i)

}n
i=1

be the order statistics of the random vector
X, i.e. X(i) is the i-th smallest value.

2) Conditionally on X, join each pair (i, j) ∈ [n]2 of vertices independently, with probability

qn
∧
KX
nij, i.e. for every (i, j) ∈ [n]2, i 6= j,

P ((i, j) ∈ E(Gn)|X) = qn
∧
KX
nij , (52)

where
∧
KX
nij

def
= min

(
1∣∣ΩX
nij

∣∣ ∫
ΩX
nij

K(x, y)dxdy, 1/qn

)
, (53)

and
ΩX
nij

def
= ]X(i−1),X(i)]×]X(j−1),X(j)] (54)

where qn is nonnegative and uniformly bounded in n.

A graph Gqn(n,K) generated according to this procedure is called a K-random inhomogeneous graph
generated by a random sequence X.

We denote by x = (x1, · · · ,xn) the realization of X. To lighten the notation, we also denote

ΩX
ni

def
= ]X(i−1),X(i)], Ωx

ni
def
= ]x(i−1),x(i)], and Ωx

nij
def
= ]x(i−1),x(i)]×]x(j−1),x(j)] i, j ∈ [n]. (55)

As the realization of the random vector X is fixed, we define

∧
Kx
nij

def
= min

(
1∣∣Ωx
nij

∣∣∫
Ωx
nij

K(x, y)dxdy, 1/qn

)
, ∀(i, j) ∈ [n]2, i 6= j. (56)
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In the rest of the paper, the following random variables will be useful. Let
Λn = {Λnij}(i,j)∈[n]2,i 6=j be a collection of independent random variables such that qnΛnij follows a

Bernoulli distribution with parameter qn
∧
Kx
nij . We consider the independent random variables Υij

such that the distribution of qnΥij conditionally on X = x is that of qnΛnij . Thus qnΥij follows

a Bernoulli distribution with parameter E
(
qn
∧
KX
nij

)
, where E(·) is the expectation operator (here

with respect to the distribution of X).

We put the following assumptions on the parameters of the graph sequence {Gqn(n,K)}n∈N∗ .

Assumption 6.1. We suppose that qn and K are such that the following hold:

(A.1) Gqn(n,K) converges almost surely and its limit is the graphon K ∈ L∞(Ω2);

(A.2) sup
n≥1

qn < +∞.

Graph models that verify (A.1)-(A.2) are discussed in [29, Proposition 2.1]. They encompass
the dense random graph model (i.e., with Θ(n2) edges) extensively studied in [35, 10], for which
qn ≥ c > 0. This graph model allows also to generate sparse (but not too sparse) graph models;
see [8]. That is graphs with o(n2) but ω(n) edges, i.e., that the average degree tends to infinity
with n. For example, one can take qn = exp(− log(n)1−δ) = o(1), where δ ∈]0, 1[.

6.1 Networks on graphs generated by deterministic nodes

In order to make our reasoning simpler, it will be convenient to assume first that the sequence
X is deterministic. Capitalizing on this result, we will then deal with the totally random model
(i.e.; generated by random nodes) in Section 6.2 by a simple marginalization argument combined
with additional assumptions to get the convergence and quantify the corresponding rate. As we
have mentioned before, we shall denote x = (x1, · · · ,xn) as we assume that the sequence of nodes
is deterministic. Relying on this notation, we define the parameter δ(n) as the maximal size of the
spacings of x, i.e.,

δ(n) = max
i∈[n]

∣∣x(i) − x(i−1)

∣∣. (57)

Next, we consider the discrete counterpart of (VPλ,p) on the graph Gn

min
un∈Rn

En,λ(un, gn,Kn)
def
=

1

2λn

∥∥un − gn∥∥2

2
+

1

2pn2

n∑
i,j=1

Λnij
∣∣unj − uni∣∣p

 , (VPλ,pd,n)

where

gi =
1∣∣Ωx
ni

∣∣ ∫
Ωx
ni

g(x)dx.

Theorem 6.1. Suppose that p ∈ [1, 2[, g ∈ L2(Ω) and K is a nonnegative measurable, symmetric

and bounded mapping. Let u? and u?n be the unique minimizers of (VPλ,p) and (VPλ,pd,n), respectively.

Let p′ = 2
2−p .
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(i) There exist positive constants C and C1 that do not depend on n, such that for any β > 0

∥∥Inu?n − u?∥∥2

L2(Ω)
≤ C

(β log(n)

n
+

1

q
(p′−1)
n np′/2

)1/p′

+
∥∥g − Ingn∥∥2

L2(Ω)

+
∥∥g − Ingn∥∥L2(Ω)

+
∥∥K − In ∧Kx

n

∥∥
Lp′ (Ω2)

+
∥∥u? − InPnu?∥∥

L
2

3−p (Ω)

)
,

(58)

with probability at least 1− 2n−C1q
2p′−1
n β.

(ii) Assume moreover that g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)), with s ∈]0, 1] and q ∈ [2/(3 − p), 2], that
K(x, y) = J(|x− y|), ∀(x, y) ∈ Ω2, with J a nonnegative bounded measurable mapping on Ω,
and K ∈ Lip(s′, Lq

′
(Ω2)), (s′, q′) ∈]0, 1] × [p′,+∞] and qn

∥∥K∥∥
L∞(Ω2)

≤ 1. Then there exist

positive constants C and C1 that do not depend on n, such that for any β > 0

∥∥Inu?n − u?∥∥2

L2(Ω)
≤ C

(β log(n)

n
+

1

q
(p′−1)
n np′/2

)1/p′

+ δ(n)−min(sq/2,s′)

 , (59)

with probability at least 1− 2n−C1q
2p′−1
n β.

Before delving into the proof, some remarks are in order.

Remark 6.1.

(i) The first term in the bounds (58)-(59) can be replaced by

β1/p′
(

log(n)

n

)1/p′

+
1

q
(1−1/p′)
n n1/2

.

(ii) The last term in the latter bound can be rewritten as

n−1/2q−(1−1/p′)
n =

{
(qnn)−1/2 if p′ = 2,

q
1/p′
n (q2

nn)−1/2 if p′ > 2.
(60)

Thus, if infn≥1 qn > 0, as is the case when the graph is dense, then the term (60) is in the
order of n−1/2 with probability at least 1 − n−cβ for some c > 0. If qn is allowed to be o(1),
i.e., sparse graphs, then (60) is o(1) if either qnn→ +∞ for p′ = 2, or q2

nn→ +∞ for p′ > 2.

The probability of success is at least 1−e−C1β log(n)1−δ provided that qn = log(n)−δ/(2p
′−1), with

δ ∈ [0, 1[. All these conditions on qn are fulfilled by the inhomogenous graph model discussed
above.

(iii) In fact, if infn≥1 qn ≥ c > 0, then we have
∑

n≥1 n
−C1q

2p−1
n β ≤

∑
n≥1 n

−C1c2p−1β < +∞
provided that β > (C1c

2p−1)−1. Thus, if this holds, invoking the (first) Borel-Cantelli lemma,
it follows that the bounds of Theorem 6.1 hold almost surely. The same reasoning carries over
for the bounds of Theorem 6.2.
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Proof : In the following C is any positive constant independent of n.

(i) We start by arguing as in the proof of Theorem 4.1. Similarly to (19), we now have

1

2λ

∥∥Inu?n − u?∥∥2

L2(Ω)
≤
(
Eλ(Inu

?
n, g,K)− En,λ(u?n, gn,Λn)

)
−
(
Eλ(u?, g,K)− En,λ(u?n, gn,Λn)

)
. (61)

The first term can be bounded similarly to (21)-(22) to get

Eλ(Inu
?
n, g,K)− En,λ(u?n, gn,Λn)

≤ C

(∥∥Ingn − g∥∥2

L2(Ω)
+
∥∥Ingn − g∥∥L2(Ω)

+

∣∣∣∣∫
Ω2

(
K(x, y)− InΛn(x, y)

)∣∣Inu?n(y)− Inu?n(x)
∣∣pdxdy∣∣∣∣

)

≤ C

(∥∥Ingn − g∥∥2

L2(Ω)
+
∥∥Ingn − g∥∥L2(Ω)

+

∣∣∣∣∫
Ω2

(
K(x, y)− In

∧
Kx
n(x, y)

)∣∣Inu?n(y)− Inu?n(x)
∣∣pdxdy∣∣∣∣

+

∣∣∣∣∫
Ω2

(
In
∧
Kx
n(x, y)− InΛn(x, y)

)∣∣Inu?n(y)− Inu?n(x)
∣∣pdxdy∣∣∣∣

)
.

(62)

The second term in (62) is O

(∥∥K − In ∧Kx
n

∥∥
Lp′ (Ω2)

)
, see (23). For the last term, we have

using Jensen and Hölder inequalities,∣∣∣∣∫
Ω2

(
In
∧
Kx
n(x, y)− InΛn(x, y)

)∣∣Inu?n(y)− Inu?n(x)
∣∣pdxdy∣∣∣∣

≤ 2p−1

(∫
Ω

∣∣∣∣∫
Ω

(
In
∧
Kx
n(x, y)− InΛn(x, y)

)
dy

∣∣∣∣ ∣∣Inu?n(x)
∣∣pdx

+

∫
Ω

∣∣∣∣∫
Ω

(
In
∧
Kx
n(x, y)− InΛn(x, y)

)
dx

∣∣∣∣ ∣∣Inu?n(y)
∣∣pdy)

≤ C

((∫
Ω

∣∣∣∣∫
Ω

(
In
∧
Kx
n(x, y)− InΛn(x, y)

)
dy

∣∣∣∣p′ dx
)1/p′

+

(∫
Ω

∣∣∣∣∫
Ω

(
In
∧
Kx
n(x, y)− InΛn(x, y)

)
dx

∣∣∣∣p′ dy
)1/p′ )

= C
(∥∥Zn∥∥p′,n +

∥∥Wn

∥∥
p′,n

)
,

(63)

where

Zni
def
=

1

n

n∑
j=1

(
∧
Kx
nij − Λnij

)
and Wnj

def
=

1

n

n∑
i=1

(
∧
Kx
nij − Λnij

)
.
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By virtue of [29, Lemma A.1], together with (A.2) and the fact that p′ ≥ 2, there exists a
positive constant C1, such that for any β > 0

P
(
‖Zn‖p′,n ≥ ε

)
≤ n−C1q

2p′−1
n β,

with

ε =

(
β

log(n)

n
+

1

q
(p′−1)
n np′/2

)1/p′

. (64)

The same bound also holds for
∥∥Wn

∥∥
p′,n

. A union bound then leads to∥∥Zn∥∥p′,n +
∥∥Wn

∥∥
p′,n
≤ 2ε (65)

with probability at least 1− 2n−C1q
2p′−1
n β.

Let us now turn to the second term in (61). Using (8) and the fact that u?n is the unique

minimizer of (VPλ,pd,n), we have

Eλ(Inu
?
n, Ingn, InΛn)− Eλ(u?, g,K) ≤ (Rp(InPnu

?,K)−Rp(u?,K))

+
(
Rp(InPnu

?, In
∧
Kx
n)−Rp(InPnu?,K)

)
+
(
Rp(InPnu

?, InΛn)−Rp(InPnu?, In
∧
Kx
n)
)
.

(66)

The first term is bounded as in (26), which yields∣∣Rp(InPnu?,K)−Rp(u?,K)
∣∣ ≤ C∥∥u? − InPnu?∥∥

L
2

3−p (Ω)
. (67)

The second term follows from (27)∣∣Rp(InPnu?, In ∧Kx
n)−Rp(InPnu?,K)

∣∣ ≤ C∥∥K − In ∧Kx
n

∥∥
Lp′ (Ω2)

. (68)

The last term is upper-bounded exactly as in (63) and (65).

Inserting (62), (63), (65), (66), (67) and (68) into (61), we get the claimed bound.

(ii) Insert (45) and (51) into (58) after replacing 1/n by δ(n).

�

6.2 Networks on graphs generated by random nodes

Let us turn now to the totally random model. The discrete counterpart of (VPλ,p) on the
totally random sequence of graphs {Gqn}n∈N∗ is given by

min
un∈Rn

En,λ(un, gn,Kn)
def
=

1

2λn

∥∥un − gn∥∥2

2
+

1

n2

n∑
i,j=1

Υij

∣∣unj − uni∣∣p
 , (VPλ,pr,n)
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where we recall that the random variables Υij are independent with qnΥij following the Bernoulli

distribution with parameter E
(
qn
∧
KX
nij

)
defined above.

Observe that for the totally random model, δ(n) is a random variable. Thus, we have to derive
a bound on it. In [29, Lemma 3.2], it was shown that

δ(n) ≤ t log(n)

n
, (69)

with probability at least 1− n−t, where t ∈]0, e[.
Combining this bound with Theorem 6.1 (after conditioning and integrating) applied to the

totally random sequence {Gqn}n∈N∗ , we get the following result.

Theorem 6.2. Suppose that p ∈ [1, 2[, g ∈ L2(Ω) and K is a nonnegative measurable, symmetric
and bounded mapping. Let u? and u?n be the unique minimizers of (VPλ,p) and (VPλ,pr,n), respectively.

Let p′ = 2
2−p .

(i) There exist positive constants C and C1 that do not depend on n, such that for any β > 0

∥∥Inu?n − u?∥∥2

L2(Ω)
≤ C

(β log(n)

n
+

1

q
(p′−1)
n np′/2

)1/p′

+
∥∥g − Ingn∥∥2

L2(Ω)

+
∥∥g − Ingn∥∥L2(Ω)

+
∥∥K − In ∧KX

n

∥∥
Lp′ (Ω2)

+
∥∥u? − InPnu?∥∥

L
2

3−p (Ω)

)
,

(70)

with probability at least 1− 2n−C1q
2p′−1
n β.

(ii) Assume moreover that g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)), with s ∈]0, 1] and q ∈ [2/(3 − p), 2], that
K(x, y) = J(|x− y|), ∀(x, y) ∈ Ω2, with J a nonnegative bounded measurable mapping on Ω,
that K ∈ Lip(s′, Lq

′
(Ω2)), (s′, q′) ∈]0, 1] × [p′,+∞] and qn

∥∥K∥∥
L∞(Ω2)

≤ 1. Then there exist

positive constants C and C1 that do not depend on n, such that for any β > 0 and t ∈]0, e[

∥∥Inu?n − u?∥∥2

L2(Ω)
≤ C

(β log(n)

n
+

1

q
(p′−1)
n np′/2

)1/p′

+

(
t
log(n)

n

)min(sq/2,s′)
 , (71)

with probability at least 1−
(
2n−C1q

2p′−1
n β + n−t

)
.

Proof : Again, C will be any positive constant independent of n.

(i) Let

ε′ = C

(β log(n)

n
+ C

1

q
(p′−1)
n np′/2

)1/p′

+
∥∥g − Ingn∥∥2

L2(Ω)
+
∥∥g − Ingn∥∥L2(Ω)

+
∥∥K − In ∧KX

n

∥∥
Lp′ (Ω2)

+
∥∥u? − InPnu?∥∥

L
2

3−p (Ω)

)
.
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Using (58), and independence of this bound from x, we have

P
(∥∥Inu?n − u?∥∥2

L2(Ω)
≥ ε′

)
=

1∣∣Ω∣∣n
∫

Ωn
P
(∥∥Inu?n − u?∥∥2

L2(Ω)
≥ ε′|X = x

)
dx

≤ 1∣∣Ω∣∣n
∫

Ωn
2n−C1q

2p′−1
n βdx

= 2n−C1q
2p′−1
n β.

(ii) Recall ε in (64) and κ = C
(
t log(n)

n

)min(sq/2,s′)
. Denote the event

A1 :

{∥∥g − Ingn∥∥2

L2(Ω)
+
∥∥g − Ingn∥∥L2(Ω)

+
∥∥K − In ∧

KX
n

∥∥
Lp′ (Ω2)

+
∥∥u? − InPnu

?
∥∥
L

2
3−p (Ω)

≤ κ
}
.

In view of (45), (51) and (69), and that under our assumptions
∧
KX
n = KX

n , we have

P (A1) ≥ P
(
δ(n) ≤ t log(n)

n

)
≥ 1− n−t.

Let the event

A2 :
{∥∥Zn∥∥p′,n +

∥∥Wn

∥∥
p′,n
≤ 2ε

}
,

and denote Aci the complement of the event Ai. It then follows from (65) and the union bound
that

P
(∥∥Inu?n − u?∥∥2

L2(Ω)
≤ 2Cε+ κ

)
≥ P (A1 ∩A2) = 1− P (Ac1 ∪Ac2)

≥ 1−
2∑
i=1

P (Aci ) ≥ 1−
(

2n−C1q
2p′−1
n β + n−t

)
,

which leads to the claimed result.

�

When p = 1 (i.e., nonlocal total variation), g ∈ L∞(Ω) ∩ Lip(s, L2(Ω)) and K is a sufficiently
smooth function, one can deduce from Theorem 6.2 that with high probability, the solution to
the discrete problem (VPλ,pr,n) converges to that of the continuum problem (VPλ,p) at the rate

O

((
log(n)
n

)−min(1/2,s)
)

. Compared to the deterministic graph model, there is overhead due to the

randomness of the graph model which is captured in the rate and the extra-logarithmic factor.

7 Numerical results

In this section, we will apply the variational regularization problem (VPλ,pn ) to a few applica-
tions, and illustrate numerically our bounds.
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7.1 Minimization algorithm

The algorithm we will describe in this subsection is valid for any p ∈ [1,+∞]1. The minimization
problem (VPλ,pn ) can be rewritten in the following form

min
un∈Rn

1

2

∥∥un − gn∥∥2

2
+
λn
p

∥∥∇Knun∥∥pp, (72)

where λn = λ/(2n), ∇Kn is the (nonlocal) weighted gradient operator with weights Knij , defined
as

∇Kn :Rn → Rn×n

un 7→ Vn, Vnij = K
1/p
nij (unj − uni), ∀(i, j) ∈ [n]2.

This is a linear operator whose adjoint, the (nonlocal) weighted divergence operator denoted divKn .
It is easy to show that

divKn :Rn×n → Rn

Vn 7→ un, uni =
n∑

m=1

K
1/p
nmiVnmi −

n∑
j=1

K
1/p
nij Vnij , ∀i ∈ [n].

Problem (72) can be easily solved using standard duality-based first-order algorithms. For this we
follow [23].

By standard conjugacy calculus, the Fenchel-Rockafellar dual problem of (72) reads

min
Vn∈Rn×n

1

2

∥∥gn − divKnVn
∥∥2

2
+
λn
q

∥∥Vn/λn∥∥qq, (73)

where q is the Hölder dual of p, i.e. 1/p + 1/q = 1. One can show with standard arguments that
the dual problem (73) has a convex compact set of minimizers for any p ∈ [1,+∞[. Moreover, the
unique solution u?n to the primal problem (72) can be recovered from any dual solution V ?

n as

u?n = gn − divKnV
?
n .

It remains now to solve (73). The latter can be solved with the (accelerated) FISTA iterative
scheme [38, 4, 15] which reads in this case

W k
n = V k

n +
k − 1

k + b
(V k
n − V k−1

n )

V k+1
n = proxγ λn

q
‖·/λn‖qq

(
W k
n + γ∇Kn

(
gn − divKn(W k

n )
))

uk+1
n = gn − divKnV

k+1
n ,

(74)

where γ ∈
]
0,
(

sup‖un‖2=1 ‖∇Knun‖2
)−1]

, b > 2, and we recall that proxτF is the proximal mapping
of the proper lsc convex function F with τ > 0, i.e.,

proxτF (W ) = Argmin
V ∈Rn×n

1

2

∥∥V −W∥∥2

2
+ τF (V ).

The convergence guarantees of scheme (74) are summarized in the following proposition.

1Obviously limp→+∞
1
p

∥∥ · ∥∥p
p
= ι{un∈Rn: ‖un‖∞≤1}.
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Proposition 7.1. The primal iterates ukn converge to u?n, the unique minimizer of (VPλ,pn ), at the
rate ∥∥ukn − u?n∥∥2

= o(1/k).

Proof : Combine [23, Theorem 2] and [2, Theorem 1.1]. �

Let us turn to the computation of the proximal mapping proxγ λn
q
‖·/λn‖qq

. Since ‖·‖qq is separable,

one has that

proxγ λn
q
‖·/λn‖qq

(W ) =

(
proxγ λn

q
|·/λn|q(Wij)

)
(i,j)∈[n]2

.

Moreover, as |·|q is an even function on R, proxγ λn
q
|·/λn|q is an odd mapping on R, that is,

proxγ λn
q
|·/λn|q(Wij) = proxγ λn

q
|·/λn|q(|Wij |) sign (Wij) .

In a nutshell, one has to compute proxγ λn
q
|·/λn|q(t) for t ∈ R+. We distinguish different situations

depending on the value of q:

• q = +∞ (i.e., p = 1): this case amounts to computing the orthogonal projector on [−λn, λn],
which reads

t ∈ R+ 7→ proj[−λn,λn](t) = min
(
t, λn

)
.

• q = 1 (i.e., p = +∞): this case corresponds to the well-known soft-thresholding operator,
which is given by

t ∈ R+ 7→ proxγ|·|(t) = max
(
t− γ, 0

)
.

• q = 2 (i.e., p = 2): it is immediate to see that

proxγ/(2λn)|·|2(t) =
t

1 + γ/λn
.

• q ∈]1,+∞[: in this case, as | · |q is differentiable, the proximal point proxγ λn
q
|·/λn|q(t) is the

unique solution α? on R+ of the non-linear equation

α− t+ γαp−1/λn = 0.

7.2 Experimental setup

We apply the scheme (74) to solve (72) in two applicative settings with nonlocal regularization
on (weighted) graphs. The first one pertains to denoising of a function defined on a 2D point
cloud, and the second one to signal denoising. In the first setting, the nodes of the graph are the
points in the cloud and uni is the value of point/vertex index i. For signal denoising, each graph
node correspond to a signal sample, and uni is the signal value at node/sample index i. We chose
the nearest neighbour graph with the standard weighting kernel e−|x−y| when |x − y| ≤ δ and 0
otherwise, where x and y are the 2D spatial coordinates of the points for the point cloud2, and
sample index for the signal case.

2For the 2D case, (x,y) are not to be confused with the ”coordinates” (x, y) of the graphon on the continuum,
though there is a bijection from one to another.
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Figure 1: Original point cloud with N = 2500 points.

Application to point cloud denoising The original point cloud used in our numerical exper-
iments is shown in Figure 1. It consists of N = 2500 points that are not on a regular grid. The
function on this point cloud, denoted u0

N , is piecewise-constant taking 5 values (5 clusters) in [5].
A noisy observation gN (see Figure 2(a)) is then generated by adding a white Gaussian noise of
standard deviation 0.5 to u0

N . Given the piecewise-constancy of u0
N , we solved (72) with the natural

choice p = 1. The result is shown in Figure 2(b). Figure 2(c) displays the evolution of
∥∥ukN −u?N∥∥2

as a function of the iteration counter k, which confirms the theoretical rate o(1/k) predicted above.

To illustrate our consistency results, u? is needed while it is not known in our case. Therefore, we
argue as follows. We consider the continuum extension of INu

?
N as a reference and compute

∥∥Inu?n−
INu

?
N

∥∥
L2(Ω)

for varying n� N . By the triangle inequality,
∥∥Inu?n−INu?N∥∥L2(Ω)

is clearly dominated

by
∥∥Inu?n−u?∥∥L2(Ω)

. Thus, for each value of n ∈ [100, N/8], n nodes are drawn uniformly at random

in [N ] and gn is generated, which is a sampled version of gN at those nodes. This is replicated 20
times. For each replication, we solve (72) with gn and the same regularization parameter λ, and we

compute the mean across the 20 replications of the squared-error
∥∥Inu?n − INu?N∥∥2

L2(Ω)
. The result

is depicted in Figure 2(d). The gray-shaded area corresponds to one standard deviation of the error
over the 20 replications. One indeed observes that the average error decreases at a rate consistent
with the O(n−1/2) predicted by our results (see discussion after Theorem 5.2 with s = 1/2).

Application to signal denoising In this experiment, we choose a piecewise-constant signal
shown in Figure 3(a) for N = 1000 together with its noisy version gN with additive white Gaussian
noise of standard deviation 0.05. Figure 3(b) depicts the denoised signal u?N by solving (72) with
p = 1 and hand-tuned λ. Figure 3(c) also confirms the o(1/k) rate predicted above on

∥∥ukN −u?N∥∥2
.

We now illustrate the consistency bound result on a random sequence of graphs
{Gqn(n,K)}n∈[100,N/4] generated according to Definition 6.1 with qn = 1. For each value of

n ∈ [100, N/4], n nodes are drawn uniformly at random in [N ], and gn is generated, which is
a sampled version of gN at those nodes. n2 independent Bernoulli variables Λnij each with param-
eter Knij are also generated. This is replicated 20 times. For each replication, we solve (72) with
gn and the same regularization parameter λ, and we compute the mean across the 20 replications
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Figure 2: Results for point cloud denoising with p = 1. (a) Noisy point cloud. (b) Recovered point
cloud by solving (72). (c) Primal convergence criterion

∥∥ukn − u?n∥∥2
as a function of the iteration

counter k. (d) Mean error
∥∥Inu?n − INu?N∥∥2

L2(Ω)
across replications as a function of n.

of the squared-error
∥∥Inu?n − INu?N∥∥2

L2(Ω)
. The result is reported in Figure 3(d). The gray-shaded

area indicates one standard deviation of the error over the 20 replications. Again, the average error
decreases in agreement with the rate O

(
(log(n)/n)1/2

)
predicted by Theorem 6.2.
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[40] G. Peyré. Image processing with nonlocal spectral bases. SIAM J. Multiscale Modeling and
Simulation, 7(2):703–730, 2008.
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