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Abstract

Originally, Isogeometric Analysis aimed at using geometric models for the structural analysis. The actual realization
of this objective to complex real-world structures requires a special treatment of the non-conformities between the
patches generated during the geometric modeling. Different advanced numerical tools now enable to analyze elabo-
rated multipatch models, especially regarding the imposition of the interface coupling conditions. However, in order
to push forward the isogeometric concept, a closer look at the algorithm of resolution for multipatch geometries seems
crucial. Hence, we present a dual Domain Decomposition algorithm for accurately analyzing non-conforming multi-
patch Kirchhoff–Love shells. The starting point is the use of a Mortar method for imposing the coupling conditions
between the shells. The additional degrees of freedom coming from the Lagrange multiplier field enable to formulate
an interface problem, known as the one-level FETI problem. The interface problem is solved using an iterative solver
where, at each iteration, only local quantities defined at the patch level (i.e. per sub-domain) are involved which makes
the overall algorithm naturally parallelizable. We study the preconditioning step in order to get an algorithm which is
numerically scalable. Several examples ranging from simple benchmark cases to semi-industrial problems highlight
the great potential of the method.

Keywords: Isogeometric Analysis, Shell, Mortar coupling, Multipatch, Domain Decomposition, Parallel computing

1. Introduction

A recent challenging issue in computational mechanics aims at reunifying geometric modeling and structural
analysis. The idea emerged with the introduction of IsoGeometric Analysis by Hughes et al. [1]. The initial idea
was to use NURBS-based models coming from Computer Aided Geometric Design to directly perform the analysis.
This has been shown possible by using the NURBS basis functions to build the approximation spaces for the Finite
Element Analysis. It has shown a great performance, not only because the geometry is exactly preserved, but also
because NURBS have interesting mathematical properties as for instance higher inter-element continuity than classical
Lagrange polynomials. Thus, IGA has been successfully applied to solve demanding problems as shell analysis [2–
4], shape optimization problems [5–7], material with non-linear behaviors [8–10], contact problems [11, 12], fluid-
structure interaction [13, 14], etc. However, IGA faces some difficulties related to the generation of analysis-suitable
models. In fact, it is known that taking a raw geometric model, as generated by a CAD modeler, is usually not
possible due to the presence of trimmed regions and non-conformities between the patches. There are mostly two
ways to deal with this issue. Firstly, one can strive to remove all trimmed regions and non-conformity by invoking
re-parametrization strategies which can be cumbersome for volume models [15–17]. The second option consists
in using advanced numerical tools for analyzing models with the mentioned defects coming from the geometric
modeling [18, 19]. For that, robust procedures and algorithms have to be employed and this work is heading in this
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direction: it intends to formulate an efficient algorithm for analyzing multipatch shell models with non-conforming
interfaces.

Regarding the issue of non-conforming interfaces, the first point to tackle concerns the imposition of the coupling
conditions. The coupling can be addressed by different techniques, and in the specific case of arbitrary non-conforming
interfaces, one may resort to weak coupling approaches. There exist three principal classes of methods, namely penalty
coupling [20–22], Mortar coupling [23–30], and Nitsche coupling [31–35]. We focus in this work on shell analysis and
especially on the case of isogeometric Kirchhoff–Love shell formulations. In this particular context, all three methods
have been successfully applied for large and complex industrial structures, even for non-linear analysis [22, 30, 36].
The differences between these approaches mainly result from the formulation of the interface constraints and how they
are imposed during the resolution. In this sense, penalty methods and Mortar methods share similarities. These two
methods usually impose kinematic constraints between the displacement fields of neighboring patches. The kinematic
constraints vary depending on the mechanical behavior of the patches (3D solids, shells, etc.) but also the geometric
nature of the junctions (C0, G1, or C1 junctions for example). The transfer of the stress resultants is implicitly taken
into account which simplifies the mathematical expression of these two coupling methods in contrast to the Nitsche
approach where the stress transfer has to be explicitly formulated. Thus, among all methods, various arguments are put
forward regarding criteria as for example the simplicity, the accuracy, the robustness, or even the range of applications.
Nevertheless, a great potential of the Mortar method seems not to have been yet fully tapped: there exists a close link
between this class of coupling method and the family of Domain Decomposition algorithms.

In fact, the additional Degrees Of Freedom associated to the Lagrange multiplier field of the Mortar approach
enables to formulate an interface problem which is naturally suitable for parallel computing [37, 38]. Efficient par-
allel solvers for large-scale systems have been studied over past decades which have led for example to an entire
class of methods, namely the non-overlapping Domain Decomposition Methods [39]. The idea is to subdivide the
computational domain into non-overlapping sub-domains: instead of solving one large system, multiple indepen-
dent local systems are solved per sub-domain and continuity conditions are introduced at the sub-domain interfaces
using Lagrange multipliers iteratively. More specifically, the Finite Element Tearing and Interconnecting [40] and
the Balancing Domain Decomposition [41] are often seen as originators of the two main branches of those non-
overlapping DDM. BDD is usually referred to as a primal approach since it chooses the interface displacement field
as main unknown, whereas FETI is usually referred to as a dual approach because it privileges the interface loads.
Kleiss et al. [42] notice that a close link exists between DDM and IGA since multipatch NURBS discretizations can
be seen as a natural Domain Decomposition (each sub-domain being a patch). Thus, the Dual-Primal FETI solver
from Farhat et al. [43] has been employed in the IGA framework under the name Isogeometric Tearing and Inter-
connecting (IETI) [42, 44, 45]. In this work, we are looking for a DDM to analyze non-conforming Kirchhoff–Love
shells. In the classical Finite Element Method framework, the FETI-DP (and BDDC) has been especially developed
for fourth-order problems [43, 46, 47]. However, in case of non-conforming interfaces, this approach seems to be
difficult to apply: it is less trivial to identify the equivalent of the so-called corner nodes (subset of global DOF where
exact continuity is enforced) since non-conforming parametrizations do not share common DOF by definition. We
thus resort to the initial one-level FETI problem to build our dual Domain Decomposition algorithm. We also employ
the Mortar method presented in our previous work [28] where the kinematic constraints allow to couple Kirchhoff–
Love shells that intersect in non-conforming way, i.e. where the interface can cross some elements and the angle
between both shells can be arbitrarily defined. The motivation of this work is to build a solver that is efficient from the
computational point of view (suitable for parallel computing) but also accurate (quality of the resolution, especially at
the non-conforming junctions).

The developed dual Domain Decomposition solver is presented as follows. Firstly, in section 2 we remind major
aspects concerning multipatch modeling. Specifically, we clarify the notion of non-conforming parametrizations in
the context of isogeometric shells. Then, we present the main theoretical points regarding Kirchhoff–Love shells. Two
versions are used in this work: the standard isogeometric shell from Kiendl et al. [2] and the embedded formulation
from Hirschler et al. [28] which simplifies complex geometric modeling tasks. Next, we review the Mortar approach
of [28] that enables to properly couple multiple non-conforming patches. Section 3 deals with the formulation of
the interface problem. We detail the different steps necessary to get and solve this system, and we give information
about implementation aspects. Finally, section 4 highlights the potential of the method on different examples with an
increasing level of complexity. This brings us to section 5 where concluding remarks and perspectives are discussed.
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2. Non-conforming multipatch analysis

Multipatch modeling is inevitable when dealing with structures with non-trivial topology using IGA. In this sec-
tion, we first remind main aspects about multipatch discretizations. Then, we give the basics regarding the Kirchhoff–
Love shell formulation. Especially, we point out the case of an embedded adaptation of the classical Kirchhoff–Love
shell [28]. This new Kirchhoff–Love formulation involves non-isoparametric elements which require to perform par-
ticular choices and extensions for the developed FETI solver. Finally, we review the Mortar approach introduced in
former contribution [28] that enables to properly couple non-conforming Kirchhoff–Love shells. It constitutes the
starting point for the derivation of the dual DD solver.

2.1. Multipatch NURBS geometries

The framework of this study is based on NURBS modeling, widely used in the context of IGA. A NURBS patch
provides a parametric description of a curve, a surface, or a volume. A key point regarding the construction of
multivariate NURBS is the tensor-product step introduced in the definition of the basis functions. For instance, a
NURBS surface is a bivariate vector-valued function of the form

S(u, v) =

n∑
i=1

m∑
j=1

Ri j(u, v)Pi j. (1)

The piecewise rational basis functions Ri j of degree p in the u direction and degree q in the v direction are obtained
by taking weights wi j associated to the bidirectional net of control points Pi j, and the products of univariate B-spline
basis functions

Ri j(u, v) =
N p

i (u)Nq
j (v) wi j

n∑
k=1

m∑
l=1

N p
k (u)Nq

l (v) wkl

. (2)

Finally, the univariate B-spline basis functions N p
i and Nq

j are defined by two non-uniform knots span of size r =

n + p + 1 and s = m + q + 1 respectively. More information can be found, for example, in Piegl and Tiller [48]
and Rogers [49].

NURBS are recognized as a powerful tool for geometric design. For more than one decade, they have also shown
great potential for numerical simulation with the concept of isogeometric analysis introduced by Hughes et al. [1].
However, some inherent properties of NURBS complicate the automatic transfer from a NURBS-based CAD model to
an analysis-suitable model. More specifically, a single NURBS patch cannot represent complex industrial geometries.
Instead, multiple NURBS patches are required where each of them describes a specific part of the overall structure.
Furthermore, if the constraint of conforming or even matching interfaces is required, the geometric model may need
to be modified in order to perform the analysis. From here on, we use the following terminology to characterize the
coupling [24]:

• it is non-conforming when some elements are overlapped by the interface,

• it is conforming but non-matching when the interface is aligned with the edges of the patches but the control
points on both sides do not match,

• it is matching when the discretizations are exactly the same on both sides of the interface.

Figure 1 describes the process for non-matching and non-conforming interfaces. In the simplest case of a non-
matching interface (see figure 1, left), knots insertion (or removal) and degree elevation (or reduction) allow to recover
a final matching mesh. In the more general case of a non-conforming interface (see figure 1, right), a complete
reparametrization of some parts is inevitable. The local changes introduced to reach the matching condition at the
interface have global influence on the whole discretization. For instance, C0 lines propagate along the patch as
depicted in figure 1. This issue is inherent to the construction of NURBS. The tensor-product step during the definition
of the basis function (2) complicates the imposition of local modifications. In order to prevent the use of cumbersome
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Figure 1: NURBS modeling generates multipatch geometries where each patch represents a specific part of the complete structure. Naturally, these
patches present non-matching or even non-conforming parametrization at their interfaces. Additional procedures are required to get a final model
with conforming and matching interfaces.

reparametrization procedures, we seek to perform the analysis directly on non-conforming multipatch configurations.
Finally, let us notice that trimming techniques are extensively used in CAGD [18, 19]. We do not deal with these
procedures in this work. However, the following developments are also applicable in trimmed IGA and the constructed
Domain Decomposition algorithm with the Mortar coupling considered in this work could be of great interest.

Based on these observations, we can formulate two statements:

• NURBS modeling generates a natural decomposition of the domain (subparts of a global structure).

• NURBS modeling of complex structures naturally results in non-conforming discretizations.

These points motivate the development of efficient solvers that deal with non-conforming multipatch NURBS-based
models.

2.2. Shell formulations
2.2.1. Continuum mechanics

For the shell analysis, we employ the isogeometric Kirchhoff–Love shell [2]. It is based on the Kirchhoff kinematic
assumptions which consists in neglecting the effect of transverse shear strains. Consequently, within this theory, it
is postulated that the director vector remains orthogonal to the mid-surface in the deformed configuration. These
assumptions enable to describe the deformation of the shell body only by the displacement u of the mid-surface S.
The overall displacement field U of the shell body takes the form:

U(θ1, θ2, ζ) = u(θ1, θ2) + ζ [Φ × A3] (θ1, θ2), (3)

where ζ ∈ [- t
2 ; t

2 ], t being the thickness of the shell. The curvilinear coordinates θ1 and θ2 are basically the parameters
of the bivariate function (e.g. NURBS) representing the mid-surface. The linearized rotation vector Φ is defined as
follows [3]:

Φ = ϕ1 A1 + ϕ2 A2, (4)
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Figure 2: Overview of the embedded isogeometric Kirchhoff–Love shell elements as introduced in [28]. The displacement field is approximated by
the same parametrization as the embedded surface. However, the embedded surface does not describe the mid-surface of the shell. An additional
mapping step further modifies the geometry of the shell.

where the rotation angles ϕ1 and ϕ2 are given by :

ϕ1 =
1
J

u,θ2 · A3 and ϕ2 = −
1
J

u,θ1 · A3. (5)

The subscript (·),θi = ∂(·)/∂θi indicates the partial derivative with respect to variable θi. Finally, the normal unit
vector A3 is obtained using the covariant basis vectors A1 and A2:

A1 = S,θ1 , A2 = S,θ2 , A3 =
1
J

A1 × A2 with J = |A1 × A2|. (6)

We willfully omit to give all the intermediary steps that lead to the final expressions of the virtual works for the
considered Kirchhoff–Love shells. These theoretical developments can be found, for example, in [2, 50–53]. The
virtual works take the following forms:

δWKL
int = −

∫
Ω0

(
n : δε + m : δκ

)
dΩ0, δWKL

ext =

∫
Ω0

p · δu dΩ0 +

∫
Γ0

q · δu dΓ0, (7)

where ε and n denote the membrane strains and forces, and κ and m denote the bending strains and moments. The
external loads p describe distributed loads per unit of area applied on the mid-surface Ω0, and q are axial forces per
unit of length applied on the edges of the patch Γ0.

2.2.2. Embedded Kirchhoff–Love shell
We consider two possibilities for the definition of the mid-surface. Firstly, the classical approach where a NURBS

surface is used which will be referred to as the standard Kirchhoff–Love shell. The element formulation is obtained
by introducing in equation (7) the same NURBS-based discretization for the mid-surface and the displacement field:

S(θ1, θ2) =
∑

Ri j(θ1, θ2)Pi j, u(θ1, θ2) =
∑

Ri j(θ1, θ2)ui j. (8)

Secondly, we will also employ the embedded approach as introduced in Hirschler et al. [28]. The main idea is to
describe the mid-surface by the composition of a NURBS volume V and an immersed NURBS surface S̄:

S(θ1, θ2) = V
(

S̄(θ1, θ2)
)
. (9)
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Mathematically, the surface S̄ and the volume V are defined using a bi-variate NURBS and a tri-variate NURBS,
respectively. We have:

S̄(θ1, θ2) =
∑

R̄ab(θ1, θ2)P̄ab, and V(ξ1, ξ2, ξ3) =
∑

Ri jk(ξ1, ξ2, ξ3)Pi jk. (10)

The approximation space of the displacement field is build using the discretization of the embedded surface:

u(θ1, θ2) =
∑

R̄ab(θ1, θ2)uab. (11)

Hence, this embedded Kirchhoff–Love shell has the particularity of not using the isoparametric principle in contrast
to the standard isogeometric Kirchhoff–Love shell. We will show that it has further influence, especially on the de-
scription of the null space and the construction of the pseudo-inverse brought into play later in section 3. Figure 2
summarizes the embedded approach, and further information can found in Hirschler et al. [28] if needed. Finally, the
only difference with the standard Kirchhoff–Love shell is that an additional step (referred as the Free-Form Deforma-
tion step) transforms the mid-surface. This embedded approach enables us to build a model of a wing with its internal
sub-structure (see section 4.3). Lastly, let us note that the use of two types of elements highlight the versatility of the
method tackled in this paper. The dual Domain Decomposition solver is independent of the element formulation, and
thus can be applied in general cases.

At the end, the equilibrium configurations of the shell followed from the principle of minimum potential energy
lead to the typical linear system:

K u = f , (12)

where the vector u concatenates the degrees of freedom (DOF) of the displacement field. Again, the interested readers
can refer to [2, 50–53] for the expressions of the stiffness matrix K and the load vector f for Kirchhoff–Love-type
models.

2.3. Mortar coupling
2.3.1. Formulation of the coupled problem

Let us now consider the case of two shells occupying, respectively, domains Ω(1) and Ω(2), and joining at inter-
face Γ. We assume the case of non-overlapping subdomains, i.e. the junction is described by a curve. In case of
fastened shells, the continuity between both displacements has to be ensured at the interface. Furthermore, in case
of a shell junction with rigid hinge, an additional constraint is required. The continuity between the rotations in the
tangential direction associated with the interface curve also needs to be enforced. These two kinematic constraints are
formulated as follows:

u(1) = u(2) on Γ, [3 displacements]

Φ(1) · t = Φ(2) · t on Γ, [1 rotation]
(13)

where t is a unit tangent vector associated to the interface curve.
The constraints (13) cannot be imposed in a strong manner for arbitrary non-conforming parametrizations. A

static condensation approach presented in Coox et al. [54] can be applied in case of patches joining at their edges
only. However, if a junction crosses the middle of a patch (i.e. for a non-conforming interface) then this approach
may not appear appropriate. To overcome this issue, the continuity constraints are ensured in a weak sense. More
precisely, a Mortar method is used in this work because of its direct link with FETI-like solvers [37, 55]. Two Lagrange
multipliers λ̃ ∈ Ld and λ̂ ∈ Lr are introduced (Ld and Lr being ad-hoc spaces for the displacements and the rotations
respectively). The coupled problem is obtained by formulating the following Lagrangian:

L
(
u(1),u(2), λ̃, λ̂

)
= 1

2 a1

(
u(1),u(1)

)
− l1

(
u(1)

)
+ 1

2 a2

(
u(2),u(2)

)
− l2

(
u(2)

)
+

〈
λ̃,u(1) − u(2)

〉
+

〈
λ̂,Φ(1) · t −Φ(2) · t

〉
,

(14)

where bilinear forms as and linear forms ls constitute the standard variational forms of the elasticity problem on each
subdomain. Operator 〈·, ·〉 is a bilinear form defined such that:〈

v,w
〉

=

∫
Γ

v · w dl . (15)
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2.3.2. Approximation spaces
The variational principle written in the discrete form gives the coupled linear system to be solved:

K(1) 0 C(1)T Z(1)T

0 K(2) C(2)T Z(2)T

C(1) C(2) 0 0

Z(1) Z(2) 0 0





u(1)

u(2)

Λ̃

Λ̂


=



f (1)

f (2)

0

0


, (16)

where vectors u(1), u(2), Λ̃, and Λ̂ collect the DOF corresponding to the discretizations of u(1), u(2), λ̃, and λ̂ respec-
tively:

u(s)
h (θ1, θ2) =

∑
i

R(s)
i (θ1, θ2) u(s)

i s = 1, 2, λ̃h(ξ) =
∑

i

R̃i(ξ) λ̃i, λ̂h(ξ) =
∑

i

R̂i(ξ) λ̂i, (17)

The displacement coupling matrices C(s) and the rotation coupling matrices Z(s) consist in sparse signed rectangular
operators.

The linear system (16) is a saddle point problem, implying that the approximation spaces of the Lagrange multipli-
ers should be carefully chosen in order to satisfy the inf–sup condition. Recent works present optimal approximation
spaces for Mortar coupling in isogeometric analysis [23, 27, 29, 30]. In particular, Schuß et al. [30] deal with the
G1 coupling of non-matching Kirchhoff–Love shells. Based on these works, one could build optimal approximation
spaces for the Mortar coupling of shells that intersect in an arbitrary, non-conforming manner (i.e. where the junction
crosses a patch, or where the patches intersect with an angle, etc.). This issue is not tackled in this work. Instead,
the strategy adopted here is only based on numerical experiments. Let p denote the smallest degree of the discrete
displacement field of both subdomains Ω(1) and Ω(2). We define:

• for the displacement constraints, λ̃h as a vector-valued B-Spline function with degree p − 1 since it is mainly
related to traction forces,

• for the rotation constraint, λ̂h as a scalar-valued B-Spline function with degree p − 2 because it transfers a
bending moment,

• an identical mesh refinement for both Lagrange multipliers. We discretize these fields using as many elements
as the coarsest of the trace of domains Ω(1) and Ω(2) along the interface.

We assert that with such a choice, we never encountered instabilities in our computations. The numerical examples
presented in section 4 highlight the good behavior of this Mortar coupling. One can also notice that the choice of
the approximation spaces for the Lagrange multipliers is completely decoupled from the overall approach applied in
this work to build the Domain Decomposition solver. With other choices in hand, the remaining part of the method
performs identically.

2.3.3. Implementation aspects
Regarding the construction of the coupling operators C(s) and Z(s), they are obtained by assembling local matrices,

as for the stiffness matrix K(s). Since the construction is done in the same way for each subdomain, we skip the
identification through superscript (s). Let l denote the global DOF number of the jth-component associated to the
displacement vector ub, such that ul = ub · e j (where e j refers to the basis of the global Cartesian coordinate system).
Similarly, let k denote the global DOF number of the Lagrange multipliers. With these notations in hand, one can
express the following variations:

∂u
∂ul

= Rbe j,
∂λ̃

∂λ̃k
= R̃aei,

∂λ̂

∂λ̂k
= R̂a. (18)
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Figure 3: Non-conforming parametrization: the interface between both surfaces is represented in their parameter spaces by using NURBS
curves C̄(s). These curves are generated in order to ease the building of the coupling operators for the Mortar approach.

This way, we can express the coupling matrices as:

Ckl = ±

∫
Γ

∂λ̃

∂λ̃k
·
∂u
∂ul

dl = ±

∫
Γ

R̃aRbδi j dl (19)

Zkl = ±

∫
Γ

∂λ̂

∂λ̂k

(
∂Φ

∂ul
· t

)
dl = ±

∫
Γ

R̂a

[
A3

J

(
Rb,θ2 (A1 · t) − Rb,θ1 (A2 · t)

)]
· e j dl (20)

The symbol ± indicates whether the subdomain is the master (+) or the slave (−).
Looking at expressions (19) and (20), we still need to clarify how to integrate numerically over the interface.

For general non-conforming interface, the methodology adopted in this paper is depicted in figure 3. We manage to
represent the interface in the parameter spaces through NURBS curves. As mentioned by Bauer et al. [56], it results
from a surface-to-surface intersection problem which is a common task in CAD. Under the consideration that no
approximation is involved during the generation of the curves, we have two definitions of the interface curve (one per
subdomain). In other words, the following equation applies:

S(1)
(
C̄(1)(ξ)

)
= S(2)

(
C̄(2)(ξ)

)
= C(ξ) ∀ξ ∈ [0, 1]. (21)

The embedded curve C̄ allows to perform a change of variables which results in the following treatment to compute
the coupling matrices. For instance, for matrix C, we get:

Ckl = ±

∫
[0,1]

R̃a(ξ) Rb

(
C̄(ξ)

)
δi j |T(ξ)| dξ, (22)

which is also true for matrix Z. The vector T is given by:

T(ξ) =
d
dξ

S
(
C̄(ξ)

)
=

(
C̄,ξ(ξ) · e1

)
A1 +

(
C̄,ξ(ξ) · e2

)
A2. (23)

Vector T is tangential to the interface curve. Therefore, once normalized, one can obtain the unit tangent vector t which
comes into play in the rotation coupling matrix (20). Finally, numerical integration is performed using a Gaussian
quadrature rule. A refinement by knot insertion of the embedded NURBS curves discretizes the interface in a finite
number of segments. The number of segments and the number of Gauss points per-segment should be chosen such
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that the numerical error remains negligible. At the end, the assembly of the coupling matrices is performed with a
loop on the Gauss points of each segment:∫ 1

0
f (ξ) dξ =

∑
I

∫ ξI+1

ξI

f (ξ) dξ ≈
∑

I

∑
gp

f (ξIgp )JIgpωgp, (24)

where ξIgp denotes the position of the Gauss point on the parameter space of the embedded curve, JIgp denotes the
Jacobian of the last mapping such that the integral over [ξI , ξI+1] is changed into an integral over [-1, 1], and ωgp

denotes the quadrature weight.

2.3.4. Generalization
Let us now generalize the coupling approach for the case of ns sub-domains (i.e. ns patches) Ω(i), i = 1 . . . ns.

We define as K = diag(K(1),K(2), . . . ,K(ns)) the diagonal block matrix that stores all the stiffness matrices of each
sub-domain. We concatenate the displacement and the rotation coupling matrices into single coupling matrices such
that B(i) = [C(i)T ,Z(i)T ]T . Thus, we introduce the global coupling operator B = [B(1),B(2), . . . ,B(ns)]. We also define
the global load vector f = ( f (1)T , f (2)T , . . . , f (ns)T )T . Finally, the total displacement and Lagrange multiplier DOFs
are stored in vectors u and λ respectively. With these notations, the generalization of the coupled system (16) reads:K BT

B 0


uλ

 =

 f

0

 . (25)

3. The proposed dual Domain Decomposition solver

The proposed solver belongs to the family of dual Domain Decomposition algorithms, originally introduced
by Farhat and Roux [40] with the one-level FETI algorithm. Since then, a large number of papers and variants
have been developed to successfully apply in many contexts: e.g. plate and shells [43, 46, 47], heterogeneous prob-
lems [57, 58], contact problems [59], etc. The following developments are based on these researches and provide an
efficient algorithm for the parallel computation of non-conforming multipatch Kirchhoff–Love shells.

3.1. Formulation of the interface problem

The first step of the approach consists in splitting problem (25) into the following coupled set of equations:

K(i)u(i) = f (i)
− B(i)Tλ, for i = 1, . . . , ns (26)∑

i

B(i)u(i) = 0. (27)

The goal is then to formulate a dual interface problem with the Lagrange multiplier DOF as the only unknowns. This
interface problem is obtained by introducing the local equilibriums (26) into the coupling condition (27). Generally,
the local stiffness matrices K(i) are not invertible. Indeed, if no Dirichlet boundary conditions are imposed on the
floating sub-domain Ωi then the matrix K(i) is singular. Therefore, K(i) being symmetric, equation (26) has a solution
if and only if the load vector f (i)

− B(i)Tλ belongs to the image of operator K(i). It leads to an additional equation,
called the admissibility condition, which is:

R(i)T
(

f (i)
− B(i)Tλ

)
= 0, for i = 1, . . . , ns (28)

where R(i) is a rectangular matrix. Its columns describe a basis of the null space ker(K(i)) of matrix K(i). From a
mechanical point of view, these vectors are the local rigid body modes. Then, for each sub-domain, the equilibrium is
given by:

u(i) = K†(i)
(

f (i)
− B(i)Tλ

)
+ R(i)α(i), (29)

9



where α(i) is a vector that collects the different amplitudes of the rigid body modes (or null-energy modes) for sub-
domain i and K†(i) is a pseudo-inverse of the stiffness matrix, i.e. that satisfies K(i)K†(i)K(i) = K(i).

Now, the local solutions (29) can be introduced into the compatibility condition (27). It yields the following
equation∑

i

B(i)K†(i)B(i)T λ −
∑

i

B(i)R(i) α(i) =
∑

i

B(i)K†(i) f (i). (30)

Finally, combining this last equation with the admissibility condition given by (28), we end up with the interface
problem. The resulting system is generally called the FETI system and is given by: F G

GT 0


λα

 =

d

e

 , (31)

where α concatenates the rigid body unknowns of each sub-domain. The dual Schur complement F, the constraint
matrix G, and the right-hand sides d and e are expressed as:

F =
∑

i

B(i)K†(i)B(i)T ,

G = −
[
B(1)R(1) B(2)R(2) · · · B(ns)R(ns)

]
,

d =
∑

i

B(i)K†(i) f (i),

e = −
(

f (1)T R(1) f (2)T R(2) · · · f (ns)T R(ns)
)T
.

3.2. Resolution
The resolution of system (31) relies on an iterative solver where only matrix-vector products are performed. This

way, there is no need for assembling the dual Schur complement which would be computationally very demanding
since pseudo-inverses K†(i) are involved. Moreover, it avoids to invert the dual Schur complement which has a dense
structure. Even more important, the product between a vector y and the dual Schur complement F results in a sum of
local contributions which is ideally suited to parallel computing:

Fy =
∑

i

B(i)v(i), where v(i) = K†(i) B(i)T y. (32)

More specifically, F being symmetric positive definite, a Preconditioned Conjugate Projected Gradient (PCPG)
algorithm is used. To satisfy (28), a projector P onto the null space of GT , i.e. onto ker(GT ), is introduced. Thus, by
definition, we have the relations:

GT P = 0, and PT G = 0.

It allows to eliminate the unknowns α from the first equation of system (31). To this end, we multiply this equation to
the left by PT :

PT
[

Fλ + Gα = d
]
⇒ PT Fλ = PT d. (33)

The second equation GTλ = e of the system (31) is explicitly fulfilled by introducing the splitting:

λ = λ0 + Pλ̄, (34)

where the initialization λ0 satisfies the constraint GTλ0 = e. This splitting is operated during the resolution by firstly
choosing λ0 as the starting guess, and secondly by projecting the gradient during the update. Finally, these two
projection steps transform the interface problem (31) into the projected interface problem:

PT FP λ̄ = PT
(
d − Fλ0

)
, (35)
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Initialize
λ0 = QG(GT QG)-1e
r0 = d − Fλ0

Iterate k = 1, 2, . . . until convergence

wk−1 = PT rk−1 Project
zk−1 = Mwk−1 Precondition
yk−1 = Pzk−1 Re-project

pk = yk−1 −
∑k−1

i=1
βi pi (p1 = y0) Conjugate

with βi =
yk−1 · Fpi

pi · Fpi

αk =
yk−1 · wk−1

pk · Fpk Minimize

λk = λk−1 + αk pk Update

rk = rk−1 − αkFpk Residual

Table 1: The Preconditioned Conjugate Projected Gradient algorithm with re-orthogonalization.

which is solved using the PCPG algorithm (see table 1).
We still need to express the projector and the initialization. It brings into play a symmetric matrix denoted Q

for which the product GT QG is invertible. Matrix Q can be taken as being the preconditioner, identity or a scaling
matrix [60]. Finally, we have:

λ0 = QG
(
GT QG

)−1
e, (36)

P = I −QG
(
GT QG

)−1
GT . (37)

For most problems, the simplest choice Q = I is the most computationally efficient, and many studies reported in the
literature have been performed with this choice [38, 60]. We apply the same treatment herein. Finally, full or partial
re-orthogonalization of the gradient at every iteration is commonly adopted to overcome the poor conditioning of the
dual Schur complement [39].

3.3. Pseudo-inverse and Null space
As of now, we did not mention how to formulate the null space R(i) and the pseudo-inverse K†(i) that come into

play in the one-level FETI solver.

3.3.1. Explicit construction of the kernel
The null space of a stiffness matrix is commonly associated with the space of rigid-body modes. For 3D elasticity

problem and under the condition that no Dirichlet boundary conditions are imposed, we know that there exist 6 rigid-
body motions consisting of 3 translations (modes numbered 1, 2, and 3) and 3 rotations (modes numbered 4, 5, and 6)
around 3 non-collinear axes. Considering a shell with mid-surface S(θ1, θ2), an arbitrary kernel element r is :

r(θ1, θ2) = a + b × S(θ1, θ2), (38)

where a ∈ R3 defines a translation and b ∈ R3 defines a rotation. In order to build a basis of the null space, one
can successively describe the translations and the rotations with respect to the global unit vectors ei. We can re-write
equation (38) in the discrete form in order to identify the DOF corresponding to these unitary rigid-body modes:∑

k

Rk(θ1, θ2)ri
k = ei, and

∑
k

Rk(θ1, θ2)ri+3
k = ei × S(θ1, θ2), (39)

11



where Rk are the NURBS basis functions of the discretized displacement field. It is obvious that taking all DOF ri
k

equal to ei enables to describe the translation rigid-body modes. For the rotations, it depends on the discretization of
the shell mid-surface:

• in the case of the standard Kirchhoff–Love shell, the displacement field is approximated using the same dis-
cretization as for the mid-surface which gives:∑

k

Rk(θ1, θ2)ri+3
k =

∑
k

Rk(θ1, θ2) ei × Pk ⇒ ri+3
k = ei × Pk. (40)

• in the case of the embedded Kirchhoff–Love shell, the displacement field and the mid-surface are discretized
differently (Rk for the displacement and Ml for the mid-surface), leading to the linear system of equations:∑

k

Rk(θ1, θ2)ri+3
k =

∑
l

Ml(θ1, θ2) ei × Pl, ∀ (θ1, θ2). (41)

System (41) cannot be solved in general. One can choose a set of parameters {(θ1, θ2)1, (θ1, θ2)2, . . . } and build an
approximation of the null space by interpolation for instance. However, it does not ensure that equation (41) is exactly
satisfied (i.e. true for every couple of parameters (θ1, θ2)) which means that this approximation of the null space
may not be energy-free. Thus, we cannot explicitly build the kernel of the stiffness matrix for the embedded shell
formulation. It means that the approach presented in Dostál et al. [61], called the Total-FETI, which partly aims at
simplifying the implementation of the original FETI method, is not applicable in this context. Without knowing the
null space modes a priori, we cannot opt for a geometrical strategy, based for example on fixing nodes and on a
regularization of the stiffness matrix as in Kozubek et al. [62]. We resort to a purely algebraic method presented in the
following section to build the null spaces and the pseudo-inverses involved in the algorithm.

3.3.2. Algebraic method
For clarity, we voluntarily skip here the sub-domain identification through superscript (i), but the reader should

view the following operators as local quantities. Because we were not able to explicitly build the null space R in
the case of the embedded formulation, we resorted to the purely algebraic method presented in Farhat and Géradin
[63] and already used in Farhat and Roux [40]. The pseudo-inverse and the null space are constructed during the
factorization of the stiffness matrix. It is based on the partition of matrix K ∈ Rn×n as:

K =

[
K11 K12
K12

T K22

]
, (42)

where K11 ∈ Rr×r is a submatrix with full rank r equal to the rank of the initial matrix (i.e. r = rk K = rk K11). With
such a partition in hand, the following relation holds:

K22 −K12
T K−1

11 K12 = 0. (43)

One can define the pseudo-inverse and the null space as:

K† =

[
K−1

11 0
0 0

]
, R =

[
−K−1

11 K12
I

]
, (44)

where I is the identity matrix of size m = n − r.
In practice, the partition (42) is not known in advance but it is obtained in an unordered form during a Gaussian-

based factorization (as for example a LU decomposition). At each step of the factorization, one can check if a null
pivot is encountered. If true, the corresponding equation is redundant and is removed from the system. The reduced
column can be recycled to later recover the null space. Furthermore, a small tolerance is set to detect the null pivots
(i.e. the right term in (43) is, in practice, not exactly equal to zero). It enables for instance to track the rotation rigid-
body modes in the case of the embedded Kirchhoff–Love shell. More information can be found in Farhat and Géradin
[63]. Alternative methods, based for example on the Singular Value Decomposition (SVD) are also available [64].
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3.4. Preconditioning
Last ingredient involved in the FETI algorithm is the preconditioner already introduced in table 1 through op-

erator M. A good preconditioner is crucial for the computational performance of the iterative resolution. Several
preconditioners have been studied in the literature for solving different projected interface problems. In the context of
FEM matching grids, the Dirichlet preconditioner is said to be optimal regarding the asymptotic bound and thus offers
excellent numerical scalability [65]. In case of Mortar interface, we can re-write this Dirichlet preconditioner as:

F̃−1
I =

ns∑
i=1

(
B(i)B(i)T

)−1
B(i)

[
0 0
0 S(i)

bb

]
B(i)T

(
B(i)B(i)T

)−1
, (45)

where matrix S(i)
bb denotes the primal Schur complement and is given by:

S(i)
bb = K(i)

bb −K(i)
bi K(i)

ii
−1

K(i)
ib , (46)

where indices b correspond to the boundary DOF on the interface and indices i correspond to the internal DOF. The
Dirichlet preconditioner (45) is obtained by exactly inverting the local dual Schur complements and summing each
local contribution.

More specifically, some works deal with the particular case of Mortar coupling and improvements to the initial
version of the Dirichlet preconditioner have been studied in this context [37, 38, 55, 65]. For instance, scaling factors
can be added in order to take into account the relative stiffnesses across the interface [60]. These heterogeneities are
particularly numerous in the case of stiffened structures with the presence of T -junctions, different shell thicknesses
and material behaviors [47]. Thus, it is primordial to efficiently deal with those heterogeneities to analyze com-
plex shell structures. Therefore, in the present paper, it is proposed to follow the extended Dirichlet preconditioner
suggested by Rixen [65] and mentioned by Stefanica [38] which can be written as:

F̃−1
D =

ns∑
i=1

(
BDBT

)−1
B(i)D(i)

[
0 0
0 S(i)

bb

]
D(i)B(i)T

(
BDBT

)−1
, (47)

where matrix D(i) is chosen here as the superlumped scaling: D(i) =
(

diag K(i))−1. The global matrix D is the diagonal
block assembly of all these local scaling matrices, which leads to a diagonal matrix in the present case.

The extended Dirichlet preconditioner has shown better performance in comparison with the original Dirichlet
preconditioner in the case of Mortar interfaces [37, 38, 55]. Rixen [65] shows that this preconditioner is mechani-
cally consistent and mentions its mechanical meaning: once applied to the residual of the interface problem (27), it
computes the correction for the Lagrange multipliers. Stefanica [38] discusses the parallelization properties of this
generalized preconditioner. The critical point concerns the two global multiplications by (BDBT )−1 which cannot be
done in parallel. One may build local matrices B̃(i) = (BDBT )−1B(i) once and for all at the beginning of the resolution.
In order to preserve the sparsity, biorthogonal Mortars could be helpful in this case [29, 38].

4. Numerical investigation

In this section, we run several examples to highlight the good behavior of the algorithm. Firstly, 2D test cases are
presented, then we study several shell test problems, and lastly we analyze two cases of stiffened structures. For every
examples, we depict the number of iterations versus the level of refinement of the mesh given a fixed decomposition,
with or without the preconditioner (47). The convergence criterion is defined as a relative tolerance on the projected
residual (namely wk in table 1) set as ||wk || < 10−8||w0||. The results are given in tables where the headers Ntot and Nλ

denote the numbers of total and interface DOF respectively (i.e., by referring to (25), Nλ is the size of λ, and Ntot
is the total number of unknowns). Columns with headers I and F̃−1

D give the iteration number without and with the
generalized preconditioner, respectively. The goal of these tables is to assess the numerical scalability of the DD
algorithm with the mesh refinement. To show the accuracy of the coupling, we study the convergence of the solution
for two examples: the cantilever beam and the Scordelis-Lo roof. In order to do so, we compute the relative energy
error as:

Eh
coupling =

| Emono − Ecoupling |

Emono
, (48)
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1C ( ref 0 )

1B ( ref 0 )

Displacement

Stress (Von-Mises)

1A ( ref 0 )

Figure 4: Description and results of the cantilever beam problem. Three decompositions 1A, 1B, and 1C are studied. The level of refinement (ref i)
is given accordingly to the table 2

1A 1B 1C

ref Ntot Nλ I F̃−1
D Eh

coupling Ntot Nλ I F̃−1
D Eh

coupling Ntot Nλ I F̃−1
D Eh

coupling

0 330 12 4 4 4.86e-4 702 36 13 8 5.11e-4 630 60 48 13 1.94e-4
1 946 20 9 7 1.64e-4 1966 60 19 9 1.84e-4 1686 100 85 14 6.63e-5
2 3138 36 21 9 5.39e-5 6414 108 36 10 6.37e-5 5334 180 149 15 2.07e-5
3 11362 68 45 9 1.61e-5 22990 204 64 10 2.01e-5 18774 340 251 15 4.60e-6
4 43170 132 71 9 2.92e-6 86862 396 95 10 4.44e-6 70230 660 347 16 1.05e-6

Table 2: Performance study for the homogeneous cantilever beam problem described in figure 4. The reference energy was taken as Emono =

5.568207e-2 to compute the relative energy error of the coupled solution.

where the reference energy Emono is computed on a very fine single patch discretization.

4.1. Simple plane stress problems
Homogeneous domain. The first test case consists in the bending of a 2D cantilever beam with homogeneous material
as described in figure 4. Note that for this case, a standard Lagrange multiplier formulation is set up to couple the
2D displacements only. The geometric and mechanical parameters are chosen as: length L = 20 m, height h = 5 m,
Young’s Modulus E = 60 × 109 Pa, Poisson’s ratio ν = 0.30, and tangential uniform load P = 1000 Pa. Three different
configurations are studied and we denote these decompositions as:

1A two non-matching patches with a similar geometry,
1B four non-matching patches with a similar geometry,
1C four non-matching patches with different geometries.

For every configuration, the patches are discretized with cubic NURBS.
As can be seen in figure 4, the displacement and stress fields are smooth and clearly express the bending of the

beam. Then, table 2 summarizes the convergence results for the FETI algorithm for this first test case. One can see
that the algorithm requires very few iterations to reach convergence when the preconditioner (47) is used. For each
decomposition, it converges in a relatively constant number of iterations. It accounts for the numerical scalability of
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Displacement

2A

( ref 1 )

Displacement

2B

( ref 1 )

(Soft)(Hard) repeat

Figure 5: Description and results of the heterogeneous beam problem. The beam is made of a sequence of hard and soft regions. Configuration 2A

has two hard regions separated by one soft region. Configuration 2B has three hard regions separated by two soft regions.

2A 2B

ref Ntot Nλ I F̃−1
D Ntot Nλ I F̃−1

D

0 204 16 6 5 368 32 10 6
1 448 24 9 7 812 48 14 8
2 1224 40 15 9 2228 80 22 10
3 3928 72 29 9 7172 144 38 10
4 13 944 136 55 10 25 508 272 69 11

Table 3: Performance study for the heterogeneous beam problem described in figure 5.

this preconditioner which is in good agreement with the observations of Stefanica [37, 38] and Rixen [65]. For finer
refinement levels, the gain is significant in comparison with the un-preconditioned version. It is especially true for the
more complex decomposition 1C.

Additionally, the results of the convergence study are given in table 2. The relative energy error is decreasing with
the mesh refinement. It indicates that the solutions obtained with the presented solver for non-conforming meshes
converge to the single patch solution (reference solution). We observe a same convergence rate for each configuration.
Furthermore, it can be noticed that this convergence rate is identical to the one of the single patch discretization.

Heterogeneous domain. The second test case consists in a heterogeneous beam. The description of the problem is
given in figure 5. The beam is made from a sequence of hard and soft regions. One side of the beam is fixed and the
other side is subjected to a traction load. Each hard region is defined by a 5 m by 4 m rectangle and has a Young’s
Modulus equal to E = 60 × 109 Pa. Each soft region is defined by a 3 m by 4 m rectangle and has a Young’s Modulus
equal to E = 6 × 109 Pa. Same Poisson’s ratio equal to ν = 0.30 is chosen for both regions. We consider two cases:

2A three non-conforming patches; two made of hard material separated by one made of soft material,
2B five non-conforming patches; three made of hard material separated by two made of soft material.

Table 3 gives the convergence results for the present case. As for the previous example of the homogeneous can-
tilever beam, the algorithm requires very few iterations to reach convergence when the preconditioner is used, and
this number of iterations does not grow with the refinement level. This does not hold true without the preconditioner.
Therefore, the heterogeneity is correctly tackled by the preconditioned. For instance, for configuration 2B with re-
finement level 3, the algorithm converges in 38 iterations without a preconditioner, while it requires 10 iterations only
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x

y

z

( ref 1 )

-0.37 53.4 107 160 213.1
Bnd Moment My [Pa·m2]

3A

-3.4 8.1 16.9 31.1 42.6
Bnd Moment Mx [Pa·m2]

-0.62 52.8 106 158 210.4
Bnd Moment My [Pa·m2]

-14.3 0 14.1 28.2 42.1
Bnd Moment Mx [Pa·m2]

3B

E = 60 GPa, ν = 0.20 
L = 20 m, l = 20 m
t1 = 0.1 m,
t2 = {0.1 m  for 3A, 1.0 m  for 3B}

Parameters :

Figure 6: Description and results of the bending plate problem. The plate is decomposed into two non-conforming patches. Two cases are
studied: 3A the homogeneous case where the patches have the same properties, and 3B the heterogeneous case where the shells have different
thicknesses.

3A 3B

ref Ntot Nλ I F̃−1
D Ntot Nλ I F̃−1

D

0 222 28 9 6 222 28 7 4
1 510 44 14 7 510 44 14 4
2 1446 76 29 11 1446 76 28 6
3 4758 140 60 18 4758 140 59 11
4 17 142 268 118 26 17 142 268 117 16

Table 4: Performance study for the bending plate problem described in figure 6.

when the generalized Dirichlet preconditioner is equipped with the superlumped scaling (see table 3). Let us also
emphasize here that the good behavior of the preconditioner is mostly due to the superlumped scaling. For the same
configuration and without the scaling (i.e. taking matrix D as the identity in expression (47)), the algorithm would
have required 30 iterations to converge which is almost as much as without any preconditioner.

4.2. Shell test cases

Plate bending. The third example consists in the bending of a plate as described in figure 6. The plate is fully fixed at
one side while a uniform pressure is applied over the whole structure. We decompose the plate into two patches and
we consider two cases:

3A two patches with the same thickness (homogeneous plate),
3B two patches with different thicknesses such that the ratio is t(1)/t(2) = 0.1 (heterogeneous plate),

Cubic NURBS are used and the discretization of the patch with the fixed edge is twice finer than the second one (see
figure 6). For this particular test case, we observe better results (quality of the stress field) when the Lagrange
Multipliers are discretized using the trace space of the finer patch. We opt for this choice here even if the strategy
presented in section 2.3.2 leads to acceptable results too. Finally, the parameters of the study are as follows : length L =

20 m, width l = 10 m, Young’s Modulus E = 60 × 109 Pa, Poisson’s ratio ν = 0.20, and uniform pressure P = 1.0 Pa.
In the homogeneous case, the thickness of both patches is t = 0.1 m. In the heterogeneous case, the thickness of the
fixed patch is t(1) = 0.1 m and the thickness of the free patch is t(2) = 1.0 m.

Table 4 presents the performance study of the algorithm for this problem. The results are similar for both the
homogeneous and the heterogeneous configurations. More specifically, without the preconditioner the algorithm
converges in almost the same number of iterations in both cases. It can be seen that, with preconditioner the algorithm
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Figure 7: Description and results for the Scordelis-Lo roof test case. Three different non-matching decomposition are studied: 4A is made of
three embedded Kirchhoff–Love shells with curved interfaces, 4B is made of four quasi-identical patches (two patches have one more element per
direction), and 4C is made of nine patches with different levels of refinement and degrees. (Note: The displacement has unit of length and the
bending moment has unit of moment per unit length, respectively).

4A 4B 4C

ref Ntot Nλ I F̃−1
D Eh

coupling Ntot Nλ I F̃−1
D Eh

coupling Ntot Nλ I F̃−1
D

0 527 78 47 34 6.15e-3 708 92 70 34 3.55e-3 1513 276 167 44
1 1399 142 73 35 1.19e-4 1652 156 117 38 6.44e-5 3017 468 317 52
2 4295 270 124 45 2.85e-6 4692 284 188 48 1.92e-6 7537 842 558 64
3 14 695 526 158 59 1.01e-7 15 380 540 276 64 8.54e-8 22 625 1620 949 87
4 53 927 1038 175 81 3.71e-9 55 188 1052 405 86 3.52e-9 76 993 3156 1783 121

Table 5: Performance study for the Scordelis-Lo shell problem described in figure 7. The reference energy was taken as Emono = 4826.577028 to
compute the relative energy error of the coupled solution.

converges in slightly less iterations for the heterogeneous plate. Furthermore, the number of iterations is kept low even
for the finer meshes when the preconditioner is used. Ideally, this number of iterations should be constant versus the
mesh refinement as observed for the plane stress problems 4.1. Here, we do not have a perfect numerical scalability but
it is not surprising. In fact, the one-level FETI equipped with the Dirichlet preconditioner is known to be numerically
scalable for second-order problems. However, it does not hold true for fourth-order problems as shown for example
by Farhat et al. [46]. That is why extensions of the classical FETI method, as for instance the two-level FETI and
latter on the FETI-DP, have been introduced to optimally deal with plates and shells [43, 46]. Based on these remarks,
we understand the increase of the iteration counts versus the mesh refinement and the same behavior is expected for
the other shell problems tackled in this work. Nevertheless, for this test case of a plate, the presented dual domain
decomposition algorithm performs well and leads to entirely acceptable results.

Scordelis-Lo roof. The Scordelis-Lo roof is part of the shell obstacle course which is widely used to study the perfor-
mance of shell formulations [66]. It consists of a portion of cylinder subjected to a vertical gravity load and fixed at
its two end sections using rigid diaphragms. The study parameters and some results for this test case can be found in
the abundant shell literature: [2, 66, 67]. We decompose the Scordelis-Lo roof into three non-matching configurations
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as depicted in figure 7:

4A three patches with a curved interface obtained by using the embedded Kirchhoff–Love formulation,
4B four quasi-identical patches which intersect at a cross point,
4C nine patches with different levels of refinement. The coarsest are quartic patches while the finest are cubic

patches.

Figure 7 shows the vertical displacement field and the distribution of a bending moment for each configuration, which
appears smooth as expected. The results investigating the numerical scalability are given in table 5. It can be seen that
the benefit of the preconditioning step is increasing from the first configuration 4A to the third configuration 4C. For
the first configuration 4A, the iteration count is only reduced by a factor of 2 or 3 (except for the coarsest mesh). For
the second configuration 4B, the iteration count is reduced by a factor of 4 for the refinement levels above 1. Finally,
for the more complex decomposition 4C, the iteration count is drastically reduced when using the generalized Dirichlet
preconditioner. Looking at the refinement levels 3 and 4 in table 5 (and columns referred to the configuration 4C), we
observe that the number of iterations is reduced by a factor of 10, and 15 respectively. Thus, the benefit provided by the
preconditioner is all the more remarkable in case of complex Domain Decomposition. Even if numerical scalability
is not fully reached, the growth of the iteration count with the refinement level is very slow for each configuration and
it leads to satisfactory results.

Additionally, the results of the convergence study are given in table 5. It enables to show that the strategy presented
in section 2.3.2 is valid. We do not perform the convergence study for configuration 4C since it contains patches of
different degrees (cubic and quartic). For each configuration 4A and 4B, the relative energy error is low and decreases
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Figure 8: Description and results for the stiffened panel problem. It consists in the assembly of a rectangular plate with three stiffeners; two with
a parabolic shape crossed by a straight one. It leads to four non-conforming patches and five coupling interfaces (three stiffener/panel and two
stiffener/stiffener interfaces). The main stress resultants for the panel are the bending moments whereas the stiffeners are mainly subjected to
membrane forces.

5A

ref Ntot Nλ I F̃−1
D

0 1227 147 109 50
1 3313 259 193 68
2 10 365 483 341 85
3 35 989 931 613 103
4 133 317 1827 1106 125

6A

ref Ntot Nλ I F̃−1
D

0 9246 2272 1874 258
1 28 554 4096 - 299
2 102 444 7744 - 378

Table 6: Performance study (left) for the stiffened panel problem 5A described in figure 7 and (right) the wing problem 6A described in figures 9, 10,
and 11.
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with the mesh refinement. Particularly, the convergence rates for configuration 4A and 4B are similar. Interestingly,
this convergence rate is similar to the one we observe for the monopatch discretization (with cubic elements).

4.3. Stiffened structures

Stiffened panel. The problem of the stiffened panel is presented in figure 8. It consists of the assembly of a square
plate with sub-parts called the stiffeners. We design three stiffeners: two with a parabolic shape and the third one with
straight shape. The straight patch intersects the two curvilinear stiffeners. As a result, five non-conforming interfaces
are defined: each interface cuts several isogeometric elements. Every patch is discretized using cubic Kirchhoff–Love
shells. The material and geometric parameters of the study are given in figure 8. The edges of the panel are fixed (no
displacement). The uniform pressure is equal to P = 1000 Pa. We denote by 5A this problem of the stiffened panel.

Once again, we run the analysis for several levels of refinement with and without the preconditioning step. The
results of the study are given in table 6. We observe the same behavior than for the previous test cases. Indeed, the
iteration count is drastically reduced with the use of the preconditioner and it is all the more true when increasing
the refinement level. The numerical scalability is not completely achieved but the growth of the number of iterations
remains slow while introducing the preconditioning step. Especially, satisfactory results are obtained even for very

Ribs

Spars

Parameter space:

Physical space:

Step 2. Embed entities

Volume 
Mapping

Upper Skin

Lower Skin

Internal 
Volume

Step 1. Generate internal volume

6A

Figure 9: Construction of the model of the wing: starting from the surface description of the outer geometry, a first step generates volumes that fill
the inside of the wing. Then, the internal substructure made of spars and ribs are defined by embedding NURBS surfaces into the parameter space
of these volumes. Thus, the surfaces representing the internal substructure are obtained by NURBS compositions.

y
z

x

y

z

Fixed side

Uniform 
Pressure

Initial Configuration Deformed Configuration (factor 10)

0. 32.5 65. 97.5 130.
Displacement Magn. [mm]

Figure 10: Description and global results of the wing analysis. The model contains a total of 16 patches taken as sub-domains for our solver: 4 for
the skin, 4 for the spars, and 8 for the ribs.
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Figure 11: Detail views of the wing analysis: zooms are depicted in order to highlight the non-conforming interfaces between the different parts
(skins, spars, ribs). The color range of the displacement field is scaled accordingly to each zones to show the displacement continuity at these weak
coupling interfaces.

fine meshes. For instance, with the refinement level of 4, the dual decomposition domain algorithm converges in
125 iterations even though the total number of DOF is over 100 000. This is a crucial point. Because the algorithm
solves an interface problem where the unknowns are the Lagrange Multiplier DOF (see equation (35)), we are able to
measure, during the resolution, the residual of the coupling condition (27). The convergence criterion is formulated
on this residual which, in other words, ensure the good fulfillment of the coupling condition. Thus, we believe that
the presented algorithm is viable and therefore attractive to tackle more complex models as encountered in industrial
application.

Aircraft wing. We finally present an example of a wing in order to highlight the potential of our algorithm to handle
more sophisticated models. We consider the case of a subsonic aircraft wing adapted from Vassberg et al. [68] with
the following dimensions: the span is 15 m, the sweep angle is 35◦, the root and tip chords are equal to 7 m and
1 m respectively. We build the wing with its internal substructure made of ribs and spars. To this purpose, we adopt
the strategy depicted in figure 9. The starting point is to describe the outer geometry which defines the skin. In
our case, we use four NURBS surfaces, two for the top and two others for the bottom. Once it has been done, we
define two NURBS volumes that fill the domain delimited by the skin. For each volume, we now have the possibility
to embed NURBS surfaces in its parameter space. The NURBS composition of the embedded surfaces with the
volume mapping leads to surfaces that are perfectly lying inside the domain delimited by the skin and no geometric
approximation at the interfaces is introduced. More information can be found in our previous work [28]. Thanks
to the embedded Kirchhoff–Love shell formulation, the geometric model with NURBS compositions can directly be
used for the analysis. Finally, it leads to a model with 16 patches, taken as sub-domains for our solver, as described
in figure 10 (4 quadratic standard Kirchhoff–Love shells for the skin, 8 and 4 cubic embedded Kirchhoff–Love shells
for the ribs and the spars, respectively). In addition to being tedious to generate, an analysis-suitable model of the
wing (i.e. with only matching and conforming interfaces as discussed in figure 1) would lead to a much larger number
of patches. It could not be achieved without calling on specific geometric modelers. Here, the modeling task is thus
simplified and offers a great flexibility.

The results of the analysis are given in figures 10 and 11, and the scalability study of the algorithm is given in
table 6 under the mention 6A. The root side of the wing is fixed and a uniform pressure is applied on the upper skins.
Under this loading, the magnitude of the displacement at the tip of the wing is about 130 mm. In order to highlight
the correct imposition of the coupling conditions, we depict detail views of the different non-conforming interfaces
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in figure 11. One can see the continuity of the displacement over these interfaces. Concerning the convergence of
the algorithm, we were only able to run the resolution without the preconditioning step for the coarsest discretization.
In this case, it already takes almost 2000 iterations to converge. For the highest level of refinement, it does not
converge before the stopping criteria of maximal iteration number set to 2000. However, the generalized Dirichlet
preconditioner drastically accelerates the convergence as shown in table 6. It enables to analyze refined versions of
the wing model in an acceptable number of iterations. As for the other examples tackled in this work, we get a slow
growth of the iteration count versus the refinement level. Finally, this example demonstrates the crucial need for a
good preconditioner to make the algorithm powerful. The generalized Dirichlet preconditioner (47) performs well for
all examples and has proved to be robust even for more complex cases as the aircraft wing.

5. Concluding remarks

A dual Domain Decomposition algorithm is presented for the analysis of non-conforming multipatch isogeometric
shell models. The starting point is the definition of a Mortar coupling which weakly imposes the coupling conditions
through Lagrange Multipliers. In the literature, one argument against Mortar methods is commonly claimed; it con-
cerns the additional unknowns introduced by the Lagrange multiplier field that increase the overall size of the system to
be solved. We believe that this argument is not relevant and the present work fully takes advantage of those additional
DOF. In fact, it allows us to formulate an interface problem, namely the one-level FETI problem, where the unknowns
of the system are these interface DOF. We highlight for different examples with increasing levels of complexity that
it enables to accurately analyze non-conforming multipatch structures, even for very fine level of refinement, since
we track the interface residual during the resolution. Moreover, the algorithm is naturally parallelizable. Instead of
solving one large linear system, only local problems defined at the patch level have to be solved. In fact, the pre-
sented algorithm belongs to the FETI family which has been intensively developed over the past decades. Those
Domain Decomposition algorithms have shown great performances to analyze very large problems with millions of
DOF. Alternatives to the initial one-level FETI, regarding for example the formulation of the interface problem or the
preconditioning step, have been suggested and studied in the literature. All those works can be applied to develop
efficient analysis solvers for complex industrial isogeometric models. The present work aims to motivate researches
in that direction. The direct use of geometric models with non-conforming interfaces and trimming procedures for the
structural analysis could be pushed forward with those new Domain Decomposition solvers.
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[14] A. Apostolatos, G. De Nayer, K.-U. Bletzinger, M. Breuer, R. Wüchner, Systematic evaluation of the interface description for fluidstructure
interaction simulations using the isogeometric mortar-based mapping, Journal of Fluids and Structures 86 (2019) 368–399.

[15] G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Analysis-suitable volume parameterization of multi-block computational domain in isogeo-
metric applications, Computer-Aided Design 45 (2013) 395–404.

[16] H. Al Akhras, T. Elguedj, A. Gravouil, M. Rochette, Towards an automatic isogeometric analysis suitable trivariate models generationAppli-
cation to geometric parametric analysis, Computer Methods in Applied Mechanics and Engineering 316 (2017) 623–645.

[17] F. Massarwi, P. Antolin, G. Elber, Volumetric untrimming: Precise decomposition of trimmed trivariates into tensor products, Computer
Aided Geometric Design 71 (2019) 1–15.

[18] B. Marussig, T. J. R. Hughes, A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects,
Archives of Computational Methods in Engineering 25 (2018) 1059–1127.

[19] T. Teschemacher, A. M. Bauer, T. Oberbichler, M. Breitenberger, R. Rossi, R. Wüchner, K.-U. Bletzinger, Realization of CAD-integrated
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