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Abstract

We present a new quasi-af ne reconstruction of a scene
and its application to camera self-calibration. We refer to
this reconstruction as QUARCH (QUasi-Af ne Reconstruc-
tion with respect to Camera centers and the Hodographs
of horopters). A QUARCH can be obtained by solving
a semide nite programming problem when, (i) the images Projective
have been captured by a moving camera with constant
intrinsic parameters, and (ii) a vague knowledge of the Figure 1: QUARCH is a specialization of the QUARC stra-
relative orientation (under or oved20) between cam- tum and is therefore one step closer to the af ne stratum.
era pairs is available. The resulting reconstruction comes
close enough to an af ne one allowing thus an easy up-
grade of the QUARCH to its af ne and metric counter- for which several solutions have been proposed([20, 8, 5].
parts. We also present a constrained Levenberg-Marquardt ~ Other methods[[11.]9] locate; by rst upgrading
method for nonlinear optimization subject to Linear Ma- & projective reconstruction to a quasi-af ne one based
trix Inequality (LMI) constraints so as to ensure that the on Hartley's cheirality theory[[10]. In[[11], the cheiral-
QUARCH LMIs are satis ed during optimization. Exper- ity inequalities are used to obtain bounds on the coordi-
iments with synthetic and real data show the bene ts of nates of 3 , which is then located through an exhaustive

QUARCH in reliably obtaining a metric reconstruction. search within these bounds. The quasi-af ne reconstruction
in [11, €] is with respect to the set of camera centers and

that of scene points: the sets whose respective convex hulls
are preserved. Nist [17] pointed out that scene points may
not be reliable and therefore sought a quasi-af ne recon-
In multi-view computer vision, accurately locating the struction with respect to camera centers (QUARC) alone.
plane at innity ( 1 ) is considered crucial for success- A QUARC is upgraded to a metric reconstruction through
fully lifting a projective structure and cameras to a metric nonlinear optimization of a geometrically meaningful cost
frame [20,5]. Locating ; reliably has proved challeng- function derived from priors on the calibration parameters.
ing in camera self-calibration due to the nonlinearity of the  In this paper, we show the existence ohaw quasi-
problem [11[12]. Once it is located, the calibration param- af ne reconstruction stratum that we refer to as QUARCH:
eters may be obtained by solving linear equations for the QUasi-Af ne Reconstruction with respect to Camera cen-
(dual) image of the absolute conic. When camera parame-+ers and the Hodographs of horopters. A QUARCH is a
ters are constant, a necessary condition @n is that the specialization of a QUARC (see Figuré 1) that addition-
eigenvalues of its inter-image homography matrices haveally satis es a new set of relative camera orientation-based
equal moduli. This so-calleshodulus constrainf20] leads convex constraints on; . These constraints are formu-
to quartic polynomial equations in the coordinates qf lated as Linear Matrix Inequalities (LMIs) and they describe

1. Introduction



the relationship of ; with the hodographs [21) 2] of the scale of the matri)P. The parametric form of the horopter
horopters|[[24] 23] of camera pairs. A QUARCH can be of the camera paifi;| ) is:
obtained when the calibration parameters are constant and N .3 2 2 3~
when the relative orientation anpgle between a set of camera HSD =G sy +sUT - UG, (1)
pairs is known to be either under or o\i20 . whereG = N(R) andG = N(P) are the two camera
We use QUARCH in a self-calibration algorithm as a centers,Tj = T(R;R), Ti = T(R;PR), and operatol
rst step towards obtaining a metric reconstruction from is de ned by this expansion. The horopter is a twisted cubic
a projective one. To obtain a QUARCH, our assumption in P? that passes through both camera centers and intersects
is that the relative orientation angle between consecutivea plane (including ; ) at three points. From [24], we have:
views is unded 20 . This is a mild assumption that is often T 3. 2 . 2. . 3\,
implicitly veri ed when capturing images so asto ensurea ! G T T GI=C 5 a0 jas 1) @)
suf cient overlap for feature matching., isthenlocated where ; and ; are the scale factors & andP , respec-
through nonlinear optimization of a suitable cost function, tively, anda; = 1+ 2cos j, with j being the relative
such as using the modulus constraints. We also propose arientation angle between the two cameras. Eliminating the
constrained Levenberg-Marquardt (LM) method for nonlin- scalars from[(2) leads to the modulus constraint:
ear optimization subject to LMI constraints. This ensures ) TG(TT)? T G TT,)3=0; (3
that the QUARCH LMIs are satis ed during the local opti- et o . 1 ’
mization. Our experiments show that a QUARCH plane is that is a quartic polynomial equation rst derived in [20].
an excellent starting plane for our algorithm to reliably con-
verge to ; and that constraining the local optimization
to satisfy the QUARCH LMls further improves the success  Scene points that appear in front of two cameras in the
rate of locating it. The main contributions of this paper are: true metric reconstruction may appear in front of one cam-
) ) era but behind the other in a projective reconstruction. Such
QUARCH: a new quasi-af ne stratum along with an - 3 camera pair is said to hwistedby a projective transfor-
algorithm for camera self-calibration based on it. mation anduntwistedotherwise. In a twisted camera pair,
Constrained LM method: an LM-type algorithm for 1 intersects the baseline of the two cameras. A QUARC
nonlinear optimization subject to LMI constraints. (QUasi-Af ne Reconstruction with respect to Camera cen-

_ ) _ ~ ters) [17] is a projective reconstruction that does not con-
Notation: We consider the scene embedded in the projec-tajn any twisted pairs. A projective reconstruction may be
tive 3—spaceP_3. A point X and plane in P* are repre- upgraded to a QUARC using the following two stepg) (
sented by4-dimensional homogeneous column vectofs,  cqrrect the signs; 2 f 1;1g of the projection matrices,

2.2. Sign-corrected cameras and QUARC

and , respectively. The plane at in nity is referred to as p = | B such that all camera centers lie on one side with
1 and its coordmates b)_/l g A pers_pectlv_e camerais respectto ; , sothat 1 6 > 0 [17, Alg. 2], and {i)
represented by it8 4 projection matrixP. Finally, ()« map to in nity a plane that carries the samsignatureas
refers to thek-th entry of its vector argumerit,, isthen n 1 with respect to the camera centers, that is a plane that
identity matrix,04 thed-dimensional zero vectasgn() the satises TG > 0. Such a QUARC plane can be found by
sign function, and  the equality up to scale. solving aLinear ProgrammingLP) problem[[17, Sec. 8].
2. Background 2.3. Linear Matrix Inequalities
This section is a brief review of key results from the lit- A Line_ar Ma.tri.x. .Ineql%ality(LrIT\]/ll) is a constraint on a
erature and of LMIs, which our work is based upon. vectorx = (Xy;::5ixm) 2 RT such thatF(x) 0,
whereF(x) , Fo+ .; FiX; is an afne function of
2.1. Modulus constraint and the horopter X involving symmetric matriceBo;:::;Fyn 2 R" ". The

LMI F(x) 0 means thaF (x) is positive semide nite.
The LMI may also be strict, in which ca$g(x) is positive

de nite. Convex quadratic inequalities may be reformulated
into LMIs by using the Schur complement lemra [3]:

Shaffalitzky [24] showed the connection between the
modulus constraint and thHeoroptercurves. The horopter
H of a camera pair with identical calibration parameters
is the locus of points irP® that are imaged at the same
coordinates by both cameras. As such, a p¥inon the Lemma 2.4. Given a real symmetric block-partitioned ma-
horopter satis e X' B X and the locus of these points trix D = BATBc and the Schur complemest = C
is H(_s;t) , N(sh _ tR ) for parameters andt, where BTA !B of (the symmetric blockd in D,

N () is the algebraic nullspace operator de nedlinl[24] as ] ]
det PT = TN (P) for any plane . The algebraic () if A 0; thenD O ifandonlyif S 0.

nullspace de nes the scale of the null veckd(P) from the (i) D Oifandonlyif A 0OandS O.



3. A new quasi-af ne reconstruction stratum The linear inequalities if [5) form mewset of relative

. . . _ camera orientation-based constraints an. They signify
In this section, we introduce the theory behind QUARCH that the (virtual) pointsF; andT; lie on the same side as

and present an algorithm for camera self-calibration basedthe camera centers with respect tp whenj ; j < 120
on it. In Sectior 3]l, we characterize the relationship of ;.o s they lie on the opposite side WHQFH' > 120

1 with the hodographs of the horopter based on the rel- |, ,qing these inequalities for a set of camera pairs in the
ative orientation between a camera pair. From this charac-o(jARC LP problem leads to a QUARC that is additionally

terization, we derive a new set of LMI constraints on quasi-af ne with respect to the corresponding set of points
in Sectior{ 3.. In Sectign 3.3, these constraints are used tct1=ij ,T: ). We now extend this incidence relationship of

obtain a QUARCH. Finally, in Section 3.4, we detail our (Fi : T ) to the hodographs that contain them.
algorithm to upgrade QUARCH to a metric reconstruction.

Lemma 3.2. For a camera paif(i; j ) with relative orienta-
tion angle j and attached horoptdd , the plane at in nity

De nition 3.1 (Hodographs of the horopter}-or a camera 1 intersects the hodographds and H; in: (i) at most
pair (i; j ) with attached horoptet , the hodographd 5 and one real point ifj j j 120, and (ii) at least one real

H, of H are the curves traced out by the partial derivatives pointifj jj 120.

of HinP3. LetHs(s;t), & andH (s;t), &Y,

the parametric forms of these curves are: Proof. Consider the equations representing the intersection
of 1 with the hodographs:

3.1. Hodographs of the horopter

Ho(s;t)= 3G 2stTy + t2T;;
Hisi)= 3CG +2stTy, &, (0 IF(S0=38% 16 2t [T+t 1T,
TH(s;t)= 3t [Gg+2st [T s [T
Observe thatHs(s;t) passes through the poing and
T;i , while H((s;t) passes througly andT; . Hereatfter, These equations are quadratic snand t, respectively.
we simply refer to the hodographs of the horopter as the Therefore, their discriminant functionss and ¢,
hodographs. We are now interested in characterizing the
relationship of ; with the hodographs. To do so, we con- s 423 1N 16) (1T
sider §|gn—corrected prOJectlon matricBsand® . Their 423( TN T6) (T7)%;
associated horoptét is represented bit(s;t) = s° G
s’tF + st?T;  t3G, obtained from the expansion of characterize the intersection. Recall that the discriminant is
H(s;t) , N(s® tB). The corresponding hodographs negative for no real points of intersection, positive for two
Hs andH; are represented By s(s; t) andH(s;t). Given real points of intersection, and zero for one real point of
this representation, we rst characterize the relationship of intersection. Substituting the values frdn (2), we have that:
1 withthe points T ; T  through the following lemma.

8)

t

s= 47 1 a3 &)
= 452 |2 j“aij (3 ajj )Z

Lemma 3.1. For a camera pair(i; j ) with relative orienta- 9)
tion angle j; and attached horopted , the plane at in nity t

1 satis es the following linear inequalities: The discriminant functions s and  depend org; and

TT, Oand 1T Oifj;j 120; (5a) thus on j . From [6), we can deduce that:
1Ti Oand [T Oifjyj 120; (5b) s Oand  Oifjjj 120; (10a)
where the equality holds fgrjj j = 120 . s Oand  Oifjjj 120; (106)
Proof. From [2), observe that] ¥; and ] ¥; depend Where s =0and  =0forj;j2f0;120g, since
on ; . For sign-corrected projection matrices] § > 0 @& =01ifj jj=120 ,anda; =3if j =0 .
and 1§ > 0, hence ; and j are positive. Thus,
sgn( 1 Tj)=sgn( 1 Ti)=sgn(a; ), wherea; : The incidence relationship of; with the hodographs
o of a camera pair is thus determined by the relative orienta-
0 & 3if jyjj 120; (6a)  tion angle between the two cameras. Their intersection is
1 & O0ifjjj 120; (6b) in at most one real pointjf; j 120, whereas itis in at
least one real pointif j j 120 . The hodographs thus

andg; =0ifj j=120 . act as “virtual positioning objects” for; .



3.2. LMI constraints on the plane at in nity Proof. FromLemma3)2, whep; j 120, 1 intersects
each hodograph in at least one real point, therefore the dis-
criminants s and  are nonnegative. Frorp ({13), we can
deducetha§; ( 1) OandS;i( 1) O.Forthe LMIs
Proposition 3.3 (Case ofj j 120). For a camera in (I5) to be satis ed, the following inequalities must hold:
pair (i;j ) with relative orientation angl¢ j j 120 and T T

horopterH, the pla#r;e atinnity ;1 satis es the two LMIs: Si( 1) 41T 0 Si(1) 41T 0 (16)

# . . "
Tg T _ Tg T T Note that the left-hand sides of these two inequalities are

TF 3717 b oTe 3 TT 0: (11) the Schur complements of] G and | G, respectively,

Lo v v Lo in the P and 29 matrix of {I§). Using[(T}4), they can be
Proof. FromLemma3)2, whep; j 120, 1 intersects  rewritten as THi(@+a)and T @+ a),re-
each hodograph in at most one real point. This implies thatspectively. From[(8b) and[_(pb), these Schur complements
the discriminants s and ; ought to be nonpositive. The are nonnegative when; j 120 . Hence, the inequalities
proof herein boils down to showing that these discriminants in (I8) hold and so do the LMIs ifi (15).
are so when[ (11) is true. To show this, consider the Schur
complementsSj ( 1 ) andS;i( 1)of ] Gand |G,
respectively, in theand 29 matrix of (T1):

We now derive necessary conditions on based on its
relationship with the hodographs given in Lemimg 3.2.

The linear inequalities irf (5b) alone ensure that 0
and ; 0, and hence that; intersects each hodograph
in at least one real point. The LMIs if (15) further charac-
Si( 1), 31T (1T)2 16) Y (12a)  terize the region of intersection. This region is dependent
Si(1), 3T% (IT)2Te)t @2b) on the discriminants, which, fromi (]L3), can be seen to be
constrained by (16) and hence by the LMIs[in](15).
Rewriting the discriminant functions if](8) in terms of these The LMis in (T1) and [(Ip) are necessary conditions

Schur complements, we have that: on ; to satisfy the incidence relationship with the
- 2 Tea : hodographs given in Lemnja 8.2. In the following section,
s= 4 1 GSIJ ( 1 ) . . .
_ » T _ (13) we show how a vague knowledge of the relative orientation
t= 4" 1GS§i( 1) j between camerapairsd.j jj 120 orj jj 120)
Therefore, we can deduce th&; ( 1) 0 and can be exploited with these LMI constraints to obtain a new

Si( 1) 0for s and . to be nonpositive, since duasi-af ne reconstruction of a scene: a QUARCH.
16>0and ]G >0 FromLemmg2J1,[(I1)istrue 33 QUARCH

ifand only ifS; ( 1 ) andS;i ( 1 ) are nonnegative.
A QUARCH is a specialization of a QUARC that is ad-
The inequalities in[(a) are necessary conditionsafor  ditionally quasi-af ne with respect to the hodographs of a
to be nonnegative whepjjj 120, whereas the LMIs  set of camera pairs. A QUARCH can be obtained from
in (L1) are necessary conditions to further boapd as in 3 projective reconstruction following the steps outlined for
(63). suchthad a; 3. To see this, by partially substi-  QUARC in Sectiorf 22, but by locating a QUARCH plane

tuting (2) in [12), we have that: instead in the second step. A QUARCH plane is a QUARC
Si(1)= IT@G a); (14a) plane that addltlo_nally satis es LMI§ (11) and/15) for a
7 . set of camera pairs. It can be computed by solving the fol-
Si(1)= 1THG &) (14b) lowing Semide nite Programmin¢SDP) problem:

Now consider the t LMI in (LI), which imposes that
1 T OandSj ( 1) 0. It follows from (14a)
that3 a; 0 and thusD  aj 3. Note that this st T6= 6§ > : | =1::::n:
constraint is neither enforced by the modulus constraint nor

max

by the QUARC inequalities. With a similar argument us- 1 Ok 5 k=114
ing (I4B), the 2 LMI in (L) can also be shown to be a 'G T 0 'S il o
necessary condition f@ a; 3. The following propo- ™ 3 T ' Ti 37T ’
sition completes the set of LMI constraints oR . forall (i;j):jjj 120; i=1:::::n 1. (A7)
Proposition 3.4 (Case ofj jj 120). For a camera =200
pair (i;] ) with relative orientation angl¢ ; j 120 and Te T, e TF,
horopterH, the plane atin nity ; satis es the two LMIs: TT T%_ 0; T T%_ 0;
n # " # 1 ]I JI ]

TIG ITTij o TIQ‘ 11:rTji 0: (15) forall(i;j):jjj 120; .i:1;:::;n 1;

1 Ti 1 T 1 T 1 Ti =250



Note that [[I[7) without the LMI constraints reduces to the
QUARC LP problem. A QUARCH may be extended to

preserve the convex hull of the set of scene points (see Fig-

ure[), by simply augmenting the SDP problentin] (17) with
the corresponding linear inequalities for the scene points.

3.4. Camera self-calibration with QUARCH

As a specialization of a QUARC, a QUARCH comes one
step closer to an af ne reconstruction. This forms the basis
of our camera self-calibration algorithm, where we use a
QUARCH plane as an initialization for local optimization
of a suitable cost function to locate; . We propose using
a normalized version of the cost function in]20]:

|
X 1 X $2
F( 1)=

i=1 j=i+l

16 Ig

whereM j; is the modulus constraint polynomial [ (3) and

——= . (18
1

the normalization eliminates the scale factors from the cost.

We optimize for the rstthree coordinates of , xingthe
fourth to 1. The calibration parameters are obtained after
linearly estimating the dual image of the absolute conic.

To compute a QUARCH plane, we assume that the rel-
ative orientation angle is undd20 between consecutive
views. This is a mild assumption in practice that is often

satis ed in image sequences acquired for the purpose of fea-

ture matching and 3D reconstruction. We solve the follow-
ing SDP problem to obtain a QUARCH planey

mazx logdetz

st: Z 0
1 ()« 1 k=1;::::4 (19)
Gz ST g
Ti 3 T Ti 3 T
i=1;::5n L j=i+1:

Problem [(IP) can be ef ciently solved using an interior-
point method. Maximizingog detZ prevents the terms
TF; and TT; from being arbitrarily close to zero, which
is the case for ; asj j j approache420 . From our em-
pirical tests, a QUARCH plane from this SDP converges
more reliably to the sought; in our algorithm than one
from (I7). Note that the QUARC inequalities are enforced

(iif) Metric : compute calibratioKas [12, Sect. 19.5.2] and
upgrade to metric aB'= P'H,"; X"'= HX", with

Pl |303 Kl 03_

Hy= |Q s Ha= T ; Hi= o 1

1

4. Constrained Levenberg-Marquardt method

An unconstrained local optimization method to locate
1 in step (i) of our algorithm may converge to a non-
QUARCH planej.e. a plane that does not satisfy the LMIs
in (T7)) for consecutive views, and is therefore not the sought
1 . To ensure that these LMIs are satis ed during the lo-
cal optimization, we propose a constrained LM method for
nonlinear optimization subject to LMI constraints. Our ap-
proach is based oh [13], where the optimization problem is:

min kF (xi) + Ji dk? + kdk? st.x+d2C; (20)

that allows to compute a stefsuch that the iteratec.+, =

Xk + disin the convex set, whereF (x) = kF (x)k2 is the
natural merit function corresponding to the mappin),

Jy is the Jacobian df (xx), and  is a positive parameter
at iterationk. Note that the quadratic objective function
in (20) is strictly convex. This constrained LM method was
shown in [13] to be locally quadratically convergent under
a local error bound condition.

In our case,xq is the QUARCH plane initialization
from (19), Cis the subset of QUARCH planes, containing
planes that satisfy the LMIs ifi (]L1) for consecutive views,
andF (x) is the cost function used to locatg in (18). To
compute a steg such that the iterating plang remains in
the seiC, rst observe thakF, + Jkdk2 + kkdk2 expands
asF, Fx +2FJJcd+ d"(3] I + «1)d, whereFy is short
for F (xk). Hence, problen{(20) is equivalent to:

min
d;

(21)
FTJd dT JJJe+ I d O

st: xc+d2C;

FJFy
The inequality in[(2]L) is quadratic id and can be refor-
mulated into an LMI by applying Lemnfa 2.1. The stp

can then be computed by solving the following SDP prob-
lem:

in (I9) as all camera centers are covered by using all pairs d;

of consecutive views. Given a projective reconstruction
fR; X% g, the steps of our self-calibration algorithm are:

(i) QUARCH: compute ¢ using [I9) and upgrade to
QUARCH asP?= P H,"; X?= HX,

(i) Afne: locate ; by minimizing [I8) with T
as initialization, and upgrade to afne

PRH. X = HOR

Q

I I+ «ls (eI + «l3)d

SU qTQAT3+ la)  FIRk 2F13d O
xk+ TG (xe+ d)T T o (22)
(xk + )T T 3Bxi + d)T T ’
Xk +d)TG (X + d)T T o
(X + d)T T 3+ d)T T ’
i=1;::n L j=i+1:



Note that the ternd[ J + I3 in the B LMl in (B2) is metric upgrade using box plots (following MATLAB's con-
positive de nite by construction. As with the unconstrained vention). To aid in visualization, we compressed samples
optimization approach, we optimize for the rst three coor- beyond0:02 3D error uniformly in a small region beyond
dinates of ; , xing the fourth to1. Thus, we compute the this limit (shown by a dashed line), while preserving their
rst three coordinates of the staj the fourth being. relative order. We also scattered all points by a small ran-
We use ¢ = KkF (xg)k, rather than the squared norm, dom amount to distinguish between the overlapping ones.

following the choice of Yu[[2F]. FanL[6] showed that QUARCH vs QUARC: We compared a QUARCH plane
the same quadratic convergence rate is obtained with thigpjtialization with a QUARC using an unconstrained min-
choice. Our constrained LM method ensures that the iter-jmization of [18), denoted as QUARCH-M and QUARC-
ating plane remains in the subset of QUARCH planes to \, respectively (Figurg]2). Considering 0.02 3D error as
which ; belongs. Doing so prevents the iterating plane a threshold for a successful metric upgrade, for 4-5 views
from crossing the camera centers, which could be fatal forin Figurg2, the signi cant difference in the number of error
the cost function i (18). As a local optimization method, it points beyond this limit shows that a QUARCH plane con-
remains Susceptib|e to converge to a local minimum of the Verged to the true 1 more often than a QUARC and there-

cost function, albeit one that is also a QUARCH plane. fore retrieved a metric reconstruction more reliably. Conse-
. guently, QUARCH-M led to a considerably smaller median
5. Experimental results error, particularly for higher levels of pixel noise. As the

We tested our self-calibration algorithm on synthetic Sequence length increased to 6 views, both QUARCH-M
data and real images using both unconstrained and con@nd QUARC-M succeeded most of the time. We also show
strained optimization. Projective reconstructions for the 'esults for both planes using Nests cost function[[17], de-
synthetic data were obtained using the implementationNOted similarly as QUARCH-N and QUARC-N (Figifre 3).
of [18] in [22], followed by a projective bundle adjustment. Here as well, a QUARCH plane led to a metric upgrade
For the real image sequences, they were obtained usind"°'® reliably, though the difference is less pronounced.

P2SfM [15] with COLMAP [25] for feature matching. Data | S iS because Niét's cost function is based on strong
normalization was used tr{roughout. We set 0°5 and camera priors, such as zero skew, unit aspect ratio, and prin-

used the updatex.1 = min f ; «KF (Xks1 )kg. Our al- cipal point at the image center, properties that are fully sat-
gorithm is implemented in MATLAB R2017b with the con- IS €d by our simulated cameras. Hence, both planes suc-
vex optimization problems modeled using YALMIP [14] cessfully converged to the true, most of the time.

and solved using MOSEK16]. All experiments were con- QUARCH* vs QUARCH: We compared the results from

ducted on an Intel Core i7 3.10GHz 32GB RAM system. QUARCH-M with those from constrained optimization, de-
noted as QUARCH*M. In Figurg]2, QUARCH*M success-

5.1. Synthetic data fully recovered the metric structure for several projective re-
Each synthetic scene consisted of 500 points scatteredonstructions that had otherwise failed with unconstrained
randomly within the unit sphere and imaged by cameras OPtimization. Enforcing the QUARCH LMIs during opti-
placed at a distance of 2.75-3.45 units from the sphere cenimization led the QUARCH plane to reliably converge to the
ter and facing towards it. The cameras were then perturbedrue 1 , while avoiding to succumb to a non-QUARCH lo-

by a small random translation. The rotation angjebe- &l minimum of the modulus constraints. QUARCH*M, on
tween consecutive views was sampled randomly from the@verage, required 5 iterations to converge and took?2s
range[20 ;60 ] to satisfy the assumptioj | 120 . up to 16 views, of which< 0:2s was for computing the
All cameras had (in pixels) focal lengfty = f, = 300, QUARCH plane. The runtime scaled linearly in the number

zero skewi.e. =0, and an image-centered principal point of views as do the LMI constraints in our SDP problems
i.e. (Uo; Vo) = (128 128). Zero-mean Gaussian noise with in (1) and [(2R). Beyond 6 views, QUARCH-M suf ced
standard deviation in th; 2] pixel range was added to for a successful metric upgrade and can be used instead for
pixel coordinates in increments 0f5 pixels. The sequence @ speedup. With Nigt's cost in Figur¢ 3, we observed that
length was varied from 4 to 16 views, and 100 trials were only one additional projective reconstruction, for 6 views,
run for each sequence length and image noise level. was successfully upgraded to metric using constrained opti-
We conducted a series of reliability tests to examine Mization, denoted as QUARCH*N. These results show the
the bene ts of the QUARCH LMIs in self-calibration. We bene ts of enforcing the QUARCH LMiIs during the local
evaluated our results using the 3D RMS error between theOptimization, particularly for short sequences and when us-
ground truth and the recovered metric point clouds (both ing the modulus constraints.
scaled to have a mean distance of 1 unit) aligned by a bestQUARCH* vs GO-DAQ and GO-Strati ed: We com-
t similarity transformation in the least squares sense. In pared QUARCH*M and QUARCH*N with two globally
this section, we show the distribution of 3D errors from the optimal methods: GO-DAQL]4] and GO-Strati ed |[5].
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Figure 2: Comparison among QUARC-M, QUARCH-M, and QUARCH*M. Experiments using 4 views (left) and 5 views
(middle) with varying noise levels, and using a varying number of views with 1 pixel of noise (right).
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Figure 3: Comparison among QUARC-N, QUARCH-N, and QUARCH*N. Experiments using 5 views (left) and 6 views
(middle) with varying noise levels, and using a varying number of views with 1 pixel of noise (right).

For GO-Strati ed, we computed the calibration for both malized), is then likely to fail as the rank-3 constraint on the
cheirality signs, and picked the resulting calibration clos- DAQ is not earnestly enforced. As the sequence length in-
est to the ground truth (the authors' implementation was creased, in Figuie 4, all methods performed fairly reliably.
used). For GO-DAQ, we xed the relaxation order to 2,
and used MOSEK as the solver. In the results shown
in Figure[4, QUARCH*M consistently outperformed GO- We present results on six real image sequences:
Strati ed, both in terms of the median 3D error and suc- fountain-P11 Herz-Jesu-P8andHerz-Jesu-P2%om [26],
cess rate. With 4-5 views, GO-Strati ed failed frequently Vercingetorix and Alcatraz water towerfrom [19], and

for noise levels above 1 pixel. This is likely because the Cherub[1]. The rst three provide the ground truth cali-
modulus constraints admit multiple global solutions, and bration with focal lengthsg! = 2759:48, f)t/ = 2764:16,

with short sequences there are fewer constraints to isolaterincipal point(u);vl) = (1520:69;100681), and skew
the true ; . Also, this method relies on scene points to ' = 0 pixels. For these three sequences, we computed
compute bounds for ; , which may prove to be unreli- the following errors for a quantitative evaluation: focal
able in the presence of noise. With more views, the ad-length error f = jf§ fxj+ f; f, , principal point
ditional modulus constraints led to a more reliable calibra- error uv = jul, uoj + jvi Voj, and skew error =

tion with GO-Strati ed, but the median error was still larger j ' j. For the remaining three sequences, we analyzed

5.2. Real images

than with QUARCH*M. The two methods with geometric
cost functions (QUARCH*N and GO-DAQ) generally out-
performed the other two, however, GO-DAQ suffered from
a drastic increase in 3D error for high levels of pixel noise.
The likely explanation for this result is that our simulated
cameras approach a known “arti cial” degenerate con g-
uration for estimating the Dual Absolute Quadric (DAQ).

the recovered metric reconstructions qualitatively. Our ex-
periments also served to verify the practical applicability of
our assumption that;; j 120 for consecutive views.
Quantitative evaluation: From the calibration errors re-
ported in Tablg fl, QUARC-M and GO-Strati ed on the
Herz-Jesu-P&equence, and QUARC-N on tierz-Jesu-
P25 sequence, led to an erroneous calibration. Upon

This degenerate con guration occurs when all optical axes inspection, their corresponding reconstructions failed to
pass through a common poiii [7] and the rank of the DAQ achieve a metric upgrade and remained projectively dis-
is not enforced. Our cameras approach such a con gurationtorted. Note that QUARCH*M succeeded on therz-Jesu-

in the presence of noise. GO-DAQ, because of scaling andP8 sequence, whereas the other two methods, also based
numerical tractability issues (cost and constraints are unnor-on the modulus constraints, failed. This con rms our re-
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Figure 4: Comparison of QUARCH*N and QUARCH*M with GO-Strati ed and GO-DAQ. Experiments using 4 views (left)
and 5 views (middle) with varying noise levels, and using a varying number of views with 1 pixel of noise (right).

Sequence Method f uv Time (s)

fountain-P11 QUARCH*M 1:.91 401 099 271
QUARC-M 2:44 430 099 09
QUARCH*N 42:92 2829 071 147
QUARC-N 4373 2861 069 010
GO-DAQ 76:15 3192 a10 127

GO-Strati ed 12.64 975 117 44947
Herz-Jesu-P8 QUARCH*M 5349 7868 156 132

Figure 5: 3D reconstructions of (from left to rigt@herub QUARC-M 411466 10116 58629 Qo7
Vercingetorix and Alcatraz water towerobtained with QUARCH*N 8361 3393 124 190
QUARCH*M. Sample images shown on the right. QUARC-N 7681 3422 121 Q09

GO-DAQ 6610 3384 027 185

GO-Stratied 255262 100605 13285 15474
sults with the synthetic data that the QUARCH LMis aid Herz-Jesu-P25 QUARCH'M 3489 2371 252 204

. . ; , UARC-M 3475 2370 255 045

in reliably locating the true ; and that GO-Strati ed of- Q

ten fails for short sequences. Except for these failures, all QRSN oot 3 o 2%
q - =Pt 1o , QUARC-N 281261 18573 2186 046

the methods otherwise led to a Callbrz?\tlon close to ground GO-DAQ 440 3390 Q60 160

truth and thereby to a successful metric upgrade. The error GO-Stratied 5294 3216 169 89376

measurements are not completely indicative of the recon-
struction quality, which, from our observations, is primar-  Taple 1: Self-calibration results on sequences from [26].
ily in uenced by the focal length and skew errors. From

the timing results in Tablg]1, the unconstrained local op-

timization methods are considerably faster than the oth-j ; j 120 for consecutive views. This assumption might
ers. The constrained optimization method is slower than as well be extended to every other view in these sequences.
the unconstrained one due to the more expensive SDP prob-

lem comquation at each iteration. GO-DAQ took a similar §. Conclusion

amount of time as QUARCH*M and QUARCH*N, but GO- _ .

Strati ed was signi cantly slower for all tested sequences. We presented a new qu:alsraf ne reconstruction stratum,
Qualitative evaluation: We show the 3D reconstruction re- QUARCH, as a specialization of QUARC. We showed that
sults obtained with QUARCH*M on three longer image se- 1 Safis es either of two sets of LMIs for a camera pair
guencesCheruly Vercingetorix andAlcatraz water tower depending on the relative orientation angle being under or
in Figure[5. These sequences have 65, 69, and 173 imover 120 . We also proposed a constrained LM method to
ages, respectively, and their corresponding projective reconenforce the QUARCH LMis during the local optimization
structions contained 65, 63, and 66 cameras, respectively!© locate 1 . Our experiments showed the bene ts of the
The recovered metric structures closely resemble the capQUARCH LMIs in reliably locating 1 to obtain a metric
tured scenes. Similar metric reconstructions were obtained ©construction from a projective one. Our constrained LM
using QUARCH*N. We observed that several points were method could also be useful in other computer vision prob-
poorly estimated in these reconstructions. These led to fail-'l€ms for nonlinear re nement subject to LMI constraints.
ures with GO-Strati ed as it relies on all scene points. Our Acknowledgements This research was partially supported
results also con rm the applicability of the assumption of by the ANR SUMUM project, grant ANR-17-CE38-0004.
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