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Veri cation of privacy-type properties for cryptographic protocols in an active adversarial environment, modelled as a behavioural equivalence in concurrent-process calculi, exhibits a high computational complexity. While undecidable in general, for some classes of common cryptographic primitives the problem is coNEXPcomplete when the number of honest participants is bounded.

In this paper we develop optimisation techniques for verifying equivalences, exploiting symmetries between the two processes under study. We demonstrate that they provide a signi cant (several orders of magnitude) speed-up in practice, thus increasing the size of the protocols that can be analysed fully automatically.

INTRODUCTION

Security protocols are distributed programs transmitting data between several parties. The underlying messages may be sensitivefor economical, political, or privacy reasons-and communications are usually performed through an untrusted network such as the Internet. Therefore, such protocols need to guarantee strong security requirements in an active adversarial setting, i.e., when considering an adversary that has complete control over the communication network. Formal, symbolic methods, rooted in the seminal work of Dolev and Yao [START_REF] Dolev | On the security of public key protocols[END_REF], have been successful in analysing complex protocols, including for instance the recent TLS 1.3 proposal [BBK17, CHH + 17] and the upcoming 5G standard [BDH + 18b].

While some security properties can be formalised as reachability statements, privacy related properties are generally de ned as the indistinguishability of two situations where the value of a private attribute di ers. This is why privacy-type properties such as anonymity, (strong avors of) secrecy, unlinkability, or privacy in e-voting are often modelled as behavioural equivalences in concurrent process calculi, such as the applied pi-calculus [START_REF] Abadi | The applied pi calculus: Mobile values, new names, and secure communication[END_REF]. The problem of verifying such equivalences is undecidable in the full, Turing-complete, calculus. Still, decidability results and fully automated analysers exist when the number of protocol sessions is bounded.

Unfortunately, recent results [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF] show that the problem has a high computational worst-case complexity (coNEXPcomplete). Yet, other results show that the problem is exponen-tially simpler (coNP-complete) for a class of practical scenarios (determinate processes) [START_REF] Cortier | A method for proving observational equivalence[END_REF]. This gap is all the more striking in practice as, for determinate processes, the veri cation time can e ectively be reduced by several orders of magnitude using partialorder reductions [START_REF] Baelde | Partial order reduction for security protocols[END_REF][START_REF] Cheval | The DEEPSEC prover[END_REF]. This highlights the gap between the general, pessimistic complexity bound and what can be achieved by exploiting speci cities of given instances. In practice, the processes that are analysed show a great amount of symmetries as they often consist of several copies (sessions) of the same protocol executed in parallel. Exploiting this helps factoring out large, redundant parts of equivalence proofs, and making theoretically hard veri cation feasible in practice.

Contributions

We present optimisations for the veri cation of trace equivalence in the applied pi-calculus. For that we exploit the symmetries of the two processes to be shown equivalent. More speci cally, our contributions are as follows.

(1) We introduce equivalence by session, a new process equivalence that implies the classical trace equivalence. Intuitively, it is a re nement of trace equivalence designed for two processes sharing a similar structure, making veri cation easier. (2) We show how partial-order reductions, some of which being presented in [START_REF] Baelde | Partial order reduction for security protocols[END_REF] for determinate processes, can be used for proving equivalence by session for any processes. (3) We give a group-theoretic characterisation of internal process redundancy, inspired by classical formalisations of symmetries in model checking [START_REF] Emerson | Symmetry and model checking[END_REF], and use it to reduce further the complexity of deciding equivalence by session. (4) We design a symbolic version of the above equivalence and optimisations, based on the constraint solving techniques of the D S prover [START_REF] Cheval | The DEEPSEC prover[END_REF], a state-of-the-art tool for verifying equivalence properties in security protocols. This allowed us to implement our techniques in D S and evaluate the gain in veri cation time induced by our optimisations.

Note that, while we designed equivalence by session as an ecient proof technique for trace equivalence it is also of independent interest: to some extent, equivalence by session models attackers that can distinguish di erent sessions of a same protocol. This may be considered realistic when servers allocate a distinct ephemeral port for each session; in other contexts, e.g. RFID communication this may however be too strong. When equivalence by session is used as a proof technique for trace equivalence, false attacks are possible, as it is a sound, but not complete, re nement. However, on the existing protocols we experimented on, when equivalence by session was violated, trace equivalence was violated as well.

Our prototype is able to successfully analyse various security protocols that are currently out of scope-in terms of expressivity or exceeding a 12h timeout-of similar state-of-the-art analysers. We observe improvements of several orders of magnitude in terms of e ciency, compared to the original version of D S . Among the case studies that we consider are the Basic Acces Control (BAC) protocol [START_REF]PKI for machine readable travel documents o ering ICC read-only access[END_REF] implemented in European e-passports. In previous work, veri cation was limited to merely 2 sessions, while we scale up to 5 sessions.

the Helios e-voting protocol [START_REF] Adida | Helios: web-based open-audit voting[END_REF]. Automated analyses of this protocol exist when no revote is allowed, or is limited to one revote from a honest voter [START_REF] Arapinis | When are three voters enough for privacy properties[END_REF][START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF]. In this paper, we analyse several models covering revote scenarios for 7 emitted honest ballots.

Related work

Partial-order reductions (por) for the veri cation of cryptographic protocols were rst introduced by Clark et al. [START_REF] Clarke | E cient veri cation of security protocols using partial-order reductions[END_REF]: while well developed in veri cation of reactive systems these existing techniques do not easily carry over to security protocols, mainly due to the symbolic treatment of attacker knowledge. Mödersheim et al. [START_REF] Mödersheim | Constraint di erentiation: Search-space reduction for the constraint-based analysis of security protocols[END_REF] proposed por techniques that are suitable for symbolic methods based on constraint solving. However, both the techniques of Clark et al. [START_REF] Clarke | E cient veri cation of security protocols using partial-order reductions[END_REF] and Mödersheim et al. [START_REF] Mödersheim | Constraint di erentiation: Search-space reduction for the constraint-based analysis of security protocols[END_REF] are only correct for trace properties. Partial order reductions for equivalence properties were only introduced more recently by Baelde et al. [START_REF] Baelde | A reduced semantics for deciding trace equivalence using constraint systems[END_REF][START_REF] Baelde | Partial order reduction for security protocols[END_REF]: implementing these techniques in the APTE tool resulted in spectacular speed-ups. Other state-of-the-art tools, AKISS [START_REF] Chadha | Automated veri cation of equivalence properties of cryptographic protocols[END_REF] and D S [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF], integrated these techniques as well. However, these existing techniques are limited in scope as they require protocols to be determinate. Examples of protocols that are typically not modelled as determinate processes are the BAC protocol, and the Helios e-voting protocol mentioned above. In recent work, Baelde et al. [START_REF] Baelde | POR for security protocol equivalences -beyond action determinism[END_REF] propose por techniques that also apply to non-determinate processes (but do not support private channels) and implement these techniques in the D S tool. Unfortunately, these techniques introduce a computational overhead, that tends to limit the e ciency gain. As our experiments will show, our techniques, although including some approximations, signicantly improve e ciency.

There exist other tools for the veri cation of equivalence properties in the case of a bounded number of sessions. The SAT E tool [START_REF] Cortier | Sat-equiv: an e cient tool for equivalence properties[END_REF] is extremely e cient, but its scope is more narrow: it does not support user-de ned equational theories and is restricted to determinate processes. As shown in [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF], AKISS [START_REF] Chadha | Automated veri cation of equivalence properties of cryptographic protocols[END_REF] and SPEC [START_REF] Tiu | SPEC: an equivalence checker for security protocols[END_REF] were already less e cient (by orders of magnitude) than D S before our current work. We also mention the less recent S 3 A tool [START_REF] Durante | Automatic testing equivalence veri cation of spi calculus speci cations[END_REF] that veri es testing equivalence in the SPI calculus and integrates some symmetry (but no partial-order) reductions [START_REF] Cibrario | Exploiting symmetries for testing equivalence in the spi calculus[END_REF]. The tool however only supports a xed equational theory and no else branches. We are not aware of a publicly available implementation.

Our approach can also be compared to tools for an unbounded number of sessions. The P V [START_REF] Blanchet | Automated veri cation of selected equivalences for security protocols[END_REF], T [START_REF] Basin | Automated symbolic proofs of observational equivalence[END_REF] and M NPA [START_REF] Santiago | A formal de nition of protocol indistinguishability and its veri cation using Maude-NPA[END_REF] tools all show a process equivalence that is more ne-grained than trace equivalence. The resulting equivalence is often referred to as di -equivalence in that it requires that equivalent processes follow the same execution ow and only di er on the data. As a result these techniques may fail to prove equivalence of processes that are trace equivalent. Our approach goes in the same direction but equivalence by session is less ne-grained, for example capturing equivalence proofs for the BAC protocol. A detailed comparison between these two equivalences is given in Section 3.1. Besides, the restriction to a bounded number of sessions allows us to decide equivalence by session, while termination is not guaranteed in the unbounded case.

MODEL

We rst present our model for formalising privacy-type properties of security protocols, represented by trace equivalence of processes in the applied-pi calculus [START_REF] Abadi | The applied pi calculus: Mobile values, new names, and secure communication[END_REF].

Messages and cryptography

In order to analyse protocols, we rely on symbolic models rooted in the seminal work of Dolev and Yao [START_REF] Dolev | On the security of public key protocols[END_REF]. Cryptographic operations are modelled by a nite signature, i.e., a set of function symbols with their arity F = {f/n, g/m, . . .}. Atomic data such as nonces, random numbers, or cryptographic keys are represented by an in nite set of names N = {a, b, k, . . .} = N pub ∪ N priv partitioned into public and private names. We also consider an innite set of variables X = {x, , z, . . .}. Protocol messages are then modelled as terms obtained by application of function symbols to names, variables or other terms. If A ⊆ N ∪ X, T (F , A) refers to the set of terms built from atoms in A.

Example 2.1. The following signature models the classical primitives of pairs, randomised symmetric encryption, and their inverse:

F = { •,
• /2, proj 1 /1, proj 2 /1, senc/3, sdec/2 } For example, let m ∈ N pub , and k, r ∈ N priv modelling a private key and a random nonce, respectively. The term c = senc(m, r, k) models a ciphertext obtained by encrypting m with the key k and randomness r , and sdec(c, k) models its decryption.

An equational theory is a binary relation E on terms. It is extended to an equivalence relation = E that is the closure of E by re exivity, symmetry, transitivity, substitution and applications of function symbols. All the optimisations we present in this paper are sound for arbitrary equational theories although, obviously, the implementation in D S naturally inherits the restrictions of the tool (limited to destructor subterm convergent rewriting systems). The following equations characterise the behaviour of the primitives introduced in Example 2.1:

proj i ( x 1 , x 2 ) = E x i sdec(senc(x, , z), z) = E x
That is, a message encrypted with a key k can be recovered by decrypting using the same key k. With the notations of Example 2.1, we can derive from these equations that sdec(c, k) = E m.

A substitution σ is a mapping from variables to terms, homomorphically extended to a function from terms to terms. We use the classical post x notation tσ instead of σ (t), and the set notation σ = {x 1 → x 1 σ, . . . , x n → x n σ }.

Protocols as processes

Syntax Protocols are modelled as concurrent processes that exchange messages (i.e. terms). We de ne the syntax of plain processes by the following grammar:

P, Q := 0 null P | Q parallel if u = then P else Q conditional c u .P output c(x).P input
where u, are terms, x ∈ X, and c ∈ Ch where Ch denotes a set of channels. We assume a partition Ch = Ch pub ∪ Ch priv of channels into public and private channels: while public channels are under the control of the adversary, private channels allow con dential, internal communications. The 0 process is the terminal process which does nothing, the operator P | Q executes P and Q concurrently, c u sends a message u on channel c, and c(x) receives a message (and binds it to the variable x).

We highlight the two restrictions compared to the calculus of [START_REF] Abadi | The applied pi calculus: Mobile values, new names, and secure communication[END_REF]: we only consider a bounded number of protocol sessions (i.e. there is no operator for unbounded parallel replication) and channels are modelled by a separate datatype (i.e. they are never used as parts of messages). The rst restriction is necessary for decidability [START_REF] Chadha | Automated veri cation of equivalence properties of cryptographic protocols[END_REF][START_REF] Tiu | SPEC: an equivalence checker for security protocols[END_REF][START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF] but still allows to detect many aws since attacks tend to require a rather small number of sessions. Our optimisations also rely on an invariant that private channels remain unknown to the adversary, hence the restriction to disallow channel names in messages.

Example 2.2. We describe a toy protocol that will serve as a running example throughout the paper. This is a simpli cation of the BAC protocol implemented in the European e-passports. The system builds upon the signature and equational theory introduced in Example 2.1. In a preliminary phase, a reader obtains the private key k of a passport, and then they communicate as follows: where n, r ∈ N priv and get_challenge, ok, error ∈ N pub . In particular, the passport triggers an error when it receives a communication originated from a reader that has not the right key k, i.e. a reader that has been paired with an other passport during the preliminary phase. In the applied pi-calculus, they are modelled by the following processes

R(k, r ) = c get_challenge . c(x n ). c senc(x n , r, k) . 0 P(k, n) = c(x 0 ). if x 0 = get_challenge then c n . c(x). if sdec(x, k) = n then c ok . 0 else c error . 0
Semantics The behaviour of protocols is de ned by an operational semantics on processes. Its rst ingredients are simplifying rules to normalise processes from non-observable, deterministic actions (Figure 1).

P | 0 P 0 | P P (P | Q) | R P | (Q | R) P | Q P | Q Q | P Q | P if P P if u = then P else Q P if u = E Q otherwise
Figure 1: Simpli cation rules for plain processes These simplifying rules get rid of 0 processes, and evaluate conditionals at toplevel. We say that a process on which no more rule applies is in -normal form. By convergence, we will denote by P the unique -normal form of P.

The operational semantics then operates on extended processes (P, Φ), where P is a multiset of plain processes (in -normal form) and Φ is a substitution, called the frame. Intuitively, P is the multiset of processes that are ready to be executed in parallel, and Φ is used to record outputs on public channels. The domain of the substitution Φ is a subset of a set AX of axioms, disjoint from X: they record the raw observations of the attacker, that is, they are the axioms in intruder deduction proofs. The semantics (Figure 2) takes the form of a labelled transition relation α -→ between extended processes, where α is called an action and indicates what kind of transition is performed.

The output rule (O ) models that outputs on a public channel are added to the attacker knowledge, i.e., stored in Φ in a fresh axiom. The axioms thus provide handles for the attacker to refer to these outputs. The input rule (I ) reads a term ξ , called a recipe provided by the attacker, on a public channel. This term ξ can be e ectively constructed by the attacker as it is built over public names and elements of dom(Φ), i.e. previous outputs. The resulting term is then bound to the input variable x. Rule (C ) models internal communication on a private channel and rule (P ) adds processes in parallel to the multiset of active processes. These last two actions are internal actions (label τ ), unobservable by the attacker.

Traces A trace of an extended process A is a sequence of reduction steps starting from the extended process A

t : A α 1 --→ A 1 α 2 --→ • • • α n --→ A n .
When the intermediate processes are not relevant we write

t : A α 1 •••α n = ===== ⇒ A n . (O ) ({{c u .P }} ∪ P, Φ) c ax -----→ ({{P }} ∪ P, Φ ∪ {ax → u}) c ∈ Ch pub , ax ∈ AX dom(Φ) (I ) ({{c(x).P }} ∪ P, Φ) c(ξ ) ---→ ({{P[x → ξ Φ] }} ∪ P, Φ) c ∈ Ch pub , ξ ∈ T (F , N pub ∪ dom(Φ)) (C ) ({{c u .P, c(x).Q }} ∪ P, Φ) τ -→ ({{P, Q[x → u]}} ∪ P, Φ) c ∈ Ch priv (P ) ({{P 1 | . . . | P n }} ∪ P, Φ) τ -→ ({{P 1 , . . . , P n }} ∪ P, Φ)
Figure 2: Operational semantics of the applied pi-calculus

We de ne tr(t) to be the word of actions

α 1 • • • α n (including τ 's),
and Φ(t) to be the frame of A n . The set of the traces of A is written T(A), and the notation is extended to plain processes by writing T(P) for T({{P }}, ).

Example 2.3. Consider again the access-control protocol described in Example 2.2. Let S = ({{P(k, n), R(k , r )}}, ), with k, k , n, r ∈ N priv , a system consisting of a passport and a reader in parallel.

The system has the following trace:

S c ax 0 -----→ ({{P(k, n), R 0 (k , r )}}, Φ 0 ) c(get_challenge) -----------------→ ({{P 0 (k, n), R 0 (k , r )}}, Φ 0 ) c ax 1 -----→ ({{P 1 (k, n), R 0 (k , r )}}, Φ 0 ∪ Φ 1 ) c(ax 1 ) -----→ ({{P 1 (k, n), c senc(n, r, k ) }}, Φ 0 ∪ Φ 1 ) c ax 2 -----→ ({{P 1 (k, n), 0}}, Φ 0 ∪ Φ 1 ∪ Φ 2 ) c(ax 2 ) -----→ ({{c α , 0}}, Φ 0 ∪ Φ 1 ∪ Φ 2 )})
with

Φ 0 = {ax 0 → get_challenge} Φ 1 = {ax 1 → n} Φ 2 = {ax 2 → senc(n, r, k )} P(k, n) = c(x 0 ). if x 0 = get_challenge then P 0 (k, n) P 0 (k, n) = c n . P 1 (k, n) R(k , r ) = c get_challenge . R 0 (k , r )
and α = ok if k = k , and α = error if k k . Note that the input action c(get_challenge) could be replaced by c(ax 0 ).

Security properties

Many security properties can be expressed in terms of indistinguishability (from the attacker's viewpoint). The preservation of anonymity during a protocol execution can for example be modelled as the indistinguishability of two instances of the protocol with di erent participants. Strong avors of secrecy can also be expressed: after interacting with the protocol, the attacker is still unable to distinguish between a secret used during the protocol and a fresh random nonce. Our case studies also include such modellings of unlinkability or vote privacy.

Static equivalence

The ability to distinguish or not between two situations lies on the attacker's observations, i.e. the frame.

Indistinguishability of two frames is captured by the notion of static equivalence. Intuitively, we say that two frames are statically equivalent if the attacker cannot craft an equality test that holds in one frame and not in the other. D 2.1 . Two frames Φ 1 and Φ 2 are statically equivalent, written Φ 1 ∼ Φ 2 when dom(Φ 1 ) = dom(Φ 2 ) and, for any recipes

ξ 1 , ξ 2 ∈ T (F , N pub ∪ dom(Φ 1 )), ξ 1 Φ 1 = E ξ 2 Φ 1 ⇔ ξ 1 Φ 2 = E ξ 2 Φ 2
We lift static equivalence to traces and write t 0 ∼ t 1 when Φ(t 0 ) ∼ Φ(t 1 ) and tr 0 = tr 1 , where tr i is obtained by removing τ 's from tr(t i ). Removing τ actions re ects that these actions are unobservable by the attacker.

Trace equivalence While static equivalence models the (passive) indistinguishability of two sequences of observations, trace equivalence captures the indistinguishability of two processes P and Q in the presence of an active attacker. Intuitively, we require that any sequence of visible actions executable on P is also executable on Q and yields indistinguishable outputs, i.e., statically equivalent frames. D 2.2 . Let P, Q be plain processes in -normal form. P is trace included in Q, written P tr Q, when ∀t ∈ T(P), ∃t ∈ T(Q), t ∼ t .

We say that P and Q are trace equivalent, written P ≈ tr Q, when P tr Q and Q tr P.

Example 2.4. Consider again the model of passport and reader introduced in Example 2.2, and let us write

S(k, n, r ) = P(k, n) | R(k, r )
a system consisting of a passport and a reader in parallel with a shared key k. The unlinkability property can be stated by the inability for the attacker to distinguish between two copies of the same passport interacting with readers, and two di erent passports. That is,

S(k, n, r ) | S(k, n , r ) ≈ tr S(k, n, r ) | S(k , n , r ) with k, k , n, n , r, r ∈ N priv pairwise distinct. The inclusion S(k, n, r ) | S(k, n , r ) tr S(k, n, r ) | S(k , n , r ) indeed holds.
However, this model of unlinkability is violated in that the converse inclusion does not hold. Indeed in the right-hand-side process, making a reader interact with the wrong passport produces an error message, which is not the case in the left-hand side (since the two systems share the same key). Formally, T(S(k, n, r ) | S(k , n , r )) contains a trace t such that

tr(t) = τ c ax 0 c(ax 0 ) c ax 1 c(ax 1 ) c ax 2 c(ax 2 ) c ax 3 Φ(t) = {ax 0 → get_challenge, ax 1 → n, ax 2 → senc(n, r , k ), ax 3 → error}

OPTIMISING VERIFICATION

The problem of verifying trace equivalence in the presented model is coNEXP-complete for equational theories represented as subterm convergent destructor rewrite systems [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF]. Despite this high theoretical complexity, automated analysers can take advantage of the speci cities of practical instances. One notable example is the class of determinate processes that encompasses many practical scenarios and has received quite some attention [START_REF] Cortier | A method for proving observational equivalence[END_REF][START_REF] Baelde | Partial order reduction for security protocols[END_REF][START_REF] Chadha | Automated veri cation of equivalence properties of cryptographic protocols[END_REF][START_REF] Cheval | The DEEPSEC prover[END_REF]. It allows for partial-order reductions [START_REF] Baelde | Partial order reduction for security protocols[END_REF], speeding up the veri cation time by several orders of magnitude. Our approach, similar in spirit but applicable in a more general setting, consists in guiding the decision procedure with the structural similarities of the two processes that we aim to show equivalent.

Equivalence by session

We introduce a new equivalence relation, equivalence by session: the main idea is that, when proving the equivalence of P and Q, every action of a given parallel subprocess of P should be matched by the actions of a same subprocess in Q. This is indeed often the case in protocol analysis where a given session (the execution of an instance of a protocol role) on one side is matched by a session on the other side. By requiring to match sessions rather than individual actions, this yields a more ne-grained equivalence and e ectively reduces the combinatorial explosion. Moreover, thanks to the optimisations that exploit the structural properties of equivalence by session (presented in the following sections), we obtain signi cant speed-ups during the veri cation of case studies that are neither determinate nor in scope of the (even more ned-grained) diequivalence of P V and T .

Twin processes To formalise session matchings we use a notion of twin-process, that are pairs of matched processes that have the same action at toplevel, called their skeleton.

D 3.1 . A twin-process is a pair of plain processes in - normal form (P, Q) such that skel(P) = skel(Q), where if c ∈ Ch pub : skel(c(x).Q) = {{in c }} skel(c x .Q) = {{out c }} if d ∈ Ch priv : skel(d(x).Q) = {{in}} skel(d x .Q) = {{out}} skel(P 1 | • • • | P n ) = skel(P 1 ) ∪ . . . ∪ skel(P n )
An extended twin-process A 2 = (P 2 , Φ 0 , Φ 1 ) is then a triple where P 2 is a multiset of twin-processes and Φ 0 , Φ 1 are frames. This thus models two extended processes with identical skeletons, matched together. We retrieve the original extended processes by projection,

fst(A 2 ) = ({{P 0 | (P 0 , P 1 ) ∈ P 2 }}, Φ 0 ) snd(A 2 ) = ({{P 1 | (P 0 , P 1 ) ∈ P 2 }}, Φ 1 )
The semantics of twin-processes is de ned in Figure 3 and mostly requires that the two projections follow the same reduction steps in the single-process semantics. The rule (P ) is however replaced by a rule that allows to match each parallel subprocess from the left with a parallel process from the right. We underline that, by de nition of twin-processes, a transition A 2 α -→ s (P 2 , Φ) is possible only if for all (P, Q) ∈ P 2 , it holds that skel(P) = skel(Q).

Similarly to extended processes, we use T(A 2 ) to denote the set of reduction steps from an extended twin-process A 2 . Besides if

t 2 : A 2 α 1 --→ s A 2 1 • • • α n --→ s A 2 n ∈ T(A 2 1
) , we also lift the projection functions by writing

fst(t 2 ) : fst(A 2 ) α 1 --→ s fst(A 2 1 ) • • • α n --→ s fst(A 2 n+1
) and similarly for snd(t 2 ). Note that fst(t 2 ) ∈ T(fst(A 2 )).

Equivalence by session Equivalence by session is similar to trace equivalence but only considers the traces of Q matching the structure of the trace of P under study. This structural requirement is formalised by considering traces of the twin-process (P, Q). Formally speaking, given two plain processes P and Q in -normal form having the same skeleton, we write

P s Q when ∀t ∈ T(P), ∃t 2 ∈ T(P, Q), t = fst(t 2 ) ∼ snd(t 2 ) .
We say that P and Q are equivalent by session, referred as P ≈ s Q, when P s Q and Q s P.

While equivalence by session has been designed to increase eciency of veri cation procedures, it is also of independent interest. Equivalence by session captures a notion of indistinguishability against an adversary that is able to distinguish actions which originate from di erent protocol sessions. Such an adversarial model may for instance be considered realistic in protocols where servers dynamically allocate a distinct ephemeral port to each session. An attacker would therefore observe these ports and always di erentiate one session from another. When considering equivalence by session, this allocation mechanism does not need to be explicitly modelled as it is already re ected natively in the de nition. On the contrary for trace equivalence, an explicit modelling within the processes would be needed. For example equivalence by session of two protocol sessions operating on a public channel c,

P(c) | P(c) ≈ s Q(c) | Q(c)
could be encoded by relying on dynamically-generated private channels that are revealed to the attacker. This can be expressed in the original syntax of the applied pi-calclulus [START_REF] Abadi | The applied pi calculus: Mobile values, new names, and secure communication[END_REF] as:

P fresh | P fresh ≈ tr Q fresh | Q fresh
where P fresh = new e. c e . P(e), Q fresh = new e. c e . Q(e). Such encodings however break determinacy and are thus incompatible with the partial-order reductions of [START_REF] Baelde | Partial order reduction for security protocols[END_REF]. Our dedicated equivalence o ers similar-in-spirit optimisations that are applicable on all processes .

({{P i }}, Φ i ) α -→ ({{P i }}, Φ i ) by rule (I ) or (O ) for all i ∈ {0, 1}
({{(P 0 , P 1 )}} ∪ P 2 , Φ 0 , Φ 1 ) α -→ s ({{(P 0 , P 1 )}} ∪ P 2 , Φ 0 , Φ 1 ) (IO)

({{P i , Q i }}, Φ i ) τ -→ ({{P i , Q i }}, Φ i ) by rule (C
) for all i ∈ {0, 1}

({{(P 0 , P 1 ), (Q

0 , Q 1 )}} ∪ P 2 , Φ 0 , Φ 1 ) τ -→ s ({{(P 0 , P 1 ), (Q 0 , Q 1 )}} ∪ P 2 , Φ 0 , Φ 1 ) (C ) π permutation of 1, n ({{(P 1 | • • • | P n , Q 1 | • • • | Q n )}} ∪ P 2 , Φ 0 , Φ 1 ) τ -→ s ({{(P i , Q π (i) )}} n i=1 ∪ P 2 , Φ 0 , Φ 1 ) (M )
Figure 3: Semantics on twin-processes

Comparison to other equivalences

Relation to trace equivalence We rst show that equivalence by session is a sound re nement of trace equivalence.

P 3.1 . If P ≈ s Q then P ≈ tr Q.
This is immediate as t 2 ∈ T(P, Q) entails snd(t 2 ) ∈ T(Q). The converse does not hold in general, meaning that two processes that are not equivalent by session might be trace equivalent. The simplest example is, for n ∈ N pub ,

P = c n . c n Q = c n | c n
We call false attacks traces witnessing a violation of equivalence by session, but that can still be matched trace-equivalence-wise.

In this example even the empty trace is a false attack since the two processes fail to meet the requirement of having identical skeletons. Such extreme con gurations are however unlikely to occur in practice: privacy is usually modelled as the equivalence of two protocol instances where some private attributes are changed. In particular the overall structure in parallel processes remains common to both sides. More realistic false attacks may arise when the structural requirements of equivalence by session are too strong, i.e. when matching the trace requires mixing actions from di erent sessions. Consider for example the two processes

P = s n . a n | s(x). b n Q = s n . b n | s(x). a n
with a, b ∈ Ch pub and s ∈ Ch priv . These processes rst synchronise on a private channel s by the means of an internal communication, and then perform two parallel outputs on public channels a, b. They are easily seen trace equivalent. However the skeletons at toplevel constrain the session matchings, i.e. the application of rule (M ). Hence any trace executing an output on a or b is a false attack.

Finally false attacks cannot happen for determinate processes, i.e. the class of processes for which the partial-order reductions of [START_REF] Baelde | Partial order reduction for security protocols[END_REF] were designed. A plain process P is determinate if it does not contain private channels and, ∀ P tr = ⇒ ({{P 1 , . . . , P n }}, Φ), ∀i j, skel(P i ) skel(P j ) . P 3.2 . If P, Q are determinate plain processes such that P ≈ tr Q then P ≈ s Q.

The core argument is the uniqueness of session matchings; that is, there is always at most one permutation that can be chosen when applying the rule (M ) to a pair of determinate processes. The proof can be found in Appendix B: thanks to the structural requirements imposed by skeletons, we even prove that trace equivalence (≈ tr ) and inclusion by session ( s ) coincide for determinate processes.

Relation to di -equivalence P V , T and M NPA are semi-automated tools that can provide equivalence proofs for an unbounded number of protocol sessions. For that they rely on another re nement of trace equivalence, called di -equivalence (≈ d ). It relies on a similar intuition as equivalence by session, adding (much stronger) structural requirements to proofs. To prove di -equivalence of P and Q, one rst requires that P and Q have syntactically the same structure and that they only di er by the data (i.e. the terms) inside the process. Second, any trace of P must be matched in Q by the trace that follows exactly the same control ow. Consider for example

P = c u | c | R Q = c u | c | R
For P and Q to be di -equivalent, traces of P starting with c u need to be matched by traces of Q starting with c u . In the original de nition of di -equivalence in [START_REF] Blanchet | Automated veri cation of selected equivalences for security protocols[END_REF] the conditional branchings were also required to result into the same control-ow. This condition has however been relaxed within [START_REF] Cheval | Proving more observa-tional equivalences with proverif[END_REF]: the resulting di -equivalence can be de ned in our formalism as equivalence by session in which the rule (M ) only performs the identity matching. That is, if we write T d (P, Q) for the subset of traces of T(P, Q) where rule (M ) is replaced by

({{(P 1 | • • • | P n , Q 1 | • • • | Q n )}} ∪ P 2 , Φ 0 , Φ 1 ) τ -→ s ({{(P i , Q i )}} n i=1 ∪ P 2 , Φ 0 , Φ 1 ) then we de ne P d Q as the statement ∀t ∈ T(P), ∃t 2 ∈ T d (P, Q), t = fst(t 2 ) ∼ snd(t 2 ) .
We say that P and Q are di -equivalent, written P ≈ d Q, when P d Q and Q d P. By de nition T d (P, Q) ⊆ T(P, Q) and di -equivalence therefore re nes equivalence by session. The converse does not hold in general, e.g.

P = c a | c b Q = c b | c a a, b ∈ N pub distinct
This example is extreme as a pre-processing on parallel operators would make the processes di -equivalent. Such a pre-processing is however not possible for more involved, real-world examples such as the equivalences we prove on the BAC protocol in Section 7. The reason is that the matchings have to be selected dynamically, that is, di erent session matchings are needed to match di erent traces. Proof. If we write P = c(x).c(x) and

Relation to observational equivalence

Q = c(x) | c(x), then P ≈ o Q but P ≈ s Q. Besides, if k 0 , k 1 , k 2 ∈ N priv we de ne R(t 0 , t 1 , t 2 ) = c k 0 | c k 1 | c k 2 | c(x). if x = k 0 then c t 0 else if x = k 1 then c t 1 else if x = k 2 then c t 2 If a, b ∈ N pub distinct, we have R(a, b, b) ≈ s R(b, a, a) but R(a, b, b) ≈ o R(b, a, a).
To sum up the relations between all equivalences: P 3.5 . If ≈ ∈ {≈ o , ≈ s } then ≈ d ≈ ≈ tr and, for determinate processes, ≈ = ≈ tr .

Trace refinements

We present an abstract notion of optimisation, based on trace renements. This comes with several properties on how to compose them, providing a uni ed way of presenting di erent concrete optimisations for the decision of equivalence by session. Intuitively, an optimisation reduces the set of traces that are considered when verifying equivalence: when proving P s Q, only traces of T(P) ∩ O ∀ and T(P, Q) ∩ O ∃ will be studied. That is, we de ne the equivalence

≈ O = O ∩ O where P O Q means ∀t ∈ T(P) ∩ O ∀ , ∃t 2 ∈ T(P, Q) ∩ O ∃ , t = fst(t 2 ) ∼ snd(t 2 ) .
Note that for a few of our re nements (Section 5), the de nition of O ∀ may depend on both P and Q.

In particular ≈ O all is the equivalence by session, where O all = (O ∀ all , O ∃ all ) contains all traces. Of course, such re nements may induce di erent notions of equivalence, hence the need for correctness arguments speci c to each layer of optimisation. We specify this as follows: if

O α = (O ∀ α , O ∃ α ) and O β = (O ∀ β , O ∃ β ), we say that O α is a correct re nement of O β when O ∀ α ⊆ O ∀ β and O ∃ α ⊆ O ∃ β and ≈ O α = ≈ O β .
Correct re nements contribute to reducing the complexity of deciding equivalence.

Properties The remainder of this section provides elementary properties useful when constructing, and composing optimisations. First we show that they can be constructed stepwise.

P 3.6 (transitivity) . If O 1 is a correct re nement of O 2 , and O 2 is a correct re nement of O 3 , then O 1 is a correct re ne- ment of O 3 .
Moreover, we can prove universal and existantial optimisations in a modular way:

P 3.7 (combination) . If (O ∀ opt , O ∃ ) and (O ∀ , O ∃ opt ) are correct re nements of (O ∀ , O ∃ ), then (O ∀ opt , O ∃ opt ) is a correct re- nement of (O ∀ , O ∃ ). Proof. Let ≈××, ≈ •× , ≈× • and ≈ •• the equivalences induced by (O ∀ , O ∃ ), (O ∀ opt , O ∃ ), (O ∀ , O ∃ opt ) and (O ∀ opt , O ∃ opt ), respectively. As ≈ •× = ≈×× = ≈× • by hypothesis, the result follows from the straightforward inclusions ≈ •• ⊆ ≈ •× and ≈× • ⊆ ≈ •• .
Relying on this result, we see a universal optimisation O ∀ (resp. existential optimisations O ∃ ) as the optimisation

(O ∀ , O ∃ all ) (resp. (O ∀
all , O ∃ )). This lightens presentation as we can now meaningfully talk about universal (resp. existential) optimisations being correct re nements of others. Finally, when implementing such optimisations in tools, deciding the membership of a trace in the sets O ∀ or O ∃ may sometimes be ine cient or not e ective. In these cases we may want to implement these optimisations partially, using for example su cient conditions. The following proposition states that such partial implementations still result into correct re nements. P 3.8 (partial implementability) . Let us consider the optimisations

O ∀ opt ⊆ O ∀ part ⊆ O ∀ and O ∃ opt ⊆ O ∃ part ⊆ O ∃ . If O ∀ opt is a correct re nement of O ∀ and O ∃ opt is a correct re nement of O ∃ , then (O ∀ part , O ∃ part ) is a correct re nement of (O ∀ , O ∃ ).
In the rest of the paper we assume the reader familiar with group theory (group actions, stabilisers), in particular the group of permutations (written in cycle notation). Most of our optimisations are indeed expressed using this terminology.

PARTIAL-ORDER REDUCTIONS

In this section we present partial-order reductions for equivalence by session. They are inspired by similar techniques developed for proving trace equivalence of determinate processes [START_REF] Baelde | Partial order reduction for security protocols[END_REF], although they di er in their technical development to preserve correctness in our more general setting. In particular the optimisations we present account for non determinacy and private channels which will be useful when analysing e-voting protocols.

Labels and independence

Labels Partial-order reduction techniques identify commutativity relations in a set of traces and factor out the resulting redundancy. Here we exploit the permutability of concurrent actions without output-input data ow. For that we introduce labels to reason about dependencies in the execution:

Plain processes P are labelled [ P ] , with a word of integers re ecting the position of P within the whole process. Actions α are labelled [ α ] L to re ect the label(s) of the process(es) they originate from. That is, L is either a single integer word (for inputs and outputs) or a pair of such, written 1 | 2 (for internal communications). Labels can be bootstrapped arbitrarily, say, by the empty word ε, and are propagated as follows in the operational semantics. The (P ) rule extends labels:

({{[ P 1 | • • • | P n ] }} P, Φ) [ τ ] ----→ s ({{[ P i ] .i }} n
i=1 P, Φ) the rules (I ) and (O ) preserve labels:

({{[ P ] }} P, Φ) [ α ] ----→ s ({{[ P ] }} P, Φ )
and so does (C ), however producing a double label:

({{[ P ] , [ Q ] }} P, Φ) [ τ ] | ------→ ({{[ P ] , [ Q ] }} P, Φ) .
In particular, we always implicitly assume the invariant preserved by transitions that extended processes contain labels that are pairwise incomparable w.r.t. the pre x ordering.

Independence Labels materialise ow dependencies. Two actions α = [ a ] L and α = [ a ] L are said sequentially dependent if one of the (one or two) words constituting L, and one of those constituting L , are comparable w.r.t. the pre x ordering. Regarding input-output dependencies, we say that α and α are data dependent when {a, a } = {c ax , c(ξ )} with ax appearing in ξ . D 4.1 (independence) . Two actions α and α are said independent, written α || α , when they are sequentially independent and data independent.

There is some redundancy in the trace space in that, intuitively, swapping adjacent, independent actions in a trace has no substantial e ect. Still, this is rather weak: for example the recipe proj 1 ( n, ax ) is arti cially dependent in the axiom ax, preventing optimisations. Such spurious dependencies can be erased using the following notion: D 4.2 (recipe equivalence) . Two input transitions

(P, Φ) [ c(ξ 1 ) ] -------→ A (P, Φ) [ c(ξ 2 ) ] -------→ A are said recipe equivalent when ξ 1 Φ = E ξ 2 Φ.
Two traces are recipe equivalent if one can be obtained from the other by replacing some transitions by recipe-equivalent ones.

The rest of this section formalises the intuition that equivalence by session can be studied up to recipe-equivalent rewriting of traces, and arbitrary permutation of their independent actions. Proofs can be found in Appendix C.1.

Correctness of por techniques

If tr = α 1 • • • α n and π is a per- mutation of 1, n , we write π .tr = α π (1) • • • α π (n) .
This is an action of the group of permutations of 1, n on action words of size n. We say that π permutes independent actions of tr if either π = id, or π = π 0 • (i i + 1) with α i || α i+1 and π 0 permutes independent actions of (i i + 1).tr. Such permutations preserve the group structure of permutations, in the sense of these two straightforward propositions: P 4.1 (composition) . If π permutes independent actions of tr, and π permutes independent actions of π .tr, then π •π permutes independent actions of tr.

P 4.2 (inversion)

. If π permutes independent actions of tr, then π -1 permutes independent actions of π .tr.

We will use these two properties implicitly in many proofs. But more importantly, the action of permutations on trace words can be lifted to traces: = == ⇒ B. This trace is unique if we take labels into account, and will be referred as π .t.

Together with recipe equivalence, this is the core notion for de ning partial-order reductions. We gather them into ≡ por the smallest equivalence relation over traces containing recipe equivalence and such that t ≡ por π .t when π permutes independent actions of t. The result below justi es that quotients by ≡ por result in correct re nements. P 4.4 (correctness of por) . Let O ∀ 1 ⊆ O ∀ 2 be universal optimisations. We assume that for all t ∈ O ∀ 2 , there exists t ext such that t is a pre x of t ext , and

t ∈ O ∀ 1 such that t ≡ por t ext . Then O ∀ 1 is a correct re nement of O ∀ 2 .

Compression optimisations

We rst present a compression of traces into blocks of actions of a same type (inputs, outputs and parallel, or internal communications) by exploiting Proposition 4.4. We formalise this idea by using reduction strategies based on polarity patterns.

Polarities and phases

We assign polarities to processes depending on their toplevel actions: public inputs are positive (+1), public outputs and parallels are overwhelmingly negative (-∞), and others are null.

polar(c(x).P) = 1 polar(c u .P) = -∞ c ∈ Ch pub polar(d(x).P) = 0 polar(d u .P) = 0 d ∈ Ch priv polar(0) = 0 polar(P | Q) = -∞
This notion is lifted to extended processes by summing:

polar((P, Φ)) = R ∈ P polar(R) .
In particular, extended processes containing an executable parallel operator or output has polarity -∞, and executing public inputs makes polarity nonincreasing. We then identify the trace patterns at the core of our partial-order reductions. We say that a trace

t : A 0 [ a 1 ] L 1 ------→ • • • [ a n ] Ln ------→ A n
is a negative phase when all transitions are outputs or parallels, and polar(A n ) -∞. is a null phase when polar(A 0 ) 0, n = 1 and the transition is an internal communication. is a positive phase when polar(A 0 ) > 0, all transitions are inputs, all L i 's are equal, and polar(A 0 ) > polar(A n ).

Rephrasing, a negative phase executes all available outputs and parallels, a null phase is one internal communication, and a positive phase executes a whole chain of inputs. Note that only negative phases may be empty.

Basic compression

The rst optimisation is to only consider traces that can be decomposed into phases. Formally we write O ∀ c,b the set of traces of the form

t : b - 0 • b + 1 • b - 1 • b + 2 • b - 2 • • • b + n • b - n
where each b + i is a positive or null phase, and each b - i is a negative phase. We show in Appendix C.3 that any maximal trace can be decomposed this way after application of a well-chosen permutation of independent actions. Hence by Proposition 4.4:

P 4.5 . O ∀ c,b is a correct re nement of O ∀ all .
Determinism of negative phases Negative phases are nondeterministic by essence, but the underlying combinatorial explosion is arti cial in that most of the actions within negative phases are independent: we show that they can actually be executed purely deterministically. We x an arbitrary total ordering on labelled actions. A negative phase b -, with tr(b

-) = α 1 • • • α n , is said consistent when for all i < n such that α i || α i+1 , we have α i α i+1 . We write O ∀ c the subset of O ∀
c,b of traces whose negative phases are all consistent.

P 4.6 . O ∀ c is a correct re nement of O ∀ c,b .
Proof. By Proposition 4.4, it su cies to prove that for all negative phases b -, there exists π permuting independent actions of b -such that π .b -is consistent. This follows from a wellfounded induction on tr(b -) w.r.t the lexicographic extension of on words of actions.

Blocks We have established that, to prove equivalences by session, it is su cient to consider traces of a certain shape, namely, traces alternating between nonnegative and negative phases. The rest of our partial-order reductions reason at the granularity of these phases, by reordering so-called blocks.

A block is a positive or null phase followed by a negative phase. Any trace of O ∀ c is therefore composed of an initial negative phase and a sequence of blocks. Two blocks b and b are said independent, written b || b , if all actions of the former are independent of all actions of the latter. Analogously to actions, we refer to permutations π permuting independent blocks of traces of O ∀ c . All related notations and results can be cast to blocks by using: P 4.7 . Let t : b p • • • b n a sequence of blocks, tr i = tr(b i ). If π permutes independent blocks of tr = tr(t), then there is π permuting independent actions of tr s.t.

π .tr = π .tr = tr π (p) • • • tr π (n) .
Note in particular the following corollary of Proposition 4.4 that will be at the core of the results of the next sections, where ≡ b-por is the analogue of ≡ por where permutation of independent actions is replaced by permutation of independent blocks:

C 4.8 . Let O ∀ 1 ⊆ O ∀ 2 ⊆ O ∀ c . We assume that for all t ∈ O ∀ 2 , there exists t ext ∈ O ∀ c such that t is a pre x of t ext , and t ∈ O ∀ 1 such that t ≡ b-por t ext . Then O ∀ 1 is a correct re nement of O ∀ 2 .

Improper positive phases

We now introduce improper blocks: intuitively, they conclude the execution of a process but do not bring new knowledge to the attacker. Such blocks can always be relegated to the end of traces because they are not essential to execute other blocks. Formally, we say that a block b : (P, Φ)

tr = ⇒ (Q, Φ ∪ {ax 1 → t 1 , . . . , ax n → t n })
is improper if (1) it starts with an input, i.e. tr = c(ξ ) • tr for some ξ , tr ; and

(2) all labels appearing in tr do not appear in Q, except maybe on null processes; and (3) for all i ∈ 1, n , t i is deducible from Φ, that is, there exists a recipe ξ i such that ξ i Φ = E t i . This takes inspiration, but generalises, the notion of improper blocks used in [START_REF] Baelde | Partial order reduction for security protocols[END_REF][START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF] that requires n = 0. Our ner optimisation captures for example outputs of public error codes in the model of the e-passport in Example 2.2 (error, ok). Let us also highlight the rst item of the de nition discarding improper blocks starting with an internal communication: although the correctness statement below would still hold without this restriction, this is not the case when combined with the optimisations of the next sections. They advance the execution of some blocks starting with an internal communication: we shall therefore ensure that such blocks are never deemed improper since, as such, they would also have to be delayed.

Formally we write O ∀ c+i the subset of O ∀ c of traces not containing an improper block followed by a proper block. The following results, proved in Appendix C.4, justify its correctness. P 4.9 . For all t ∈ O ∀ c , there exists t ≡ b-por t such that t ∈ O ∀ c+i and t has the same number of improper blocks t. The fact that t has the same number of improper blocks as t is not necessary to apply Corollary 4.8, but it will help establishing further optimisations on improper blocks in the next section. C 4.10 . O ∀ c+i is a correct re nement of O ∀ c . Note that when restricting the de nition to n = 0, we obtain a weaker optimisation than the one presented in [START_REF] Baelde | Partial order reduction for security protocols[END_REF] for determinate processes. The latter indeed considers traces with at most one improper block. This, however, relies on determinate-speci c arguments that are unsound for equivalence by session in general.

Stabilising proper blocks

We introduce in this section a re nement O ∀ c+i * ⊆ O ∀ c+i of improper blocks. It is not included in our prototype as we found it quite hard to implement; it should rather be seen as a convenient proof tool in that, for incoming optimisations O ∀ , it will be easier to prove the correctness of O ∀ ∩ O ∀ c+i * rather than O ∀ directly. Intuitively, it solves the problem that properness is not stable by permutation of independent blocks. For example consider processes built from signatures and names

F = {h/1, a/0} c ∈ Ch pub k ∈ N priv
modelling a hash function h and a constant a, and the process

P = c(x).c h(k) .0 | c(x).c k .0
The traces of P can contain two blocks, one outputting h(k) and one outputting k: the former may be improper or not depending on whether it is executed second or rst. This highlights that permutations of independent, proper blocks of a trace t ∈ O ∀ c+i may lead to a trace π .t O ∀ c+i . To get around this issue we let O ∀ c+i * the set of traces of the form u • where u, ∈ O ∀ c and for all π permuting independent blocks of u, π .u does not contain any improper blocks; only contains improper blocks. In particular this optimisation has the important property of being stable under permutation of proper blocks: We then prove the correctness of this optimisation. P 4.12 . For all t ∈ O ∀ c+i , there exists t ≡ b-por t such that t ∈ O ∀ c+i * .

Proof. We proceed by induction on the number of proper blocks of t. If t ∈ O ∀ 1 (which subsumes the case where t has no proper blocks) it su cies to choose t = t. Otherwise let us write t = u • with u containing only proper blocks and improper blocks, and let π permuting independent blocks of u such that π .u contains an improper block. By Proposition 4.9 there exists u ≡ b-por π .u such that u ∈ O ∀ c+i and u contains the same number of improper blocks as π .u. In particular if we write s = u • , we have s ∈ O ∀ c+i , s has less proper blocks than t, and s ≡ b-por t. Hence the conclusion by induction hypothesis applied to s.

C 4.13 . O ∀ c+i * is a correct re nement of O ∀ c+i .

High-priority null phases

In this section we introduce a condition for prioritising the execution of some internal communications. Consider for example

c(x).P 1 | d u .P 2 | d .P 3 | d(x).P 4
where c ∈ Ch pub and d ∈ Ch priv . Assuming that the channel d does not appear in P 1 , all (maximal) traces will contain an internal communication on d between the rightmost three processes, regardless of the potential prior execution of c(x).P 1 . Our optimisation will typically execute such internal communications in priority. Formally let A be an extended process with polar(A) 0

A = ({{[ P 1 ] 1 , . . . , [ P n ] n }}, Φ) . If d ∈ Ch priv is a private channel, we write L A (d) ⊆ { 1 , . . . , n }
the set of labels i such that P i starts with an input or output on d. When an internal communication is possible on d ∈ Ch priv , we say that d is high-priority (in A) if for all traces of the form

A tr = ⇒ B
where no labels of L A (d) appear in tr

we have L A (d) = L B (d).
This formalises that, in all traces of A, the rst internal communication on d needs be between an input and an output that were already available in A.

By extension, a transition is high-priority when it is an internal communication on the minimal high-priority channel w.r.t. an arbitrary total ordering Ch on Ch priv . Rephrasing, it is a null phase on one, deterministically-chosen, high-priority channel. We then de ne O ∀ 0 the subset of traces of O ∀ c that do no contain non-highpriority transitions from processes from which a high-priority transition is possible. To combine it with the previous optimisations we let

O ∀ c+i * +0 the set of traces of the form b -• t p • t i ∈ O ∀ c+i *
where b -is a negative phase, t p ∈ O ∀ 0 only contains proper blocks, and t i ∈ O ∀ c only contains improper blocks. The following propositions state the correctness of this optimisation; their proofs are detailed in Appendix C.5 and rely as usual on Corollary 4.8. 

Reduction of independent blocks

Finally, as sequences of independent blocks can be permuted arbitrarily, we de ne an optimisation that xes their order. For that we let an ordering on words of actions such that two words of independent actions are always strictly comparable (≺). We then de ne a predicate Minimal(t, b), ensuring that it is not possible to obtain an action word lexicographically-smaller than tr(t • b) by inserting b inside t using permutations of independent blocks. 

Minimal(b 1 • • • b n , b) if n = 0 or ¬(b n || b) or b can follow b n (see below) and Minimal(b 1 • • • b n-1 , b)

REDUCTIONS BY SYMMETRY

In this section, we show how to exploit process symmetries for equivalence by session. Such symmetries often appear in practice when we verify multiple sessions of a same protocol as it results into parallel copies of identical processes, up to renaming of fresh names. We rst provide a group-theoretical characterisation of internal process redundancy, and then design two optimisations. In spirit, this approach shares some similarities with classical work in model checking modelling symmetries by the group of the automorphisms of the system to be analysed [START_REF] Emerson | Symmetry and model checking[END_REF].

Structural equivalence

We exhibit an equivalence identifying processes that have an identical structure (up to associativity and commutativity of parallel operators) and whose data are equivalent w.r.t. the equational theory and alpha-renaming of private names. This will be the basis of our symmetry-based re nements. We de ne structural equivalence ≡ ac on plain processes as the smallest equivalence such that

P | Q ≡ ac Q | P (P | Q) | R ≡ ac P | (Q | R)
and that is closed under context (that is, composition of equivalent processes with either a same process in parallel, or an input, output, or conditional instruction at toplevel). To account for the equational theory, we extend it to ≡ E de ned by σ, σ substitutions

P ≡ ac Q ∀x ∈ X, xσ = E xσ Pσ ≡ E Qσ
Besides we add alpha equivalence of private names and channels; intuitively, two agents executing the same protocol are behaving similarly even though they use their own session nonces. Formally we de ne structural equivalence ≡ on extended processes by the following inference rule ∀i,

P i ≡ E Q i ϱ α-renaming ({{[ P 1 ] 1 , . . . , [ P n ] n }}, Φ) ≡ ({{[ Q 1 ] 1 , . . . , [ Q n ] n }}, Φ) ϱ
where an α-renaming is a substitution for channels and names ϱ = ϱ N • ϱ Ch for some permutations ϱ N and ϱ Ch of N priv and Ch priv .

Group actions and process redundancy

Let a labelled extended process (as de ned in Section 4.1) and a labelled extended twin process

A = ({{[ P 1 ] 1 , . . . , [ P n ] n }}, Φ) 1 < • • • < n A 2 = ({{([ P 1 ] 1 , Q 1 ), . . . , ([ P n ] n , Q n )}}, Φ 0 , Φ 1 )
where is an arbitrary total ordering on labels. We also let π ∈ S n where S n denotes the the group of all permutations of 1, n . We de ne the following group action of S n on extended (twin) process:

π .A = ({{[ P π (1) ] 1 , . . . , [ P π (n) ] n }}, Φ) π .A 2 = ({{([ P π (1) ] 1 , Q 1 ), . . . , ([ P π (n) ] n , Q n )}}, Φ 0 , Φ 1 )
In the case of twin processes, this notation is only well de ned if for all i ∈ 1, n , skel(P

π (i) ) = skel(Q i ), i.e. if skel(Q i ) = skel(Q π (i) ).
The labels are only used as a way to x the ordering of the processes within the multiset. They will often be omitted for succinctness, assuming an implicit ordering.

Process redundancy within an extended process is then simply captured by the group stabiliser

Stab(A) = {π ∈ S n | π .A ≡ A} .
Example 5.1. Stab({{P, . . . , P }}, Φ) = S n models the case where all parallel subprocesses are identical. On the contrary, the case where Stab(A) = {id} models that there is no redundancy at all between parallel processes. Intermediate examples model partial symmetries: the larger the stabiliser, the more redundancy. For example Stab({{P, P, Q, Q, Q }}, Φ) will contain at least the subgroup of S n generated by the permutations (1 2), (3 4) and (3 5).

If ϱ is a permutation of Ch pub , we also generalise the de nition of Stab(A) as follows:

Stab ϱ (A) = {π ∈ S n | π .A ≡ Aϱ} .
This characterises symmetries up to renaming of public channels. Indeed such channels only a ect the skeletons and the labels of the trace, not the execution ow: therefore two processes that are structurally-equivalent but di er on their public channels still have a similar set of traces. Typically to prove the equivalence of P(c) | P(d) and Q(c) | Q(d) where P(x), Q(x) are processes operating on a single channel x, matching a trace starting with an action of either P(c) or P(d) results into a similar analysis, provided c, d ∈ Ch pub .

Universal symmetry optimisations

We rst present a universal optimisation that reduces the number of possibilities when applying rules (I ) and (C ) at the start of a nonnegative phase. It captures the idea that, when considering the traces of several parallel protocol sessions, starting the trace by an action from one session or an other does not make a substantial di erence, even when they use distinct public channels. To formalise this idea, let us consider a labelled trace t ∈ O ∀ c :

t

: [ P ] ε tr = ⇒ ({{[ P i ] i }} n i=1 , Φ 0 ) = A .
The goal is to exhibit conditions discarding some of the possible transitions directly following t.

Characterisation using stabilisers

We de ne two sets Sym 1 and Sym 2 characterising symmetries (and prove in Appendix D.2 that they are permutation groups). They model that the symmetries in P shall be re ected in one way or an other in T(P, Q) to be exploited.

Symmetry by matching

We rst de ne a notion of symmetry within P that is re ected in the matching with Q. The set of symmetries we consider is the group Sym

1 = Sym P 1 ∩ Sym Q 1 where Sym P 1 = Stab(A) Sym Q 1 = t 2 :(P ,Q ) tr = ⇒A 2 t =fst(t 2 )∼snd(t 2 ) {π ∈ S n | (P, Q) tr = ⇒ π .A 2 }
In the de nition of Sym Q 1 , the labels are taken into account in tr (i.e. the trace leading to π -1 .A 2 should have t as a rst projection). Intuitively π ∈ Sym P 1 means that for all a, P a and P π (a) have the same traces, and π ∈ Sym Q 1 means that they can be matched by the same sessions of Q. In particular if π ∈ Sym 1 , executing rst an action from P a or P π (a) results into symmetric equivalence proofs.

Simultaneous symmetry

We now de ne a notion of symmetry capturing redundancy occurring at the same time in P and Q, up to bijective renaming of public channels. For ϱ permutations of Ch pub , we de ne

Sym 2 = ϱ Sym P 2 (ϱ) ∩ Sym Q 2 (ϱ) where Sym P 2 (ϱ) = Stab ϱ (A) Sym Q 2 (ϱ) = t 2 :(P ,Q ) tr = ⇒A 2 t =fst(t 2 )∼snd(t 2 ) Stab ϱ (snd(A 2 ))
Intuitively π ∈ Sym P 2 means that for all a, P a and P π (a) have the same traces, and π ∈ Sym Q 2 means that all matching traces of Q have this symmetry as well. Hence, like Sym 1 , π ∈ Sym 2 captures a process symmetry re ected in the equivalence proof.

De nition of the optimisation

In the following, Sym is the group generated by Sym 1 and Sym 2 .

For input transitions We write I ⊆ 1, n the set of indexes i such that an input transition is applicable from P i in O ∀ c+i * +0 . If i ∈ I we consider the orbit of i w.r.t. the action of the group Sym:

Orb(i) = {π (i) | π ∈ Sym} ∩ I .
Intuitively starting a trace of A by an action of P i or P j results into a similar analysis if i and j are on the same orbit. Thus a correct optimisation is to consider only one index per orbit when listing the possible transitions from A. Yet this representant should be chosen carefully for compatibility with prior optimisations, namely O ∀ por that discards traces that are not minimal w.r.t. an ordering on blocks. We should pick a representant i such that the execution of P i induces a minimal block w.r.t. . For that we assume that the ordering is entirely determined by the label of the rst action of the block. Hence the following extension of to I is well-de ned:

i j ⇐⇒ tr(b i ) tr(b j )
where b i (resp. b j ) is an arbitrary block starting with an input from P i (resp. P j ). An input transition on process P a following the trace t is said well-formed if a is minimal w.r.t. within Orb(a).

For internal communications

The optimisation is the same as the one above, except that the symmetries should apply to the input and output processes at the same time. We write IO ⊆ 1, n 2 the set of pairs of indexes (i, j) such that an internal communication is possible between

(P i , P j ) in O ∀ c+i * +0
, where the input is at the start of P i . If (i, j) ∈ IO we consider

Orb(i, j) = {(π (i), π (j)) | π ∈ Sym} ∩ IO .
Intuitively starting a trace of A by an internal communication between processes P i , P j or P k , P l results into a similar analysis if (i, j) and (k, l) are on the same orbit. Then similarly to inputs we extend the ordering on blocks to IO by writing

(i, j) (k, l) ⇐⇒ tr(b) tr(b )
where b (resp. b ) is the block starting with the internal communication between P i and P j (resp. P k and P l ). We thus qualify an internal communication between P a and P b following the trace t as well-formed if (a, b) is minimal w.r.t. within Orb(a, b).

Correctness We say that a trace is well-formed when all its transitions (I ) and (C ) at the start of nonnegative phases are wellformed. We then de ne the optimisation O ∀ sym as the set of wellformed traces of

O ∀ c+i * +0 . Its correctness is proved in Appendix D.2. P 5.1 . O ∀ por ∩ O ∀ sym is a correct re nement of O ∀ por .

Existential symmetry optimisation

The goal of this optimisation is to exploit symmetries when applying the matching rule: when several processes are structurally equivalent then we do not need to consider redundant matchings.

For instance, suppose that we need to match

P 1 | P 2 with Q | Q.
Just considering the identity permutation would be su cient, and the permutation (1 2) should be considered as redundant. Formally, let us consider an instance of the rule (M )

({{(P, Q)}}∪P 2 , Φ 0 , Φ 1 ) τ -→ s ({{(P i , Q π (i) )}} n i=1 ∪P 2 , Φ 0 , Φ 1 ) = π -1 .A 2 with P = P 1 | • • • | P n , Q = Q 1 | • • • | Q n and π ∈ S p where p = n + |P 2 |.
We only consider S p instead of the usual S n for convenience as it will make the formalisation of the optimisation lighter, in particular the de nition of the following relation on S p : We say that an instance of rule (M

π ∼ π i ∃u ∈ Stab(snd(A 2 )), π = π • u . P 5.2 . ∼
) is well-formed when the underlying permutation π is minimal within its equivalence class for ∼, w.r.t. an arbitrary total ordering on permutations. We denote by O ∃ sym the set of traces of extended twin-processes whose instances of rule (M ) are all well-formed. The correctness of this optimisation is stated below and proved in Appendix D.3.

P 5.3 . O ∃ sym is a correct re nement of O ∃ all .

SYMBOLIC SETTING

Even though we do not consider unbounded replication, the semantics of our process calculus de nes an in nite transition system due to the unbounded number of possible inputs that can be provided by the adversary. To perform exhaustive veri cation of such in nite systems, it is common to resort to symbolic techniques abstracting inputs by symbolic variables and constraints. We brie y describe in this section how our optimisations are integrated in the symbolic procedure underlying the D S tool.

D S 's baseline procedure

Symbolic se ing In the D S tool [START_REF] Cheval | The DEEPSEC prover[END_REF] and its underlying theory [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF], the deduction capabilities of the attacker are represented by so-called deduction facts X ? u, intuitively meaning that the attacker is able to deduce the term u by the means of a recipe represented by the variable X . Additionally, conditional branching, e.g. if u = then . . . else . . ., is represented by equations u = ? and disequations u ? .

To represent in nitely many processes, [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF] relies on symbolic processes (P, Φ, C) where P and Φ are, as in our setting, a multiset of processes and a frame respectively. The di erence is that the processes and frame may contain free variables: they model the variables bound by inputs and are subject to constraints in C. These constraints are a conjunction of deduction facts, equations and disequations. For example, if we consider the process

P = c(x). if proj 1 (x) = t then c h(x)
then after executing symbolically the input and the positive branch of the test, we reach the symbolic process

({{0}}, {ax → h(x)}, X ? x ∧ proj 1 (x) = ? t)
A concrete extended process is thus represented by any ground instantiation of the free variables of the symbolic process that satis es the constraints in C. Such instantiations are called solutions, and therefore form an abstraction of concrete traces treated as symbolic objects and constraint solving.

Example 6.1. Let us consider again the simpli ed model of BAC of Example 2.2. When executing the passport process P(k, n) until reaching the success token ok, the constraints aggregate as

C = X 0 ? x 0 ∧ x 0 = ? get_challenge ∧ X ? x ∧ sdec(x, k) = ? n
The constraint solver will gradually deduce that solutions to this constraint need to map x to a term of the form senc( 1 , 2 , 3 ), and will add the equations 1 = ? n and 3 = ? k.

Partition tree To decide trace equivalence between two plain processes P and Q, the procedure underlying D S builds a rened tree of symbolic executions of P and Q, called a partition tree. This nite, symbolic tree intuitively embodies all scenarios of (potential violations of) equivalence, and the nal decision criterion is a simple syntactic check on this tree.

More technically, nodes of the partition tree contain sets of symbolic processes derived from P or Q; that is, a branch is a symbolic abstraction of a subset of T(P) ∪ T(Q). It is constructed in a way that each node contains all-and only-equivalent processes reachable from P or Q with given trace actions tr. When generating this tree, trace equivalence holds if and only if each node contains at least one symbolic process derived from P and one from Q.

Symbolic matching

Subprocess matchings To make the integration into D S easier, we used an alternative characterisation of equivalence by session that is closer to trace equivalence. In essence, it expresses the structural constraints imposed by twin processes as explicit bijections between labels (as de ned in Section 4.1) that we call session matchings. A precise de nition is given in Appendix A, with a proof that this is equivalent to the twin-process-based de nition.

In practice, our implementation consists of keeping track of these session matchings into the nodes of the partition tree generated by D S . The set of all these bijections is then updated at each new symbolic transition step in the partition tree, among others to satisfy the requirement that matched subprocesses should have the same skeleton.

Example 6.2. Consider two initial processes

P = c(x).P 0 | c(x).P 1 | c u .P 2 Q = c(x).Q 0 | c u .Q 1 | c(x).Q 2 .
In the root of the partition tree, P and Q will be labeled by 0, i.e. the root will contain the two symbolic processes

({[ P ] 0 }, , ) ({[ Q ] 0 }, , ) .
There is only a single bijection between their labels, i.e. the identity 0 → 0. Upon receiving this initial node, D S applies the symbolic transition corresponding to our rule (P ), hence generating the two symbolic processes

({{[ c(x).P 0 ] 0.1 ; [ c(x).P 1 ] 0.2 ; [ c u .P 2 ] 0.3 }}, , ) ({{[ c(x).Q 0 ] 0.1 ; [ c u .Q 1 ] 0.2 ; [ c(x).Q 2 ] 0.3 }}, , )
There are then only two possible bijection of labels that respect the skeleton requirement of twin processes:

0.1 → 0.1 0.1 → 0.3 0.2 → 0.3 and 0.2 → 0.1 0.3 → 0.2 0.3 → 0.2
These bijections are kept within the node of the partition tree and updated along side the other transformation rules of D S . For obvious performance reasons, we cannot represent them by a naive enumeration of all process permutations. Fortunately, the skeleton requirement ensures an invariant that the set S of session matchings between two processes A and B is always of the form

S = {π | ∀i, ∀ ∈ C i , π ( ) ∈ D i }
where the sets C 1 , . . . , C n form a partition of the labels of A and D 1 , . . . , D n a partition of the labels of B. In particular, S can succinctly be stored as a simple association list of equivalence classes.

Decision of equivalence Finally, as our trace re nements depend on two sets O ∀ and O ∃ , we annotate each symbolic process in the node by ∀, ∃ or ∀∃ tags. They mark whether the trace from the root of the partition tree to the tagged process is determined to be in O ∀ , O ∃ or both respectively. For instance, the two initial symbolic processes in the root of the partition tree are labeled by ∀∃. We also provide a decision procedure for inclusion by session s that consists of tagging one of the initial processes as ∀ and the other one as ∃.

The decision criterion for equivalence is then strenghtened. For equivalence to hold, not only each node of the partition tree should contain at least one process originated from P and one process originated from Q, but each of them that has the tag ∀ should be paired with at least one other process of the node with the tag ∃.

Integration

From a high-level of abstraction, the integration of the universal optimisations described in sections Sections 4 and 5 prune some branches of the partition tree-those that abstract traces that do not belong to O ∀ c+r+s . For instance in Section 4.2, we showed that to prove equivalence by session, we can always perform non-input actions in priority. Therefore on a process c u .P | c(x).Q, we prevent D S from generating a node corresponding to the execution of the input due to the presence of the output.

The integration of other optimisations is more technical in a symbolic setting, in particular the lexicographic reduction O ∀ c+r described in Section 4.6. Remember that it discards traces that do not satisfy the predicate Minimal, that identi es lexicographicallyminimal traces among those obtained by permutation of independent blocks. Unfortunately, the de nition of independence (Denition 4.1) is only de ned for ground actions-and not their symbolic counterpart, that intuitively abstracts a set of ground actions. A branch may therefore be removed only if all its solutions violate the predicate Minimal. However, by Proposition 3.8, it is correct to only partially implement such optimisations.

EXPERIMENTS

In practice Based on the high-level description of the previous section, we extended the implementation of D S to decide equivalence by session of P and Q. Upon completing an analysis, two cases can arise:

(1) The two processes are proved equivalent by session. Then they are also trace equivalent by Proposition 3.1. (2) The two processes are not equivalent by session and D S returns an attack trace t, say, in P, as a result. In the second case, when using equivalence by session as a heuristic for trace equivalence, the conclusion is not straightforward. As discussed in Section 3.2, the witness trace t may not violate trace equivalence (false attack). We integrated a simple test to our prototype, that checks whether this is the case or not. For that we leverage the internal procedure of D S by, intuitively, restricting the generation of the partition tree for checking P tr Q to the unique branch corresponding to the trace t.

If this trace t appears to violate trace equivalence, which is the case for example in our analysis of two sessions of the BAC protocol, we naturally conclude that P ≈ tr Q. Otherwise, the false attack may guide us to discover a real attack: our analysis of session equivalence consider traces with a speci c shape (see Sections 4 and 5). Thus, we implemented a simple heuristic that, whenever a false attack is discovered, also checks whether di erent permutations of actions of this false attack could lead to a true attack. For instance, this heuristic allowed us to disprove trace equivalence in some analyses of n 3 sessions of BAC. When our heuristic cannot discover a true attack, the result is not conclusive: the processes may well be trace equivalent or not. We leave to future work the design of a complete decision procedure for trace equivalence that builds on a preliminary analysis of equivalence by session.

Experimental se ing

We report experiments (Figure 4) comparing the scope and e ciency of the following two approaches for proving trace equivalence:

The original version of D S as a baseline;

The analysis leveraging our contributions (preliminary analysis of equivalence by session, test of false attack if it fails, and then the heuristic attempting to reconstruct a true attack).

We describe the benchmarks below in more details. The column # roles is an indicator of the intricacy of the system (number of parallel processes that the model le exhibits).

Benchmarks were carried out on 20 Intel Xeon 3.10GHz cores, with 50 Gb of memory. We ran the toy example described in this paper on a single core to illustrate simply the algorithmic improvements compared to D S . As D S supports parallelisation, we distributed the computation of the other, bigger proofs over 20 cores. The implementation and the speci cation les are available at https://deepsec-prover.github.io/.

Running example: toy BAC We modelled the simpli ed analysis of unlinkability in the BAC protocol described in Examples 2.2 and 2.4 as a simple instance to compare our prototype and D S in terms of scope and e ciency. We gather several variants: 2 sessions: both D S and our prototype are able to nd an attack trace 3 sessions: D S times out and our prototype nds a false attack. This is due to the fact that, by executing outputs in priority (recall the por in Section 4), more intermediate actions are available to match the trace. However our heuristic manages to reconstruct a true attack trace by delaying some output actions. we also consider a variant where we remove the get_challenge message from the protocol description. Our prototype now reports a false attack for 3 sessions and fails to conclude. The failure in the last variant is not a limitation of our heuristic: by pushing the limits of the baseline version of D S , we actually obtained that trace equivalence held (about 8 days of computation on a version of D S prior to 2.0.0). This is intuitively because the attacker cannot statically distinguish between a fresh nonce n (as output by passports) and a cipher senc(n , r, k) (as output by readers). In particular, without the get_challenge, each passport can perform at toplevel an output action that is indistinguishable from a reader output, leaving much more possibilities for matching traces.

On the contrary if we assume that the adversary can distinguish between passport and reader actions (which is achieved in the model by using distinct channels for the passport and the reader processes), our prototype manages to disprove trace equivalence.

BAC We also studied a more realistic model of BAC [START_REF]PKI for machine readable travel documents o ering ICC read-only access[END_REF]. The baseline version of D S still fails to analyse 3 or more sessions, while our prototype reaches up to 5 sessions. On one side of the equivalence all n systems are distinct (fresh), while on the other side a same system may appear several times: our analysis indicates that, depending on the precise setting, the security property may be violated in the model or not. This is due to the error codes raised when a passport communicates with a wrong reader: depending on how many identical systems the process contains, the same number of errors may not be observable.

Although not present in the result table, we also implemented inclusion by session (see Section 6.2) as it is sometimes used to de ne other avours of unlinkability.

Helios We also consider the Helios protocol for electronic voting [START_REF] Adida | Helios: web-based open-audit voting[END_REF]. We analyse vote privacy of a version that uses zeroknowledge proofs to ensure the voter knows the plaintext of her vote, thus avoiding copy-attacks [START_REF] Cortier | Attacking and xing helios: An analysis of ballot secrecy[END_REF]. Vote privacy is formalised using a classical vote-swapping model, that is, we want to prove the equivalence of two situations where two honest votes have been exchanged. A reduction result of Arapinis et al. [START_REF] Arapinis | When are three voters enough for privacy properties[END_REF] ensures that, for such models, it is su cient to consider two honest voters and one dishonest voter (that is implicit in the model, embedded in the intruder capabilities) to obtain a proof of the system for an unbounded number of sessions. Such scenarios could already be handled by automated analysers, e.g. D S [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF]. However, when revoting is allowed, as it is the case for Helios, one needs to consider all scenarios when the tally accepts 7 ballots. In particular, it is not su cient to consider only re-votes by the adversary, but also arbitrary revotes of the two honest voters. In Figure 4 we listed several scenarios, indexed by how many times the honest voters A and B are sending revotes. This kind of analysis is out of the scope of many automated analysers. For example, Figure 4 shows that D S fails to prove after 12h of computation any scenarios where more than one honest revote is emitted. In [START_REF] Arapinis | When are three voters enough for privacy properties[END_REF] the P V proofs are limited to dishonest revotes. We compiled several intermediary scenarios to give an overview of the veri cation-time growth using our prototype, but all are subsumed by the last scenario were we allow A to revote 7 times and B 3 times. Indeed, using a simple symmetry argument on A and B this covers all scenarios where honest voters cast a total of 7 ballots. Note however that, strictly speaking, the reduction result of [START_REF] Arapinis | When are three voters enough for privacy properties[END_REF] does not bound the number of emitted honest revotes (that may not be e ectively received by the ballot box) that have to be considered during an analysis of vote privacy; extensions of this reduction should be considered in the future.

We also experimented an other model of voting privacy inspired by the game-based de nition BPRIV [BCG + 15]. In this de nition the (re)votes are dicted to honest voters by the adversary, which permits to e ectively model revotes of arbitrary values. As reported in Figure 4 the prototype handles the 19 queries modelling all revote scenarios for 7 emitted ballots, in a total of a few minutes.

About the modelling of mixnets. The version of Helios we analyse relies on a mixnet, which can be represented in several ways that may trigger or not a false attack. Mixnets are usually modelled as processes receiving the values to mix, and then outputing them in an arbitrary order induced by the inherent non-determinism of concurrency. However this can be performed using two models (where c ∈ Ch priv ):

MixSeq = c(x). c( ). (c x | c ) MixPar = (c(x). c x ) | (c( ) | c )
In the second case, subprocess-matching constraints arise earlier in the trace, triggering a false attack. However, the natural modelling of MixSeq allows to complete a security proof. We observed the same behaviour on other experimentation on voting protocols with mixnets.

Other case studies As side experiments, we also tried our prototype on other model les of similar tools that we could nd in the literature. We performed for example an analysis of vote privacy of an e-voting protocol by Scytl deployed in the Swiss canton of Neuchâtel, based on the P V le presented in [START_REF] Cortier | A formal analysis of the neuchâtel e-voting protocol[END_REF]. We also studied anonymity in a model of the AKA protocol deployed in 3G telephony networks [AMR + 12] (without XOR), presented in the previous version of D S [START_REF] Cheval | DEEPSEC: Deciding Equivalence Properties in Security Protocols -Theory and Practice[END_REF].

CONCLUSION AND FUTURE WORK

In this paper we introduce a new process equivalence, the equivalence by session. We show that it is a sound proof technique for trace equivalence which allows for several optimisations when performing automated veri cation. This includes powerful partial order reductions, that were previously restricted to the class of determinate processes, and allows to exploit symmetries that naturally arise when verifying multiple sessions of a same protocol. In addition to the theoretical basis we have implemented these techniques in the D S tool and evaluated their e ectiveness in practice. The optimisations indeed allowed for e cient verication of non-determinate processes that were previously out of scope of existing techniques.

We also discussed how to handle the false attacks, that are a natural consequence of the fact that equivalence by session is a strict re nement of trace equivalence. We implemented a test to verify automatically, when equivalence by session is disproved, whether the underlying attack is genuine with respect to trace equivalence. When this is not the case, as part of future work it would be interesting to re ne the part of the proof that failed, while exploiting that some parts of the system has already been shown to satisfy equivalence.

A EXPLICIT SESSION MATCHINGS

In this section we present an alternative characterisation of equivalence by session. The process matchings modelled by twin processes are here represented by an explicit permutation with properties mirroring the structure of twin processes. This formalisation makes closer link with the de nition of trace equivalence and is more convenient convenient for some proofs (see e.g. Appendices B and D). Besides, note that this is the characterisation we use in the implementation, tting better to the existing procedure of the D S prover for trace equivalence.

Session matchings We rst characterise the condition under which, given two traces t, t , there exists t 2 such that fst(t 2 ) = t and snd(t 2 ) = t . For that we rely on the notion of labels introduced in Section 4.1 to make reference to subprocess positions. In the rest of the paragraph, we refer to two labelled extended processes A 0 , B 0 such that skel(A 0 ) = skel(B 0 ), and as usual we assume that neither of them contains two labels such that one is the pre x of the other. We also let t ∈ T(P), t ∈ T(Q)

t : A 0 [ a 1 ] 1 ------→ • • • [ a n ] n ------→ A n t : B 0 [ b 1 ] 1 -----→ • • • [ b n ] n ------→ B n
We write L and L the sets of labels appearing in t and t .

D

A.1 . A session matching for t and t is a bijection π : L → L verifying the following properties (1) for all i ∈ 0, n , π de nes a bijection from the labels of A i to the labels of B i . Besides if A i and B i contain processes

[ P ] and [ Q ] π ( ) respectively then skel(P) = skel(Q) (2) for all i ∈ 1, n , π ( i ) = i (3) ∀ • p ∈ dom(π ), ∃q, π ( • p) = π ( ) • q P A.1 .
The following two points are equivalent: (1) tr(t) = tr(t ) (labelled removed) and there exists a session matching for t and t . (2) ∃t 2 , fst(t 2 ) = t and snd(t 2 ) = t . Besides in the i th extended twin process of t 2 , the process labelled in A i is paired with the process labelled π ( ) in B i .

Proof of (1) ⇒ (2). The trace t 2 can be easily constructed by induction on the length of t: Item (1) of De nition A.1 ensure that the twin processes in t 2 are composed of pairs of processes with the same skeleton, Item (2) ensures that pairs of transitions of P and Q can be mapped into transitions of twin-processes, and The permutations that are required by applications of the rule (M ) can be inferred from Item (3). Indeed, consider two instances of the rule (P ) in t and t :

({{[ P 1 | . . . | P n ] }} ∪ P, Φ) τ -→ ({{[ P i ] •i }} n i=1 ∪ P, Φ) ({{[ Q 1 | . . . | Q n ] }} ∪ Q, Ψ) τ -→ ({{[ Q i ] •i }} n i=1 ∪ Q, Ψ)
Given π a session matching for t and t , we consider the permutation of 1, n mapping i ∈ 1, n to the (unique) j such that π ( • p) = • j. This permutation can be used to con-struct the instance of rule (M ) corresponding to these two (P ) transitions.

Proof of (2) ⇒ (1). Let t 2 be a trace given by Item (2). We lift the labellings of t = fst(t 2 ) and t = snd(t 2 ) to the twin processes appearing in t 2 . Then as explicited in the theorem statement it su cies to consider π the mapping from L to L such that π ( ) = for all twin process ([ P ] , [ Q ] ) appearing in t 2 . A quick induction on the length of t 2 shows that π is well de ned and is a session matching for t and t . We recall in particular the invariant that each A i or B i only contains labels that are incomparable w.r.t. the pre x ordering.

Important properties As a direct corollary, we give an alternative characterisation of equivalence by session. P A.2 . Let P, Q be plain processes in -normal form such that skel(P) = skel(Q). The following points are equivalent:

(1) P s Q (2) for all t ∈ T(P), there exist t ∈ T(Q) and a session matching for t and t such that t ∼ t (note: in "t ∼ t " the comparison of tr(t) and tr(t ) does not take the labels into account)

Besides the relation ∼ s on traces de ned by t ∼ s t i there exists t 2 such that fst(t 2 ) = t and snd(t 2 ) = t , is an equivalence relation. More precisely: P A.3 . For all traces t 1 , t 2 , t 3 : (1) id is a session matching for t 1 and t 1 (2) if π is a session matching for t 1 and t 2 then π -1 is a session matching for t 2 and t 1 (3) if π is a session matching for t 1 and t 2 , and π for t 2 and t 3 , then π • π is a session matching for t 1 and t 3

B FALSE ATTACKS AND DETERMINACY

In this section we give a detailed proof of the claim of Section 3 that false attacks cannot arise for determinate processes, i.e.: P 3.2 . If P, Q are determinate plain processes such that P ≈ tr Q then P ≈ s Q.

In the proof, by slight abuse of notation, we may say that an extended process is determinate. We also cast the notion of skeleton to extended processes by writing skel((P, Φ)) = skel(P) = P ∈ P skel(P) , and to traces with

skel(A 0 α 1 --→ • • • α n --→ A n ) = skel(A 0 ) • skel(A 1 ) • . . . • skel(A n ) .
That is, the skeleton of a trace is the sequence of the skeletons of the processes of which it is composed. Thus, if

t : A 0 α 1 --→ • • • α n --→ A n t : B 0 β 1 --→ • • • β p --→ B p
we have skel(t) = skel(t ) i n = p and for all i ∈ 0, n , skel(A i ) = skel(B i ).

Simplifying equivalence First we simplify the problem by forcing the application of (P ) rules in priority in traces. D B.1 . If P is a plain process in -normal form, we write T τ (P) the set of traces where the rule (P ) is always performed in priority, i.e. where the rules (I ) and (O ) are never applied to extended processes (P, Φ) such that P contains a process with a parallel a its root (i.e. a process P such that |skel(P)| > 1). P B.1 . If P, Q are plain processes in -normal form such that skel(P) = skel(Q):

P tr Q i ∀t ∈ T τ (P), ∃t ∈ T τ (Q), t ∼ t P s Q i ∀t ∈ T τ (P), ∃t 2 ∈ T(P, Q), t = fst(t 2 ) ∼ snd(t 2 )
Proof. The rst point is standard. The proof of the second point can be seen as a corollary of the compression optimisations of equivalence by session (see Section 4.2). D B.2 . An extended process A = ({{P 1 , . . . , P n }}, Φ) is τdeterministic if there is at most one i ∈ 1, n such that P i has a parallel operator at its root (i.e. |skel(P i )| > 1).

The τ -determinism will be an invariant in proofs by induction on the length of traces. More precisely, if A, B are extended processes we call Inv(A, B) the property stating (i)

A i , B i are determinate (ii) skel(A i ) = skel(B i ) (iii) A i ∼ B i ( 
iv) A i , B i are τ -deterministic, and A i contains a process with a parallel operator at its root (i.e. a process P i such that |skel(P i )| > 1) i B i does.

Equivalence and inclusion

We prove that trace equivalence coincides with a notion of trace inclusion strengthened with identical actions and skeleton checks. P B.2 . If P, Q are determinate plain processes innormal form s.t. skel(P) = skel(Q), then the following points are equivalent (1)

P ≈ tr Q (2) ∀t ∈ T τ (P), ∃t ∈ T τ (Q),        tr(t) = tr(t ) Φ(t) ∼ Φ(t ) skel(t) = skel(t )
Proof of (2) ⇒ (1). Given A, B two determinate extended processes we write φ(A, B) the property stating that

∀t ∈ T τ (A), ∃t ∈ T τ (B),        tr(t) = tr(t ) Φ(t) ∼ Φ(t ) skel(t) = skel(t ) .
Note that φ(A, B) implies skel(A) = skel(B) by choosing the empty trace. In particular, to prove (2) ⇒ (1), it su cies to prove that for all A, B determinate, φ(A, B) ⇒ A tr B and φ(A, B) ⇒ φ(B, A).

The rst implication is immediate. As for the second, we prove that for all extended processes A 0 , B 0 such that φ(A 0 , B 0 ) and Inv(A 0 , B 0 ), and all

t : B 0 α 1 --→ • • • α n --→ B n ∈ T τ (B 0 ) , there exists t : A 0 α 1 --→ • • • α n --→ A n ∈ T τ (A 0 ) , s.t. for all i ∈ 0, n , Inv(A i , B i )
. This is su cient to conclude as Inv(P, Q) holds for any determinate plain processes P, Q in -normal form s.t. skel(P) = skel(Q).

We proceed by induction on n. If n = 0 the conclusion is immediate. Otherwise, assume by induction hypothesis that it holds for any trace of length n -1.

case 1: α 1 = τ .
We know that B 0 does not contain private channels by determinacy (Inv(A 0 , B 0 ) Item (i)). Therefore, the transition B 0 τ -→ B 1 is derived by the rule (P ). In particular by Inv(A 0 , B 0 ) Item (iv), there also exists a transition A 0 τ -→ A 1 . The conclusion can now follow from the induction hypothesis applied to A 1 , B 1 ; but to apply it we have to prove that φ(A 1 , B 1 ) and Inv(A 1 , B 1 ) hold.

→ proof that φ(A 1 , B 1 ). Let s ∈ T τ (A 1 ). Then (A 0 τ -→ A 1 )•s ∈ T τ (A 0 ) and by φ(A 0 , B 0 ) there exists (B 0 τ -→ B 1 ) • s ∈ T τ (B 0 ) such that tr(s) = tr(s ), Φ(t) ∼ Φ(t ) and skel(t) = skel(t ).
But by τ -determinism of B 0 we deduce that B 1 = B 1 , and s ∈ T τ (B 1 ) satis es the expected requirements.

→ proof that Inv(A 1 , B 1 ).

(i) A 0 and B 0 are determinate and determinacy is preserved by transitions. (ii) skel(A 1 ) = skel(A 0 ) = skel(B 0 ) = skel(B 1 ) (iii) A 0 ∼ B 0 and the rule (P ) does not a ect the frame. (iv) A 0 and B 0 are τ -deterministic and τ -determinism is preserved by transitions (w.r.t. T τ ). Besides due to the normalisation, we know that neither of A 1 nor B 1 contain a parall operator, hence the result. case 2: α 1 τ . By de nition T τ (B 0 ), we know that the rule (P ) is not applicable to B 0 ; neither to A 0 by Inv(A 0 , B 0 ) Item (iv), which means that traces of T τ (B 0 ) may start by an application of rules (I ) or (O ). Using this and the fact that skel(A 0 ) = skel(B 0 ) (Inv(A 0 , B 0 ) Item (ii)), we obtain that there exists a transition A 0 α 1 --→ A 1 . The conclusion can now follow from the induction hypothesis applied to A 1 , B 1 ; but to apply it we have to prove that φ(A 1 , B 1 ) and Inv(A 1 , B 1 ) hold.

→ proof that φ(A 1 , B 1 ).
The argument is the same as its analogue in case 1, using the determinacy of B 0 instead of its τ -determinism.

→ proof that Inv(A 1 , B 1 ).

(i) A 0 and B 0 are determinate and determinacy is preserved by transitions.

(ii) By applying φ(A 0 , B 0 ) with the trace t 0 : A 0 α 1 --→ A 1 , we obtain a trace t 0 : B 0 α 1 --→ B 1 such that skel(A 1 ) = skel(B 1 ). But by determinacy of B 0 , the transition B 0 α 1 --→ B 1 is the only transition from B 0 that has label α 1 , hence B 1 = B 1 and the conclusion. (iii) Identical proof as that of Item (ii) above, using the fact that A 1 ∼ B 1 instead of skel(A 1 ) = skel(B 1 ). (iv) Let us write

A 0 = ({{P 0 }} ∪ P, Φ) A 1 = ({{P 1 }} ∪ P, Φ ) B 0 = ({{Q 0 }} ∪ Q, Ψ) B 1 = ({{Q 1 }} ∪ Q, Ψ )
As we argued already at the beginning of case 2, neither P nor Q contain processes with parallel operators at their roots. Therefore, we only have to prove that P 1 has a parallel operator at its root i Q 1 does. For cardinality reasons, this a direct corollary of the following points:

skel(P 0 ) = skel(Q 0 ) (same action α 1 being executable at topelevel), -skel(A 0 ) = skel(B 0 ) (hypothesis Inv(A 0 , B 0 )), and skel(A 1 ) = skel(B 1 ) (Item (ii) proved above).

Proof of (1) ⇒ (2). The proof will follow in the steps as the other implication (we construct the trace t by induction on the length of t while maintaining the invariant Inv).

More formally, we prove that for all extended processes A 0 , B 0 such that A 0 ≈ tr B 0 and Inv(A 0 , B 0 ), and all

t : A 0 α 1 --→ • • • α n --→ A n ∈ T τ (A 0 ) , there exists t : B 0 α 1 --→ • • • α n --→ B n ∈ T τ (B 0 ) , s.t. for all i ∈ 0, n , Inv(A i , B i ).
We proceed by induction on n. We proceed by induction on n. If n = 0 the conclusion is immediate. Otherwise, assume by induction hypothesis that it holds for any trace of length n -1.

case 1: α 1 = τ .
Similarly to the converse implication, there exists a transition B 0 τ -→ B 1 (derived by (P )) and it su cies to prove that A 1 ≈ tr B 1 and Inv(A 1 , B 1 ) hold in order to apply the induction hypothesis and conclude.

→ proof that A 1 ≈ tr B 1 . Let s ∈ T τ (A 1 ). Then (A 0 τ -→ A 1 ) • s ∈ T τ (A 0 ) and since A 0 ≈ tr B 0 there is (B 0 τ -→ B 1 ) • s ∈ T τ (B 0 ) such that (A 0 τ -→ A 1 ) • s ∼ (B 0 τ -→ B 1 ) • s .
But by τ -determinism of B 0 we deduce that B 1 = B 1 , and thus s ∈ T τ (B 1 ) and s ∼ s . This justi es that A 1 tr B 1 , and a symmetric argument can be used for the converse inclusion B 1 tr A 1 .

→ proof that Inv(A 1 , B 1 ).

By the exact same arguments as that of the analogue case in the converse implication. Similarly to the converse implication, there exists a transition B 0 α 1 --→ B 1 and it su cies to prove that A 1 ≈ tr B 1 and Inv(A 1 , B 1 ) hold in order to apply the induction hypothesis and conclude.

→ proof that A 1 ≈ tr B 1 .
The argument is the same as its analogue in case 1, using the determinacy of B 0 instead of its τ -determinism.

→ proof that Inv(A 1 , B 1 ). This is the proof obligation whose arguments substantially di er from that of the converse implication.

(i) A 0 and B 0 are determinate and determinacy is preserved by transitions. (ii) We assume by contradiction that skel(A 1 ) skel(B 1 ). By symmetry, say that skel(A 1 ) skel(B 1 ) and let s ∈ skel(A 1 ) skel(B 1 ). By de nition of T τ (A 0 ), we know that the rule (P ) is neither applicable to A 0 nor B 0 ; in particular, there exists a transition A 1 α -→ A derived from rule (I ) or (O ) (the one corresponding to the skeleton s) such that B 1 α -→.

But by determinacy of B 0 , the transition B 0 α 1 --→ B 1 is the only transition from B 0 that has label α 1 . Thus, this yields a contradiction with A 0 ≈ tr B 0 : more precisely the trace A 0

α 1 --→ A 1 α -→ A is not matched. (iii) By determinacy of B 0 , the transition t 0 : B 0 α 1 --→ B 1
is the only transition from B 0 that has label α 1 . In particular, using the hypothesis A 0 ≈ tr B 0 , we obtain that t 0 ∈ T τ (B 0 ) is the only trace such that

t 0 : (A 0 α 1 --→ A 1 ) ∼ t 0 .
In particular A 1 ∼ B 1 . (iv) Same cardinality argument as the analogue case in the converse implication.

Session matchings Proposition B.2 is the core result of the proof. We now connect it with the equivalence by session by using the characterisation of Appendix A. P B.3 . Let P, Q two determinate plain processes innormal form and two labelled traces t ∈ T τ (A 0 ) and t ∈ T τ (Q) such that tr(t) = tr(t ) and skel(t) = skel(t ). Then there exists a session matching for t and t .

Proof. We prove that for all τ -deterministic, determinate extended processes A 0 and B 0 , and

t : A 0 [ α 1 ] 1 ------→ • • • [ α n ] n ------→ A n t : B 0 [ α 1 ] 1 ------→ • • • [ α n ] n ------→ B n
if skel(t) = skel(t ), then there exists a session matching for t and t . We proceed by induction on n. If n = 0 the session matching is π : ε → ε. Otherwise, let us write

A n-1 = ({{[ P ] n }} ∪ P, Φ) B n-1 = ({{[ Q ] n }} ∪ Q, Ψ)
By induction hypothesis, let π be a session matching for the rst n -1 transitions of t and t ; in particular, the labels of A n-1 are in the domain of π .

case 1: α n τ .

In this case we write

A n = ({{[ P ] n }} ∪ P, Φ ) B n = ({{[ Q ] n }} ∪ Q, Ψ )
First of all, we observe that skel(P) = skel(Q) because the same observable action α n can be performed at the root of P and Q. In particular, by determinacy (hypothesis), unicity of the process with a given label (invariant of the labelling procedure), and Item (1) of De nition A.1, we deduce that π ( n ) = n .

Therefore by the hypothesis skel(A n-1 ) = skel(B n-1 ), we obtain skel(P) = skel(Q). Hence skel(P ) = skel(Q ) by the hypothesis skel(A n ) = skel(B n ). All in all, π is a session matching for the whole traces t and t . case 2: α n = τ .

In this case we write

P = P 1 | • • • | P k A n = ({{[ P i ] n •i }} k i=1 ∪ P, Φ ) Q = Q 1 | • • • | Q k B n = ({{[ Q i ] n •i }} k i=1 ∪ Q, Ψ )
Since determinacy excludes private channels, the last transition of t and t is derived from the rule (P ). By τ -determinism, this means that P and Q are the only processes in A n-1 and B n-1 , respectively, that contain a parallel operator at their roots. In particular, by Item (1) of De nition A.1, we deduce that π ( n ) = n and skel(P) = skel(Q); and thus k = k .

Therefore, there exists a permutation σ of 1, k such that for all i ∈ 1, k , skel(P i ) = skel(Q σ (i) ) (although this is not needed for the proof, this permutation appears to be unique by determinacy). Thus if π : L → L is the function extending π and such that

∀i ∈ 1, k , π ( • i) = π ( ) • σ (i) ,
then π is a session matching for t and t .

Altogether Propositions A.2 to B.3 justify the following corollary (that actually appears to be stronger than Proposition 3.2).

C

B.4 . If P and Q are determinate plain processes innormal form, P ≈ tr Q i P s Q.

C CORRECTNESS OF POR

In this section we prove the results presented in Section 4.

C.1 Permutability of independent actions

We give the proof of the core correctness argument, namely that traces can be considered up to permutation of independent actions (Proposition 4.3). First we prove it for traces of two actions. 

A 2 β α = == ⇒ s B 2 such that fst(u 2 ) = u, there exists t 2 : A 2 α β = == ⇒ s B 2 such that fst(t 2 ) = t.
Proof. Since the labels of α and β are incomparable w.r.t. the pre x ordering by independence, the trace t needs have the form

A = (P ∪ Q ∪ R, Φ) α -→ (P ∪ Q ∪ R, Φ ) β -→ s (P ∪ Q ∪ R, Φ ) with (P, Φ) α -→ (P , Φ ) and (Q, Φ ) β -→ (Q , Φ
). Now we construct the trace u, by a case analysis on α and β. In each case, we omit the construction of the trace t 2 that can be inferred easily.

case 1: α and β are inputs or τ actions.

In particular Φ = Φ = Φ and it su cies to choose u :

(P ∪ Q ∪ R, Φ) β -→ (P ∪ Q ∪ R, Φ) α -→ (P ∪ Q ∪ R, Φ) .
case 2: α is an output and β is an input or a τ action.

In particular Φ = Φ = Φ ∪ {ax → m} with ax dom(Φ) and ax does not appear in β. Then it su cies to choose the trace

u : (P ∪ Q ∪ R, Φ) β -→ (P ∪ Q ∪ R, Φ) α -→ (P ∪ Q ∪ R, Φ ) .
case 3: α is an input or a τ action and β is an output. Similar to case 2. case 4: α and β are both outputs.

Then Φ = Φ ∪ {ax → m} and Φ = Φ ∪ {ax → m } with ax ax , {ax, ax } ∩ dom(Φ) = . Then we choose u : (P ∪ Q ∪ R, Φ) β -→ (P ∪ Q ∪ R, Φ ∪ {ax → m }) α -→ (P ∪ Q ∪ R, Φ ) .
Then Proposition 4.3 can be obtained by induction on the hypothesis of π permuting independent actions of tr, using Proposition C.1. We actually prove the stronger result: = == ⇒ B. This trace is unique if we take labels into account, and is referred as π .t. It has the property that for all u 2 : A 2 π .tr = == ⇒ s B 2 such that fst(u 2 ) = π .t, there exists

t 2 : A 2 tr = ⇒ s B 2 such that fst(t 2 ) = t.
Proof. The uniqueness of π .t is immediate, as a quick induction on the length of traces shows that any labelled trace u is uniquely determined by the action word tr(u) (labels included).

We then construct π .t by induction on the hypothesis that π permutes independent actions of tr(t). Let us write

t : A = A 0 α 1 --→ • • • α n --→ A n = B . If π = id it su cies to choose π .t = t. Otherwise let us write π = π 0 • (i i+1) with α i || α i+1 and π 0 permutes independent actions of tr = α p • • • α i-1 α i+1 α i α i+2 • • • α n . By Proposition C.1, there exists a trace u : A 0 α 1 --→ • • • α i -1 ----→ A i-1 α i +1 α i = ===== ⇒ A i+1 α i +2 ----→ • • • α n --→ A n
such that for all u 2 : A 2 tr = = ⇒ s B 2 verifying fst(u 2 ) = u, there exists t 2 : A 2 tr = ⇒ s B 2 such that fst(t 2 ) = t. Then since π 0 permutes independent actions of tr = tr(u), it su cies to choose such that t = fst(u 2 ) ∼ snd(u 2 ), there exists t 2 : A 2 tr = ⇒ B 2 such that t = fst(t 2 ) ∼ snd(t 2 ).

Proof. For the sake of reference, let us write H (t, t ) the property to prove. We reason by induction on the hypothesis t ≡ por t . case 1: t = π .t, π permutes independent actions of t.

Direct consequence of Proposition C.2. case 2: t is recipe-equivalent to t.

Let u 2 with t = fst(u 2 ) ∼ snd(u 2 ) . By static equivence, for any recipes ξ 1 , ξ 2 such that

ξ 1 Φ(fst(u 2 )) = E ξ 2 Φ(fst(u 2 )) ,
we also have

ξ 1 Φ(snd(u 2 )) = E ξ 2 Φ(snd(u 2 )) .
In particular, t 2 can be obtained by operating on the second component of u 2 the same recipe transformations that have been operated to transform t = fst(u 2 ) into t. case 3: (transitivity) H (t, s) and H (s, t ) for some trace s.

Let u 2 with t = fst(u 2 ) ∼ snd(u 2 ) . By hypothesis H (s, t ) there exists s 2 such that s = fst(s 2 ) ∼ snd(s 2 ). Hence the result by hypothesis H (t, s).

And nally we have the Proposition 4.4 that is a corollary of this result. P 4.4 (correctness of por) . Let O ∀ 1 ⊆ O ∀ 2 be universal optimisations. We assume that for all t ∈ O ∀ 2 , there exists t ext such that t is a pre x of t ext , and

t ∈ O ∀ 1 such that t ≡ por t ext . Then O ∀ 1 is a correct re nement of O ∀ 2 .
Proof.

Let ≈ i = i ∩ i the notion of equivalence induced by O ∀ i . The inclusion ≈ 2 ⊆ ≈ 1 is immediate. Let us then assume P 1 Q and prove P 2 Q. Let t ∈ T(P) ∩ O ∀
2 . Without loss of generality, we assume t maximal, i.e. that there are no transitions possible from its last process. Therefore by hypothesis, there exists

t ≡ por t such that t ∈ O ∀ 1 . Since P 1 Q, there is u 2 ∈ T(P, Q) such that t = fst(u 2 ) ∼ snd(u 2 ) .
Therefore by Proposition C.3, there exists t 2 ∈ T(P, Q) such that t = fst(t 2 ) ∼ snd(t 2 ).

C.2 Additional results

We provide some utility results on independent permutations of actions. First, about composition of permutations: P C.4 . Let t be a trace, π permuting independent actions of t, and π permuting independent actions of π .t. Then π .π .t = (π • π ).t. This formalises that the group-action properties of (π, tr) → π .tr carry on to traces. Then, we also discuss the domain extension of permutations. If π is a permutation of 1, n , we de ne π +q +p permutation of 1, n + p + q by

π +q +p (x) = p + π (x -p) if p < x n + p x otherwise
in particular, the following result is immediate: 

C.3 Decomposition into phases

In this section we prove correct the re nement at the very basis of our partial-order reductions, namely that all traces can be decomposed into phases (modulo permutation of independent actions).

P 4.5 . O ∀ c,b is a correct re nement of O ∀ all .
Proof. By Proposition 4.4, it su cies to prove that for all traces t that are maximal (i.e. whose last process is irreducible), there exists π permuting independent actions of t such that π .t can be decomposed into phases.

We prove this by induction on the length of t. If t is empty the result is immediate: π is the identity and the phase decomposition consists of a unique empty negative block. Otherwise let us write t :

(A α -→ B) • t .
Note in particular that the trace t is also maximal. By induction hypothesis, there exists π permuting independent actions of t such that

π .t = b - 0 • b + 1 • b - 1 • b + 2 • b - 2 • • • b + n • b - n
where each b + i is a positive or null phase, and each b - i is a negative phase. case 1: α is an output or a parallel action.

Then (A α -→ B) • b - 0 is a negative phase and it su cies to choose π = (π ) +0 +1 . case 2: α = [ τ ] 1 | 2 (internal communication).
Let us write E the multiset of actions of the word tr(b - 0 ). We partition it into E = F G where

F = {{β ∈ E | α || β }} G = {{[ a ] ∈ E | 1 pref or 2 pref }}
where pref refers to the pre x ordering on words. This is indeed a partition of E thanks to the invariant that any label appearing in t is either incomparable with 1 and 2 , or a su x of 1 or 2 . For the same reason, all actions in F are independent of all actions in G: it is therefore straightforward to construct π - 0 permuting independent actions of b - 0 such that

π - 0 .b - 0 : B tr F •tr G = ===== ⇒ C tr F ∈ F tr G ∈ G .
Then, we let σ permuting independent actions of All in all, it su cies to choose

s = (A α -→ B) • (π - 0 .b - 0 ) such that σ .s = A tr F ==⇒ B α -→ B tr G = == ⇒ C .
π = σ +p +0 • (π - 0 ) +p +1 • (π ) +0 +1 with p = n i=1 |b + i | + |b - i | case 3: α = [ c(ξ ) ] .
Let us write

A = ({{[ c(x).P ] }} ∪ P, Φ) B = ({{[ P ] }} ∪ P, Φ)
If the label does not appear in tr(t ), then by maximality of t it needs be that polar(P ) = 0 and (A α -→ B) is therefore a positive phase. In particular π .t is already decomposed into phases and it su cies to choose π = (π ) +0 +1 . Otherwise assume that appears in tr(t ). We write

tr - i = tr(b - i ) tr + i = tr(b + i )
We also consider the phase of t in which the rst action of P is executed, i.e. the rst phase b such that appears in tr(b). Note that, thanks to the invariant that any label appearing in t is either incomparable or a su x of , α is independent of all actions of all phases of t preceding b.

case 3a: b = b +
i is a positive or null phase. Then we x σ permuting independent actions of

α • tr with tr = tr - 0 • tr + 1 • tr - 1 • • • tr + i-1 • tr - i-1 such that, writing s = (A α -→ B) • b - 0 • b + 1 • b - 1 • • • b + i-1 • b - i-1 , σ .s : A tr = ⇒ A α -→ A . If b = b + i is a null phase, A α -→ A is a positive phase. If b is a positive phase, (A α -→ A ) • b is a positive phase too. In both cases, it su cies to choose π = σ +p +0 • (π ) +0 +1 with p = n j=i |b + j | + |b - j | case 3b: b = b - i is a negative phase.
Similarly to case 2, we x E the multiset of actions appearing in the word tr - i and we partition it as

E = F G F = {β ∈ E | α || β } G = {[ a ] ∈ E | pref } .
And again we let π - i permuting tr - i such that

π - i .b - i : R tr F ==⇒ S tr G = == ⇒ T tr F ∈ F tr G ∈ G .
Then we let σ permuting independent actions of

α • tr • tr F with tr = tr - 0 • tr + 1 • tr - 1 • • • tr + i such that, writing s = (A α -→ B) • b - 0 • b + 1 • b - 1 • • • b + i • (π - i .b - i ), σ .s : A tr = ⇒ A tr F ==⇒ A α -→ S tr G = == ⇒ T .
For the same reason as in case 2, A

tr F ==⇒ A and S tr G = == ⇒ T are negative phases. It therefore su cies to choose π = σ +p +0 • (π - i ) p 1+|tr | • (π ) +0 +1 with p = n j=i+1 |b + j | + |b - j |

C.4 Improper positive phases

In this section we prove the correctness of the optimisation O ∀ c+i consisting of delaying improper blocks as much as possible in traces, as introduced in Section 4.3. First we prove that improper blocks are essentially independent of all blocks following them.

P C.6 . Let t ∈ O ∀ c of the form t = b • u where u ∈ O ∀ c
and b is an improper block. Then there exists u recipe equivalent to u such that b is independent of all blocks of u .

Proof. By de nition of improper blocks Item (2), if A tr = ⇒ (P, Φ) is improper then for all [ P ] L ∈ P such that P 0, the labels of L are pre x-incomparable with all labels of tr. In particular a straightforward induction shows that all actions of b are sequentially independent of all actions of u. Besides let us write by de nition b : (P, Φ)

tr = ⇒ (Q, Φ ∪ {ax 1 → t 1 , . . . , ax n → t n })
with ξ i a recipe such that ξ i Φ = E t i . We then let the substitution

σ = {ax 1 → ξ 1 , . . . , ax n → ξ n }
as well as u the trace obtained by replacing in u all actions of the form c(ξ ) by c(ξ σ ). By de nition, u is recipe equivalent to u and, since no axioms introduced in b appear in u , b is data independent of all blocks of u . All in all, b is independent of all blocks of u .

The main argument is then a substantially-simple but technical induction delaying improper blocks one by one. For that we prove the following auxiliary result about the preservation of (im)properness when permuting independent blocks, since it is not the case in general as discussed in Section 4.4. P C.7 . Let a sequence of blocks t = b 1 • • • b n and a transposition π = (i i +1) for some i ∈ 1, n -1 . We assume that b i || b i+1 . Then (1) Delaying an improper block preserves improperness: if b i is improper then the i +1 th block of π .t is also improper. (2) Advancing a proper block preserves properness: if b i+1 is proper then the i th block of π .t is also proper.

(3) Swapping two improper blocks preserve improperness: if b i and b i+1 are improper then the i th and i +1 th blocks of π .t are improper.

Proof. Item (1) follows from the fact that for any ground term t, recipe ξ and frame Φ, if ξ Φ = E t then ξ (Φ ∪ Φ ) = E t for all frames Φ such that dom(Φ) ∩ dom(Φ ) = . Item (2) follows from the fact that for any ground term t and frames Φ, Φ such that dom(Φ) ∩ dom(Φ ) = , if t is not deducible in Φ ∪ Φ then it cannot be deducible in Φ neither. Let us detail more the argument for Item (3), by writing

b i : (P 0 , Φ 0 ) tr = ⇒ (P 1 , Φ 0 ∪ Φ 1 ) b i+1 : (P 1 , Φ 0 ∪ Φ 1 ) tr = = ⇒ (P 2 , Φ 0 ∪ Φ 1 ∪ Φ 2 )
If we write b i , b i+1 the i th and i +1 th blocks of π .t, respectively, they have the form

b i : (Q 0 , Φ 0 ) tr = = ⇒ (Q 1 , Φ 0 ∪ Φ 2 ) b i+1 : (Q 1 , Φ 0 ∪ Φ 2 ) tr = ⇒ (Q 2 , Φ 0 ∪ Φ 1 ∪ Φ 2 ) .
To show that b i and b i+1 are improper, it su cies to verify the Item (3) of the de nition since the two other items immediately follow from the fact that b i and b i+1 are improper.

Proof that b i is improper.

Let t ∈ im(Φ 2 ) and let us construct a recipe ξ such that ξ Φ 0 = E t. Since b i+1 is improper there exists a recipe ξ 0 such that ξ 0 (Φ 0 ∪ Φ 1 ) = E t. Besides b i is also improper hence for all ax ∈ dom(Φ 1 ) there exists a recipe ξ ax such that ξ ax Φ 0 = E ax Φ 1 . It thus su cies to choose

ξ = ξ 0 {ax → ξ ax | ax ∈ dom(Φ 1 )} .
Proof that b i+1 is improper.

If t ∈ im(Φ 2 ), since b i is improper there exists a recipe ξ such that ξ Φ 0 = E t. In particular ξ (Φ 0 ∪ Φ 1 ) = E tΦ 1 = E t. P 4.9 . For all t ∈ O ∀ c , there exists t ≡ b-por t such that t ∈ O ∀ c+i and t has the same number of improper blocks t.

Proof. Let us decompose t in blocks as t : b

- 0 • b 1 • • • b n .
We say that i ∈ 1, n -1 is a pending index in t when b i is an improper block and there exists j > i such that b j is a proper block. We prove the proposition by induction on the number of pending indexes.

If there are no pending indexes then t ∈ O ∀ c+i by de nition. Otherwise let p be the minimal pending index in t. By Proposition C.6 there exists recipe equivalent to b p+1 • • • b n such that b is independent of all blocks of . Thus the permutation

π = (n n-1) • (n-1 n-2) • • • • • (p +2 p +1) • (p +1 p) permutes independent blocks of s = b 1 • • • b p • .
Let us prove that π .s has less pending indexes than t, and as many improper blocks as t. Once this is established this will conclude the proof: this makes it possible apply the induction hypothesis to π .s, thus obtaining t ≡ b-por π .s such that t ∈ O ∀ c+i and t has as many improper blocks as π .s. In particular t ≡ b-por π .s ≡ b-por s ≡ b-por t hence the desired conclusion.

Let us thus compare the number of pending indexes and improper blocks of t and π .s. First of all, (im)properness is preserved under recipe equivalence, and t therefore has as many pending indexes and improper blocks as s. Let us decompose s and π .s in blocks as

s = b - 0 • b s 1 • • • b s n π .s = b - 0 • b π .s 1 • • • b π .s n
We then let i ∈ 1, n .

case 1: i < p. Let us prove that b i and b π .s i are proper (in particular i is not a pending index in π .s).

This follows from the fact that b π .s i = b i and b i is proper (otherwise p would not be the minimal pending index in t). The fact that π .s and s have the same number of improper blocks follows from the fact that the bijection φ : 1, n → 1, n de ned by

φ(i) = i if i < p φ(i) = n if i = p φ(i) = i + 1 if p i < n φ(i) = p if i = n veri es b π .s i is improper i b s φ(i)
is improper, by the cases 1,2,3. Let us then show that π .s has less pending indexes than s. For that, by case 1, it su cies to prove that b π .s p • • • b π .s n contains less pending indexes than b s p • • • b s n . Let p i < n such that b π .s i is improper. By case 3, there exists j ∈ i + 1, n -1 such that b π .s j is proper i there exists j ∈ i + 2, n such that b s j is proper, that is, i i + 1 is a pending index in s. By case 2 this means that i < n is a pending index in π .s i i + 1 is a pending index in s. Therefore there are as many pending indexes in b π . 

C.5 High-priority null phases

In this section we prove the correctness of the optimisation based on executing high-priority internal communications in priority in traces as formalised in Section 4.5. First we state and prove the main technical property of high-priority transitions that makes it correct to execute them as soon as they are available: Using this result we can prove that whenever a channel is highpriority at some point A in a maximal trace, there needs be a later transition that executes an internal communication on this channel that was already available in A.

P

C.9 . Let t ∈ O ∀ c ∩ T(A) and d ∈ Ch priv that is highpriority in A. We also assume that t is maximal, i.e. that no transitions are possible at the end of t. Then Proof. We decompose t in phases as follows t : b

- 0 •b 1 • • • b n .
We proceed by induction on n the number of blocks of t. Since d is high-priority in A, an internal communication on d is possible in A by de nition. In particular since t is maximal, we know that b 1 cannot be the empty trace. Let us therefore perform a case analysis on the rst transition of b 1 .

case 1: t starts with an internal communication on d.

Then it su cies to choose

u = ε, b = b 1 and = b 2 • • • b n .
case 2: t starts with a transition that is either a public input or an internal communication on a channel e d.

Let us write t

0 = (b - 0 • b 1 ) : A 1 α 1 --→ • • • α n --→ A n .
By applying Proposition C.8 to each transition of t 0 , we know that d is also high-priority in each A i , in particular in A n . We can therefore apply the induction hypothesis to b 2 • • • b n . By doing so we get i ∈ 2, n such that Proof. We decompose u and in blocks

u = b - 0 • b 1 • • • b n = b n+1 • • • b m with b i : A i tr i = = ⇒ A i+1 .
First of all we observe that for all i > n, there are no high-priority channels in A i . Indeed using Proposition C.8, a quick induction on the length of s shows that for all maximal traces s : A tr = ⇒ B such that there exists a high-priority channel in A, there exists a high-priority transition in s. In the context of our proposition, this would contradict the hypothesis that does not contain any high-priority transitions. We then prove the property by induction on the number of processes A i , i ∈ 1, n , such that there is a high-priority channel in A i .

If there is no such process then it su cies to choose π = id. Otherwise let p ∈ 1, n be the minimal index such that there exists a high-priority channel in A p , and d ∈ Ch priv the minimal such channel w.r.t. Ch . By Proposition C.9 there exists q ∈ p, m such that b q starts with an internal communication on d and for all p r < q, b r || b q . If we consider the minimal such index q, we know by Proposition C.8 that d is high-priority in A q and in particular q n by the preliminary remark. Let us thus assume so. Therefore the permutation

π 0 = (p p +1) • (p +1 p +2) • • • • • (q-2 q-1) • (q-1 q)
permutes independent blocks of u and the p th block of π 0 .u starts with a high-priority transition. We write u p the trace composed of the rst p blocks of π 0 .u. We have u p ∈ O ∀ 0 : no high-priority transitions are possible in the rst p -1 blocks of u p by minimality of p, and the p th block starts with a high-priority transition.

We then let u n-p the remaining np blocks of π 0 .u, i.e. the trace such that π 0 .u = b - 0 • u p • u n-p . We then apply the induction hypothesis to u n-p • (which is indeed a maximal trace) which gives π 1 permuting independent blocks of u n-p such that π 1 .u 

C.6 Reduction of independent blocks

Now we prove the correctness of the optimisation O ∀ por introduced in Section 4.6. We recall that we assume an ordering on words of actions such that two words of independent actions are always strictly comparable. In particular we can rephrase more simply the de nition of the fact that a block cannot follow an other one: By convention, two traces with a di erent number of blocks are incomparable w.r.t. lex . The core argument to prove the correctness of the optimisation is that O ∀ r contains minimal traces among those obtainable by permutation of independent actions:

P C.11 . Let u = (b - 0 • b 1 • • • b n ) ∈ O ∀ 0 and i ∈ 2, n such that ¬Minimal(b 1 • • • b i-1 , b i ).
We assume i minimal among indexes with this property and write π = (i-1 i). Then π permutes independent actions of u, π .u ≺ lex u and p ∈ O ∀ 0 where p consists of the rst i -1 blocks of π .u.

Proof. By de nition of the predicate

Minimal, b i-1 || b i , tr(b i ) ≺ tr(b i-1 ) and b i cannot follow b i-1 . Note that the eventual- ity ¬Minimal(b 1 • • • b i-2 , b i-1
) has been excluded by minimality of i. In particular π permutes independent blocks of u and π .u ≺ lex u. Thus let b j the j th block of π .u, j ∈ 1, i -1 and let us show that it starts with a high-priority transition if one is available. If j < i -1 then π (j) = j, hence b j = b j . The conclusion thus follows from the assumption u ∈ O ∀ 0 . Otherwise j = i -1 and we write A such that b i-1 ∈ T(A). We recall that b i cannot follow b i-1 ; therefore by Proposition C.10 we are in one of the following cases.

case 1: b i-1 does not start with a high-priority transition In particular the assumption that u ∈ O ∀ 0 ensures that no high-priority transitions are possible from A which appears to be the initial process of the block b j , hence the conclusion. 

.u ∈ O ∀ 0 ∩ O ∀ r . Besides π .u ≺ lex u if u O ∀ r .
Proof. Let us consider the set of traces U = O ∀ 0 ∩ {π .u | π permutes independent blocks of t } . The set U is nite (its size is bounded by |u|!). In particular the ordering lex is well-founded on U , i.e. there exist no in nite decreasing sequences of elements of U w.r.t ≺ lex . Let us thus show by well-founded induction on u that for all traces of the form u • , u ∈ U , there exists π permuting independent blocks of u such that π .u ∈ O ∀ r . If u ∈ O ∀ r it su cies to choose π = id. Otherwise by Corollary C.12 there exists π 0 permuting independent blocks of u such that π 0 .u ≺ lex u and π 0 .u ∈ U . Hence the result by induction hypothesis applied to π 0 .u . We can eventually prove the correctness of O ∀ por . It essentially relies on the characterisation of correctness provided by Corollary 4.8, applying two times Proposition C.13. The decreasing argument w.r.t. the lexicographic extension of is a simple consequence of the fact that the proof is performed by well founded induction w.r. 

D CORRECTNESS OF SYMMETRIES

In this section we prove the correctness of the optimisations presented in Section 5, i.e. the reduction by symmetries.

D.1 Preliminary notations and results

First of all we introduce some notions that will be at the core of most proofs of correctness of our reductions by symmetry. Intuitively when there is a symmetry between two processes P a and P b , we relabel them (that is, we swap their labels) and the resulting process is structurally equivalent to the initial one. Then we use the fact that structurally equivalent processes produce almost identical traces, meaning that their can be matched equivalently.

We formalise these two notions in the following paragraphs.

Relabelling We rst de ne an action of the group of label permutations. It acts on extended (twin) processes, actions and traces by relabelling. Formally if π is a permutation of labels, we write Aπ A 2 π απ tπ t 2 π respectively the extended process A, extended twin process A 2 , labelled action α, trace t and extended twin trace t 2 where each label • has been replaced by π ( ) • . For this transformation to be well de ned, we always consider that π is consistent (w.r.t. the object it is applied to) which means that (1) the set supp(π ) = { | π ( ) } only contains pairwise incomparable labels w.r.t. the pre x ordering (2) if applied to A = ({{[ P 1 ] 1 , . . . , [ P n ] n }}, Φ) then for all ∈ supp(π ), there exists i ∈ 1, n such that is a pre x of i (3) if applied to t ∈ T(A) with A = ({{[ P 1 ] 1 , . . . , [ P n ] n }}, Φ) then π is consistent w.r.t. A (4) if applied to an extended twin process or an extended twin trace, π is consistent w.r.t. its rst projection. We recall that extended twin processes are only labelled on their rst projection. This operation has a lot of trivial but important properties that we will use implicitly in incoming proofs: P D.1 . With the notations above:

(1) fst(t 2 π ) = fst(t 2 )π and snd(t 2 π ) = snd(t 2 ) (2) Hence: t = fst(t 2 ) ∼ snd(t 2 ) i tπ = fst(t 2 π ) ∼ snd(t 2 π ) (3) if σ ∈ S n and π is the permutation such that π ( i ) = σ (i) , Aπ = σ -1 .A. (4) if X is any of the objects above, X id = X and X π π = X (π •π ). (5) if π is consistent w.r.t. A, A α -→ B then π is consistent w.r.t. B.
Structural equivalence Then we list several core properties associated to structural equivalence. The rst one is the trivial observation that it is preserved by the action of permutations:

P D.2 . If A ≡ B consist of n parallel subprocesses and π ∈ S n , π .A ≡ π .B.
An important corollary is that the function (π, A) → π .A is a group action on the set of extended processes quotiented by ≡. In particular its stabilisers are permutation groups: C D.3 . For all extended processes A consisting of n processes, Stab(A) is a subgroup of S n .

An other property is that structural equivalence preserves static equivalence and skeletons. This is simply because static equivalence is preserved by bijective renaming of private names. 

≡ E Q then skel(P ) = skel(Q ).
The goal of our reductions by symmetry is to identify subprocesses that will behave identically, so that the execution of one is prioritised over the others; we formalise this by a notion that identi es traces that are identical up to their labels and public channels. Formally we write X Ch Y when X and Y are two identical objets up to renaming of public channels, i.e. X = Y ϱ for ϱ permutation of Ch pub ; then we say that two traces u, are almost identical, written u , when there exists a session matching σ for u and (notion introduced in Appendix A) and ϱ an α-renaming such that

u : A 0 [ a 1 ] 1 ------→ • • • [ a n ] n ------→ A n : (B 0 [ b 1 ] 1 σ -------→ • • • [ b n ] n σ -------→ B n )ϱ
where for all i, a i Ch b i and A i , B i are of the form

A i = ({{[ P 1 ] 1 , . . . , [ P m ] m }}, Φ) B i Ch ({{[ Q 1 ] 1 σ , . . . , [ Q m ] m σ }}, Φ )
with P j ≡ E Q j for all j and Φ = E Φ . We sometimes make the session matching explicit by writing u σ . Almost identity is an equivalence relation on traces, which is mostly justi ed by Proposition A.3. We now identify some transformations that produce almost identical traces and we give the core property that we expect such traces to verify. 

= ⇒ B, then t •u π t •
where π is the extension of π that coincides with π on dom(π ) and is the identity on the labels of t.

But the most important property is that structurally equivalent processes have almost identical traces (again with the identity renaming of channels). P D.7 . Let A 0 , B 0 two extended processes such that A 0 ≡ B 0 , and L the set of labels appearing in A 0 and B 0 (which is the same). Then for all traces u ∈ T(A 0 ), there exists ∈ T(B 0 ) such that u π with π |L = id and u ∼ .

Proof. Intuitively the trace is constructed by mirroring all transitions of u in B 0 . The technical part is that structural equivalence includes associative-commutative reordering of parallel operators, making the labels of u and di erent after the rst transition. Let us write u : A 0

[ a 1 ] u 1 ------→ • • • [ a n ] u n ------→ A n and A 0 = ({{[ P 1 ] 0 1 , . . . , [ P m ] 0 m }}, Φ) B 0 = ({{[ Q 1 ] 0 1 , . . . , [ Q m ] 0 m }}, Φ)ϱ
for some α-renaming ϱ and P i ≡ E Q i for all i. We show by induction on n that there exists a trace

: B 0 [ a 1 ] u 1 π -------→ • • • [ a n ] u n π --------→ B n
for some session matching π for u and such that π |L = id, and A i , B i are of the form

A i = ({{[ R 1 ] 1 , . . . , [ R m ] m }}, Φ i ) B i = ({{[ S 1 ] 1 , . . . , [ S m ] m }}, Φ i )ϱ with R j ≡ E S j for all j and Φ i = E Φ i .
For n = 0 it su cies to choose the empty trace and π = id. For n > 0 we write u = u 0 •u with u 0 : A 0 α -→ A 1 and perform a case analysis on the rule from which the transition u 0 is derived. Below we write L(A) the set of labels appearing in a process A. We write 0 : B 0 α -→ B 1 , the transition obtained by performing the same action as u 0 in B 0 at the same label. In particular we apply the induction hypothesis to u from A 1 , B 1 , which gives ∈ T(B 1 ) and π a session matching for u and . Then π is also a session matching for t and s and π |L(A 0 ) = π |L(A 1 ) = id and it su cies to choose = 0 • . case 2: rule (P ) Let us use the following notations

u 0 : A 0 = ({{[ p i=1 P i ] }} ∪ {{[ P i ] i }} q i=p+1 , Φ) τ -→ ({{[ P i ] •i }} p i=1 ∪ {{[ P i ] i }} q i=p+1 , Φ) B 0 = ({{[ Q ] }} ∪ {{[ Q i ] i }} q i=p+1 , Φ)ϱ with p i=1 P i ≡ E Q and for all i ∈ p + 1, n , P i ≡ E Q i . By
Proposition D.4 and since Q is in -normal form by de nition, we have Q = p i=1 Q i where, for some permutation σ ∈ S p , Q i ≡ E P σ (i) for all i ∈ 1, p . In particular by applying rule (P ) in B 0 at label we obtain a transition 0 : B 0 τ -→ B 1 such that we can apply the induction hypothesis from A 1 , B 1 π 0 , where π 0 is the label permutation de ned by π 0 ( • i) = • σ (i) and supp(π 0 ) ⊆ { • 1, . . . , • p}. Note that B 1 π 0 is well de ned since π 0 is consistent w.r.t. B 1 . Let us thus apply the induction hypothesis to the processes A 1 , B 1 π 0 and the trace u . We obtain a trace ∈ T(B 1 π 0 ) and a session matching π for u and . To conclude it su cies to choose = 0 • π -1 0 and π de ned by

π ( ) = π ( • i • ) = π -1 0 ( • i) • where π ( • i • ) = • i • π ( ) = π ( )
if not a pre x of π is well de ned and a session matching for u and because π is a session matching for u and such that π |L(A 1 ) = id.

Finally, almost identical traces preserve POR properties. Indeed if u σ , a permutation π permutes independent blocks of u i it permutes independent blocks of and, in this case, π .u σ π . . 

D.2 Universal symmetries

D.2.1 Permutation groups

Let us rst prove that the sets Sym 1 and Sym 2 (notation of Section 5.3.1) are subgroups of S n . For that we recall the following classical characterisation of nite subgroups: P D.9 . Let G be a group and S a non-empty, nite subset of G that is closed under composition w.r.t. the group law of G. Then S is a subgroup of G.

Proof. It su cies to prove E is closed by inverse. Since E is closed under composition, if x ∈ E then x n ∈ E for all n > 1. Besides E is also nite, hence there exists i > j such that x i = x j . In particular by multiplying by x -j (the inverse of x j in G), we obtain that x i-j-1 is the inverse of x in E.

In the next two theorems we x the notations of Section 5.3.1 Sym 1 and Sym 2 depend of. We therefore consider a trace t ∈ T(P) whose nal process A consists of n processes. P D.10 . Sym 1 is a subgroup of S n .

Proof. Since Stab(A) is a group, it su cies to prove Sym Q 1 is a subgroup of S n . We recall that it is the set of permutations π ∈ S n such that for all traces t 2 : (P, Q) tr = ⇒ A 2 such that t = fst(t 2 ) ∼ snd(t 2 ), there exists a trace s 2 : (P, Q) tr = ⇒ π .A 2 such that t = fst(s 2 ). This set contains the identity (it su cies to choose s 2 = t 2 ). Therefore by Proposition D.9 it su cies to prove that Sym Q 1 is closed by composition. Let π, σ ∈ Sym Q 1 . In particular there is s 2 : (P, Q) tr = ⇒ π .A 2 such that t = fst(s 2 ). Since s 2 has the same nal frames as t 2 , we also have fst(s 2 ) ∼ snd(s 2 ). Therefore since π ∈ Sym Proof. Rephrasing the de nition, π ∈ Sym 2 i there exists ϱ permutation of Ch pub such that π .A ≡ Aϱ and, for all twin traces t 2 : (P, Q) tr = ⇒ A 2 such that t = fst(t 2 ) ∼ snd(t 2 ), we have π .snd(A 2 ) ≡ snd(A 2 )ϱ. Similarly to Sym 1 , it su cies to prove that Sym 2 is closed by composition to conclude by Proposition D.9, since id ∈ Sym 2 . Thus let π, π ∈ Sym 2 and ϱ, ϱ permutations of Ch pub such that (1) π .A ≡ Aϱ and π .A ≡ A ϱ

(2) for all twin traces t 2 : (P, Q) tr = ⇒ A 2 such that t = fst(t 2 ) ∼ snd(t 2 ), π .snd(A 2 ) ≡ snd(A 2 )ϱ and π .snd(A 2 ) ≡ snd(A 2 )ϱ . We prove that π • π ∈ Sym 2 . First of all (π • π ).A ≡ π .(Aϱ ) = (π .A)ϱ ≡ Aϱϱ .

Then let t 2 : (P, Q) tr = ⇒ A 2 such that t = fst(t 2 ) ∼ snd(t 2 ). With the same reasoning as above we obtain (π • π ).snd(A 2 ) ≡ snd(A 2 )ϱϱ , hence the conclusion.

D.2.2 Correctness of the reduction by symmetry

First of all we prove that the optimisation consisting of discarding transitions based on the analysis of Sym. At rst we only study the re nement of O ∀ c+i * and tackle later the question of the compatibility with high-priority transitions and with the lexicographic reduction. We use again the notations of Section 5.3.1 and, if π ∈ Sym and L = { i } n i=1 , we let π the label permutation de ned by supp( π ) ⊆ L and π ( i ) = π (i) . P D.12 . Let π ∈ Sym. We also let a trace u ∈ O ∀ c+i * of the form

u = t • (A [ a ] ----→ B) •
We assume that for all traces u u of the form

u = t • (A [ a ] π ------→ B ) • ( )
there exists s ∈ T(Q) with u ∼ s and a session matching for u and s. Then there exists s ∈ T(Q) with u ∼ s and a session matching for u and s.

Proof. We decompose the proof in three parts, isolating the characterisation based on Sym 1 , the one based on Sym 2 , and how to compose the two.

Part 1: Proof in the case π ∈ Sym 1 . Let u ∈ T(P) a trace with the same notations as the statement of the theorem. We write

u 0 : A [ a ] ----→ B
The permutation π is consistent w.r.t. A and the trace (u 0 • ) π is therefore well de ned, and of the form

(u 0 • ) π : (π -1 .A [ a ] π -----→ B) • π
But π ∈ Sym 1 and in particular π ∈ Stab(A). Since Stab(A) is a group we deduce, by de nition, that π -1 .A ≡ A. Hence by Proposition D.7 there exists w ∈ T(A) such that w ∼ u 0 • and (u 0 • ) π σ w for some σ such that σ |L = id. In particular u t •w by Proposition D.6 and t • w is therefore of the form ( ). Hence by hypothesis there exists s ∈ T(Q) such that s ∼ t • w and σ a session matching for t • w and s . We also let σ t and σ w the restrictions of σ to the labels of t and w, respectively. If we decompose s = s t • s w with |s t | = |t | then σ t (resp. σ w ) is a session matching for t and s t (resp. w and s w ). In particular, σ w • σ is a session matching for (u 0 • ) π and s w . Thus ϕ = σ w • σ • π is a session matching for u 0 • and s w .

Besides by hypothesis π -1 ∈ Sym In particular for z = s t and ω = σ t we obtain s t ∈ T(Q) and σ t session matching for t and s t such that for all i ∈ 1, n , σ t ( i ) = σ t ( π (i) )

= σ w ( π (i) ) (because σ t and σ w coincide on L)

= ϕ( i ) (because σ |L = id)
This justi es that the following mappingψ of domain dom(σ t )∪ dom(ϕ) is well de ned

ψ |dom(σ t ) = σ t ψ |dom(ϕ) = ϕ
All in all it su cies to choose s = s t • s w since ψ is a session matching for u and s, and s ∼ u because Sym 2 is a group. Therefore there exists ϱ permutation of Ch pub such that π -1 .A ≡ Aϱ. Hence by Proposition D.7 there exists w ∈ T(Aϱ) such that w ∼ u 0 • and u 0 • σ a w for some σ a such that σ a |L = id. In particular u t • wϱ -1 by Proposition D.6 and t • wϱ -1 is therefore of the form ( ) (and its rst action is [ a ϱ -1 ] π ). Hence by hypothesis there exists s ∈ T(Q) such that s ∼ t • wϱ -1 and σ a session matching for t • wϱ -1 and s . We also let σ t and σ w the restrictions of σ to the labels of t and w, respectively. Decomposing s = s t • s w with |s t | = |t |, σ t (resp. σ w ) is a session matching for t and s t (resp. wϱ -1 and s w ). Hence we have established so far:

σ t is a session matching for t and s t σ w • σ a • π is a session matching for u 0 • and s w ϱ However this is not su cient to construct a session matching for u = t • u 0 • , among other things because the last extended process of s t (let us write it Z ) is not the same as the rst extended process of s w ϱ (which is Zϱ). This is where we use the hypothesis π -1 ∈ Sym Q 2 , which implies that π -1 ∈ Stab ϱ (Z ). In this instance of Stab ϱ (Z ), the implicit ordering of the labels of Z is the one mirroring the ordering on the labels of A: namely the labels of Z are ordered σ w ( 1 ), σ w ( 2 ) . . . , σ w ( n ). In particular in our context, the hypothesis π -1 ∈ Stab ϱ (Z ) means:

(π -1 .(Zσ -1 w ))σ w ≡ Zϱ or more succinctly:

Zϕ ≡ Zϱ -1 with ϕ = σ w • π -1 • σ -1 w
Hence by applying Proposition D.7 to the trace s w ϕ, we obtain s w ∈ T(Zϱ -1 ) such that s w ∼ s w and σ z a session matching for s w ϕ and s w such that σ z |L(Z ) = id for L(Z ) = {σ w ( ) | ∈ L} the set of labels of Z . Therefore σ z • ϕ is a session matching for s w ϱ and s w ϱ ∈ T(Z ). To conclude we choose s = s t • s w ϱ. To de ne the session matching for u and s we consider

ψ 1 = σ t ψ 2 = σ z • ϕ • σ w • σ a • π = σ z • σ w • π -1 • σ a • π
We have established that ψ 1 is a session matching for t and s t , and that ψ 2 is a session matching for u 0 • and s w . Therefore a session matching for u and s would be the matching ψ such that dom(ψ ) = dom(ψ 1 ) ∪ dom(ψ 2 ) and ψ dom(ψ 1 ) = ψ 1 and ψ dom(ψ 2 ) = ψ 2 . This function can be de ned if ψ 1 and ψ 2 coincide on dom(ψ 1 ) ∩ dom(ψ 2 ) = L. And indeed, for all i ∈ 1, n ,

ψ 2 ( i ) = σ z • σ w • π -1 • σ a ( π (i) ) (by de nition) = σ z • σ w • π -1 ( π (i) ) (because σ a |L = id) = σ z • σ w ( i ) = σ w ( i ) (because σ z |L(Z ) = id) = ψ 1 ( i ) (because σ t |L = σ w |L )
Finally we also verify that s ∼ u, in particular tr(s) = tr(u): For succinctness if w ∈ T(P) we write H (w) the property There exists s ∈ T(Q) such that tr(s) = tr(w) and a session matching for w and s. In particular the property we attempt to prove is that for all π ∈ Sym, assuming that H (u ) for all u u of the form ( ), we have H (u). We proceed by induction on a proof that π ∈ Sym. case 1: π = id.

Since Sym 1 is a group, it contains the identity and this case is already captured by the Part 1 of the proof. case 2: π = ϕ • ψ with ϕ ∈ Sym 1 ∪ Sym 2 , ψ ∈ Sym.

To apply the induction hypothesis to ψ (and thus conclude the proof) we have to prove that H (u ) for all traces u u:

u : t • (A [ a ] ψ ------→ B ) • .
Let u be such a trace. Using either Part 1 or Part 2 (depending on whether ϕ ∈ Sym 1 or ϕ ∈ Sym 2 ) we know that it su cies to prove that H (u ) for all u u of the form

u : t • (A [ a ] π ------→ B ) • .
Since is transitive all such u also verify u u, hence the conclusion by hypothesis. This is the core technical lemma to justify the correctness of our universal symmetry.

D.2.3 Compatibility with POR

So far we have provided the core argument to prove that O ∀ sym is a correct re nement of O ∀ c+i * . However it is more complex to prove it compatible with O ∀ por , i.e. with high-priority transitions and the lexicographic reduction. In essence we will have to reuse the core corectness arguments developed in Appendices C.5 and C.6 to prove their correctness, but with the handicap of applying symmetries at the same time. Proof. Since the reasoning will be the same anyway, we prove the stronger result that O ∀ sym ∩ O ∀ por is a correct re nement of O ∀ c+i * +0 . We let sym and 0 the notions of inclusion respectively induced by these two optimisations and show that they coincide. The inclusion 0 ⊆ sym is immediate. Regarding the converse inclusion, let P, Q two processes such that P sym Q and let us prove that P 0 Q. For that we prove that for all traces u ∈ T(P) ∩ O ∀ c+i * +0 , there exists u 2 ∈ T(P, Q) such that u = fst(u 2 ) ∼ snd(u 2 ). We proceed by well founded induction w.r.t. the ordering lex on compressed traces. Then by Propositions 4.9, 4.12 and 4.14 there exists ū ≡ b-por u such that ū ∈ O ∀ c+i * +0 . Since ū is maximal, by Proposition 4.16 there exists π permuting independent blocks of ū such that π . ū ∈ O ∀ por ⊆ O ∀ c+i * +0 and π . ū ≺ lex u. In particular by applying the induction hypothesis to π . ū we obtain u 2 such that π . ū = fst(u 2 ) ∼ snd(u 2 ). Hence the conclusion by Proposition C.3, since π . ū ≡ b-por u. 

Reader→

  Passport : get_challenge Passport → Reader : n Reader → Passport : senc(n, r, k) bound as x Passport → Reader : ok if sdec(x, k) = n error otherwise

D 3. 2 .

 2 An optimisation is a pair O = (O ∀ , O ∃ ) with O ∀ a set of traces of extended processes (universal optimisation), and O ∃ a set of traces of extended twin-processes (existential optimisation).

P 4. 3 .

 3 If t : A tr = ⇒ B and π permutes independent actions of tr, then A π .tr

P 4 .

 4 11 . Let t ∈ O ∀ c+i * with t = u • and u containing only proper blocks and , only improper blocks. Then for all π permuting independent blocks of u, (π .u • ) ∈ O ∀ c+i * .

P 4 .

 4 14 . Let t = u • a maximal trace, where u, ∈ O ∀ c and does not contain any high-priority transitions. Then there exists π permuting independent blocks of u such that π .u ∈ O ∀ 0 . C 4.15 . O ∀ c+i * +0 is a correct re nement of O ∀ c+i * .

  Intuitively, we say that a block b can follow an other block b n when tr(b n ) ≺ tr(b), but this test may be ignored in some cases to ensure compatibility prior optimisations. Formally, b can follow b n when (1) tr(b n ) ≺ tr(b); or (2) b n starts with a high-priority transition but not b; or (3) both b n and b start with a high-priority transition, but on different private channels.

Figure 4 :

 4 Figure 4: Experimental evaluation (D S v2.0.0, Apr. 2020)

case 2 :

 2 α 1 τ .

P C. 1 .

 1 If α || β and t : A α β = == ⇒ B, then there exists a trace u : A β α = == ⇒ B. It has the property that for all traces u 2 :

P C. 2 .

 2 If t : A tr = ⇒ B and π permutes independent actions of tr, then A π .tr

π

  .t = π 0 .u by induction hypothesis. Then we can easily extend this result to ≡ por . P C.3 . Let t : A tr = ⇒ B be a trace and t ≡ por t. Then writing tr(t ) = tr we have t : A tr = = ⇒ B and, for all u 2 : A 2 tr = = ⇒ B 2

Proof.

  By de nition, if t : A tr = ⇒ B, π .π .t is the unique trace of the form A π .π .tr = ===== ⇒ B, and (π • π ).t is the unique trace of the form A (π •π ).tr = ======= ⇒ B. Hence the result since π .π .tr = (π • π ).tr by de nition of a group action.

P C. 5

 5 (extension) . If π permutes independent actions of , π + |w | + |u | permutes independent actions of u w.

  By de nition of F and G, we have polar(B ) ∞. And by the hypothesis that b - 0 is a negative phase, its last process C has not a polarity of -∞ neither. Therefore A tr F ==⇒ B and B tr G = == ⇒ C are negative phases.

  case 2: i = n. Let us prove that b π .s n is an improper block. Since b s p = b p is improper by hypothesis, np applications of Proposition C.7 Item (1) show that the b π .s p is improper.case 3: p i < n. Let us prove that b π .s i is improper i b s i+1 is improper. Let us write, if u ∈ O ∀ c , b u i the i th block of u.If a b we also de ne the permutationπ a→b = (b b -1) • (b -1 b -2) • • • • • (a+2 a+1) • (a+1 a)with π a→a = id by convention. As a preliminary result we prove by induction on i that b π p→i .s i is improper: if i = p we have b π p→p .s p = b p which is improper, and if i > p we know that b π p→i-1 .s i is improper by induction hypothesis, hence the result since π p→i = (i i -1) • π p→i-1 and by using Proposition C.7 Item (1). We now prove the actual property, i.e. that b π .s i is improper i b s i+1 is improper. Using the preliminary result above we know that b π p→i .s i is improper. In particular, using Proposition C.7 Items (2) and (3), we obtain that b π p→i+1 i .s is improper i b π p→i .s i+1 = b s i+1 is improper. The conclusion eventually follows from the fact that b π .s i = b π p→n .s i = b π p→i+1 .s i . Conclusion: π .s contains less pending indexes than s, and the same number of improper blocks.

  s p • • • b π .s n as in b s p+1 • • • b s n , i.e. less than in b s p • • • b s n since p is a pending index in s by hypothesis.The correctness of the optimisation (Corollary 4.10) then simply follows from this proposition and Corollary 4.8.

P C. 8 .

 8 Let d ∈ Ch priv a high-priority channel in A, and a transition A α -→ B that is not an internal communication on d. Then d is high-priority in B. Proof. We use the de nition and thus let a trace of the form B tr = ⇒ C no labels of L B (d) appear in tr, and show that L B (d) = L C (d). By hypothesis the label of α does not belong to L A (d) and therefore, since d is high-priority in A and L A (d) = L B (d) by de nition, we obtain the expected conclusion by considering the trace A α -→ B tr = ⇒ C .

  t can be decomposed into t = b - 0 •u • b • for some negative phase b - 0 and u, ∈ O ∀ c such that b is a block starting with an internal communication on d with action [ τ ] | with { , } ⊆ L A (d) the block b is independent of all blocks of u.

( 1 )

 1 b i starts with an internal communication on d with action[ τ ] | with { , } ⊆ L A n (d). Hence { , } ⊆ L A (d) since L A n (d) = L A (d) because d is high-priority in A 1 = A.This implies, since b 1 contains no internal communications on d by hypothesis, that the rst transition of b i is sequentially independent-and therefore independent-of all actions of b 1 . In particular b1 || b i . (2) for all j ∈ 2, i -1 , b j || b i . Altogether it su cies to choose u = b 1 • • • b i-1 , b = b i and = b i+1 • • • b n . P 4.14 . Let t = u • a maximal trace, where u, ∈ O ∀ cand does not contain any high-priority transitions. Then there exists π permuting independent blocks of u such that π .u ∈ O ∀ 0 .

  P C.10 . Let two blocks b || b . If b cannot follow b then tr(b) ≺ tr(b ), and if b starts with a high-priority transition then b too and on the same private channel. Proof. By de nition if the block b cannot follow the block b then (1) ¬(tr(b ) ≺ tr(b)); and (2) if b starts with a high-priority transition then b too; and (3) b and b do not start with a high-priority transition on di erent channels. Hence the result, keeping in mind the assumption on that b || b implies tr(b) ≺ tr(b ) or tr(b ) ≺ tr(b). We write lex the lexicographic extension of to traces of same number of blocks, i.e. if t = b 1 • • • b n and t = b 1 • • • b n , t lex t i tr(b 1 ) ≺ tr(b 1 ) or tr(b 1 ) tr(b 1 ) b 2 • • • b n lex b 2 • • • b n

case 2 :

 2 b i-1 and b i start with a high-priority internal communication on a channel d In particular since u ∈ O ∀ 0 , d is the minimal high-priority channel among those available in A, and the block b j (which takes the same transitions as b i ) starts with a high-priority. C C.12 . Let t ∈ O ∀ c a maximal trace of the form t = u • where u ∈ O ∀ 0 O ∀ r , and ∈ O ∀ c does not contain any high-priority transitions. Then there exists π permuting independent actions of u such that π .u ≺ lex u and π .u ∈ O ∀ 0 .Proof. Consider the block decompositionu = b - 0 • b 1 • • • b n . By hypothesis u ∈ O ∀ 0 O ∀ r and we can therefore x i ∈ 2, n the minimal index such that ¬Minimal(b 1 • • • b i-1 , b i ).By Proposition C.11, π = (i -1 i) permutes independent blocks of u, π .u ≺ lex u and the rst i -1 blocks of π .u form a trace of O ∀ 0 . Besides let s consisting of the last ni + 1 blocks of π .u. By hypothesis s • is maximal and does not contain highpriority transitions: in particular by Proposition 4.14 there exists σ permuting independent blocks of s such that σ .s ∈ O ∀ 0 . Then we de ne, using the notations of the extension lemma (Proposition C.5), τ = σ +0 +i-1 • π . It permutes independent blocks of u, τ .u ≺ lex u and τ .u ∈ O ∀ 0 . P C.13 . Let t ∈ O ∀ c a maximal trace of the form t = u • where u ∈ O ∀ 0 , and ∈ O ∀ c does not contain any high-priority transitions. Then there exists π permuting independent blocks of u such that π

P D. 4 .

 4 If A ≡ B then A ∼ B, and if P

case 1 :

 1 rules (I ), (O ) or (C )

  exists u 2 : (P, Q) tr = ⇒ σ .π .A 2 = (σ • π ).A 2 such that fst(u 2 ) = t, hence π • σ ∈ Sym Q 1 . P D.11 . Sym 2 is a subgroup of S n .

Q 1 because

 1 Sym 1 is a group; in terms of session matchings this assumption can be rephrased as follows: for all z : Q tr = ⇒ Z and ω session matching for t and z, there exists z : Q tr = ⇒ Z and ω session matching for t and z such that ω |L(Z ) = ω |L(Z ) • π , where L(Z ) is the set of labels of Z .

  tr(s) = tr(s t ) • tr(w) = tr(t) • tr(u 0 • ) = tr(u)Part 2: Proof in the case π ∈ Sym 2 . We use the same initial notations for u and u 0 as in the previous Part, with in particular(u 0 • ) π : (π -1 .A [ a ] π -----→ B) • πBut by hypothesis π ∈ Sym 2 , or equivalently π -1 ∈ Sym 2 since

  tr(s) = tr(t) • tr(s w ϱ) = tr(t) • tr(w) = tr(t) • tr(u 0 • ) = tr(u) Part 3: General case. That is, π = π 1 • • • • • π n for some π 1 , . . . , π n ∈ Sym 1 ∪ Sym 2 .

  P 5.1 . O ∀ por ∩ O ∀ sym is a correct re nement of O ∀ por .

case 1 :

 1 u O ∀ porWe consider an arbitrary maximal extension u ∈ O ∀ c obtained by executing arbitrary blocks after u as long as possible.

  case 2: u ∈ O ∀ por ∩ O ∀

  We de ne O ∀ r the smallest subset of O ∀ c containing the empty trace, and such that t ∈ O ∀ r and Minimal(t, b) implies t • b ∈ O ∀ r . To account for improper blocks, we let O ∀ por the set of traces b -• t p • t i ∈ O ∀ c+i * +0 where b -is a negative phase, t p ∈ O ∀ r only contains proper blocks, and t i ∈ O ∀ r only contains improper blocks. The correctness of this optimisation is proved in Appendix C.6. P 4.16 . For all maximal traces t ∈ O ∀ c+i * +0 , there exists π permuting independent blocks of t such that π .t ∈ O ∀ por . Besides π .t ≺ lex t if t O ∀por , with lex the lexicographic extension of .The decreasing argument w.r.t. lex is not necessary to obtain correctness, but will be important to prove the compatibility with the symmetry-based optimisations presented in the next section.

C 4.17 . O ∀ por is a correct re nement of O ∀ c+i * +0 .

  is an equivalence relation on S p .

	Proof. It su cies to prove that Stab(snd(A 2 )) is a group (Re ex-
	ivity: a group of permutations contains the identity; symmetry:
	a group is closed by inverse; transitivity: a group is closed by
	composition). Consider the function (π, A) → π .A. It is a group
	action of S

p on the set of extended processes quotiented by ≡. Such an action is well-de ned since for all A, B containing p processes such that A ≡ B and all π ∈ S p , we have π .A ≡ π .B. The set Stab(A) is a stabiliser of this action, hence the conclusion.

  n-p ∈ O ∀ 0 . It therefore su cies to choose π = π 1 We use the characterisation of Corollary 4.8. Let t ∈ O ∀ c+i * and t ext an arbitrary maximal extension of t (obtained by executing transitions after t as long as it is possible). By Proposi-tions 4.9 and 4.12 there exists t i * ≡ b-por t ext such that t i * ∈ O ∀ c+i * . Let us decompose t i * as t i * = b - 0 • u • where b - 0 is a negative phase, u ∈ O ∀ c only contains proper blocks and ∈ O ∀ c only contains improper blocks. Note that t i * is maximal since t i * ≡ b-por t ext and t ext is maximal. Recall also that improper blocks never contain high-priority transitions by definition. There we can apply Proposition 4.14 to obtain π permuting independent actions of u such that π .u ∈ O ∀ 0 . Hence b - 0 • π .u • ∈ O ∀ c+i * +0 , keeping in mind Proposition 4.11.

		+0 +p • π 0
		(notation of the extension lemma, Proposition C.5).
	C	4.15 . O ∀ c+i * +0 is a correct re nement of O ∀ c+i

* .

Proof.

  t. this ordering. Proof. Let us decompose such a trace t into t : b -• t p • t i where b -is a negative phase, t p ∈ O ∀ 0 only contains proper blocks and t i ∈ O ∀ c only contains improper blocks. Besides, by maximality of t i , no high-priority channels appear in any extended process of t i (otherwise a block of t i would start with an internal communication by Proposition C.9, impossible for improper blocks). Therefore t i ∈ O ∀ 0 . We can thus apply Proposition C.13 with u = t i and = ε and we obtain π i permuting independent blocks of t i such that π i .t i ∈ O ∀ 0 ∩ O ∀ r and π t .t i lex t i . We observe that π i .t i is also maximal and does not contain any high-priority transitions. By applying Proposition C.13 again, but with u = t p and = π i .t i , we obtain π p permuting independent blocks of t p such that π p .t p ∈ O ∀ 0 ∩ O ∀ r and π t .t p lex t p . In particular, using the notations of the extension lemma (Proposition C.5), = b - 0 • π p .t p • π i .t i . There are only improper blocks in π i .t i by Proposition C.7 Item (3), and therefore π .t ∈ O ∀ c+i * by Proposition 4.11. All in all, π .t ∈ O ∀ por and π .t lex t. +0 and t ext an arbitrary, maximal extension of t obtained by executing as many transitions of t as possible. By Propositions 4.9, 4.12 and 4.14 there exists t ≡ b-por t ext such that t ∈ O ∀ c+i

	π = π p	+ |t i | +0 • π i	+0 + |t p |
	permutes independent actions of t and
	π .t C 4.17 . O ∀		

P 4.16 . For all maximal traces t ∈ O ∀ c+i * +0 , there exists π permuting independent blocks of t such that π .t ∈ O ∀ por . Besides π .t ≺ lex t if t O ∀ por , with lex the lexicographic extension of . por is a correct re nement of O ∀ c+i * +0 . Proof. Let t ∈ O ∀ c+i * * +0 . Then by Proposition 4.16 there exists u ≡ b-por t such that u ∈ O ∀ por . Hence the conclusion by Corollary 4.8.

  Besides if u and have the same initial extended process B, π |L = id for L the set of labels of B, and t : A

	P	D.5 . If π is consistent w.r.t. t then t	π tπ .
		The proof of this proposition is straightforward (≡ E and Ch
	can be replaced by syntactic equalities). An other property is:
	P u	D.6 . If u π ϱ. tr π and ϱ is a permutation of Ch pub then

  addition, since the frames of almost identical traces are equal modulo theory and renaming of private names, a block is proper i an almost identical block is. All in all:

	P	D.8 . If u	then u ∈ O ∀ c+i * i	∈ O ∀ c+i

* .

This is the technical report of the conference paper[START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF]. It contains technical proofs and generalised results, including the features of the D

S 2.0 release (Jan. 2020). Signi cant experimental improvements can thus be observed compared to[START_REF] Cheval | Exploiting symmetries when proving equivalence properties for security protocols[END_REF], mostly due to the new optimisations and a more e cient implementation of the data structures. We also provide a di erent running example for a complementary presentation.

sym

Then the conclusion follows from the hypothesis P sym Q. sym . Let 1 , . . . , k be the labels A and the label of its rst action. case 3a: the rst action of b is an input.

We write = i 0 . Referring to the notations of the de nition of O ∀ sym we let π ∈ Sym such that π (i 0 ) = min Orb(i 0 ) .

The conclusion will follow from Proposition D.12 provided we manage to comply with its hypothesis. Thus let u u a trace of the following form

, therefore no high-priority transitions are available at the start of b, i.e. in A (since the rst transition of b is an input and can therefore not be high-priority). Therefore

. On the other hand there are no guarantees that high-priority transitions are respected in u 2 ; however by Proposition 4.14 we can x π permuting independent blocks of u 2 such that π .u 2 ∈ O ∀ c+i * +0 . In particular if u = u 1 • b π .u 2 we have u ∈ O ∀ c+i * +0 but also and u ≺ lex u because tr(b ) ≺ tr(b) by de nition of π . By the induction hypothesis applied to u we therefore obtain u 2 such that u = fst(u 2 ) ∼ snd(u 2 ). Using Proposition C.3 we then obtain 2 such that u = fst( 2 ) ∼ snd( 2 ). Hence the expected conclusion by Proposition A.1. case 3b: the rst action of b is an internal communication.

We write = i 0 | i 1 where the label of the input is i 0 . Referring to the notations of the de nition of O ∀ sym we let π ∈ Sym such that

Like the previous case we want to conclude by using Proposition D.12. Let u u a trace of the following form

where the rst action of b is on the label π (i 0 ) | π (i 1 ) . We recall that by de nition Orb(i 0 , i 1 ) ⊆ IO and therefore that an internal communication at label π (i 0 ) | π (i 1 ) respects highpriority transitions. In particular u 1 • b ∈ O ∀ c+i * +0 (using Proposition D.8 again). Besides, using a similar reasoning as in the case 3a we also obtain that u ∈ O ∀ c+i * and a π permuting independent blocks of u 2 such that u

. The conclusion of the reasoning is then similar, applying the induction hypothesis to u and then Propositions A.1 and C.3.

D.3 Existential symmetries

In this section we prove the existential optimisation:

However although the formalism of twin traces makes the formalisation of the optimisation more conceit as a simple restriction of rule (M ), we found it easier to prove it correct using the formalism of session matchings; that is, the optimisation rather consists of reducing the potential number of session matchings considered for a trace. Let us thus rst state it in this paradigm.

Let t ∈ T(P) a trace and an instance of rule (P ) in t:

We also let t ∈ T(Q) such that tr(t) = tr(t ) and assume that there exists a session matching σ for t and t . In particular t contains a unique application of rule (P ) of the form

for some π ∈ S n and σ

and say that σ is well formed on if π is minimal in its equivalence class for ∼ (w.r.t. an arbitrary xed ordering on S n ). We say that σ is well formed when it is well formed on all labels on which an application of rule (P ) has been performed in t. In particular we obtain the following characterisation of O ∃ sym by Proposition A.1: P D.13 . The following statements are equivalent for all processes P, Q (1) ∀t ∈ T(P), ∃t 2 ∈ T(P, Q) ∩ O ∃ sym , t = fst(t 2 ) ∼ snd(t 2 ) (2) for all t ∈ T(P), there exists t ∈ T(Q) and σ a well formed session matching for t and t such that t ∼ t

In the remaining of the section we therefore focus on proving that the second item is equivalent to P s Q. For that we rely again on the results of Appendix D.1. P D.14 . The following statements are equivalent for all processes P, Q (1) P s Q (2) for all t ∈ T(P), there exists t ∈ T(Q) and σ a well formed session matching for t and t such that t ∼ t

Proof. The implication (2) ⇒ (1) is immediate. Conversely we assume (1), let t ∈ T(P) and thus t ∈ T(Q) such that t ∼ t and σ 0 a session matching for t and t . We now construct s ∈ T(Q) and σ a well formed session matching for t and s. We proceed by (decreasing) induction on the number of transitions of t before the rst (P ) transition on a label the matching σ 0 is not well formed on. If there are none σ 0 is well formed and it su cies to choose s = t and σ = σ 0 . Otherwise let be the rst such label. We write t = t 0 • p • t 1 with p the transition

Similarly we write t = t 0 • p • t 1 with p the transition

We let u ∈ Stab(A) such that π 0 = π •u is minimal in its equivalence class for ∼. By de nition of Stab(A) we have in particular π -1 .A ≡ π -1 0 .A. Therefore by Proposition D.7 we know that there exists s 1 ∈ T(π -1 0 .A) and a session matching σ 1 for t 1 and s 1 such that t 1 ∼ s 1 and σ 1 ( ) = for all labels ∈ L the set of labels appearing in A. In particular we consider the trace

• s 1 and σ the label permutation de ned by σ ( ) = σ 0 ( ) if label of t 0 • p σ ( ) = σ 1 • σ 0 ( ) if label of t 1 Since σ 0 and σ 1 coincide on L, σ is well de ned a session matching for t and s . Besides it is well formed on (and on all labels appearing before in the trace t). Hence we can apply the induction hypothesis to s and σ which gives the expected trace s and session matching σ .