
HAL Id: hal-02268136
https://hal.science/hal-02268136

Submitted on 20 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TamperNN: Efficient Tampering Detection of Deployed
Neural Nets

Erwan Le Merrer, Gilles Trédan

To cite this version:
Erwan Le Merrer, Gilles Trédan. TamperNN: Efficient Tampering Detection of Deployed Neural Nets.
ISSRE 2019 - IEEE 30th International Symposium on Software Reliability Engineering, Oct 2019,
Berlin, Germany. pp.1-11, �10.1109/ISSRE.2019.00049�. �hal-02268136�

https://hal.science/hal-02268136
https://hal.archives-ouvertes.fr

TamperNN: Efficient Tampering Detection
of Deployed Neural Nets

Erwan Le Merrer∗, Gilles Trédan†
∗Univ Rennes, Inria, CNRS, Irisa

erwan.le-merrer@inria.fr
†LAAS/CNRS
gtredan@laas.fr

Abstract—Neural networks are powering the deployment of
embedded devices and Internet of Things. Applications range
from personal assistants to critical ones such as self-driving cars.
It has been shown recently that models obtained from neural
nets can be trojaned; an attacker can then trigger an arbitrary
model behavior facing crafted inputs. This has a critical impact
on the security and reliability of those deployed devices.

We introduce novel algorithms to detect the tampering with
deployed models, classifiers in particular. In the remote inter-
action setup we consider, the proposed strategy is to identify
markers of the model input space that are likely to change
class if the model is attacked, allowing a user to detect a
possible tampering. This setup makes our proposal compatible
with a wide range of scenarios, such as embedded models, or
models exposed through prediction APIs. We experiment those
tampering detection algorithms on the canonical MNIST dataset,
over three different types of neural nets, and facing five different
attacks (trojaning, quantization, fine-tuning, compression and
watermarking). We then validate over five large models (VGG16,
VGG19, ResNet, MobileNet, DenseNet) with a state of the
art dataset (VGGFace2), and report results demonstrating the
possibility of an efficient detection of model tampering.

I. INTRODUCTION

Neural network-based models are increasingly embedded
into systems that take autonomous decisions in place of
persons, such as in self-driving cars [28], [36] or in robots [16].
The value of those embedded models is then not only due to
the investments for research and development, but also because
of their critical interaction with their environment. First attacks
on neural-based classifiers [6] aimed at subverting their predic-
tions, by crafting inputs that are yet still perceived by humans
as unmodified. This leads to questions about the security of
applications embedding them in the real world [17], and more
generally initiated the interest of the security community for
those problems [26]. Those adversarial attacks are confined
in modifying the data inputs to send to a neural model. Yet,
very recently, other types of attacks were shown to operate by
modifying the model itself, by embedding information in the
model weight matrices. This is the case of new watermarking
techniques, that aim at embedding watermarks into the model,
in order to prove model ownership [19], [23], or of trojaning
attacks [4], [21] that empowers the attacker to trigger specific
model behaviors.

The fact that neural network weights are by themselves
implicit (i.e., they do not convey explicit behavior upon

Fig. 1. Illustration of a model tampering and its impact on the decision
boundaries. We use the TensorFlow playground application for illustration;
this toy dataset is fitted by a three hidden layer neural network (blue or
yellow data inputs must be covered by their own color, ideally). The weights
of solely the first layer have been modified (by removing −0.1 from them),
to simulate an attack on the model. We observe slight changes of decision
boundaries, that lead to misclassify some input data. This paper leverages
such misclassifications for detecting the tampering attacks.

inspection as opposed to the source code or formal specifi-
cation of a software component) expose applications to novel
attack surfaces. It is obvious that those attacks will have
increasingly important impact in the future, and that the model
creators – such as companies – have a tremendous interest
in preventing the tampering with their models, specially in
embedded applications [28], [29].

In this context, we are interested in providing a first
approach to detect the tampering of a neural network-based
model that is deployed on a device by the model creator.
We stress that one can consider as an attack any action on
a model (i.e., on its weights) that was not performed by
the creator or the operator of that model. To illustrate the
practical effect of the tampering with a model, we present
in Figure 1 a scenario of a fitted model (leftmost image)
over two classes of inputs (blue and yellow dots). After
a slight manipulation of few weights of the model (attack
described in the Figure caption), we can observe the resulting
changes in the model decision boundaries on the rightmost
image. The attack caused a movement of boundaries, that had
the consequence at inference time to return some erroneous
predictions (e.g., blue inputs in the yellow area are now
predicted as part of the wrong class). Those wrong predictions
might cause safety issues for the end-user, and are thus due
to the attack on the originally deployed model.

1

A. Practical illustration of an attack: a trojaned classifier

We motivate our work through a practical attack, using the
technique proposed by Liu et al. in [21]. The goal of the
attack is to inject a malicious behaviour into an original model,
that was already trained and was functional for its original
purpose. The technique consists in generating a trojan trigger,
and then to retrain the model with synthesized datasets in order
to embed that trigger into the model. The trigger is designed to
be added to a benign input, such as an image, so that this new
input triggers a classification into the class that was targeted
by the attacker. This results in a biased classification triggered
on demand, with potentially important security consequences.
The model is then made available as an online service or
placed onto a compromised device; its behavior facing user
requests appears legitimate. The attacker triggers the trojan at
will by sending to the model an input containing the trojan
trigger.

A face recognition model, known as the VGG Face model
[27], has been trojaned with the technique in [21] and made
available for download [5] by the authors of the attack. We
access both this model and its original version. The observed
modifications in the weights do not indicate, a priori, to which
extent the accuracy has been modified (as depicted in Figure
1 where blue inputs get the orange label and vice-versa), as
neural-based models have highly implicit behaviours. One then
has to pass a test dataset through the classification API to
assess the accuracy change. The authors report an average
degradation of only 2.35% over the original test data, for the
VGG Face trojaned model. In other words, both models exhibit
a highly similar behaviour (i.e., similar classifications) when
facing benign inputs. As a countermeasure to distinguish both
models, an approach is compute such a variation or, in a more
straightforward approach, to compute hashes of their weights
(or hashes of the memory zone where the model is mapped)
and to compare them [10]. However, this approach requires a
direct access to the model.

Unfortunately, models are not always (easily) accessible,
because of their embedding on IoT like devices for instance,
as reported in work by Roux et al. [29]. This accessibility
problem arises in at least in two contexts of growing pop-
ularity: i) if the model is directly embedded on a device
and ii) if the model is in production on a remote machine
and only exposed through an API. In such cases where the
model is only accessible through its query API, one can think
about a black-box testing approach [7]: it queries the suspected
model with specific inputs, and then compares the outputs
(the obtained classification labels) with those produced by the
original model.

In this paper, we study the efficiency of novel black-
box testing approaches. Indeed, while in theory testing the
whole model input space would for sure reveal any effective
tampering, this would require an impractical amount of re-
quests. For this approach to be practical, the inputs used for
querying the model shall be chosen wisely. Our core proposal
is then to identify specific inputs whose property is to change

classification as soon as the model is tampered with. We refer
to these crafted inputs as markers. Our research question is:
How to craft sets of markers for efficient model tampering
detection, in a black-box setup?

B. Considered setup: black-box interactions

While there exists a wide range of techniques, at the system
or hardware level, to harden the tampering with software stacks
on a device (please refer to the Related Work Section), the
case of neural network models is salient. Due to the intrinsic
accuracy change of the model accuracy after the attack (cf
Figure 1), we argue that stealthy, lightweight, and application-
level algorithms can be designed in order to detect attacks on
a remotely executed model.

We consider the setup where a challenger, possibly a
company that has deployed the model on its devices, queries
a remote device with standard queries for classifying objects.
This is possible through the standard classification API that
the device exposes for its operation (paper [34] discusses the
same query setup for classification APIs of web-services). To
a query with a given input object (e.g., image, sound file) is
answered (inferred) a class label among the set of classes the
model has been trained for; this is the nominal operation of a
neural classifier. Note that for maximal applicability, we do not
assume that the device is returning probability vectors along
with classes; such an assumption would make the problem
easier, but also less widely applicable (as it is known from
previous attacks for stealing models that those probabilities
should not be returned, for security hardening facing attackers
attempts [30], [34]).

1) Contributions: The contributions of this paper are:
(i) to introduce the problem of the tampering detection of
neural networks in the back-box setup, and to formalize this
problem in Section II.
(ii) to propose three algorithms to address the challenge of
efficient detection, by crafting markers that serve as attack
witnesses. Those are compared to a strawman approach. Each
have their own scope and efficiency on certain types of neural
networks facing different attacks.
(iii) to extensively experiment those algorithms on the canon-
ical MNIST dataset, trained on three state of the art neural
network architectures. We do not only consider the attack of
trojaning, but also generalize to any attempt to modify the
weights of the remote neural network, through actions such as
fine-tuning, compression, quantization, and watermarking. We
then validate the efficiency of our approach over five large
public models, designed for image classification (VGG16,
VGG19, ResNet, MobileNet and DenseNet).

2) Organization of the paper: The remaining of this paper
is organized as follows. We first precisely define the black-box
interaction setup in the context of classification, and define the
tampering detection problem in that regard in Section II. The
algorithms we propose are presented in Section III, before they
are experimented with in Section IV; the limits of the black-
box setup for tampering detection are also presented in that

2

Section. We finally review the Related Work in Section V and
conclude in Section VI.

II. DESIGN RATIONALE

A. The black-box model observation setup

We study neural network classifiers, that account for the
largest portion of neural network models. Let d be the dimen-
sionality of the input (feature) space X , and C the set of target
labels of cardinality n = |C|. LetM : Rd → C be a classifier
model for the problem1, that takes inputs x ∈ X to produce a
label ŷ ∈ C: M(x) = ŷ.

To precisely define the notion of decision boundary in this
context we need the posterior probability vector estimated by
M: {P(c|x,M), c ∈ C}. When the context is clear we will
omit x andM to simply write P(c). Note that while internally
M needs to generate this vector to produce its estimate ŷ =
arg maxc∈C(P(c)), we assume a black-box observation where
only ŷ is available to the user.

Definition 1 (Black-box model). The challenger queries the
observed model M with arbitrary inputs x ∈ X , and gets in
return M(x) = ŷ ∈ C.

This setup is strictly more difficult than a popular setup
where the probability vector is made available to the user (but
that can lead to misuses, as shown in in [34] by “stealing” the
remote model).

We now give a definition of the decision boundary of a
model. This definition is adapted from [20] for the black-box
setup.

Definition 2 (Decision boundary). GivenM, an input x ∈ X
is on the decision boundary between classes if there exists
at least two classes ci, cj ∈ C maximising the posterior
probability: P(ci) = P(cj) = maxc∈C P(c).

The set of points on decision boundaries defines a partition-
ing of input space X into C equivalence classes, each class
containing inputs for which M predicts the same label.

We can now provide the definition of models distinguisha-
bility when queried in a black-box setup, based on the returned
labels.

Definition 3 (Models distinguishability). Two models M and
M′ 6=M can be distinguished in a black-box context if and
only if ∃ x ∈ X s.t.M(x) 6=M′(x).

Note that this implies that their decision boundaries are
not equivalent on input space X . Conversely, two different
classifiers that end up through a training configuration to
raise the same decision boundaries on input space X , with
equivalent classes in each region, are indistinguishable from
an observer in the black-box model.

Indistinguishability is trivially the inability to distinguish
two models. Since it is generally impossible to test the whole
input set X , a restricted but practical variant is to consider the

1By model, we mean the trained model from a deep neural network
architecture, along with its hyper-parameters and resulting weights.

indistinguishability of two models with regards to a given set
of inputs, α. We name this variant α-set indistinguishability.

Since we are interested in cases where M′ is a slight
alteration of the original modelM, it is interesting to quantify
their differences over a given set S:

Definition 4 (Difference between models). Given two models
M,M′ and a set S, the difference betweenM andM′ on S
is defined as: ∆(M,M′, S) = 1

|S| .
∑

x∈S δ(M(x),M′(x)),

with δ(.) = 1 if M(x) 6=M′(x), 0 otherwise.

In this light, two S-set indistinguishable modelsM andM′
have by definition ∆(M,M′, S) = 0.

Definition 5 (Model stability). Given an observation interval
in time I = [t0, te], and a modelM observed at time t0 (noted
Mt0), the model M is stable if it is indistinguishable from
Mt0∀t ∈ I \ t0.

B. The problem of tampering detection

Problem 1 (Tampering detection of a model in the black-box
setup). Detect that model is not stable, according to Definition
5.

This means that finding one input x so that Mt0(x) 6=
Mt′(x) is sufficient to solve Problem 1. Consequently, an
optimal algorithm for solving Problem 1 is an algorithm that
provides, for any model M to defend, a single input that is
guaranteed to see its classification changed on the attacked
model M′, for any possible attack.

Since it is very unlikely, due to the current understanding
of neural networks, to find such an optimal algorithm, we
resort to finding sets of markers (specific data inputs) whose
likelihood to change classification is high as soon as the
model is tampered with. Since the challenge is to be often
executed, and be as stealthy as possible, we refine the research
question: Are there algorithms to produce sensitive and small
marker sets allowing model tampering detection in the black-
box setup? More formally, we seek algorithms that given a
model M find sets of inputs K ⊂ X of low cost and high
sensitivity to attacks:

Definition 6 (Tampering detection metrics).
• Cost: |K|, the number of requests needed to evaluate
{M(x),∀x ∈ K}.

• Sensitivity: The probability to detect any model tamper-
ing, namely that at least one input (marker) of K gets a
different label. Formally, the performance of a set K can
be defined as P(∃x ∈ K s.t. M(x) 6=M′(x),∀M′).

It is easy to see that both metrics are bound by a tradeoff:
the bigger the marker set, the more likely it contains a marker
that will change if the model is tampered with. We now have
a closer look to this relation.

1) Cost-sensitivity tradeoff: As stated in the previous Sec-
tion, we assume in this paper that the remote model returns the
minimal information, by building our algorithms with solely
labels being returned as answers (M(x) ∈ C).

3

Let M an original model, and M′ a tampered version of
M. Consider a set of inputs K ⊂ X of cardinality (cost) s. Let
p = P(M(x) 6=M′(x)) be the probability that a marker x ∈
K triggers (that is, x allows the detection of the tampering).
In the experiments, we refer to estimations of p as the marker
triggering ratio. Assume that given a model tampering the
probabilities of each marker to trigger are independent. The
overall probability to detect the tampering by querying with K
of size s is the sensitivity c = 1−(1−p)s. While the challenger
is tempted to make this probability as high as possible, he also
desires to keep s low to limit the cost of such an operation,
and to remain stealthy.

In general, we assume the challenger first fixes the desired
sensitivity c as a confidence level of his decisions (say for
instance 99% confidence, c = .99). It turns out that one can
easily derive the minimum key size s given p and c:

(1− p)s < 1− c
s× log(1− p) < log(1− c)
s > log(1− c)/log(1− p)

These relations highlight the importance of having a high
marker triggering ratio: there is an exponential relation be-
tween p and s. This relation is illustrated Figure 2, that relates
the key size s, the marker triggering ratio, and the chosen
confidence. Please note the inverted logscale on the y-axis. It
shows that for a constant confidence c = .99 (dashed line), a
key composed by markers easily triggered will be small (e.g.,
6 for p = 0.5), while a key composed by markers with a low
trigger ratio will be considerably larger (458 for p = 0.01 for
instance).

1e−04

1e−03

1e−02

1e−01

1e+00

0

20
0

40
0

60
0

Number of Markers Queried

1−
 C

on
fid

en
ce

 L
ev

el

Markers Triggering Ratio 0.5
0.1

0.05
0.01

0.005
0.001

5e−04
1e−04

Fig. 2. y-axis: Inverse Confidence Level for (i.e., probability of failing at)
detecting a tampered model, with the amount of queries on the x-axis, and
for a given marker triggering ratio (indicated on the top legend).

This short analysis is stressing the importance of designing
efficient algorithms that craft markers which have a high
chance to be misclassified after the attack; this permits to
challenge the model with less markers.

Finally, let us note that the goal of an attacker, beside the
successful implementation of his attack (e.g., the embedding
of the trojan trigger in the method proposed in [21]), is to

have the minimal impact on the model accuracy for obvious
stealthiness reasons (e.g., the claim for only 2.35% degradation
in [21]). We thus have the classical conflicting interests for
the attacker and the challenger: the challenger hopes for a
noticeable attack in order to detect it more easily, while the
attacker leans towards the perfect attack leaving no trace at all.
This motivates the research for the crafting of very sensitive
markers, in order to detect even the slightest attacks on a
model.

III. ALGORITHMS FOR THE DETECTION OF REMOTE
MODEL TAMPERING

A. Reasoning facing black-box model classifications

Since we aim at leveraging a limited set of marker queries
to challenge the model, and because success probability is
involved, let us introduce notions of true and false positives
for Problem 1. A true positive refers to a tampered model being
detected as such, a true negative corresponds to the legitimate
(original) model being recognized as original.

1) False negatives in tampering detection: Regarding the
problem of tampering detection in the black-box setup, a false
negative for the detection occurs if an algorithm challenges
the model, gets classifications, and concludes that the model
has not been tampered with, while it was actually the case.
The probability of failure that we presented in Figure 2 thus
constitutes the probability of false negatives.

2) False positives in tampering detection: In this setup,
assuming that the original model has a deterministic behaviour,
false positives cannot happen. A false positive would be the
detection of an attack that did not occur. Since the challenger
had full control over his model before deployment, he knows
the original labels of his markers. Any change in those labels
is by the problem definition an indication of the tampering
and therefore cannot be misinterpreted as an attack that never
occurred.

B. The strawman approach and three algorithms

The purpose of the novel algorithms we are now presenting
is to provide the challenger with a key K to query the remote
model, that is composed of a set of |K| = s input markers.
Concretely, given an original model M, those algorithms
generate a set of markers K. The owner of the model stores
K along with the response vector ŶM, associated with the
markers in K: ŶM ←M(i),∀i ∈ K.

We assume that K is kept secret (unknown to the attacker).
When the user needs to challenge a potentially attacked model
M′, it simply queriesM′ with inputs in K, and compares the
obtained response vector ŶM′ with the stored ŶM. If the two
response vectors differ, the user can conclude that M 6=M′.

The algorithms are designed to operate on widely different
aspects of black-box model querying. Table I synthesizes
the different knowledge exploited by those algorithms. Cases
where the remote model is accessible (i.e., white-box testing)
can be solved by direct weight comparison or standard soft-
ware integrity testing approaches [10], and are not in the scope
of this paper.

4

Remote Opacity Black-Box White-Box
Original Opacity Black-Box White-Box

Knowledge Required Input format A bunch of inputs Original weights Original architecture Remote weights
Algorithm GRID SM WGHT BADV –

TABLE I
SUMMARY OF ALGORITHM REQUIREMENTS, ORDERED BY THE AMOUNT OF KNOWLEDGE REQUIRED FOR THE CHALLENGE.

SM (standing for strawman) represents an intuitive approach,
consisting in tracking a sort of ”non-regression” with regards
to the initial model deployed on devices. The GRID algorithm
(grid-like inputs) is also model agnostic, as it generates
inputs at random, that are expected to be distant from real-
data distribution, and then to assess boundary changes in
an efficient way. Both WGHT (perturbation of weights) and
BADV (boundary adversarial examples) take as arguments
the model to consider, and a value ε; the former applies a
random perturbation on every weight to observe which are the
most sensitive inputs with regards to misclassification after the
attack (in the hope that those inputs will also be sensitive to
forthcoming attacks). The latter generates adversarial inputs
by the decision boundaries, in the hope to be sensitive to
their movements. We now give their individual rationale in the
following subsections, and present in Figure 3 an illustration.

(a) (b)

(c) (d)
Fig. 3. The placement of markers by the four algorithms. SM (a) picks a
fraction of the test set inputs as markers; their position are thus related to the
position of the dataset inputs. GRID (b) places markers at random corners
of the d dimensional hyper-cube delimiting the input space. WGHT (c) finds
inputs of the test set that are sensitive to weight perturbations, to select them
as markers. Finally, BADV (d) converts test set inputs into adversaries located
nearby the boundaries.

Algorithm 1: SM
Input: A test set T ; s

1 for 0 to s do
2 K.append(T [random int(|T |)]))
3 end
4 return K

1) The strawman approach (SM): This strawman approach
uses inputs from the test set as markers in order to assess
changes in classification. An initial classification is performed

for the markers before model deployment, and the resulting
classes are expected to remain identical in subsequent queries.

Algorithm 1 then simply returns a key of size s, from the
random selection of inputs in the provided test set T .

Algorithm 2: GRID
Input: Image width x and height y; s

1 for 0 to s do
2 for 0 to x do
3 for 0 to y do
4 img[x][y]← random bit()
5 end
6 end
7 K.append(img)
8 end
9 return K

2) Grid-like inputs (GRID): This algorithm generates
markers independently of the model M that is to be chal-
lenged.

Most generally, in classification tasks, the inputs are nor-
malized before their usage to train the model. Without loss
of generality for a normalization out of the [0, 1] range, for
each of the d dimensions of the considered model (e.g., the
784 dimensions of a MNIST image), Algorithm 2 sets a
random bit. The rationale is to generate markers that are far
apart the actual probability distribution of the base dataset:
since the training and tampering with M are willing to
preserve accuracy, constraints are placed on minimizing test
set misclassification. The consequence is a large degree of
freedom for decision boundaries that are far apart the mass
of inputs from the training set. We thus expect those crafted
inputs to be very sensitive to the movement of boundaries
resulting from the attack.

3) Perturbation of weights (WGHT):

The WGHT algorithm takes as arguments the modelM, and
a value ε. It observes the classifications of inputs in dataset T ,
before and after a perturbation has been applied to all weights
of M (i.e., a random perturbation of every weight to up to
±ε). Inputs for which label have changed, due to this form
of tampering, are sampled to populate key K. The rationale
is that with a low ε, the key markers are expected to be very
sensitive to the tampering of modelM. In other words, inputs
from K are expected to be the most sensitive inputs from T
when it comes to tamper with the weights of M.

4) Boundary adversarial examples (BADV): Adversarial
examples have been introduced in the early works presented
in [6] and re-framed in [33], in order to fool a classifier (by
making it misclassify inputs) solely due to slight modifica-
tions of the inputs. Goodfellow et al. then proposed [11] an

5

Algorithm 3: WGHT
Input: A test set T ; a model M; a small ε; s

1 for i← 0 to |T | do
2 pre.append(M(i))
3 end
4 for i← 0 to |get weights(M)| do
5 M.set weight(i,M.get weight(i) +

random float(−ε,+ε))
6 end
7 for i← 0 to |T | do
8 post.append(M(i))
9 end

10 for i← 0 to s do
11 if pre(i) 6= post(i) then
12 K.append(pre(i))
13 if |K| = s then
14 break;
15 end

/* Assumes |K| = s, increase ε otherwise */
16 return K

Algorithm 4: BADV
Input: A test set T ; a model M; an attack A; a small ε; s

1 for i← 0 to |T | do
2 adv.append(A(M(i), ε))
3 if M(i) 6=M(adv) then
4 K.append(adv)
5 if |K| = s then
6 break;
7 end
/* Assumes |K| = s, increase ε otherwise */

attack for applying perturbations to inputs that leads to vast
misclassifications of the provided inputs (that attack is named
the fast gradient sign attack or FGSM). Those crafted inputs
yet appear very similar to the original ones to humans, which
leads to important security concerns [28]; note that since then,
many other attacks of that form were proposed (even based
on different setup assumptions [24]), as well as platforms to
generate them (e.g., [1] or [2]).

We propose with BADV to leverage the FGSM attack, but in
an adapted way. The FGSM attack adds the following quantity
to a legitimate input x: ε × sign(OxJ(M, x, y)), with Ox

being the gradient of J (the cost function used to train model
M), and y the label of input x. ε captures the intensity of the
attack on the input. Approach in [11] is interested in choosing
an ε that is large enough so that most of the inputs in the
batch provided to the FGSM algorithm are misclassified (e.g.,
ε = 0.25 leads to the misclassification of 97.5% of the MNIST
test set). We are instead interested in choosing an ε that is
sufficient to create s misclassified markers only; the rationale
is that the lower the ε, the closer the crafted inputs are to the
decision boundary; our hypothesis is that this proximity will
make those inputs very sensitive to any attack of the model that
will even slightly modify the position of decision boundaries.
In practice, and with Algorithm 4, we start from a low ε, and
increase it until we get the desired key length s.

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

BADV

WGHT

GRID

SM

0.00 0.25 0.50 0.75 1.00

Finetune
Flooring
Quantize

Watermark

Finetune
Flooring
Quantize

Watermark

Finetune
Flooring
Quantize

Watermark

Finetune
Flooring
Quantize

Watermark

Markers Triggering Ratio

A
tta

ck

● MLP CNN IRNN

better performance

Fig. 4. Performance results of the proposed algorithms (GRID, WGHT and
BADV), with regards to the strawman approach (SM). Attacks applied to the
models (listed on top) are indicated on the y-axis, while the ratio of triggered
markers is indicated on the x-axis. Average results, as well as standard
deviations for the algorithms are presented, the rightmost the better for their
performance. For instance the WGHT algorithm, facing the fine-tuning attack,
sees half of its key markers being triggered, while only one marker (ratio of
1/100) is triggered for the strawman approach.

IV. EXPERIMENTAL EVALUATION

This section is structured as follows: we first describe the
experiments on MNIST (along with the considered attacks and
parameters for algorithms). We then discuss and experiment
the limitations of the black-box setup we considered. We fi-
nally validate our take-aways on five large image classification
models, in the last subsection of this evaluation.

We conduct experiments using the TensorFlow platform,
using the Keras library.

A. Three neural networks for the MNIST dataset

The dataset used for those extensive experiments is the
canonical MNIST database of handwritten digits, that consists
of 60, 000 images as the training set, and of 10, 000 for the
test set. The purpose of the neural networks we trained are of
classifying images into one of the ten classes of the dataset.

The three off-the-shelf neural network architectures we use
are available on the Keras website [3], namely as mnist_mlp
(0.984% accuracy at 10 epochs), mnist_cnn (0.993% at 10)
and mnist_irnn (0 .9918% at 900). We rename those into
MLP, CNN and IRNN respectively. They constitute different
characteristic architectures, with one historical multi-layer
perceptron, a network with convolutional layers, and finally
a network with recurrent units.

B. Attacks: from quantization to trojaning

This subsection lists the five attacks we considered. Ex-
cluding the watermarking and trojaning attacks, the others are
standard operations over trained models; yet if an operator has
already deployed its models on devices, any of those can be
considered as attacks, as they tamper with the model that was
designed for a precise purpose.

6

1) Quantization attack: This operation aims at reducing
the number of bits representing each weight in the trained
model. It is in practice widely used prior to deployment in
order to fit the architecture and constraints of the target device.
TensorFlow by default uses 32-bit floating points, and the
goal is convert the model into 8-bit integers for instance. The
TensorFlow fake_quant_with_min_max_args func-
tion is used to simulate the quantization of the trained neural
network. We kept the default parameters of that function (8-
bits quantization, with -6 to 6 as clamping range for the input).

2) Compression attack: A form of compression is flooring;
it consists in setting to zero all model weights that are below a
fixed threshold, and aims at saving storage space for the model.
We set the following threshold value for the three networks:
0.0727, 0.050735 and 0.341 for the MLP, CNN and IRNN
networks respectively. Those thresholds cause the degradation
of network accuracies by about one percent (accuracies after
the compression are 0.9749, 0.9829 and 0.9821, respectively).

3) Fine-tuning attack: Its consists in starting from a trained
model, and to re-train it over a small batch of new data. This
results in model weight changes, as the model was adapted
through back-propagation to prediction errors made on that
batch. We used a random sample of 300 inputs from the
MNIST test set for that purpose.

4) Watermarking attack: Watermarking techniques [19],
[23] embed information into the target model weights in
order to mark its provenance. Since work in [19] operated
on the MNIST dataset, and provided detailed parameters, we
implemented this watermarking technique on the same models
(MLP, CNN, and IRNN). The watermark insertion proceeds by
fine-tuning the model over adversarial examples to re-integrate
them into their original class, in order to obtain specific
classifications for specific input queries (thus constituting a
watermark). This approach requires a parameter for the mark
that we set to 0.1, consistently with remarks made in [19] for
maintaining the watermarked model accuracy.

5) Trojaning attack: We leverage the code provided in a
GitHub repository, under the name of Stux-DNN, and that
aims at trojaning a convolutional neural network for the
MNIST dataset [4]. We first train the provided original model,
and obtain an accuracy of 93.97% over the MNIST test set.
The trojaning is also achieved with the provided code.

After applying those five attacks, the models accuracies
changed; those are summarized on Table II. Note that some
attacks may surprisingly result in a slight accuracy improve-
ment, as this is the case for MLP and quantization.

C. Algorithms settings

1) Settings for SM: SM uses a sample of images from the
original MNIST test set, selected at random.

2) Settings for GRID: We use the Python Numpy uniform
random generator for populating markers, that are images of
28x28 pixels.

3) Settings for WGHT: All the weights in the model are
perturbed by adding to each of them a random float within
[−0.07,+0.07], [−0.07,+0.07] or [−0.245,+0.245] for the

MLP CNN (Stux) IRNN
Original model accuracy 0.9849 0.9932 (0.9397†) 0.9919

Quantization 0.9851 0.9928 0.9916
Flooring 0.9749 0.9829 0.9821

Fine-tuning 0.9754 0.9799 0.9917
Watermarking [19] 0.9748 0.9886 0.9915
Trojaning L0 [4] - (0.9340†) -

Trojaning mask [4] - (0.9369†) -
TABLE II

ORIGINAL MODEL ACCURARIES (WHITE ROW), AND ACCURACIES
RESULTING FROM ATTACKS (GREY ROWS). THE LOWER THE LOSS IN
ACCURACY, THE STEALTHIER THE ATTACK. VALUES MARKED † ARE

OBTAINED ON THE TROJANED CNN MODEL INTRODUCED IN [4], AND
PUBLICLY AVAILABLE ON THE AUTHORS WEBSITE.

MLP, CNN and IRNN architectures respectively. This oper-
ation must keep the accuracy loss within a small percent-
age, while making it possible to cause enough classification
changes for populating K (those values allowed to identify
just over 100 markers).

4) Settings for BADV: For generating adversarial examples
that are part of the key, we leverage the Cleverhans Python
library [1]. The FGSM algorithm used in BADV, requires the ε
parameter for the perturbation of inputs to (i) be small enough,
and (ii) allow for the generation at least 200 adversarial
examples out of 10, 000 files in the test set. ε is set to 0.04,
0.08 and 0.14 for the MLP, CNN and IRNN networks.

D. Experimental results

Results are presented in Figure 4, for all the attacks (ex-
cluding the trojaning attack), the three models and the four
algorithms. We set key size s = 100; each experiment is
executed 10 times.
SM generates markers that trigger with a probability below

0.02 for all attacks and all models; this means that some
attacks such as for instance quantization over the MLP or
IRNN models remain undetected after 100 query challenges.

All three proposed algorithms significantly beat that straw-
man approach; the most efficient algorithm, on average and
in relative top-performances is BADV. Most notably, on the
IRNN model it manages to trigger a ratio of up to 0.791 of
markers, that is around 80% of them, for the flooring attack.
This validates the intuition that creating sensitive markers
from adversarial examples by the boundary (i.e., with small ε
values) is possible.

The third observation is that GRID arrives in second position
for general performances: this simple algorithm, that operates
solely on the data input space for generating markers, manages
to be sensitive to boundary movements.

The WGHT algorithm has high performance peaks for the
MLP model, with up to half of triggered markers for the fine-
tuning attack, and a ratio of 0.385 for flooring (i.e., more
than one third of markers are triggered); it has the lowest
performances of the three proposed algorithms, specifically
for the IRNN model. This may come from the functioning of
its recurrent architecture that makes it more robust to direct
perturbations of weights: the model is more stable during
learning (it requires around 900 epochs to be trained, while
the two other models need only 10 epochs to reach their peak
accuracy).

7

The watermark attack is very well detected on the IRNN
model with the BADV algorithm (ratio of 0.86), on an equiva-
lent rate on three models by GRID, while SM still shows trace
amount of markers triggered for MLP and CNN, and none for
IRNN.

Considering the relatively low degradation of the models
reported on Table II (i.e., within around 1% maximum)2, we
conclude that all three proposed algorithms capture efficiently
the effects of even small attacks on the models to be defended,
while SM would only be valuable in cases of large degradation
of models. We illustrate in the subsection IV-F the degradation-
detectability trade-off.

Euclidean Distance

Accuracy Loss

0.000 0.025 0.050 0.075 0.100

0.0

0.1

0.2

0.3

0

10

20

30

Flooring Intensity

Fig. 5. Applying a compression (flooring) attack of increasing intensity (x-
axis). Top-Figure: loss in accuracy of the attacked model, as compared to the
original one. Bottom-Figure: measure of the Euclidean distance between the
weights of the original and attacked models.

●●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●●●●

●●

●●●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●●●

●

●●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●●●●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.001

0.01

0.1

0.
00

0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

Flooring Intensity

M
ar

ke
rs

 T
rig

ge
rin

g
R

at
io

Algorithm ● WGHT SM

Fig. 6. Impact of the same progressive flooring attack than in Figure 5 on
the ratio of markers triggered for both SM and WGHT (y-axis, logscale).

E. Validation on a trojaning attack on MNIST

The modified accuracy of the neural network model pro-
posed by [4], due to the attack, is reported on Table II.
The attack has two trojaning modes (L0 and mask). We
now question the ability of one of our algorithms to also
be outperforming the strawman approach SM; we experiment
with GRID. Results are that SM manages to trigger ratios
of 0.0524 and 0.0529 of markers, for L0 and mask modes
respectively (please refer to their original paper for details on

2Trojaning attacks in [21] reports degradation over the original models of
2.60% (VGG Face recognition), 3% (speech recognition) or 3.50% (speech
altitude recognition).

these techniques). GRID reaches ratios of 0.4560 and 0.4502,
that are 8.7x and 8.5x increases in efficiency. This suggests
that for a practical usage, a small key K of s = 10 will detect
the attack, while SM is likely to raise a false negative.

F. Undetectable attacks and indistinguishably: illustrations

We now present examples that illustrate the inherent limits
of a black-box interaction setup, as defined in subsection II-A.

Let’s consider the MLP model, along its best performing
algorithm for tamper detection, WGHT. Assume that the model
is tampered with using compression (flooring), and that we
observe successive attacks: from an attack value (flooring
threshold v) starting at 0, it reaches a value of v = 0.1
by increments of 0.001 (i.e., at each attack, weights under
v are floored). We observe the results after every attack; we
plot in Figure 5 the loss in accuracy of the attacked model
(top-Figure), and the Euclidean distance between the original
and attacked model weights (bottom-Figure). For instance, we
observe a 30% accuracy loss at a distance of 40. Since the loss
is noticeable from around v = 0.05, we zoom in for plotting
the corresponding ratio of markers triggered in Figure 6.

Those two figures convey two different observations, pre-
sented in the next two subsections.

1) Limits of the algorithms and of the black-box setup:
The following cases may happen for attacks that have a very
small impact on the model weights.
• Case 1: Accuracy changed after the attack, but the

algorithm failed in finding at least one input that has
changed class (i.e., no marker from K has shown a
classification change).

• Case 2: We did not manage to find any such input despite
the attack.

Case 1 for instance occurs with v = 0.004, as seen in
Figure 6. This means that both algorithms have failed, for
the chosen key length s, to provide markers that were present
in the zones where boundary moved due to the attack. (Please
remind that, if the accuracy post attack has been modified, this
means that some inputs from the test set has a changed label,
then indicating that boundaries have de facto moved).

Case 2 is particularly interesting as it permits to illustrate
Definition 3 in its restricted form: an attack occurred on M
(as witness by a positive Euclidean distance between the two
models in Figure 5), but it does not result in a measurable
accuracy change. It is α-set indistinguishable, with here α
being the MNIST test set. We measure this case for v = 0.003,
where pre and post accuracies are both 0.9849.

Case 1 motivates the proposal of new algorithms for the
problem. We nevertheless highlight that the trojan attack [21]
degrades the model on a basis of around 2%, while our
algorithm is here unable to detect a tampering that is two
order of magnitude smaller (accuracy loss of 0.02% for the
attacked model). This indicate extreme cases for all future
tampering detection approaches. Case 2 questions the black-
box interaction setup. This setup enables tampering detection
in a lightweight and stealthy fashion, but may cause indecision

8

due to the inability to conclude on tampering due to the lack
of test data that can assess accuracy changes.

2) WGHT outperforms SM by nearly two orders of magnitude
for small attacks: As observed in Figure 6, the SM markers
triggered ratio ranges from 0.0001 to around 0.005, while for
WGHT it ranges from 0.01 to 0.1, in this extreme case for
attack detection with very low model degradation.

Figure 7 concludes this experiment by presenting the key
size s that is to be chosen, depending on the algorithm
and on the tolerance to attack intensity. This is in direct
relation with the efficiency gap observed on previous figure:
the more efficient the algorithm for finding sensitive markers,
the smaller the query key for satisfying the according detection
confidence. For an equivalent confidence, the key size to
leverage for SM is 100 times longer than for the WGHT
algorithm, confirming the efficiency of the techniques we
proposed in this paper.

Fig. 7. Key K size s (y-axis) to choose for a given challenge detection
failure (noted confidence, on top-legend). Lines represent a smoothed average.
Intuitively, the smaller the failure probability, the larger the key to select; this
is the experimental counterpart to the analysis in Figure 2. Its size depends
on the chosen algorithm and on the intensity of the flooring attack (x-axis).

G. Validation on five large classifier models

We conducted extensive experiments on the standard
MNIST dataset for it allows computations to run in a rea-
sonable amount of time, due to the limited sizes of both its
datasets and of the models for learning it. In order to validate
the general claim of this paper, we now perform experiments
on five large and recent models for image classification,
using a state of the art dataset. This validation is interested
in checking the consistency with the observation from the
MNIST experiments, that have shown that our algorithms
significantly outperform the strawman approach.

We leverage five open-sourced and pre-trained models:
VGG16 [31] (containing 138,357,544 parameters, as compared
to MNIST models containing 669,706 (MLP), 710,218 (CNN)
and 199,434 (IRNN) parameters), VGG19 [31] (143,667,240
parameters), ResNet50 [12] (25,636,712 parameters), Mo-
bileNet [14] (4,253,864 parameters) and DenseNet121 [15]
(8,062,504 parameters). Except for the two VGG variants

VGG16 and VGG19, all four architectures are broadly dif-
ferent models, that each were proposed as independent im-
provements for those image classification tasks (please refer
to the Keras site [3] for each their own characteristics).

The VGGFace2 dataset has been made public recently [8];
it consists of a split of training (8631 labels) and test (500
labels) sets. The labels in the two sets are disjoint. We consider
a random sample of 10, 000 images of the VGGFace2 test
dataset, for serving as inputs to the SM and WGHT algorithms.
We note that despite that labels in the test set are different
from the ones learnt in the models, this is a classic procedure
(used e.g., for experiments in work by Liu et al. [21]): a neural
network with good performances will output stable features for
new images, and thus in our case predict consistently the same
class for each new given input. Those images are imported
as 224x224 pixel images to query the tested models (versus
28x28 for MNIST). As for previous experiment (Figure 6), we
experiment with the SM and WGHT algorithms and s = 100,
with the flooring attack. We perform the computations on four
Nvidia TESLAs V100 with 32 Gb of RAM each; each setup is
run three times and results are averaged (standard deviations
are presented).

Figure 8 presents the results. The x-axis of each figure
represents the flooring intensity, with the same values for all
models, except for DenseNet because of its noticeable sensi-
tivity to attacks. VGG16 corresponds to the neural network
architecture of trojaned in paper [21]. For all models, we
observe that an attack of 0.00001 is bellow what both SM
and WGHT can detect (situation presented in Section IV-F).
For the second smaller considered attack values on the x-
axis, only WGHT manages to trigger markers; this constitutes
another evidence that crafted markers are more sensitive and
will trigger first for the smallest detectable attacks. For all
the remaining flooring parameters, SM triggers markers, but
always significantly less than WGHT (up a factor of 15 times
less, at x = 0.001 on VGG19). All the models exhibit a very
similar trend for both curves. The triggering ratio in the case
of ResNet is lower for both WGHT and SM, while gap between
the two approaches remains similar. Finally, in the DenseNet
case, we note a higher triggering ratio for SM than for other
models on the last three flooring values; the results are still
largely in favor of the WGHT algorithm.

V. RELATED WORK

Research works targeting the security of embedded devices
such as IoT devices [29], suggest that traditional security
mechanisms must be reconsidered. Main problems for tradi-
tional security tools is the difficulty to fix software flaws on
those devices, the frequency to which those flows are reported,
and finally their limited resources for the implementation of
efficient protections.

Anti-tampering techniques for traditional software applica-
tions may be applied directly on the host machine in some
defense scenarios. This is the case for the direct examination
of the suspected piece of software [10]. Remote attestation
techniques [9] allows for the distant checking of potential

9

● ●

●

●

●

● ●
●

●

●

● ● ● ●

●

● ●
●

●

●

● ●

●

●

●

VGG16 VGG19 ResNet MobileNet DenseNet
0.

00
00

0.
00

05

0.
00

10

0.
00

15

0.
00

20

0.
00

25

0.
00

00

0.
00

05

0.
00

10

0.
00

15

0.
00

20

0.
00

25

0.
00

00

0.
00

05

0.
00

10

0.
00

15

0.
00

20

0.
00

25

0.
00

00

0.
00

05

0.
00

10

0.
00

15

0.
00

20

0.
00

25

0e
+0

0

1e
−0

4

2e
−0

4

3e
−0

4

4e
−0

4

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Flooring Intensity

M
ar

ke
rs

 T
rig

ge
rin

g
R

at
io

Algorithm ● SM WGHT

Fig. 8. Marker triggering ratio for five large image classification models. One proposed algorithm (WGHT) versus the strawman approach (SM), facing the
flooring attack. A sample of the VGGFace2 test dataset is used.

illegitimate modifications of software or hardware compo-
nents; this is nevertheless requiring the deployment of a spe-
cific challenge/response framework (often using cryptographic
schemes), that both parties should comply with. Program
result checking (or black-box testing) is an old technique that
inspects the compliance of a software by observing outputs on
some inputs with expected results [7]; it has been applied in
conventional software applications, but not on the particular
case of deep learning models, where the actions are driven
by an interpretation of a model (its weights in particular) at
runtime. In that light, the work we proposed in this paper is a
form of result checking for neural model integrity attestation.
Since it is intractable to iterate over all possible inputs of
a neural network model to fully characterize it (unlike for
reverse engineering finite state machines [35] for instance),
due to the dimensionality of inputs in current applications, the
challenger is bound to create some algorithms to find some
specific inputs that will carry the desired observations.

After a fast improvement of the results provided by neural
network-based learning techniques in the past years, mod-
els found practical deployments into user devices [18]. The
domain of security for those models is a nascent field [26],
following the discovery of several types of attacks. The first
one is the intriguing properties of adversarial attacks [6],
[11], [17], [33] for fooling classifications; a wide range of
proposals are attempting to circumvent those attacks [22], [25],
[37]. Counter measures for preventing the stealing of machine
learning models such as neural networks thought prediction
APIs are discussed in [34]; it includes the recommendation
for the service provider not to send probability vectors along
with labels in online classification services. Some attacks
are willing to leak information about individual data records
that were used during the training of a model [30], [32];
countermeasures are to restrict the precision of probability
vectors returned by the queries, or to limit those vectors solely
to top-k classes [30]. The possibility to embed information

within the models themselves with watermarking techniques
[19], [23] is being discussed on the watermark removal side
by approaches like [13]. Trojaning attacks [4], [21] are yet not
addressed, except by this paper, that introduced the problem
and brought three novel algorithms to detect the tampering
with models in a black-box setup.

VI. CONCLUSION

Neural network-based models enable applications to reach
new levels of quality of service for the end-user. Those
outstanding performances are in balance, facing the risks that
are highlighted by new attacks issued by researchers and
practitioners. This paper introduced the problem of tampering
detection for remotely executed models, by the use of their
standard API for classification. We proposed algorithms that
craft markers to query the model with; the challenger detects
an attack on the remote model by observing prediction changes
on those markers. We have shown a high level of performance
as compared to a strawman approach that would use inputs
from classic test sets for that purpose; the challenger can then
expect to detect a tampering with very few queries to the
remote model, avoiding false negatives. We believe that this
application-level security checks, that operate at the model
level and then at the granularity of the input data itself, is
raising interesting futureworks for the community.

While we experimented those algorithms facing small mod-
ifications made to the model by attacks, we have also shown
that below a certain level of modification, the black-box setup
may not permit to detect tampering attacks. In other situations,
where the attack is observed in practice through accuracy
change in the model, our algorithms can fail in the detection
task. Some even more sensitive approaches might be proposed
in the future. We believe this is an interesting futurework
direction, that is to be linked with the growing understanding
of the inner functioning of neural networks, and on their
resilience facing attacks.

10

REFERENCES

[1] Cleverhans code. https://github.com/tensorflow/cleverhans.
[2] Foolbox code. https://github.com/bethgelab/foolbox/.
[3] Keras code. https://github.com/fchollet/keras/blob/master/examples/.
[4] Stuxnnet. https://github.com/Soldie/stux-DNN/.
[5] Trojannn code. https://github.com/PurduePAML/TrojanNN.
[6] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of

adversarial machine learning. Pattern Recognition, 84:317 – 331, 2018.
[7] M. Blum. Program checking. In S. Biswas and K. V. Nori, editors,

Foundations of Software Technology and Theoretical Computer Science,
pages 1–9, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

[8] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2:
A dataset for recognising faces across pose and age. In FG, 2018.

[9] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon,
J. Ramsdell, A. Segall, J. Sheehy, and B. Sniffen. Principles of remote
attestation. International Journal of Information Security, 10(2):63–81,
Jun 2011.

[10] C. S. Collberg and C. Thomborson. Watermarking, tamper-proofing,
and obfuscation - tools for software protection. IEEE Transactions on
Software Engineering, 28(8):735–746, Aug 2002.

[11] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. In ICLR, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[13] D. Hitaj and L. V. Mancini. Have you stolen my model? evasion
attacks against deep neural network watermarking techniques. CoRR,
abs/1809.00615, 2018.

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[15] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In CVPR, 2017.

[16] T. Hwu, J. Isbell, N. Oros, and J. Krichmar. A self-driving robot
using deep convolutional neural networks on neuromorphic hardware.
In IJCNN, 2017.

[17] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial examples in
the physical world. CVPR, 2017.

[18] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qen-
dro, and F. Kawsar. Deepx: A software accelerator for low-power deep
learning inference on mobile devices. In IPSN, 2016.

[19] E. Le Merrer, P. Perez, and G. Trédan. Adversarial frontier stitching for
remote neural network watermarking. CoRR, abs/1711.01894, 2017.

[32] C. Song, T. Ristenpart, and V. Shmatikov. Machine learning models that
remember too much. In CCS, 2017.

[20] C. Lee and D. A. Landgrebe. Decision boundary feature extraction for
neural networks. IEEE Transactions on Neural Networks, 8(1):75–83,
Jan 1997.

[21] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang.
Trojaning attack on neural networks. In NDSS, 2018.

[22] D. Meng and H. Chen. Magnet: A two-pronged defense against
adversarial examples. In CCS, 2017.

[23] Y. Nagai, Y. Uchida, S. Sakazawa, and S. Satoh. Digital watermarking
for deep neural networks. IJMIR, 7(1):3–16, Mar 2018.

[24] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami. Practical black-box attacks against machine learning. In
ASIA CCS, 2017.

[25] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation
as a defense to adversarial perturbations against deep neural networks.
In S&P, 2016.

[26] N. Papernot, P. D. McDaniel, A. Sinha, and M. P. Wellman. Towards
the science of security and privacy in machine learning. CoRR,
abs/1611.03814, 2016.

[27] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In
BMVC, 2015.

[28] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In SOSP, 2017.

[29] J. Roux, E. Alata, G. Auriol, V. Nicomette, and M. Kaniche. Toward
an intrusion detection approach for iot based on radio communications
profiling. In EDCC, 2017.

[30] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership
inference attacks against machine learning models. In S&P, 2017.

[31] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[33] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus. Intriguing properties of neural networks.
In ICLR, 2013.

[34] F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing
machine learning models via prediction apis. In USENIX Security, 2016.

[35] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S. Salahuddin. Reverse
engineering state machines by interactive grammar inference. In 14th
Working Conference on Reverse Engineering (WCRE 2007), pages 209–
218, Oct 2007.

[36] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer. Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object
detection for autonomous driving. IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 2017.

[37] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting adversarial
examples in deep neural networks. In NDSS, 2018.

11

https://github.com/tensorflow/cleverhans
https://github.com/bethgelab/foolbox/
https://github.com/fchollet/keras/blob/master/examples/
https://github.com/Soldie/stux-DNN/
https://github.com/PurduePAML/TrojanNN

	Introduction
	Practical illustration of an attack: a trojaned classifier
	Considered setup: black-box interactions
	Contributions
	Organization of the paper

	Design rationale
	The black-box model observation setup
	The problem of tampering detection
	Cost-sensitivity tradeoff

	Algorithms for the Detection of Remote Model Tampering
	Reasoning facing black-box model classifications
	False negatives in tampering detection
	False positives in tampering detection

	The strawman approach and three algorithms
	The strawman approach (SM)
	Grid-like inputs (GRID)
	Perturbation of weights (WGHT)
	Boundary adversarial examples (BADV)

	Experimental Evaluation
	Three neural networks for the MNIST dataset
	Attacks: from quantization to trojaning
	Quantization attack
	Compression attack
	Fine-tuning attack
	Watermarking attack
	Trojaning attack

	Algorithms settings
	Settings for SM
	Settings for GRID
	Settings for WGHT
	Settings for BADV

	Experimental results
	Validation on a trojaning attack on MNIST
	Undetectable attacks and indistinguishably: illustrations
	Limits of the algorithms and of the black-box setup
	WGHT outperforms SM by nearly two orders of magnitude for small attacks

	Validation on five large classifier models

	Related Work
	Conclusion
	References

