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Abstract

We present a new quasi-affine reconstruction of a scene
and its application to camera self-calibration. We refer to
this reconstruction as QUARCH (QUasi-Affine Reconstruc-
tion with respect to Camera centers and the Hodographs
of horopters). A QUARCH can be obtained by solving
a semidefinite programming problem when, (i) the images
have been captured by a moving camera with constant
intrinsic parameters, and (ii) a vague knowledge of the
relative orientation (under or over 120◦) between cam-
era pairs is available. The resulting reconstruction comes
close enough to an affine one allowing thus an easy up-
grade of the QUARCH to its affine and metric counter-
parts. We also present a constrained Levenberg-Marquardt
method for nonlinear optimization subject to Linear Ma-
trix Inequality (LMI) constraints so as to ensure that the
QUARCH LMIs are satisfied during optimization. Exper-
iments with synthetic and real data show the benefits of
QUARCH in reliably obtaining a metric reconstruction.

1. Introduction

In multi-view computer vision, accurately locating the
plane at infinity (Π∞) is considered crucial for success-
fully lifting a projective structure and cameras to a metric
frame [20, 5]. Locating Π∞ reliably has proved challeng-
ing in camera self-calibration due to the nonlinearity of the
problem [11, 12]. Once it is located, the calibration param-
eters may be obtained by solving linear equations for the
(dual) image of the absolute conic. When camera parame-
ters are constant, a necessary condition on Π∞ is that the
eigenvalues of its inter-image homography matrices have
equal moduli. This so-called modulus constraint [20] leads
to quartic polynomial equations in the coordinates of Π∞
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Figure 1: QUARCH is a specialization of the QUARC stra-
tum and is therefore one step closer to the affine stratum.

for which several solutions have been proposed [20, 8, 5].
Other methods [11, 9] locate Π∞ by first upgrading

a projective reconstruction to a quasi-affine one based
on Hartley’s cheirality theory [10]. In [11], the cheiral-
ity inequalities are used to obtain bounds on the coordi-
nates of Π∞, which is then located through an exhaustive
search within these bounds. The quasi-affine reconstruction
in [11, 9] is with respect to the set of camera centers and
that of scene points: the sets whose respective convex hulls
are preserved. Nistér [17] pointed out that scene points may
not be reliable and therefore sought a quasi-affine recon-
struction with respect to camera centers (QUARC) alone.
A QUARC is upgraded to a metric reconstruction through
nonlinear optimization of a geometrically meaningful cost
function derived from priors on the calibration parameters.

In this paper, we show the existence of a new quasi-
affine reconstruction stratum that we refer to as QUARCH:
QUasi-Affine Reconstruction with respect to Camera cen-
ters and the Hodographs of horopters. A QUARCH is a
specialization of a QUARC (see Figure 1) that addition-
ally satisfies a new set of relative camera orientation-based
convex constraints on Π∞. These constraints are formu-
lated as Linear Matrix Inequalities (LMIs) and they describe



the relationship of Π∞ with the hodographs [21, 2] of the
horopters [24, 23] of camera pairs. A QUARCH can be
obtained when the calibration parameters are constant and
when the relative orientation angle between a set of camera
pairs is known to be either under or over 120◦.

We use QUARCH in a self-calibration algorithm as a
first step towards obtaining a metric reconstruction from
a projective one. To obtain a QUARCH, our assumption
is that the relative orientation angle between consecutive
views is under 120◦. This is a mild assumption that is often
implicitly verified when capturing images so as to ensure a
sufficient overlap for feature matching. Π∞ is then located
through nonlinear optimization of a suitable cost function,
such as using the modulus constraints. We also propose a
constrained Levenberg-Marquardt (LM) method for nonlin-
ear optimization subject to LMI constraints. This ensures
that the QUARCH LMIs are satisfied during the local opti-
mization. Our experiments show that a QUARCH plane is
an excellent starting plane for our algorithm to reliably con-
verge to Π∞ and that constraining the local optimization
to satisfy the QUARCH LMIs further improves the success
rate of locating it. The main contributions of this paper are:

• QUARCH: a new quasi-affine stratum along with an
algorithm for camera self-calibration based on it.

• Constrained LM method: an LM-type algorithm for
nonlinear optimization subject to LMI constraints.

Notation: We consider the scene embedded in the projec-
tive 3-space P3. A point X and plane Π in P3 are repre-
sented by 4-dimensional homogeneous column vectors, X
and Π, respectively. The plane at infinity is referred to as
Π∞ and its coordinates by Π∞. A perspective camera is
represented by its 3 × 4 projection matrix P. Finally, (·)k
refers to the k-th entry of its vector argument, In is the n×n
identity matrix, 0d the d-dimensional zero vector, sgn(·) the
sign function, and ' the equality up to scale.

2. Background
This section is a brief review of key results from the lit-

erature and of LMIs, which our work is based upon.

2.1. Modulus constraint and the horopter

Shaffalitzky [24] showed the connection between the
modulus constraint and the horopter curves. The horopter
H of a camera pair with identical calibration parameters
is the locus of points in P3 that are imaged at the same
coordinates by both cameras. As such, a point X on the
horopter satisfies PiX ' PjX, and the locus of these points
is H(s, t) , N (sPi − tPj) for parameters s and t, where
N (·) is the algebraic nullspace operator defined in [24] as
det
([
PT Π

])
= ΠTN (P) for any plane Π. The algebraic

nullspace defines the scale of the null vectorN (P) from the

scale of the matrix P. The parametric form of the horopter
of the camera pair (i, j) is:

H(s, t) = s3 Ci − s2t Tij + st2 Tji − t3 Cj , (1)

where Ci = N (Pi) and Cj = N (Pj) are the two camera
centers, Tij = T (Pi, Pj), Tji = T (Pj , Pi), and operator T
is defined by this expansion. The horopter is a twisted cubic
in P3 that passes through both camera centers and intersects
a plane (including Π∞) at three points. From [24], we have:

ΠT
∞ [Ci Tij Tji Cj ] = (λ3

i , λ
2
iλjaij , λiλ

2
jaij , λ

3
j ), (2)

where λi and λj are the scale factors of Pi and Pj , respec-
tively, and aij = 1 + 2 cos θij , with θij being the relative
orientation angle between the two cameras. Eliminating the
scalars from (2) leads to the modulus constraint:

Mij , ΠT
∞Ci(Π

T
∞Tji)

3 −ΠT
∞Cj(Π

T
∞Tij)

3 = 0, (3)

that is a quartic polynomial equation first derived in [20].

2.2. Sign-corrected cameras and QUARC

Scene points that appear in front of two cameras in the
true metric reconstruction may appear in front of one cam-
era but behind the other in a projective reconstruction. Such
a camera pair is said to be twisted by a projective transfor-
mation and untwisted otherwise. In a twisted camera pair,
Π∞ intersects the baseline of the two cameras. A QUARC
(QUasi-Affine Reconstruction with respect to Camera cen-
ters) [17] is a projective reconstruction that does not con-
tain any twisted pairs. A projective reconstruction may be
upgraded to a QUARC using the following two steps: (i)
correct the signs ζi ∈ {−1, 1} of the projection matrices,
P̃i = ζi Pi, such that all camera centers lie on one side with
respect to Π∞, so that ΠT

∞C̃i > 0 [17, Alg. 2], and (ii)
map to infinity a plane that carries the same signature as
Π∞ with respect to the camera centers, that is a plane that
satisfies ΠTC̃i > 0. Such a QUARC plane can be found by
solving a Linear Programming (LP) problem [17, Sec. 8].

2.3. Linear Matrix Inequalities

A Linear Matrix Inequality (LMI) is a constraint on a
vector x = (x1, . . . , xm)

T ∈ Rm such that F (x) � 0,
where F (x) , F0 +

∑m
i=1 Fi xi is an affine function of

x involving symmetric matrices F0, . . . , Fm ∈ Rn×n. The
LMI F (x) � 0 means that F (x) is positive semidefinite.
The LMI may also be strict, in which case F (x) is positive
definite. Convex quadratic inequalities may be reformulated
into LMIs by using the Schur complement lemma [3]:

Lemma 2.1. Given a real symmetric block-partitioned ma-
trix D =

[
A B

BT C

]
and the Schur complement S = C −

BTA−1B of (the symmetric block) A in D,

(i) if A � 0, then D � 0 if and only if S � 0.

(ii) D � 0 if and only if A � 0 and S � 0.



3. A new quasi-affine reconstruction stratum

In this section, we introduce the theory behind QUARCH
and present an algorithm for camera self-calibration based
on it. In Section 3.1, we characterize the relationship of
Π∞ with the hodographs of the horopter based on the rel-
ative orientation between a camera pair. From this charac-
terization, we derive a new set of LMI constraints on Π∞
in Section 3.2. In Section 3.3, these constraints are used to
obtain a QUARCH. Finally, in Section 3.4, we detail our
algorithm to upgrade QUARCH to a metric reconstruction.

3.1. Hodographs of the horopter

Definition 3.1 (Hodographs of the horopter). For a camera
pair (i, j) with attached horopterH, the hodographsHs and
Ht of H are the curves traced out by the partial derivatives
ofH in P3. LetHs(s, t) , ∂H(s,t)

∂ s andHt(s, t) , ∂H(s,t)
∂ t ,

the parametric forms of these curves are:

Hs(s, t) = 3s2 Ci − 2st Tij + t2 Tji,

Ht(s, t) = −3t2 Cj + 2st Tji − s2 Tij .
(4)

Observe that Hs(s, t) passes through the points Ci and
Tji, while Ht(s, t) passes through Cj and Tij . Hereafter,
we simply refer to the hodographs of the horopter as the
hodographs. We are now interested in characterizing the
relationship of Π∞ with the hodographs. To do so, we con-
sider sign-corrected projection matrices P̃i and P̃j . Their
associated horopter H is represented by H̃(s, t) = s3 C̃i −
s2t T̃ij + st2 T̃ji − t3 C̃j , obtained from the expansion of
H̃(s, t) , N (sP̃i − tP̃j). The corresponding hodographs
Hs andHt are represented by H̃s(s, t) and H̃t(s, t). Given
this representation, we first characterize the relationship of
Π∞ with the points

(
T̃ij , T̃ji

)
through the following lemma.

Lemma 3.1. For a camera pair (i, j) with relative orienta-
tion angle θij and attached horopterH, the plane at infinity
Π∞ satisfies the following linear inequalities:

ΠT
∞T̃ij ≥ 0 and ΠT

∞T̃ji ≥ 0 if |θij | ≤ 120◦, (5a)

ΠT
∞T̃ij ≤ 0 and ΠT

∞T̃ji ≤ 0 if |θij | ≥ 120◦, (5b)

where the equality holds for |θij | = 120◦.

Proof. From (2), observe that ΠT
∞T̃ij and ΠT

∞T̃ji depend
on θij . For sign-corrected projection matrices, ΠT

∞C̃i > 0
and ΠT

∞C̃j > 0, hence λi and λj are positive. Thus,
sgn(ΠT

∞T̃ij) = sgn(ΠT
∞T̃ji) = sgn(aij) , where aij :

0 ≤ aij ≤ 3 if |θij | ≤ 120◦, (6a)
−1 ≤ aij ≤ 0 if |θij | ≥ 120◦, (6b)

and aij = 0 if |θij | = 120◦. �

The linear inequalities in (5) form a new set of relative
camera orientation-based constraints on Π∞. They signify
that the (virtual) points T̃ij and T̃ji lie on the same side as
the camera centers with respect to Π∞ when |θij | < 120◦,
whereas they lie on the opposite side when |θij | > 120◦.
Imposing these inequalities for a set of camera pairs in the
QUARC LP problem leads to a QUARC that is additionally
quasi-affine with respect to the corresponding set of points
(T̃ij , T̃ji). We now extend this incidence relationship of Π∞
with (T̃ij , T̃ji) to the hodographs that contain them.

Lemma 3.2. For a camera pair (i, j) with relative orienta-
tion angle θij and attached horopterH, the plane at infinity
Π∞ intersects the hodographs Hs and Ht in: (i) at most
one real point if |θij | ≤ 120◦, and (ii) at least one real
point if |θij | ≥ 120◦.

Proof. Consider the equations representing the intersection
of Π∞ with the hodographs:

ΠT
∞H̃s(s, t) = 3s2 ΠT

∞C̃i − 2stΠT
∞T̃ij + t2 ΠT

∞T̃ji,

ΠT
∞H̃t(s, t) = −3t2 ΠT

∞C̃j + 2stΠT
∞T̃ji − s2 ΠT

∞T̃ij .
(7)

These equations are quadratic in s and t, respectively.
Therefore, their discriminant functions ∆s and ∆t,

∆s = −4t2
(
3(ΠT

∞T̃ji)(Π
T
∞C̃i)− (ΠT

∞T̃ij)
2
)
,

∆t = −4s2
(
3(ΠT

∞T̃ij)(Π
T
∞C̃j)− (ΠT

∞T̃ji)
2
)
,

(8)

characterize the intersection. Recall that the discriminant is
negative for no real points of intersection, positive for two
real points of intersection, and zero for one real point of
intersection. Substituting the values from (2), we have that:

∆s = −4t2λ4
iλ

2
jaij(3− aij),

∆t = −4s2λ2
iλ

4
jaij(3− aij).

(9)

The discriminant functions ∆s and ∆t depend on aij and
thus on θij . From (6), we can deduce that:

∆s ≤ 0 and ∆t ≤ 0 if |θij | ≤ 120◦, (10a)
∆s ≥ 0 and ∆t ≥ 0 if |θij | ≥ 120◦, (10b)

where ∆s = 0 and ∆t = 0 for |θij | ∈ {0◦, 120◦}, since
aij = 0 if |θij | = 120◦, and aij = 3 if θij = 0◦. �

The incidence relationship of Π∞ with the hodographs
of a camera pair is thus determined by the relative orienta-
tion angle between the two cameras. Their intersection is
in at most one real point if |θij | ≤ 120◦, whereas it is in at
least one real point if |θij | ≥ 120◦. The hodographs thus
act as “virtual positioning objects” for Π∞.



3.2. LMI constraints on the plane at infinity

We now derive necessary conditions on Π∞ based on its
relationship with the hodographs given in Lemma 3.2.

Proposition 3.3 (Case of |θij | ≤ 120◦). For a camera
pair (i, j) with relative orientation angle |θij | ≤ 120◦ and
horopterH, the plane at infinity Π∞ satisfies the two LMIs:[

ΠT
∞C̃i ΠT

∞T̃ij

ΠT
∞T̃ij 3ΠT

∞T̃ji

]
� 0,

[
ΠT
∞C̃j ΠT

∞T̃ji

ΠT
∞T̃ji 3ΠT

∞T̃ij

]
� 0. (11)

Proof. From Lemma 3.2, when |θij | ≤ 120◦, Π∞ intersects
each hodograph in at most one real point. This implies that
the discriminants ∆s and ∆t ought to be nonpositive. The
proof herein boils down to showing that these discriminants
are so when (11) is true. To show this, consider the Schur
complements Sij(Π∞) and Sji(Π∞) of ΠT

∞C̃i and ΠT
∞C̃j ,

respectively, in the 1st and 2nd matrix of (11):

Sij(Π∞) , 3ΠT
∞T̃ji − (ΠT

∞T̃ij)
2(ΠT
∞C̃i)

−1, (12a)

Sji(Π∞) , 3ΠT
∞T̃ij − (ΠT

∞T̃ji)
2(ΠT
∞C̃j)

−1. (12b)

Rewriting the discriminant functions in (8) in terms of these
Schur complements, we have that:

∆s = −4t2ΠT
∞C̃iSij(Π∞),

∆t = −4s2ΠT
∞C̃jSji(Π∞).

(13)

Therefore, we can deduce that Sij(Π∞) ≥ 0 and
Sji(Π∞) ≥ 0 for ∆s and ∆t to be nonpositive, since
ΠT
∞C̃i > 0 and ΠT

∞C̃j > 0. From Lemma 2.1, (11) is true
if and only if Sij(Π∞) and Sji(Π∞) are nonnegative. �

The inequalities in (5a) are necessary conditions for aij
to be nonnegative when |θij | ≤ 120◦, whereas the LMIs
in (11) are necessary conditions to further bound aij , as in
(6a), such that 0 ≤ aij ≤ 3. To see this, by partially substi-
tuting (2) in (12), we have that:

Sij(Π∞) = ΠT
∞T̃ji(3− aij), (14a)

Sji(Π∞) = ΠT
∞T̃ij(3− aij). (14b)

Now consider the 1st LMI in (11), which imposes that
ΠT
∞T̃ji ≥ 0 and Sij(Π∞) ≥ 0. It follows from (14a)

that 3 − aij ≥ 0 and thus 0 ≤ aij ≤ 3. Note that this
constraint is neither enforced by the modulus constraint nor
by the QUARC inequalities. With a similar argument us-
ing (14b), the 2nd LMI in (11) can also be shown to be a
necessary condition for 0 ≤ aij ≤ 3. The following propo-
sition completes the set of LMI constraints on Π∞.

Proposition 3.4 (Case of |θij | ≥ 120◦). For a camera
pair (i, j) with relative orientation angle |θij | ≥ 120◦ and
horopterH, the plane at infinity Π∞ satisfies the two LMIs:[

ΠT
∞C̃i ΠT

∞T̃ij

ΠT
∞T̃ij −ΠT

∞T̃ji

]
� 0,

[
ΠT
∞C̃j ΠT

∞T̃ji

ΠT
∞T̃ji −ΠT

∞T̃ij

]
� 0. (15)

Proof. From Lemma 3.2, when |θij | ≥ 120◦, Π∞ intersects
each hodograph in at least one real point, therefore the dis-
criminants ∆s and ∆t are nonnegative. From (13), we can
deduce that Sij(Π∞) ≤ 0 and Sji(Π∞) ≤ 0. For the LMIs
in (15) to be satisfied, the following inequalities must hold:

Sij(Π∞)−4ΠT
∞T̃ji ≥ 0, Sji(Π∞)−4ΠT

∞T̃ij ≥ 0. (16)

Note that the left-hand sides of these two inequalities are
the Schur complements of ΠT

∞C̃i and ΠT
∞C̃j , respectively,

in the 1st and 2nd matrix of (15). Using (14), they can be
rewritten as −ΠT

∞T̃ji(1 + aij) and −ΠT
∞T̃ij(1 + aij), re-

spectively. From (5b) and (6b), these Schur complements
are nonnegative when |θij | ≥ 120◦. Hence, the inequalities
in (16) hold and so do the LMIs in (15). �

The linear inequalities in (5b) alone ensure that ∆s ≥ 0
and ∆t ≥ 0, and hence that Π∞ intersects each hodograph
in at least one real point. The LMIs in (15) further charac-
terize the region of intersection. This region is dependent
on the discriminants, which, from (13), can be seen to be
constrained by (16) and hence by the LMIs in (15).

The LMIs in (11) and (15) are necessary conditions
on Π∞ to satisfy the incidence relationship with the
hodographs given in Lemma 3.2. In the following section,
we show how a vague knowledge of the relative orientation
θij between camera pairs (i.e. |θij | ≤ 120◦ or |θij | ≥ 120◦)
can be exploited with these LMI constraints to obtain a new
quasi-affine reconstruction of a scene: a QUARCH.

3.3. QUARCH

A QUARCH is a specialization of a QUARC that is ad-
ditionally quasi-affine with respect to the hodographs of a
set of camera pairs. A QUARCH can be obtained from
a projective reconstruction following the steps outlined for
QUARC in Section 2.2, but by locating a QUARCH plane
instead in the second step. A QUARCH plane is a QUARC
plane that additionally satisfies LMIs (11) and/or (15) for a
set of camera pairs. It can be computed by solving the fol-
lowing Semidefinite Programming (SDP) problem:

max
Π, δ

δ

s.t. ΠTC̃l/
∥∥C̃l∥∥ > δ, l = 1, . . . , n,

− 1 ≤ (Π)k ≤ 1, k = 1, . . . , 4,[
ΠTC̃i ΠTT̃ij
ΠTT̃ij 3ΠTT̃ji

]
� 0,

[
ΠTC̃j ΠTT̃ji
ΠTT̃ji 3ΠTT̃ij

]
� 0,

for all (i, j) : |θij | ≤ 120◦, i = 1, . . . , n− 1,

j = 2, . . . , n,[
ΠTC̃i ΠTT̃ij
ΠTT̃ij −ΠTT̃ji

]
� 0,

[
ΠTC̃j ΠTT̃ji
ΠTT̃ji −ΠTT̃ij

]
� 0,

for all (i, j) : |θij | ≥ 120◦, i = 1, . . . , n− 1,

j = 2, . . . , n.

(17)



Note that (17) without the LMI constraints reduces to the
QUARC LP problem. A QUARCH may be extended to
preserve the convex hull of the set of scene points (see Fig-
ure 1), by simply augmenting the SDP problem in (17) with
the corresponding linear inequalities for the scene points.

3.4. Camera self-calibration with QUARCH

As a specialization of a QUARC, a QUARCH comes one
step closer to an affine reconstruction. This forms the basis
of our camera self-calibration algorithm, where we use a
QUARCH plane as an initialization for local optimization
of a suitable cost function to locate Π∞. We propose using
a normalized version of the cost function in [20]:

F(Π∞) =

n−1∑
i=1

n∑
j=i+1

(
Mij(

ΠT
∞C̃i

)2(
ΠT
∞C̃j

)2
)2

, (18)

whereMij is the modulus constraint polynomial in (3) and
the normalization eliminates the scale factors from the cost.
We optimize for the first three coordinates of Π∞, fixing the
fourth to 1. The calibration parameters are obtained after
linearly estimating the dual image of the absolute conic.

To compute a QUARCH plane, we assume that the rel-
ative orientation angle is under 120◦ between consecutive
views. This is a mild assumption in practice that is often
satisfied in image sequences acquired for the purpose of fea-
ture matching and 3D reconstruction. We solve the follow-
ing SDP problem to obtain a QUARCH plane ΠQ:

max
Π, Z

log det Z

s.t. Z � 0,

− 1 ≤ (Π)k ≤ 1, k = 1, . . . , 4,[
ΠTC̃i ΠTT̃ij
ΠTT̃ij 3ΠTT̃ji

]
� Z,

[
ΠTC̃j ΠTT̃ji
ΠTT̃ji 3ΠTT̃ij

]
� Z,

i = 1, . . . , n− 1, j = i+ 1.

(19)

Problem (19) can be efficiently solved using an interior-
point method. Maximizing log det Z prevents the terms
ΠTT̃ij and ΠTT̃ji from being arbitrarily close to zero, which
is the case for Π∞ as |θij | approaches 120◦. From our em-
pirical tests, a QUARCH plane from this SDP converges
more reliably to the sought Π∞ in our algorithm than one
from (17). Note that the QUARC inequalities are enforced
in (19) as all camera centers are covered by using all pairs
of consecutive views. Given a projective reconstruction
{Pi, Xj}, the steps of our self-calibration algorithm are:

(i) QUARCH: compute ΠQ using (19) and upgrade to
QUARCH as PQi = PiH

−1
Q , XQj = HQXj ,

(ii) Affine: locate Π∞ by minimizing (18) with H−TQ ΠQ

as initialization, and upgrade to affine as PAi =
PQiH
−1
A , XAj = HAX

Q
j ,

(iii) Metric: compute calibration K as [12, Sect. 19.5.2] and
upgrade to metric as PMi = PAiH

−1
M , XMj = HMX

A
j , with

HQ =

[
P̃1

Πᵀ
Q

]
, HA =

[
I3 03

ΠT
∞

]
, HM =

[
K−1 03

0T3 1

]
.

4. Constrained Levenberg-Marquardt method
An unconstrained local optimization method to locate

Π∞ in step (ii) of our algorithm may converge to a non-
QUARCH plane, i.e. a plane that does not satisfy the LMIs
in (11) for consecutive views, and is therefore not the sought
Π∞. To ensure that these LMIs are satisfied during the lo-
cal optimization, we propose a constrained LM method for
nonlinear optimization subject to LMI constraints. Our ap-
proach is based on [13], where the optimization problem is:

min
d
‖F (xk) + Jk d‖2 + µk‖d‖2 s.t. xk + d ∈ C, (20)

that allows to compute a step d such that the iterate xk+1 =
xk+d is in the convex set C, where F(x) = ‖F (x)‖2 is the
natural merit function corresponding to the mapping F (x),
Jk is the Jacobian of F (xk), and µk is a positive parameter
at iteration k. Note that the quadratic objective function
in (20) is strictly convex. This constrained LM method was
shown in [13] to be locally quadratically convergent under
a local error bound condition.

In our case, x0 is the QUARCH plane initialization
from (19), C is the subset of QUARCH planes, containing
planes that satisfy the LMIs in (11) for consecutive views,
and F(x) is the cost function used to locate Π∞ in (18). To
compute a step d such that the iterating plane xk remains in
the set C, first observe that ‖Fk + Jkd‖2 +µk‖d‖2 expands
as FT

k Fk + 2FT
kJkd+ dT(JT

k Jk +µkI)d, where Fk is short
for F (xk). Hence, problem (20) is equivalent to:

min
d, δ

δ

s.t. xk + d ∈ C,
δ − FT

k Fk − 2FT
k Jkd− dT

(
JT
k Jk + µkI

)
d ≥ 0.

(21)

The inequality in (21) is quadratic in d and can be refor-
mulated into an LMI by applying Lemma 2.1. The step d
can then be computed by solving the following SDP prob-
lem:

min
d, δ

δ

s.t.

[
JT
k Jk + µkI3 (JT

k Jk + µkI3)d
dT(JT

k Jk + µkI3) δ − FT
k Fk − 2FT

k Jkd

]
� 0,[

(xk + d)T C̃i (xk + d)T T̃ij
(xk + d)T T̃ij 3(xk + d)T T̃ji

]
� 0,[

(xk + d)T C̃j (xk + d)T T̃ji
(xk + d)T T̃ji 3(xk + d)T T̃ij

]
� 0,

i = 1, . . . , n− 1, j = i+ 1.

(22)



Note that the term JT
k Jk + µkI3 in the 1st LMI in (22) is

positive definite by construction. As with the unconstrained
optimization approach, we optimize for the first three coor-
dinates of Π∞, fixing the fourth to 1. Thus, we compute the
first three coordinates of the step d, the fourth being 0.

We use µk = µ‖F (xk)‖, rather than the squared norm,
following the choice of Yu [27]. Fan [6] showed that
the same quadratic convergence rate is obtained with this
choice. Our constrained LM method ensures that the iter-
ating plane remains in the subset of QUARCH planes to
which Π∞ belongs. Doing so prevents the iterating plane
from crossing the camera centers, which could be fatal for
the cost function in (18). As a local optimization method, it
remains susceptible to converge to a local minimum of the
cost function, albeit one that is also a QUARCH plane.

5. Experimental results
We tested our self-calibration algorithm on synthetic

data and real images using both unconstrained and con-
strained optimization. Projective reconstructions for the
synthetic data were obtained using the implementation
of [18] in [22], followed by a projective bundle adjustment.
For the real image sequences, they were obtained using
P2SfM [15] with COLMAP [25] for feature matching. Data
normalization was used throughout. We set µ = 0.5 and
used the update µk+1 = min {µk, µk‖F (xk+1)‖}. Our al-
gorithm is implemented in MATLAB R2017b with the con-
vex optimization problems modeled using YALMIP [14]
and solved using MOSEK [16]. All experiments were con-
ducted on an Intel Core i7 3.10GHz 32GB RAM system.

5.1. Synthetic data

Each synthetic scene consisted of 500 points scattered
randomly within the unit sphere and imaged by cameras
placed at a distance of 2.75–3.45 units from the sphere cen-
ter and facing towards it. The cameras were then perturbed
by a small random translation. The rotation angle θij be-
tween consecutive views was sampled randomly from the
range [20◦, 60◦] to satisfy the assumption |θij | ≤ 120◦.
All cameras had (in pixels) focal length fx = fy = 300,
zero skew i.e. γ = 0, and an image-centered principal point
i.e. (u0, v0) = (128, 128). Zero-mean Gaussian noise with
standard deviation in the [0, 2] pixel range was added to
pixel coordinates in increments of 0.5 pixels. The sequence
length was varied from 4 to 16 views, and 100 trials were
run for each sequence length and image noise level.

We conducted a series of reliability tests to examine
the benefits of the QUARCH LMIs in self-calibration. We
evaluated our results using the 3D RMS error between the
ground truth and the recovered metric point clouds (both
scaled to have a mean distance of 1 unit) aligned by a best-
fit similarity transformation in the least squares sense. In
this section, we show the distribution of 3D errors from the

metric upgrade using box plots (following MATLAB’s con-
vention). To aid in visualization, we compressed samples
beyond 0.02 3D error uniformly in a small region beyond
this limit (shown by a dashed line), while preserving their
relative order. We also scattered all points by a small ran-
dom amount to distinguish between the overlapping ones.
QUARCH vs. QUARC: We compared a QUARCH plane
initialization with a QUARC using an unconstrained min-
imization of (18), denoted as QUARCH-M and QUARC-
M, respectively (Figure 2). Considering 0.02 3D error as
a threshold for a successful metric upgrade, for 4–5 views
in Figure 2, the significant difference in the number of error
points beyond this limit shows that a QUARCH plane con-
verged to the true Π∞ more often than a QUARC and there-
fore retrieved a metric reconstruction more reliably. Conse-
quently, QUARCH-M led to a considerably smaller median
error, particularly for higher levels of pixel noise. As the
sequence length increased to 6 views, both QUARCH-M
and QUARC-M succeeded most of the time. We also show
results for both planes using Nistér’s cost function [17], de-
noted similarly as QUARCH-N and QUARC-N (Figure 3).
Here as well, a QUARCH plane led to a metric upgrade
more reliably, though the difference is less pronounced.
This is because Nistér’s cost function is based on strong
camera priors, such as zero skew, unit aspect ratio, and prin-
cipal point at the image center, properties that are fully sat-
isfied by our simulated cameras. Hence, both planes suc-
cessfully converged to the true Π∞ most of the time.
QUARCH* vs. QUARCH: We compared the results from
QUARCH-M with those from constrained optimization, de-
noted as QUARCH*M. In Figure 2, QUARCH*M success-
fully recovered the metric structure for several projective re-
constructions that had otherwise failed with unconstrained
optimization. Enforcing the QUARCH LMIs during opti-
mization led the QUARCH plane to reliably converge to the
true Π∞, while avoiding to succumb to a non-QUARCH lo-
cal minimum of the modulus constraints. QUARCH*M, on
average, required 5 iterations to converge and took < 1.2s
up to 16 views, of which < 0.2s was for computing the
QUARCH plane. The runtime scaled linearly in the number
of views as do the LMI constraints in our SDP problems
in (19) and (22). Beyond 6 views, QUARCH-M sufficed
for a successful metric upgrade and can be used instead for
a speedup. With Nistér’s cost in Figure 3, we observed that
only one additional projective reconstruction, for 6 views,
was successfully upgraded to metric using constrained opti-
mization, denoted as QUARCH*N. These results show the
benefits of enforcing the QUARCH LMIs during the local
optimization, particularly for short sequences and when us-
ing the modulus constraints.
QUARCH* vs. GO-DAQ and GO-Stratified: We com-
pared QUARCH*M and QUARCH*N with two globally
optimal methods: GO-DAQ [4] and GO-Stratified [5].
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Figure 2: Comparison among QUARC-M, QUARCH-M, and QUARCH*M. Experiments using 4 views (left) and 5 views
(middle) with varying noise levels, and using a varying number of views with 1 pixel of noise (right).
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Figure 3: Comparison among QUARC-N, QUARCH-N, and QUARCH*N. Experiments using 5 views (left) and 6 views
(middle) with varying noise levels, and using a varying number of views with 1 pixel of noise (right).

For GO-Stratified, we computed the calibration for both
cheirality signs, and picked the resulting calibration clos-
est to the ground truth (the authors’ implementation was
used). For GO-DAQ, we fixed the relaxation order to 2,
and used MOSEK as the solver. In the results shown
in Figure 4, QUARCH*M consistently outperformed GO-
Stratified, both in terms of the median 3D error and suc-
cess rate. With 4–5 views, GO-Stratified failed frequently
for noise levels above 1 pixel. This is likely because the
modulus constraints admit multiple global solutions, and
with short sequences there are fewer constraints to isolate
the true Π∞. Also, this method relies on scene points to
compute bounds for Π∞, which may prove to be unreli-
able in the presence of noise. With more views, the ad-
ditional modulus constraints led to a more reliable calibra-
tion with GO-Stratified, but the median error was still larger
than with QUARCH*M. The two methods with geometric
cost functions (QUARCH*N and GO-DAQ) generally out-
performed the other two, however, GO-DAQ suffered from
a drastic increase in 3D error for high levels of pixel noise.
The likely explanation for this result is that our simulated
cameras approach a known “artificial” degenerate config-
uration for estimating the Dual Absolute Quadric (DAQ).
This degenerate configuration occurs when all optical axes
pass through a common point [7] and the rank of the DAQ
is not enforced. Our cameras approach such a configuration
in the presence of noise. GO-DAQ, because of scaling and
numerical tractability issues (cost and constraints are unnor-

malized), is then likely to fail as the rank-3 constraint on the
DAQ is not earnestly enforced. As the sequence length in-
creased, in Figure 4, all methods performed fairly reliably.

5.2. Real images

We present results on six real image sequences:
fountain-P11, Herz-Jesu-P8, and Herz-Jesu-P25 from [26],
Vercingetorix and Alcatraz water tower from [19], and
Cherub [1]. The first three provide the ground truth cali-
bration with focal lengths f tx = 2759.48, f ty = 2764.16,
principal point (ut0, v

t
0) = (1520.69, 1006.81), and skew

γt = 0 pixels. For these three sequences, we computed
the following errors for a quantitative evaluation: focal
length error ∆f = |f tx − fx| +

∣∣f ty − fy∣∣, principal point
error ∆uv = |ut0 − u0| + |vt0 − v0|, and skew error ∆γ =
|γt − γ|. For the remaining three sequences, we analyzed
the recovered metric reconstructions qualitatively. Our ex-
periments also served to verify the practical applicability of
our assumption that |θij | ≤ 120◦ for consecutive views.
Quantitative evaluation: From the calibration errors re-
ported in Table 1, QUARC-M and GO-Stratified on the
Herz-Jesu-P8 sequence, and QUARC-N on the Herz-Jesu-
P25 sequence, led to an erroneous calibration. Upon
inspection, their corresponding reconstructions failed to
achieve a metric upgrade and remained projectively dis-
torted. Note that QUARCH*M succeeded on the Herz-Jesu-
P8 sequence, whereas the other two methods, also based
on the modulus constraints, failed. This confirms our re-
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Figure 4: Comparison of QUARCH*N and QUARCH*M with GO-Stratified and GO-DAQ. Experiments using 4 views (left)
and 5 views (middle) with varying noise levels, and using a varying number of views with 1 pixel of noise (right).

Figure 5: 3D reconstructions of (from left to right) Cherub,
Vercingetorix, and Alcatraz water tower obtained with
QUARCH*M. Sample images shown on the right.

sults with the synthetic data that the QUARCH LMIs aid
in reliably locating the true Π∞ and that GO-Stratified of-
ten fails for short sequences. Except for these failures, all
the methods otherwise led to a calibration close to ground
truth and thereby to a successful metric upgrade. The error
measurements are not completely indicative of the recon-
struction quality, which, from our observations, is primar-
ily influenced by the focal length and skew errors. From
the timing results in Table 1, the unconstrained local op-
timization methods are considerably faster than the oth-
ers. The constrained optimization method is slower than
the unconstrained one due to the more expensive SDP prob-
lem computation at each iteration. GO-DAQ took a similar
amount of time as QUARCH*M and QUARCH*N, but GO-
Stratified was significantly slower for all tested sequences.
Qualitative evaluation: We show the 3D reconstruction re-
sults obtained with QUARCH*M on three longer image se-
quences: Cherub, Vercingetorix, and Alcatraz water tower
in Figure 5. These sequences have 65, 69, and 173 im-
ages, respectively, and their corresponding projective recon-
structions contained 65, 63, and 66 cameras, respectively.
The recovered metric structures closely resemble the cap-
tured scenes. Similar metric reconstructions were obtained
using QUARCH*N. We observed that several points were
poorly estimated in these reconstructions. These led to fail-
ures with GO-Stratified as it relies on all scene points. Our
results also confirm the applicability of the assumption of

Sequence Method ∆f ∆uv ∆γ Time (s)

fountain-P11 QUARCH*M 1.91 4.01 0.99 2.71
QUARC-M 2.44 4.30 0.99 0.09

QUARCH*N 42.92 28.29 0.71 1.47
QUARC-N 43.73 28.61 0.69 0.10

GO-DAQ 76.15 31.92 0.10 1.27

GO-Stratified 12.64 9.75 1.17 449.47

Herz-Jesu-P8 QUARCH*M 53.49 78.68 1.56 1.32
QUARC-M 4114.66 101.16 586.29 0.07

QUARCH*N 83.61 33.93 1.24 1.90
QUARC-N 76.81 34.22 1.21 0.09

GO-DAQ 66.10 33.84 0.27 1.85

GO-Stratified 2552.62 1006.05 132.85 154.74

Herz-Jesu-P25 QUARCH*M 34.89 23.71 2.52 2.04
QUARC-M 34.75 23.70 2.55 0.45

QUARCH*N 59.04 31.44 1.40 2.08
QUARC-N 2812.61 185.73 21.86 0.46

GO-DAQ 4.40 33.90 0.60 1.60

GO-Stratified 52.94 32.16 1.69 893.76

Table 1: Self-calibration results on sequences from [26].

|θij | ≤ 120◦ for consecutive views. This assumption might
as well be extended to every other view in these sequences.

6. Conclusion

We presented a new quasi-affine reconstruction stratum,
QUARCH, as a specialization of QUARC. We showed that
Π∞ satisfies either of two sets of LMIs for a camera pair
depending on the relative orientation angle being under or
over 120◦. We also proposed a constrained LM method to
enforce the QUARCH LMIs during the local optimization
to locate Π∞. Our experiments showed the benefits of the
QUARCH LMIs in reliably locating Π∞ to obtain a metric
reconstruction from a projective one. Our constrained LM
method could also be useful in other computer vision prob-
lems for nonlinear refinement subject to LMI constraints.
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