
HAL Id: hal-02267951
https://hal.science/hal-02267951

Submitted on 12 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

The arithmetic geometry of AdS_2 and its continuum
limit

Minos Axenides, Emmanuel Floratos, Stam Nicolis

To cite this version:
Minos Axenides, Emmanuel Floratos, Stam Nicolis. The arithmetic geometry of AdS_2 and
its continuum limit. Symmetry, Integrability and Geometry : Methods and Applications, 2021,
�10.3842/sigma.2021.004�. �hal-02267951�

https://hal.science/hal-02267951
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


Symmetry, Integrability and Geometry: Methods and Applications SIGMA 17 (2021), 004, 22 pages

The Arithmetic Geometry of AdS2

and its Continuum Limit

Minos AXENIDES †, Emmanuel FLORATOS †‡ and Stam NICOLIS §

† Institute of Nuclear and Particle Physics, NCSR “Demokritos”,
Aghia Paraskevi, GR–15310, Greece

E-mail: axenides@inp.demokritos.gr

‡ Physics Department, University of Athens, Zografou University Campus,
Athens, GR-15771, Greece

E-mail: mflorato@phys.uoa.gr

§ Institut Denis Poisson, Université de Tours, Université d’Orléans, CNRS (UMR7013),
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Abstract. According to the ’t Hooft–Susskind holography, the black hole entropy, SBH, is
carried by the chaotic microscopic degrees of freedom, which live in the near horizon region
and have a Hilbert space of states of finite dimension d = exp(SBH). In previous work we
have proposed that the near horizon geometry, when the microscopic degrees of freedom can
be resolved, can be described by the AdS2[ZN ] discrete, finite and random geometry, where
N ∝ SBH. It has been constructed by purely arithmetic and group theoretical methods
and was studied as a toy model for describing the dynamics of single particle probes of the
near horizon region of 4d extremal black holes, as well as to explain, in a direct way, the
finiteness of the entropy, SBH. What has been left as an open problem is how the smooth
AdS2 geometry can be recovered, in the limit when N →∞. In the present article we solve
this problem, by showing that the discrete and finite AdS2[ZN ] geometry can be embedded
in a family of finite geometries, AdSM

2 [ZN ], where M is another integer. This family can be
constructed by an appropriate toroidal compactification and discretization of the ambient
(2+1)-dimensional Minkowski space-time. In this construction N and M can be understood
as “infrared” and “ultraviolet” cutoffs respectively. The above construction enables us to
obtain the continuum limit of the AdSM

2 [ZN ] discrete and finite geometry, by taking both N
and M to infinity in a specific correlated way, following a reverse process: Firstly, we show
how it is possible to recover the continuous, toroidally compactified, AdS2[ZN ] geometry by
removing the ultraviolet cutoff; secondly, we show how it is possible to remove the infrared
cutoff in a specific decompactification limit, while keeping the radius of AdS2 finite. It is
in this way that we recover the standard non-compact AdS2 continuum space-time. This
method can be applied directly to higher-dimensional AdS spacetimes.

Key words: arithmetic geometry of AdS2; continuum limit of finite geometries; Fibonacci
sequences
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1 Introduction

The present work, mathematically, belongs to the area of algebraic geometry over finite rings.
However its relevance for physics stems from the proposal of using specific, discrete and finite
arithmetic geometries, as toy models, in order to describe properties of quantum gravity in
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general and the structure of space-time, in particular, at distances of the order of the Planck scale
(10−33 cm), where the notions of the metric and of the continuity of spacetime break down [6].

So it is useful to provide some context, for our study, by presenting a short review of the
relevant physics questions about spacetime and quantum gravity. The reader, who is interested
only in the mathematical issues of our paper, may skip the following subsection on its physical
motivation and resume reading from the subsequent subsection on the outline of the paper.

1.1 Physics motivation

At Planck scale energies, quantum mechanics, as we know it from lower energy scales, implies
that the notion of spacetime itself becomes ill-defined, through the appearance from the vacuum
of real or virtual black holes of Planck length size [27].

Probing this scale by scattering experiments of any sort of particle-like objects, black holes
will be produced and the strength of the gravitational interaction will be of O(1), which leads to
a breakdown of perturbative gravity and of the usual continuum spacetime description [16, 17].

The above remarks led some authors to consider the idea, that one has to abandon continuity
of spacetime, locality of interactions and regularity of dynamics. Indeed there are recent argu-
ments that quantization of gravity implies discretization and finiteness of space time [56, 58].
This is, indeed, an old idea, that was put forward, already way back, by the founders of quantum
physics and gravity.

The most successful and popular framework today, to tackle this fundamental problem, is
considered to be the AdS/CFT correspondence. It attempts to define spacetime geometry – and
thus gravity – as an emergent phenomenon, that must and can be described in the language
of conformal field theory. The realization of this correspondence has passed many non-trivial
consistency checks by explicit calculations, that are valid for distances of the order of RAdS2 ,
much larger than the Planck scale in the bulk space-time.

An example of such a non-trivial check consists in providing, on the one hand, the degrees
of freedom that can account for the black hole entropy [49, 50] and recovering the Bekenstein–
Hawking entropy, at length scales much larger than the Planck length, along with a certain class
of corrections; on the other hand, in providing a resolution and reformulation of the so-called
“old black hole information paradox” [28, 39].

When the curvature of the bulk spacetime becomes locally of the order of the Planck scale,
the holographically dual conformal field theory on the boundary, becomes a free field theory –
but the complexity of the problem of understanding the space-time geometry and gravity of the
bulk appears in the guise of the construction of the infinitely “complicated” operators of the
free boundary conformal field theory. This is necessary for representing “local events” in the
bulk, as well as the bulk diffeomorphisms (the so-called “problem of locality” in the AdS/CFT
correspondence, presented, for instance in [1]). This phenomenon is a consequence of the so-
called UV/IR correspondence, that is inherent in the AdS/CFT framework. How to resolve it
is, at present, under study.

A few years ago the seminal paper [2] highlighted the relevance of the so-called “new black
hole information paradox” [43], which finally lead to the conjectures that go under the label
ER = EPR [40] and culminate in the so-called QM = GR correspondence [53].

These conjectures relate strongly the description of spacetime geometry and quantum grav-
ity to quantum information theoretic tools, such as entanglement of information, algorithmic
complexity,random quantum networks,quantum holography, error correcting codes etc.

On the other hand a direct discussion of the structure of the bulk spacetime at Planck scale
lies beyond the present capabilities of the holographic AdS/CFT framework.

We return, in what follows, to the ideas of discretization of spacetime which constitutes the
framework of our study.
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The hypothesis for a discrete and finite spacetime for quantum gravity is a possible way for
explaining the remarkable fact that the Hilbert space of states of the BH microscopic degrees
of freedom is finite-dimensional. Its dimensionality equals to the exponential of the Bekenstein–
Christodoulou–Hawking black hole entropy, which is of quantum origin. The generalization
of the Bekenstein entropy bounds implies that, for any pair of local observers in a general
gravitational background, the physics inside their causal diamond is also described by a finite-
dimensional Hilbert space of states [13]. This result has been exploited further and consistently
under the name of holographic spacetime, in the works [9, 10, 25].

Our idea about the nature of spacetime at the Planck scale, takes the notion of a holographic
spacetime one step further: Namely, that the finite dimensionality of the Hilbert space of local
spacetime regions originates from a discrete and finite spacetime, which underlies the emergent
continuous geometric description [6, 23].

Our starting point is essentially the hypothesis that spacetime, at the Planck scale, is fun-
damentally discrete and finite and, moreover, does not emerge from any other continuous de-
scription(conformal field theory, string theory, or anything else). We claim that, at “large”
distances (in units of the Planck length), the continuous spacetime geometry can be described
as an infrared limit thereof. This hypothesis, indeed, is similar to the proposal by ’t Hooft [56].

This assumption then entails developing and using the appropriate mathematical tools, that
can describe the properties and dynamics of discrete and finite geometries as well as the emer-
gence, in their infrared limits, of continuous geometries.

We do not wish to imply that it is not possible to define quantum gravity, with a finite-
dimensional Hilbert space, in any other way; just that this is one possible way to describe
quantum spacetime with a finite-dimensional Hilbert space.

We shall now present a short review of our recent work, along with the outline of our paper.

1.2 Context and outline of the paper

In our previous work we have proposed a discrete and finite model geometry, which we have
called AdS2[ZN ], for any, positive, integer N . This geometry is simply defined as the set of
points of integer entries, (k, l,m), that satisfy the relation k2 + l2 −m2 ≡ 1 modN . Thus, we
have replaced, in the definition of the continuous AdS2 geometry, the real numbers with the
finite ring of integers mod N .

AdS2[ZN ], defined in this way, has a random structure, due to the modular arithmetic. It is
well known that deterministic processes, using modular arithmetic, can produce deterministic
random sequences of points [18, 32].

As explained in [6, 7, 8], this particular discretization is chosen, among many possible ones,
because it supports the holographic correspondence between the bulk, AdS2[ZN ], and its bound-
ary, P1[ZN ], the discrete projective line. The reason this discrete holography exists at all is that
it is possible to realize the action of its discrete and finite isometry group, PSL2[ZN ], in two
ways: Firstly, as the isometry group of the bulk and secondly, as the (Möbius) conformal group
on the boundary.

In this approach a long-standing question has been the meaning and existence of a continuum
limit of the finite and random modular geometry as N → ∞; of equal importance is, of course
whether the usual smooth AdS2 geometry can be recovered in this way at all.

In the present paper we will demonstrate firstly that this limit exists and, secondly that, in
fact, the continuous geometry of AdS2 emerges from the discrete AdSM2 [ZN ] geometry as an
infrared limit. In order to show this we reconstruct this geometry from AdS2, in two steps:

1. The first step involves the discretization of AdS2, using an appropriate spacetime lattice
in the ambient (2 + 1)-dimensional, Minkowski, spacetime. This requires introducing
an ultraviolet cutoff a = RAdS2/M , for any integer M . The lattice spacing a has the
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important property that it breaks the continuous Lorentz group to its arithmetic discrete
subgroup SO(2, 1,Z) [47, 48]. The Minkowski spacetime lattice induces moreover, on the
continuum AdS2, an infinite set of integral points with isometry group SO(2, 1,Z). This
set defines an integral lattice of AdS2, for any M , which we shall call henceforth AdSM2 [Z].

The reason for introducing a sequence of lattices is that it allows us to define the continuum
limit by taking a→ 0 or M →∞, keeping RAdS2 fixed.

In this limit the sequence of spaces AdSM2 [Z] tends to AdS2 in the topology of the ambient,
flat, three-dimensional spacetime.

2. The second step involves the introduction of an infrared cutoff, L = aN , where N > M ,
such that, in the limit M → ∞ and N → ∞, the ratio N/M tends to a finite value,
L/RAdS2 ≡ γ > 1. It should be noted that this construction remains consistent, also when
N < M and γ < 1. The difference is that in this case the throat doesn’t lie within the
enclosing box.

The introduction of the infrared cutoff is realized by symmetrically enclosing a region of
the throat of the AdS2 hyperboloid, as large as desired, in a box, of size L, in the ambient
spacetime and then imposing periodic boundary conditions. In this way, we obtain the
AdS2 hyperboloid infinitely folded due to the periodic boundary conditions. It is possible
to recover the unfolded AdS2 complete geometry by removing the infrared cutoff in the
limit L→∞.

On the other hand, the introduction of the periodic box of size L = Na identifies all the
points of the integral lattice, whose coordinates differ by integer multiples of N .

This equivalence relation implies that all the points of AdSM2 [Z] can be classified by a finite
number of equivalence classes represented by points inside the box. However, these repre-
sentatives need not lie on the part of AdSM2 [Z] that’s enclosed by this box. We observe in
addition that the IR cutoff, N , deforms the SO(2, 1,Z) symmetry of the integral lattice to
its modN reduction, SO(2, 1,ZN ).

The coordinates of all points (k, l,m), of AdSM2 [Z], that satisfy the equation

k2 + l2 −m2 ≡M2 modN

define the finite geometry AdSM2 [ZN ].

In order to identify the solutions of the above equation with the elements of AdS2[ZN ], it
is necessary to impose that

M2 ≡ 1 modN.

This condition provides a relation between the UV and IR cutoffs, M and N .

Having reconstructed the finite geometry AdSM2 [ZN ], by the two-step process, discretization and
toroidal compactification, we are able to show that the continuum limit can be taken by finding
infinite sequences of UV/IR cutoff pairs {(Mn, Nn)}, under the constraint M2 ≡ 1 modN ,that
satisfy the conditions described in the two-step process, mentioned above.

The main result of our paper is the explicit construction of the continuum limit, by a reverse,
two-step, process:

1. First, we remove the UV cutoff, using pairs of UV/IR cutoffs, chosen from the k-Fibonacci
sequences, which lead to different values of the ratio γ, for different values of k.

2. Next, we remark that the ratio, L/RAdS2 and, thus, the IR cutoff, L, is an increasing
function of k and, therefore, in the large k limit, we can remove the IR cutoff, while
keeping the radius, RAdS2 fixed, but arbitrary.
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The plan of our paper is as follows:
Section 2 consists of two subsections: In Section 2.1 we recall the salient features of the

geometry of AdS2 as a ruling surface and as a coset space. In Section 2.2, we describe the coset
structure and the ruling property of the finite geometry, AdS2[ZN ] and we discuss the problem
of counting its points, for N a power of a prime integer. Using the Chinese remainder theorem,
we find the number of points, for any integer N . We find that the ruling property leads to
a consistent description with one chart, when N = pr and pmod 4 ≡ 3 and requires two charts,
if pmod 4 ≡ 1.

Section 3 consists of two subsections: In Section 3.1 we introduce a lattice in the embedding
two time-one space Minkowski spacetime, M 2,1, with lattice spacing a = RAdS2/M . This
“ultraviolet (UV) cutoff” induces the integral lattice of points of AdS2, which we call AdSM2 [Z].
We identify the isometry group of AdSM2 [Z] as SO(2, 1,Z) for any positive integer M and present
a review of its basic features. Moreover we show that all the points of AdSM2 [Z] lie on light-like
lines, which intersect the circle of the throat at rational points. Furthermore, on each light-like
line, there is an infinite number of, randomly distributed, integral points.

In Section 3.2 we compactify the embedding Minkowski spacetime, M 2,1, inside a torus, T3,
of size L = Na, where N is an integer, larger than M , by imposing periodic boundary conditions.
This is equivalent to identifying the points, whose coordinates differ by integral multiples of L.
The continuum AdS2, after such a compactification, becomes infinitely folded inside the torus.
The infinite number of points of AdSM2 [Z] gets mapped to a set of a finite number of points,
which defines a finite geometry, AdSM2 [ZN ]. The isometry group of this geometry is found to be
SO(2, 1,ZN ) for all M , which is the reduction mod N of the group SO(2, 1,Z).

In Section 4 we construct the continuum limit of AdS2[ZN ], by relating it to the geometry
AdSM2 [ZN ]. This is achieved by imposing the constraint M2 ≡ 1 modN . In Section 4.2 we
construct a sequence of UV/IR pairs, (Mn, Nn), n = 1, 2, 3, . . ., that belong to the Fibonacci
sequence fn, with the properties mentioned previously. The limit n → ∞ corresponds to the
continuum limit a → 0, where the UV cutoff, with fixed IR cutoff L = RAdS2γ, has been
removed. In Section 4.3 we show how the IR cutoff can be removed, once we consider UV/IR
pairs belonging to the k-Fibonacci sequences, by taking the limit k →∞.

In Section 5 we draw our conclusions and present our ideas for further inquiry.

2 Continuum AdS2 and the AdS2[ZN ] modular geometry

2.1 AdS2 geometry as a ruling surface and as a coset space

In the near horizon region of spherically symmetric 4d extremal black holes the geometry is
known to be of the form AdS2 × S2, where the AdS2 = PSL(2,R)/PSO(1, 1,R) factor describes
the geometry of the radial and time coordinates and S2 is the horizon surface.

In the present work we will develop the necessary mathematical framework which will enable
us to discretize consistently the AdS2 factor, leaving for a future publication the discretization
of the S2 factor.

Indeed, we shall review the salient features of the continuum AdS2, geometry as a single-
sheeted 2d hyperboloid, considered both as a ruled surface and as a coset space [12, 24]. Both
of these descriptions are amenable to consistent discretization as we shall see in the following
sections.

The AdS2 spacetime is a one-sheeted hyperboloid, defined through its global embedding in
Minkowski spacetime with one space – and two time-like dimensions by the equation [15, 44].

x20 + x21 − x22 = R2
AdS2 .

We shall work in units where RAdS2 = 1.
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The boundaries of AdS2 consist of two time-like disconnected circles, where AdS2 approaches,
asymptotically, the light cone of M 2,1,

x20 + x21 − x22 = 0.

AdS2 can be, also, described as the homogeneous space SO(2, 1)/SO(1, 1). This case is special,
in that SO(2, 1) has a double cover, SL(2,R), so that we have AdS2 = PSL(2,R)/PSO(1, 1).

In order to establish our notation and conventions, we proceed with the Weyl construction
of the double covering group, PSL(2,R).

To every point, xµ ∈ AdS2, µ = 0, 1, 2, we assign the traceless, real, 2× 2 matrix

M(x) ≡
(

x0 x1 + x2
x1 − x2 −x0

)
.

Its determinant is detM(x) = −x20 − x21 + x22 = −1.
The action of any element A of the isometry group SL(2,R) on AdS2 is defined through the

mapping

M(x′) = AM(x)A−1.

This induces an SO(2, 1) transformation on (x0, x+, x−), where x± = x1 ± x2,

x′ ≡ Λ(A)x.

More concretely, when

A =

(
a b
c d

)
the induced Lorentz transformation, Λ(A), in the light cone basis (x0, x+, x−), is given by the
expression

Λ(A) =

ad+ bc −ac bd
−2ab a2 −b2
2cd −c2 d2

 .

Choosing as the origin of coordinates the base point p ≡ (1, 0, 0), its stability group SO(1, 1) is
the group of Lorentz transformations in the x0 = 0 plane of M 2,1 or, equivalently, the “scaling”
subgroup, D, of SL(2,R)

D 3 S(λ) ≡
(
λ 0
0 λ−1

)
for λ ∈ R∗.

For this choice of the stability point, we define the coset, hA, by decomposing A as

A = hAS(λA).

Thus, we associate uniquely to every point x ∈ AdS2 the corresponding coset representati-
ve hA(x).

We herein introduce the global coordinate system, defined by the straight lines that generate
AdS2 and for which it can be checked easily that they form its complete set of light cones.

Consider the two lines, l±(p), passing through the point p ∈M 2,1, orthogonal to the x0 axis
and at angles ±π/4 to the x1 = 0 plane. They are defined by the intersection of AdS2 and the
plane x0 = 1, cf. Fig. 1.
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The coordinates of any point, q+ ∈ l+(p), q− ∈ l−(p) are given as (1, µ±,±µ±), µ± ∈ R
correspondingly.

We can parametrize any point xµ, of AdS2, by the intersection of the local light cone
lines, l±(x), with coordinates µ± and φ± through the relations

x0 = cosφ± − µ± sinφ±, x1 = sinφ± + µ± cosφ±, x2 = ±µ±.

These can be inverted as follows

eiφ± =
x0 + ix1
1± ix2

, µ± = ±x2. (2.1)

The geometric meaning of the coordinates φ and µ is that µ parametrizes the x2, space-like, co-
ordinate and, thus, µ±

√
2 parametrizes the light cone lines l±(x). The angle φ± is the azimuthal

angle of the intersection of l±(x) with the plane (x0, x1). From equation (2.1), by re-expressing
numerator and denominator in polar coordinates, we find

φ = τ − σ, (2.2)

where τ and σ are the arguments of the complex numbers x0 + ix1 and 1 + ix2.
The corresponding coset parametrization (group coset motion which brings the origin to the

point x) is

h(µ±, φ±) = R(φ±)T±(µ±),

where

R(φ) =

(
cosφ/2 − sinφ/2
sinφ/2 cosφ/2

)
and

T+(µ) = [T−(−µ)]T =

(
1 −µ
0 1

)
.

It is easy to see also, that T±(µ±), acting on the base point X(p), generate the light cone l±(p),
so we identify these one parameter subgroups with the light cones at p.

In the literature the study of field theories on AdS2 requires an extension, to the universal

covering of this spacetime, ÃdS2, together with appropriate boundary conditions, in order to
avoid closed time-like geodesics and reflection of waves from the boundary. This extension can
be parametrized using as time coordinate the azimuthal angle τ , by extending its range, (−π, π)
to (−π + 2πk, π + 2π(k + 1)), k = ±1,±2, . . . and by the space coordinate σ ∈ (−π/2, π/2),
defined in equations (2.2). The extension of the range of τ parametrizes the infinitely-sheeted
Riemann surface of the function log(·), used in deriving equation (2.2).

It is interesting to note that the coset structure of AdS2 can be elevated to ÃdS2 by using

the universal covering group of SL(2,R), ˜SL(2,R), which has been explicitly constructed in [46].

2.2 The discrete modular geometry AdS2[ZN ] and its isometries

We propose to model the random, non-local geometry of the near horizon region of extremal
black holes by a number-theoretic discretization of the AdS2 factor, that preserves its group-
theoretical structure.

This is done by replacing the continuous coset structure of AdS2, presented in the previous
section, by the discrete cosets,

AdS2[ZN ] = PSL(2,ZN )/PSO(1, 1,ZN ).
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Figure 1. The light cone of AdS2 at p = (1, 0, 0).

We thereby replace the set of real numbers, R, by the set of integers modulo N . We called this
a “modular discretization” of AdS2 in [6].

This is a finite, deterministically random, set of points in the embedding Minkowski space-
time M 2,1.

By introducing appropriate length scales and by taking the large N limit we shall show in
the following sections how the smooth geometry of AdS2 can emerge.

We notice some interesting factorizations of the algebraic structures with respect to the
integer N : If N = N1N2, with N1,2 coprime, then we have [5]

PSL(2,ZN1N2) = PSL(2,ZN1)× PSL(2,ZN2)

and

AdS2[ZN1N2 ] = AdS2[ZN1 ]×AdS2[ZN2 ].

These factorizations imply that all powers of primes, 2n1 , 3n2 , 5n3 , . . ., are the building blocks of
our construction. The physical interpretation of this factorization is that the most coarse-grained
Hilbert spaces on the horizon have dimensions powers of primes.

In order to study the finite geometry of AdS2[p
r], we recall the following facts about its

“isometry group” PSL(2,Zpr):

• The order of PSL(2,Zpr) is p3r−2
(
p2 − 1

)
/2 [41].

• The set of points of the finite geometry of AdS2[p
r] is, by definition, the set of all solutions

of the equation

x20 + x21 − x22 ≡ 1 mod pr.

The elements of this set can be parametrized as follows

x0 ≡ (a− bµ) mod pr, x1 ≡ (b+ aµ) mod pr, x2 ≡ µmod pr.

where a2 + b2 ≡ 1 mod pr and a, b, µ ∈ Zpr .
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Figure 2. The integral points, (k, l,m), that satisfy k2+l2−m2 ≡ 1 mod 47, i.e., that belong to AdS2[47].

• The points of AdS2[p
r] comprise the bulk – for the holographic correspondence – to these

we must include the points on the boundary.

The boundary is the “mod pr” projective line, P1[Zpr ], defined as the set

P1[Zpr ] = Z∗[pr] ∪ {0,∞},

so the number of boundary points (cosets) is pr−1(p− 1) + 2.

We shall focus henceforth on the properties of the random set of points, that constitute the
bulk, i.e., AdS2[N = pr].

The deterministic randomness of the points of AdSM2 [ZN ] can be illuminated from their
representation in the three-dimensional ambient space-time, cf. Fig. 2.

Proposition 2.1. It is interesting to notice, that, in analogy with the continuous case, it is
possible to define, for AdS2[N ], a global ruling parametrization for N = pr, where p is a prime
of the form (a) p ≡ 3 mod 4, while when (b) p ≡ 1 mod 4, we need two charts to obtain all such
points.

Proof. We, start, by parametrizing the points of AdSM2 [ZN ] by the ruling of the discrete line
l = (1, µ, µ) around the discrete circle of the throat of AdSM2 [ZN ]:

x0 = a− µb, x1 = b+ µa, x2 = µ,

where a, b, µ ∈ ZN and a2 + b2 ≡ 1 modN , cf. Fig. 3.
This parametrization suffices to generate all the points, for case (a), as an explicit comparison

with direct counting confirms; for case (b), we must add a second parametrization, by exchang-
ing x0 and x1. The reason this is necessary is that, in case (b), given x0 and x1 it’s not possible
to obtain a and b, since there exists a µ = µ0, such that µ20 ≡ −1 modN in this case. �

We shall now proceed in counting the integral points of AdS2[N ], for any integer N .

Proposition 2.2. When N = pr, numerical experiments suggest the following recursion relation
for the number of points of AdS2[Z[pr], Sol(pr),

Sol(pr) = p2(r−1)Sol(p)⇒ Sol(pr) = p2r−1(p+ 1),

where Sol(p) = p(p+ 1) and r = 1, 2, . . . for any prime integer p.
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Figure 3. The points of the discrete circle, a2 + b2 ≡ 1 mod 1001.

Figure 4. The number of solutions to k2 + l2−m2 = 1 (blue curve) and k2 + l2−m2 ≡ 1 modN (yellow

curve), for 3 ≤ N ≤ 29 obtained by exact enumeration.

This proposition can be proved, by using the coset property of AdS2[p
r].

Proof. The rank of the group PSL2[p
r] is known to be p3r−2

(
p2 − 1

)
/2, while that of its

dilatation subgroup PSO(1, 1, pr) is pr−1(p − 1)/2. This is a consequence of the fact that the
rank is equal to the number of invertible integers modulo pr divided by 2 (due to its projective
structure). Thus, since AdS2[Zpr ], is identified with the coset geometry PSL2[p

r]/PSO(1, 1, pr),
we get the promised result, p2r−1(p+ 1). �

The case N = 2n is special: We find Sol(2) = 4, Sol(4) = 24, and Sol
(
2k
)

= 4Sol(2k−1), for
k ≥ 3. We remark that N = 4 is an exception. The solution is Sol

(
2k
)

= 22k+1, for k ≥ 3.
We plot the results of exact enumeration in Fig. 4 for 3 ≤ N ≤ 29. We notice that there are
peaks for composite values of N . The additional points count the equivalence classes of points
of AdS2[Z] modN .

From these results we deduce that, for large N , the number of solutions, modN , scales like
the area, i.e., N2.
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Figure 5. Integral points on AdS2.

3 Discretization and toroidal compactification
of the AdS2 geometry

3.1 The UV cutoff, the lattice of integral points
and the SO(2,1,Z) isometry of AdSM

2 [Z]

We shall now present and study in detail the lattice of integral points of AdS2, along with its
isometries.

The physical lengthscale in our problem is the radius of the AdS2 spacetime, RAdS2 . We set
RAdS2 = 1 and we divide it into M segments, of length a = RAdS2/M . This defines a as the UV
cutoff (lattice spacing) and M ∈ N and, hence, a lattice in M 2,1.

The continuum limit is defined by taking M →∞ and a→ 0 with RAdS2 = 1 fixed.
The global embedding coordinates (x0, x1, x2) of this lattice are (ka, la,ma) = a(k, l,m),

where k, l,m ∈ Z. They are measured in units of the lattice spacing a. Therefore the lattice
points, that lie on AdS2 satisfy the equation

k2 + l2 −m2 = M2,

whose solutions define AdSM2 [Z], the set of all integral points of AdS2 with integer radius M .
In the literature there has been considerable effort in counting the number of solutions to the

above equation, in particular the asymptotics of the density of such points [11, 20, 33, 37, 42, 51].
This problem can be mapped to a problem whose solution is known, namely the Gauss circle
problem. This pertains to finding the number r2(m,M) of solutions to the equation k2 + l2 =
M2 + m2. This number is determined by factoring M2 + m2 into its prime factors [51] and
counting the number of primes, pi, of the form pi ≡ 1 mod 4 (this is described in detail in [14];
the dependence on M is a topic of current research [37, 42]).

This factorization procedure generates a sequence of primes that contains an element of
inherent randomness. It is this property that captures the random distribution of the integral
points on AdS2 – this is illustrated in Figs. 5.

Therefore, from these facts, the number of integral points of the hyperboloid, up to height m,
is given by the expression

Sol(m) = 4 + 2

m∑
j=1

r2(j,M).

We plot this function – in Fig. 6, for M = 1, when m runs from −200 to 200 (due to the
symmetry, m↔ −m, we plot only the positive values of m).
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Figure 6. The number of integral points, on AdS2, as a function of the height, m, for M = 1. Due to

symmetry, m↔ −m, we plot only the positive values of m.

It is, indeed, striking that the result is an almost straight line [37, 42].
We shall now discuss how to actually construct these points, using the property that they

belong to light-cone lines, which emerge from the rational points of the circle on the throat of
AdS2.

Using the ruling property of AdS2,

k = cosφ− µ sinφ, l = sinφ+ µ cosφ, m = µ,

we may repackage these as follows

x0 + ix1 = k + il = eiφ(1 + iµ) = eiφ(1 + im)⇔ eiφ =
k + il

1 + im
,

hence

cosφ =
k + lm

1 +m2
and sinφ =

l −mk
1 +m2

. (3.1)

We remark that these are rational numbers – therefore they label rational points on the circle [57].
The light cone lines at (k, l,m) are, therefore, parametrized by µ ∈ (−∞,∞), as

x0 =
k + lm

1 +m2
− µ l −mk

1 +m2
, x1 =

l −mk
1 +m2

+ µ
k + lm

1 +m2
, x2 = µ.

(When µ = x2 = m, x0 = k and x1 = l.)

Proposition 3.1. On these specific light-cone lines there exist infinitely many integral points,
when µ, that labels the space-like direction x2, takes appropriate integer values.

Proof. We write

x0(µ) + ix1(µ) = eiφ(1 + iµ),

where φ is defined by equation (3.1).
We look for integer values of µ = n ∈ Z, such that x0(n) and x1(n) are, also, integers. That

is

x0(n) + ix1(n) =
k + il

1 + im
(1 + in)

should be a Gaussian integer and this can happen iff (1 + in)/(1 + im) = a+ ib with a, b ∈ Z.
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Therefore

1 + in = (a−mb) + i(am+ b)⇔

{
1 = a−mb,
n = am+ b.

Thus on the light cone line passing through the point (k, l,m) there are infinite integer points
parametrized as

x0 = k + b(km− l), x1 = l + b(k + lm), x2 = n = m+ b
(
1 +m2

)
. �

Proposition 3.2. Conversely, on any light cone line emanating from any rational point of the
circle on the throat of the hyperboloid there is an infinite number of integer points.

Proof. Indeed, we have

eiφ ≡ a+ ib

a− ib
⇔ x0 + ix1 =

a+ ib

a− ib
(1 + in)

with a, b ∈ Z. In order to obtain an integral point, for µ = n, we must have

1 + in

a− ib
= d+ ic

with c, d ∈ Z.
We immediately deduce that

1 = ad− bc, n = ac+ bd.

These expressions imply that, given the integers a and b, it’s possible to find the integers c and d
and to express the coordinates x0, x1 and x2 as

x0 = ad+ bc, x1 = ac− bd, x2 = ac+ bd.

The Diophantine equation 1 = ad− bc is solved for c and d, given two coprime integers a and b,
by the Euclidian algorithm – which seems to lead to a unique solution, implying that the point
(x0, x1, x2) is unique.

However there’s a subtlety! There are infinitely many solutions (c, d), to the equation ad−bc =
1! The reason is that, given any one solution (c, d), the pair (c+κa, d+κb), with κ ∈ Z, is, also,
a solution, as it can be checked by substitution.

Therefore there is a one-parameter family of points, labeled by the integer κ:

x0 = ad+ bc+ 2κab, x1 = ac− bd+ κ
(
a2 − b2

)
, x2 = ac+ bd+ κ

(
a2 + b2

)
. (3.2)

We remark, however, that the vector
(
2ab, a2 − b2, a2 + b2

)
is light-like, with respect to the

(+ +−) metric: (2ab)2 +
(
a2 − b2

)2 − (a2 + b2
)2

= 0. So equation (3.2) describes a shift of the
point (ad+ bc, ac− bd, ac+ bd), along a light-like direction. Since the shift is linear in the “affine
parameter”, κ, it generates a light-like line, passing through the original point.

In this way we have established the dictionary between the rational points of the circle and
the integral points of the hyperboloid. �

Now we proceed with the study of the discrete symmetries of the integral Lorentzian lattice
of M 2,1, where the lattice of integral points on AdS2 is embedded. The lattice of integral
points of M 2,1, with one space-like and two time-like dimensions, carries as isometry group
the group of integral Lorentz boosts SO(2, 1,Z), as well as integral Poincaré translations. The
double cover of this infinite and discrete group is SL(2,Z), the modular group. This has been



14 M. Axenides, E. Floratos and S. Nicolis

Figure 7. The fundamental domain of SO(2, 1,Z) on AdSM
2 [Z] is the dark green part of the hyperoboloid,

in the positive octant, that lies between the two planes, m ≥ k + l ≥ 0 and k ≥ l ≥ 0.

shown by Schild [47, 48] in the 1940s. The group SO(2, 1,Z) can be generated by reflections,
as has been shown by Coxeter [19], Vinberg [59]. This work culminates in the famous book by
Kac [31], where he introduced the notion of hyperbolic, infinite-dimensional, Lie algebras. The
characteristic property of such algebras is that the discrete Weyl group of their root space is an
integral Lorentz group. Generalization from SL(2,Z) to other normed algebras has been studied
in [22].

The fundamental domain of SO(2, 1,Z) is the minimum set of points of the integral lattice
of M 2,1, which are not related by any element of the group and from which, all the other points
of the lattice can be generated by repeated action of the elements of the group. It turns out that
the fundamental region is an infinite set of points which can be generated by repeated action of
reflections in the following way:

Using the metric h ≡ diag(1, 1,−1) on M 2,1 the generating reflections, elements of SO(2, 1,Z),
are given by the matrices

R1 =

−1
1

1

 , R2 =

1
1
−1

 , R3 =

0 1
1 0

1

 ,

R4 =

 1 −2 −2
2 −1 −2
−2 2 3

 .

If (k, l,m) are the coordinates of the integral lattice, the fundamental domain of SO(2, 1,Z) can
be defined by the conditions m ≥ k+ l ≥ 0 and k ≥ l ≥ 0. This fundamental domain, restricted
on AdSM2 [Z], defines the corresponding fundamental domain of SO(2, 1,Z), acting on AdSM2 [Z].
This region of AdS2[Z] lies in the positive octant of M 2,1 and between the two planes, that
define the conditions – cf. Fig. 7. It is of infinite extent.

3.2 The IR cutoff and the toroidal compactification of AdS2

Having introduced the lattice of integral points on AdS2, which we consider as defining an UV
cutoff, we proceed, now, to impose an infrared (IR) cutoff. The crucial reason for such a cutoff
is that in order to study chaotic Hamiltonian dynamics on this spacetime [8], we have made use
of the interpretation of AdS2 as a phase space of single particles, due to the symplectic nature of
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the isometry SL(2,R) = Sp(2,R). The additional requirement of mixing (scrambling) imposes
the condition of the compactness of the phase space and therefore the necessity of imposing of
an infrared cutoff (for a detailed discussion of this point, cf. [3]).

Having embedded the AdS2 hyperboloid,

x20 + x21 − x22 = R2
AdS2

in M 2,1, the IR cutoff, L is defined by periodically identifying all the spacetime points of M 2,1,
if the difference of their coordinates is an integral vector×L:

x ∼ y ⇔ x− y = (k, l,m)L,

where k, l,m ∈ Z. In this way we have compactified M 2,1 to the three-dimensional torus, of
size L, T3(L).

More concretely, T3(L) is the fundamental domain of the group of integral translations,
Z × Z × Z, acting on M 2,1. To describe this geometric property by the algebraic operation,
mod L, that acts on the coordinates of M 2,1, we are led to identify the fundamental domain
with the positive octant of M 2,1, i.e., x0, x1, x2 ≥ 0

After this compactification, the spacetime geometry of AdS2 becomes a foliation of the 3-
torus, with leaves the images of AdS2 under the operation mod L. So the equation, whose
solutions define the points of the compactified AdS2, is

x20 + x21 − x22 ≡ R2
AdS2 modL, (3.3)

where (x0, x1, x2) ∈ T3(L).
It is obvious, that inside the 3-torus, there is a part of the AdS2 surface, which corresponds

to solutions of equation (3.3), without the mod L operation. On the other hand, the infinite
part of AdS2, that lies outside the torus, is partitioned in infinitely many pieces, which belong
to images of T3(L) in M 2,1. These pieces are brought inside the torus by the mod L operation.

Now we choose the IR cutoff L in units of a, so that L = aN , where N is an integer,
independent of M . It is constrained by N > M , since the cube should contain, at least, the
throat of AdS2.

So the scaling limit entails taking M →∞, N →∞, but keeping L fixed.
The periodic nature of the IR cutoff implies that we must take the images of all integral

points of AdS2[Z] under the mod N operation, inside the cubic lattice of N3 points.
The set of these images satisfy the equations

k2 + l2 −m2 ≡M2 modN. (3.4)

The set of points satisfying this condition will be called AdSM2 [ZN ].
Our definition for AdS2[ZN ] in our previous work was similar to the one given here. The only

difference being that the r.h.s. of equation (3.4) was 1 modN , which was chosen for convenience,
rather than for any intrinsic reason. We remark that the two definitions are consistent iff
M2 ≡ 1 modN .

The solutions of equation (3.4), when M2 ≡ 1 modN , produce the AdS2[ZN ] geometry
introduced in our previous work.

4 Continuum limit for large N

4.1 Constraints on the double sequences of the UV/IR cutoffs

Having constructed the finite geometry, AdSM2 [ZN ] and established its relation with AdS2[ZN ],
we shall discuss the meaning of the limit, M,N →∞. It is in this limit that we hope to recover
the continuum AdS2 geometry.
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Such a limit can be defined using the topology of the ambient Minkowski spacetime M 2,1.
Specifically, we use a reverse, two-step, process: Firstly, by removing the UV cutoff; next, by

removing the IR cutoff. This is realized by choosing any sequence of pairs of integers, (Mn, Nn),
n = 1, 2, 3, . . ., such that, for any n = 1, 2, 3, . . .:

• Nn > Mn,

• M2
n ≡ 1 modNn,

• the limit of the ratio Nn/Mn takes a finite value, > 1 (as n→∞), which we can identify
with L/RAdS2 .

Below we shall present the general solution to the equation M2 ≡ 1 modN . Subsequently, we
shall select those solutions that satisfy the other requirements.

The first step is to factor N into (powers of) primes, N = N1×N2× · · ·×Nl = qk11 q
k2
2 · · · q

kl
l .

Then the equation M2 ≡ 1 modN , is equivalent to the system

M2
I ≡ 1 mod qkII , (4.1)

where I = 1, 2, . . . , l. The Chinese remainder theorem [14] then implies that all the solutions
of equation (4.1) can be used to construct M , with M = M1m1n1 + · · · + Mlmlnl, where
MI ≡M modNI , mI = N/NI , nI ≡ m−1I modNI .

When qI 6= 2, the solutions are MI = 1 and qnI
I − 1. When qI = 2, there exist four solutions,

MI = 1, 2nI − 1, 2nI−1 ± 1.
Now we must choose sequences, Nn and determine the corresponding Mn, satisfying the

constraints listed above.
In the next two subsections we shall present nontrivial examples of sequences of pairs,

(Mn, Nn) satisfying the above constraints, whose limiting ratio, lim
n→∞

Nn/Mn, is the “golden”

or “silver” ratios. The general question of determining sequences which have an arbitrary, but
given, limiting ratio, is an interesting question, which is deferred to a future work.

4.2 Removing the UV cutoff by the Fibonacci sequence

Although it is easy to demonstrate the existence of such sequences – for example, Nn = 2n and
Mn = 2n−1 ± 1, where M2

n ≡ 1 modNn and Nn/Mn → 2, which implies that L/RAdS2 = 2,
in this section we focus on another particular class of sequences, based on the Fibonacci inte-
gers, fn [14]. This case is of particular interest, since, in our previous paper [8], where we studied
fast scrambling, we found that, for geodesic observers, moving in AdS2[N ], with evolution op-
erator the Arnol’d cat map, the fast scrambling bound is saturated, when N is a Fibonacci
integer.

The Fibonacci sequence, defined by

f0 = 0, f1 = 1, fn+1 = fn + fn−1,

can be written in matrix form(
fn
fn+1

)
=

(
0 1
1 1

)
︸ ︷︷ ︸

A

(
fn−1
fn

)
.

We remark that the famous Arnol’d cat map can be written as(
1 1
1 2

)
= A2.
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Since the matrix A doesn’t depend on n, we can solve the recursion relation in closed form, by
setting fn ≡ Cρn and find the equation, satisfied by ρ

ρn+1 = ρn + ρn−1 ⇔ ρ2 − ρ− 1 = 0⇔ ρ ≡ ρ± =
1±
√

5

2
.

Therefore, we may express fn as a linear combination of ρn+ and ρn− = (−)nρ−n+ :

fn = A+ρ
n
+ +A−ρ

n
− ⇔

{
f0 = A+ +A− = 0,

f1 = A+ρ+ +A−ρ− = 1,

whence we find that

A+ = −A− =
1

ρ+ − ρ−
=

1√
5
,

therefore,

fn =
ρn+ − (−)nρ−n+√

5
. (4.2)

It’s quite fascinating that the l.h.s. of this expression is an integer!
The eigenvalue ρ+ > 1 is known as the “golden ratio” (often denoted by φ in the literature)

and it’s straightforward to show that fn+1/fn → ρ+, as n→∞.
Furthermore, it can be shown, by induction, that the elements of An are, in fact, the Fibonacci

numbers themselves, arranged as follows

An =

(
fn−1 fn
fn fn+1

)
.

One reason this expression is useful is that it implies that detAn = (−)n = fn−1fn+1 − f2n.
For n = 2l + 1, we remark that this relation takes the form f22l+1 = 1 + f2lf2l+2.
Now, since f2l+1 and f2l+2 are successive iterates, they’re coprime, which implies, that f22l+1 ≡

1 mod f2l+2.
Therefore, the sequence of pairs, (Ml = f2l+1, Nl = f2l+2), where l = 1, 2, 3, . . ., satisfy all of

the requirements and the corresponding limiting ratio, L/RAdS2 , can be found analytically. It
is, indeed, equal to ρ+ =

(
1 +
√

5
)
/2, the golden ratio.

In the next subsection we shall consider the so-called k-Fibonacci sequences, which will be
important for obtaining other values for the ratio L/RAdS2 , as well as for removing the IR cutoff.

4.3 Removing the IR cutoff using the generalized k-Fibonacci sequences

It’s possible to generalize the Fibonacci sequence in the following way:

gn+1 = kgn + gn−1

with g0 = 0 and g1 = 1 and k an integer. This is known as the “k-Fibonacci” sequence [29].
We may solve for gn ≡ Cρn; the characteristic equation for ρ, now, reads

ρ2 − kρ− 1 = 0⇔ ρ±(k) =
k ±
√
k2 + 4

2

and express gn as a linear combination of the ρ±:

gn = A+ρ+(k)n +A−ρ−(k)n =
ρ+(k)n − (−)nρ+(k)−n√

k2 + 4

that generalizes equation (4.2).
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In matrix form(
gn
gn+1

)
=

(
0 1
1 k

)
︸ ︷︷ ︸

A(k)

(
gn−1
gn

)
.

Similarly as for the usual Fibonacci sequence, we may show, by induction, that

A(k)n =

(
gn−1 gn
gn gn+1

)
. (4.3)

We find that detA(k)n = (−)n, therefore that g22l+1 ≡ 1 mod g2l+2; thus, g2l+2/g2l+1 → L/RAdS2

= ρ+(k), where the eigenvalue of A(k), ρ+(k), that’s greater than 1, of course, depends on k. In
this way it is possible to obtain infinitely many values of the ratio L/RAdS2 . Furthermore, we
have determined L, the IR cutoff, in terms of RAdS2 .

What is remarkable is that, using the additional parameter, k, of the k-Fibonacci sequence, it
is, now, possible to remove the IR cutoff, as well, since it is possible to send L→∞, as k →∞,
keeping RAdS2 fixed.

While k remains finite, the periodic box cannot be removed and, in the continuum limit,
a→ 0, we obtain infinitely many foldings of the AdS2 surface inside the box due to the mod L
operation.

The Fibonacci sequence, taken mod N , is periodic, with period T (N); this turns out to be
a “random” function of N . The “shortest” periods, as has been shown by Falk and Dyson [21],
occur when N = Fl, for any l. In that case, T (Fl) = 2l.

We may, thus, ask the same question for the k-Fibonacci sequence, where the ratio of its
successive elements, gn+1/gn tend to the so-called “k-silver ratio”,

ρ+(k) =
k +
√
k2 + 4

2

(the “silver ratio” is ρ+(k = 2)).
From equation (4.3), taking mod gl on both sides, we find that, when n = l, the matrix

becomes ±(the identity matrix), so T (gl) = l or 2l, respectively; thereby generalizing the Falk–
Dyson result for the k-Fibonacci sequences.

5 Conclusions and open issues

In this work we have proposed a construction of the continuum AdS2 radial and time near
horizon geometry of extremal black holes from a finite and arithmetic geometry, AdS2[N ], for
every integer N . This entails the introduction of UV and IR cutoffs, respectively a = RAdS2/M
and L = aN , where L > RAdS2 is the size of the periodic box, that encloses the one-sheeted
hyperboloid.

The periodic box and the UV cutoff deform the PSL(2,R) isometry of AdS2 to the finite
group, PSL2[ZN ], which is the mod N reduction of PSL2[Z].

The elements of this finite group are discrete maps and describe the evolution operators of
the avatars of infalling observers, with proper time the iteration time of the corresponding maps.

The notion of locality in gravity is expressed in terms of the diffeomorphism invariance of
the gravitational action. This implies the absence of local observables and it is only in the case
of well defined asymptotic behavior of the metric, either conformal or not, that globally defined
observables do exist which can characterize the gravitational background. In the case of the
AdS/CFT correspondence, the holographic dualities are restricted by the UV/IR correspondence
and locality cannot hold simultaneously on the boundary as well as in the bulk.
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On the other hand, the present efforts to understand the near horizon region, as well as the
interior and the exterior of black holes, which are asymptotically anti-de Sitter, rely exclusively
on the boundary CFT point of view. This approach, however, reaches its limit when attempt-
ing to resolve features, beyond the Planck scale, where no formalism for performing reliable
calculations is, to date, available.

For these reasons our program for using the arithmetic of finite geometries has an intrinsic
interest as an alternative way for reconstructing bulk spacetimes, as emerging in an appropriate
scaling limit thereof. Among the main advantages are:

• As shown in this paper this scaling limit is the correct one, in that the usual, continuum,
AdS2 geometry is recovered – this is a very important sanity check.

• The relation of finite geometries to quantum information theory and their representation
as quantum circuits with measurable complexity [30, 45, 54, 55].

• It, also, provides a framework for quantitatively studying the eigenstate thermalization
hypothesis [52] and the fast scrambling bound [8].

Due to the modular arithmetic, an intrinsic number theoretic randomness appears in the
geometry itself, as well as in the dynamics of wave packets with finite-dimensional Hilbert
space [4].

In the present work we established that the modular geometry AdSM2 [ZN ] is a useful toy model
that realizes many of the basic properties, for the near horizon geometries of extremal/near
extremal black holes, in that it can be shown to lead to the definition of the correct continuum
limit.

Along the way, we discussed interesting methods to localize and count the integral points
of the AdS2 continuous geometry and to characterize the points of AdSM2 [ZN ] as equivalence
classes of the AdS2 integral points modulo the congruent modular group Γ[N ]. The continuum
limit of the modular geometry AdSM2 [ZN ] was constructed explicitly, using infinite sequences
of UV/IR cutoffs (Mn, Nn), n = 1, 2, . . ., taken from the integer sequences of the k-Fibonacci
numbers.

The sequence of UV cutoffs, Nn describes the dimension of the Hilbert space of states of
single-particle probes and, in the case of k-Fibonacci sequence, k = 1, 2, . . ., the dynamics of the
corresponding cat maps saturates the scrambling time bound with a Lyapunov exponent that
grows logarithmically with k.

Among the open issues of our approach we may mention:

• Our approach to the continuum geometry consists in showing that the ratio L/RAdS2 can
take certain (though infinitely many) values; realizing the construction for arbitrary values
of this ratio remains an open issue.

• The distribution of the integral points of AdS2 seems to have quite interesting proper-
ties [37, 42].

• The sequence of AdSM2 [ZN ] modular geometries, for N → ∞, can be studied in the
framework of profinite integers and groups. The limit of this sequence belongs to the
set AdS2

[
Ẑ
]
, where Ẑ is the set of profinite integers.1 The sequence of the UV/IR pairs

can be lifted to the so-called profinite Fibonacci integers. Their limit can be, also, studied
in the corresponding topology [34, 35, 36].2

• The extension to modular discretizations of higher-dimensional AdS/CFT duals, using the
corresponding arithmetic isometry groups.

1We would like to thank one of the referees of this paper, who stressed the relevance of the profinite integers
for the present construction.

2We would like to thank Professor H.W. Lenstra for correspondence on this point.



20 M. Axenides, E. Floratos and S. Nicolis

• Another possible direction to this end could the relation of the modular with the p-adic
AdS2 geometry [26, 38] and referencs therein.

• The extension to the BTZ black hole.

• Describing de Sitter spacetimes [60] using arithmetic geometry.

• Many-body probe systems and the ensuing questions related to their entanglement and
the time behaviour of their OTOC bulk quantum correlators.

These issues are technically feasible and physically interesting with available tools.
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