
HAL Id: hal-02267866
https://hal.science/hal-02267866v2

Preprint submitted on 27 Aug 2019 (v2), last revised 17 Apr 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting symmetries when proving equivalence
properties for security protocols (Technical report)

Vincent Cheval, Steve Kremer, Itsaka Rakotonirina

To cite this version:
Vincent Cheval, Steve Kremer, Itsaka Rakotonirina. Exploiting symmetries when proving equivalence
properties for security protocols (Technical report). 2019. �hal-02267866v2�

https://hal.science/hal-02267866v2
https://hal.archives-ouvertes.fr


Exploiting symmetries when proving equivalence properties

for security protocols (Technical report)

Vincent Cheval, Steve Kremer, Itsaka Rakotonirina
INRIA Nancy Grand-Est & LORIA

ABSTRACT

Veri�cation of privacy-type properties for cryptographic protocols
in an active adversarial environment, modelled as a behavioural
equivalence in concurrent-process calculi, exhibits a high compu-
tational complexity. While undecidable in general, for some classes
of common cryptographic primitives the problem is coNEXP-
complete when the number of honest participants is bounded.

In this paper we develop optimisation techniques for verifying
equivalences, exploiting symmetries between the two processes
under study. We demonstrate that they provide a signi�cant (sev-
eral orders of magnitude) speed-up in practice, thus increasing the
size of the protocols that can be analysed fully automatically.

1 INTRODUCTION

Security protocols are distributed programs transmitting data be-
tween several parties. The underlying messages may be sensitive—
for economical, political, or privacy reasons—and communications
are usually performed through an untrusted network such as the
Internet. Therefore, such protocols need to guarantee strong secu-
rity requirements in an active adversarial setting, i.e., when con-
sidering an adversary that has complete control over the com-
munication network. Formal, symbolic methods, rooted in the
seminal work of Dolev and Yao [DY81], have been successful in
analysing complex protocols, including for instance the recent
TLS 1.3 proposal [BBK17, CHH+17] and the upcoming 5G stan-
dard [BDH+18b].

While some security properties can be formalised as reachabil-
ity statements, privacy related properties are generally de�ned as
the indistinguishability of two situations where the value of a pri-
vate attribute di�ers. This is why privacy-type properties such as
anonymity, (strong �avors of) secrecy, unlinkability, or privacy in
e-voting are often modelled as behavioural equivalences in con-
current process calculi, such as the applied pi-calculus [ABF18].
The problem of verifying such equivalences is undecidable in the
full, Turing-complete, calculus. Still, decidability results and fully
automated analysers exist when the number of protocol sessions
is bounded.

Unfortunately, recent results [CKR18a] show that the prob-
lem has a high computational worst-case complexity (coNEXP-
complete). Yet, other results show that the problem is exponen-
tially simpler (coNP-complete) for a class of practical scenarios
(determinate processes) [CD09]. This gap is all the more striking
in practice as, for determinate processes, the veri�cation time can
e�ectively be reduced by several orders of magnitude using partial-
order reductions [BDH15, CKR18b]. This highlights the gap be-
tween the general, pessimistic complexity bound and what can be

achieved by exploiting speci�cities of given instances. In practice,
the processes that are analysed show a great amount of symme-
tries as they often consist of several copies (sessions) of the same
protocol executed in parallel. Exploiting this helps factoring out
large, redundant parts of equivalence proofs, and making theoret-
ically hard veri�cation feasible in practice.

Contributions

We present optimisations for the veri�cation of trace equivalence
in the applied pi-calculus. For that we exploit the symmetries of
the two processes to be shown equivalent. More speci�cally, our
contributions are as follows.
(1) We introduce equivalence by session, a new process equiva-

lence that implies the classical trace equivalence. Intuitively, it
is a re�nement of trace equivalence designed for two processes
sharing a similar structure, making veri�cation easier.

(2) We show how partial-order reductions presented in [BDH15]
for determinate processes, can be used for proving equivalence
by session for any processes.

(3) We give a group-theoretic characterisation of internal process
redundancy, inspired by classical formalisations of symmetries
in model checking [ES96], and use it to reduce further the com-
plexity of deciding equivalence by session.

(4) We design a symbolic version of the above equivalence and op-
timisations, based on the constraint solving techniques of the
DeepSec prover [CKR18b], a state-of-the-art tool for verifying
equivalence properties in security protocols. This allowed us
to implement our techniques in DeepSec and evaluate the gain
in veri�cation time induced by our optimisations.

Note that, while we designed equivalence by session as an e�-
cient proof technique for trace equivalence it is also of independent
interest: to some extent, equivalence by session models attackers
that can distinguish di�erent sessions of a same protocol. This may
be considered realistic when servers allocate a distinct ephemeral
port for each session; in other contexts, e.g. RFID communication
this may however be too strong. When equivalence by session is
used as a proof technique for trace equivalence, false attacks are
possible, as it is a sound, but not complete, re�nement. However,
on the existing protocols we experimented on, when equivalence
by session was violated, trace equivalence was violated as well.

Our prototype is able to successfully analyse various security
protocols that are currently out of scope—in terms of expressivity
or exceeding a 12h timeout—of similar state-of-the-art analysers.
We observe improvements of several orders of magnitude in terms
of e�ciency, compared to the original version of DeepSec. Among
the case studies that we consider are

1



the Basic Acces Control (BAC) protocol [For04] implemented in
European e-passports. In previous work, veri�cation was lim-
ited to merely 2 sessions, while we scale up to 5 sessions.
theHelios e-voting protocol [Adi08]. Automated analyses of this
protocol exist when no revote is allowed, or is limited to one
revote from a honest voter [ACK16, CKR18a]. In this paper, we
analyse several models covering revote scenarios for 7 emitted
honest ballots.
This document is the technical report of the conference paper

[CKR19]. It contains full technical proofs and generalised results,
as well as a di�erent running example to provide a complementary
presentation.

Related work

Partial-order reductions (por) for the veri�cation of cryptographic
protocols were �rst introduced by Clark et al. [CJM03]: while well
developed in veri�cation of reactive systems these existing tech-
niques do not easily carry over to security protocols, mainly due
to the symbolic treatment of attacker knowledge. Mödersheim et
al. [MVB10] proposed por techniques that are suitable for symbolic
methods based on constraint solving. However, both the tech-
niques of Clark et al. [CJM03] and Mödersheim et al. [MVB10] are
only correct for trace properties.

Partial order reductions for equivalence properties were only
introduced more recently by Baelde et al. [BDH14, BDH15]: im-
plementing these techniques in the APTE tool resulted in spec-
tacular speed-ups. Other state-of-the-art tools, AKISS [CCCK16]
and DeepSec [CKR18a], integrated these techniques as well. How-
ever, these existing techniques are limited in scope as they require
protocols to be determinate. Examples of protocols that are typi-
cally not modelled as determinate processes are the BAC protocol,
and the Helios e-voting protocol mentioned above. In recent work,
Baelde et al. [BDH18a] propose por techniques that also apply to
non-determinate processes (but do not support private channels)
and implement these techniques in the DeepSec tool. Unfortu-
nately, these techniques introduce a computational overhead, that
tends to limit the e�ciency gain. As our experiments will show,
our techniques, although including some approximations, signi�-
cantly improve e�ciency.

There exist other tools for the veri�cation of equivalence prop-
erties in the case of a bounded number of sessions. The SAT-
Eqiv tool [CDD17] is extremely e�cient, but its scope is more
narrow: it does not support user-de�ned equational theories and
is restricted to determinate processes. As shown in [CKR18a],
AKISS [CCCK16] and SPEC [TNH16] were already less e�cient
(by orders of magnitude) than DeepSec before our current work.
We also mention the less recent S3A tool [DSV03] that veri�es test-
ing equivalence in the SPI calculus and integrates some symmetry
(but no partial-order) reductions [CDSV04]. The tool however only
supports a �xed equational theory and no else branches. We are
not aware of a publicly available implementation.

Our approach can also be compared to tools for an unbounded
number of sessions. The ProVerif [BAF08], Tamarin [BDS15]
and Maude-NPA [SEMM14] tools all show a process equivalence
that is more �ne-grained than trace equivalence. The resulting

equivalence is often referred to as di�-equivalence in that it re-
quires that equivalent processes follow the same execution �ow
and only di�er on the data. As a result these techniques may fail
to prove equivalence of processes that are trace equivalent. Our
approach goes in the same direction but equivalence by session is
less �ne-grained, for example capturing equivalence proofs for the
BAC protocol. A detailed comparison between these two equiva-
lences is given in Section 3.1. Besides, the restriction to a bounded
number of sessions allows us to decide equivalence by session,
while termination is not guaranteed in the unbounded case.

2 MODEL

We �rst present our model for formalising privacy-type proper-
ties of security protocols, represented by trace equivalence of pro-
cesses in the applied-pi calculus [ABF18].

2.1 Messages and cryptography

In order to analyse protocols, we rely on symbolic models rooted
in the seminal work of Dolev and Yao [DY81]. Cryptographic op-
erations are modelled by a �nite signature, i.e., a set of function
symbols with their arity F = {f/n, g/m, . . .}. Atomic data such as
nonces, random numbers, or cryptographic keys are represented
by an in�nite set of names

N = {a,b,k, . . .} = Npub ∪ Npriv

partitioned into public and private names. We also consider an in-
�nite set of variablesX = {x,y, z, . . .}. Protocol messages are then
modelled as terms obtained by application of function symbols to
names, variables or other terms. If A ⊆ N ∪ X, T(F ,A) refers to
the set of terms built from atoms in A.

Example 2.1. The following signature models the classical primi-
tives of pairs, randomised symmetric encryption, and their inverse:

F = { 〈·, ·〉/2, proj1/1, proj2/1, senc/3, sdec/2 }

For example, let m ∈ Npub , and k, r ∈ Npriv modelling a private
key and a random nonce, respectively. The term

c = senc(m, r ,k)

models a ciphertext obtained by encrypting m with the key k and
randomness r , and sdec(c,k) models its decryption. 4

An equational theory is a binary relation E on terms. It is ex-
tended to an equivalence relation =E that is the closure of E by
re�exivity, symmetry, transitivity, substitution and applications of
function symbols. All the optimisations we present in this paper
are sound for arbitrary equational theories although, obviously,
the implementation in DeepSec naturally inherits the restrictions
of the tool (limited to destructor subterm convergent rewriting sys-
tems). The following equations characterise the behaviour of the
primitives introduced in Example 2.1:

proji (〈x1, x2〉) =E xi sdec(senc(x,y, z), z) =E x

That is, a message encrypted with a key k can be recovered by de-
crypting using the same key k . With the notations of Example 2.1,
we can derive from these equations that sdec(c,k) =E m.

2



A substitution σ is a mapping from variables to terms, homo-
morphically extended to a function from terms to terms. We use
the classical post�x notation tσ instead of σ (t), and the set nota-
tion σ = {x1 7→ x1σ , . . . , xn 7→ xnσ }.

2.2 Protocols as processes

Syntax Protocols are modelled as concurrent processes that ex-
change messages (i.e. terms). We de�ne the syntax of plain pro-
cesses by the following grammar:

P,Q := 0 null
P | Q parallel
if u = v then P else Q conditional
c 〈u〉.P output
c(x).P input

where u,v are terms, x ∈ X, and c ∈ Ch where Ch denotes a set of
channels. We assume a partition Ch = Chpub ∪ Chpriv of channels
into public and private channels: while public channels are under
the control of the adversary, private channels allow con�dential,
internal communications. The 0 process is the terminal process
which does nothing, the operator P | Q executes P and Q concur-
rently, c 〈u〉 sends a message u on channel c , and c(x) receives a
message (and binds it to the variable x ).

We highlight the two restrictions compared to the calculus
of [ABF18]: we only consider a bounded number of protocol ses-
sions (i.e. there is no operator for unbounded parallel replication)
and channels are modelled by a separate datatype (i.e. they are
never used as parts of messages). The �rst restriction is neces-
sary for decidability [CCCK16, TNH16, CKR18a] but still allows
to detect many �aws since attacks tend to require a rather small
number of sessions. Our optimisations also rely on an invariant
that private channels remain unknown to the adversary, hence the
restriction to disallow channel names in messages.

Example 2.2. We describe a toy protocol that will serve as a run-
ning example throughout the paper. This is a simpli�cation of the
BAC protocol implemented in the European e-passports. The sys-
tem builds upon the signature and equational theory introduced in
Example 2.1. In a preliminary phase, a reader obtains the private
key k of a passport, and then they communicate as follows:

Reader → Passport : get_challenge

Passport → Reader : n

Reader → Passport : senc(n, r ,k) bound as x
Passport → Reader : ok if sdec(x,k) = n

error otherwise

where n, r ∈ Npriv and get_challenge, ok, error ∈ Npub . In par-
ticular, the passport triggers an error when it receives a commu-
nication originated from a reader that has not the right key k , i.e.
a reader that has been paired with an other passport during the
preliminary phase. In the applied pi-calculus, they are modelled
by the following processes

R(k, r ) = c 〈get_challenge〉.

c(xn ). c 〈senc(xn, r ,k)〉. 0

P(k,n) = c(x0). if x0 = get_challenge then

c 〈n〉. c(x).

if sdec(x,k) = n then c 〈ok〉. 0
else c 〈error〉. 0 4

Semantics The behaviour of protocols is de�ned by an opera-
tional semantics on processes. Its �rst ingredients are simplifying
rules to normalise processes from non-observable, deterministic
actions (Figure 1).

P | 0 P 0 | P  P (P | Q) | R P | (Q | R)

P | Q  P ′ | Q
Q | P  Q | P ′

}
if P  P ′

if u = v then P elseQ  
{

P if u =E v
Q otherwise

Figure 1: Simpli�cation rules for plain processes

These simplifying rules get rid of 0 processes, and evaluate con-
ditionals at toplevel. We say that a process on which no more rule
applies is in -normal form. By convergence, we will denote by
P

 

the unique -normal form of P .
The operational semantics then operates on extended processes

(P,Φ), where P is a multiset of plain processes (in  -normal
form) and Φ is a substitution, called the frame. Intuitively, P is
the multiset of processes that are ready to be executed in parallel,
and Φ is used to record outputs on public channels. The domain of
the substitution Φ is a subset of a set AX of axioms, disjoint from
X: they record the raw observations of the attacker, that is, they
are the axioms in intruder deduction proofs. The semantics (Fig-
ure 2) takes the form of a labelled transition relation

α
−→ between

extended processes, where α is called an action and indicates what
kind of transition is performed.

The output rule (Out) models that outputs on a public channel
are added to the attacker knowledge, i.e., stored in Φ in a fresh ax-
iom. The axioms thus provide handles for the attacker to refer to
these outputs. The input rule (In) reads a term ξ , called a recipe
provided by the attacker, on a public channel. This term ξ can
be e�ectively constructed by the attacker as it is built over public
names and elements of dom(Φ), i.e. previous outputs. The resulting
term is then bound to the input variable x . Rule (Comm) models
internal communication on a private channel and rule (Par) adds
processes in parallel to the multiset of active processes. These last
two actions are internal actions (label τ ), unobservable by the at-
tacker.

Traces A trace of an extended process A is a sequence of reduc-
tion steps starting from the extended process A

t : A
α1
−−→ A1

α2
−−→ · · ·

αn
−−→ An .

When the intermediate processes are not relevant we write

t : A
α1 · · ·αn
======⇒ An .

3



(Out) ({{c 〈u〉.P}} ∪ P,Φ)
c 〈ax〉
−−−−−→ ({{P

 

}} ∪ P,Φ ∪ {ax 7→ u}) c ∈ Chpub, ax ∈ AX r dom(Φ)

(In) ({{c(x).P}} ∪ P,Φ)
c(ξ )
−−−→ ({{P[x 7→ ξΦ]

 

}} ∪ P,Φ) c ∈ Chpub, ξ ∈ T (F ,Npub ∪ dom(Φ))

(Comm) ({{c 〈u〉.P, c(x).Q}} ∪ P,Φ)
τ
−→ ({{P,Q[x 7→ u]}} ∪ P,Φ) c ∈ Chpriv

(Par) ({{P1 | . . . | Pn }} ∪ P,Φ)
τ
−→ ({{P1, . . . , Pn }} ∪ P,Φ)

Figure 2: Operational semantics of the applied pi-calculus

We de�ne tr(t) to be the word of actions α1 · · ·αn (including τ ’s),
and Φ(t) to be the frame of An . The set of the traces of A is written
T(A), and the notation is extended to plain processes by writing
T(P) for T({{P}},�).

Example 2.3. Consider again the access-control protocol described
in Example 2.2. Let S = ({{P(k,n),R(k ′, r )}}, �), with k,k ′,n, r ∈
Npriv , a system consisting of a passport and a reader in parallel.
The system has the following trace:

S
c 〈ax0 〉
−−−−−→ ({{P(k,n),R0(k

′, r )}},Φ0)

c(get_challenge)
−−−−−−−−−−−−−−−−−→ ({{P0(k,n),R0(k

′, r )}}, Φ0)

c 〈ax1 〉
−−−−−→ ({{P1(k,n),R0(k

′, r )}}, Φ0 ∪ Φ1)

c(ax1)
−−−−−→ ({{P1(k,n), c 〈senc(n, r ,k ′)〉}}, Φ0 ∪ Φ1)

c 〈ax2 〉
−−−−−→ ({{P1(k,n), 0}}, Φ0 ∪ Φ1 ∪ Φ2)

c(ax2)
−−−−−→ ({{c 〈α〉, 0}}, Φ0 ∪ Φ1 ∪ Φ2)})

with

Φ0 = {ax0 7→ get_challenge}

Φ1 = {ax1 7→ n}

Φ2 = {ax2 7→ senc(n, r ,k ′)}

P(k,n) = c(x0). if x0 = get_challenge then P0(k,n)

P0(k,n) = c 〈n〉. P1(k,n)

R(k ′, r ) = c 〈get_challenge〉.R0(k
′, r )

and α = ok if k = k ′, and α = error if k , k ′. Note that the input
action c(get_challenge) could be replaced by c(ax0). 4

2.3 Security properties

Many security properties can be expressed in terms of indistin-
guishability (from the attacker’s viewpoint). The preservation of
anonymity during a protocol execution can for example be mod-
elled as the indistinguishability of two instances of the protocol
with di�erent participants. Strong �avors of secrecy can also be
expressed: after interacting with the protocol, the attacker is still
unable to distinguish between a secret used during the protocol
and a fresh random nonce. Our case studies also include such mod-
ellings of unlinkability or vote privacy.

Static equivalence The ability to distinguish or not between
two situations lies on the attacker’s observations, i.e. the frame.

Indistinguishability of two frames is captured by the notion of
static equivalence. Intuitively, we say that two frames are stati-
cally equivalent if the attacker cannot craft an equality test that
holds in one frame and not in the other.

Definition 2.1 . Two frames Φ1 and Φ2 are statically equivalent,
written Φ1 ∼ Φ2 when dom(Φ1) = dom(Φ2) and, for any recipes
ξ1, ξ2 ∈ T (F ,Npub ∪ dom(Φ1)),

ξ1Φ1 =E ξ2Φ1 ⇔ ξ1Φ2 =E ξ2Φ2

We lift static equivalence to traces and write t0 ∼ t1 when
Φ(t0) ∼ Φ(t1) and tr0 = tr1, where tri is obtained by removing
τ ’s from tr(ti ). Removing τ actions re�ects that these actions are
unobservable by the attacker.

Trace equivalence While static equivalence models the (pas-
sive) indistinguishability of two sequences of observations, trace
equivalence captures the indistinguishability of two processes P
and Q in the presence of an active attacker. Intuitively, we require
that any sequence of visible actions executable on P is also exe-
cutable on Q and yields indistinguishable outputs, i.e., statically
equivalent frames.

Definition 2.2 . Let P,Q be plain processes in -normal form. P
is trace included in Q , written P vtr Q , when

∀t ∈ T(P), ∃t ′ ∈ T(Q), t ∼ t ′ .

We say that P and Q are trace equivalent, written P ≈tr Q , when
P vtr Q and Q vtr P .

Example 2.4. Consider again the model of passport and reader in-
troduced in Example 2.2, and let us write

S(k,n, r ) = P(k,n) | R(k, r )

a system consisting of a passport and a reader in parallel with a
shared key k . The unlinkability property can be stated by the in-
ability for the attacker to distinguish between two copies of the
same passport interacting with readers, and two di�erent pass-
ports. That is,

S(k,n, r ) | S(k,n′, r ′) ≈tr S(k,n, r ) | S(k
′,n′, r ′)

with k,k ′,n,n′, r , r ′ ∈ Npriv pairwise distinct. The inclusion
S(k,n, r ) | S(k,n′, r ′) vtr S(k,n, r ) | S(k ′,n′, r ′) indeed holds.
However, this model of unlinkability is violated in that the con-
verse inclusion does not hold. Indeed in the right-hand-side pro-
cess, making a reader interact with the wrong passport produces

4



an error message, which is not the case in the left-hand side (since
the two systems share the same key). Formally, T(S(k,n, r ) |
S(k ′,n′, r ′)) contains a trace t such that

tr(t) = τ c 〈ax0〉 c(ax0) c 〈ax1〉 c(ax1) c 〈ax2〉 c(ax2) c 〈ax3〉

Φ(t) = {ax0 7→ get_challenge, ax1 7→ n,

ax2 7→ senc(n, r ′,k ′), ax3 7→ error} 4

3 OPTIMISING VERIFICATION

The problem of verifying trace equivalence in the presented model
is coNEXP-complete for equational theories represented as sub-
term convergent destructor rewrite systems [CKR18a]. Despite
this high theoretical complexity, automated analysers can take
advantage of the speci�cities of practical instances. One no-
table example is the class of determinate processes that encom-
passes many practical scenarios and has received quite some atten-
tion [CD09, BDH15, CCCK16, CKR18b]. It allows for partial-order
reductions [BDH15], speeding up the veri�cation time by several
orders of magnitude. Our approach, similar in spirit but applicable
in a more general setting, consists in guiding the decision proce-
dure with the structural similarities of the two processes that we
aim to show equivalent.

3.1 Equivalence by session

We introduce a new equivalence relation, equivalence by session:
the main idea is that, when proving the equivalence of P andQ , ev-
ery action of a given parallel subprocess of P should be matched by
the actions of a same subprocess inQ . This is indeed often the case
in protocol analysis where a given session (the execution of an in-
stance of a protocol role) on one side is matched by a session on the
other side. By requiring to match sessions rather than individual
actions, this yields a more �ne-grained equivalence and e�ectively
reduces the combinatorial explosion. Moreover, thanks to the op-
timisations that exploit the structural properties of equivalence by
session (presented in the following sections), we obtain signi�cant
speed-ups during the veri�cation of case studies that are neither
determinate nor in scope of the (even more �ned-grained) di�-
equivalence of ProVerif and Tamarin.

Twin processes To formalise session matchings we use a notion
of twin-process, that are pairs of matched processes that have the
same action at toplevel, called their skeleton.

Definition 3.1 . A twin-process is a pair of plain processes in -
normal form (P,Q) such that skel(P) = skel(Q), where

if c ∈ Chpub: skel(c(x).Q)= {{inc }} skel(c 〈x〉.Q)= {{outc }}
if d ∈ Chpriv : skel(d(x).Q)= {{in}} skel(d 〈x〉.Q)= {{out}}

skel(P1 | · · · | Pn ) = skel(P1) ∪ . . . ∪ skel(Pn )

An extended twin-process A2 = (P2,Φ0,Φ1) is then a triple
where P2 is a multiset of twin-processes and Φ0,Φ1 are frames.
This thus models two extended processes with identical skeletons,
matched together. We retrieve the original extended processes by

projection,

fst(A2) = ({{P0 | (P0, P1) ∈ P
2}},Φ0)

snd(A2) = ({{P1 | (P0, P1) ∈ P
2}},Φ1)

The semantics of twin-processes is de�ned in Figure 3 and
mostly requires that the two projections follow the same reduction
steps in the single-process semantics. The rule (Par) is however
replaced by a rule that allows to match each parallel subprocess
from the left with a parallel process from the right. We underline
that, by de�nition of twin-processes, a transitionA2 α

−→s (P
2,Φ) is

possible only if for all (P,Q) ∈ P2, it holds that skel(P) = skel(Q).
Similarly to extended processes, we use T(A2) to denote the set

of reduction steps from an extended twin-process A2. Besides if

t2 : A2 α1
−−→s A

2
1 · · ·

αn
−−→s A

2
n ∈ T(A2

1) ,

we also lift the projection functions by writing

fst(t2) : fst(A2)
α1
−−→s fst(A2

1) · · ·
αn
−−→s fst(A2

n+1)

and similarly for snd(t2). Note that fst(t2) ∈ T(fst(A2)).

Equivalence by session Equivalence by session is similar to
trace equivalence but only considers the traces of Q matching the
structure of the trace of P under study. This structural requirement
is formalised by considering traces of the twin-process (P,Q). For-
mally speaking, given two plain processes P and Q in -normal
form having the same skeleton, we write P vs Q when

∀t ∈ T(P), ∃t2 ∈ T(P,Q), t = fst(t2) ∼ snd(t2) .

We say that P and Q are equivalent by session, referred as P ≈s Q ,
when P vs Q and Q vs P .

While equivalence by session has been designed to increase e�-
ciency of veri�cation procedures, it is also of independent interest.
Equivalence by session captures a notion of indistinguishability
against an adversary that is able to distinguish actions which orig-
inate from di�erent protocol sessions. Such an adversarial model
may for instance be considered realistic in protocols where servers
dynamically allocate a distinct ephemeral port to each session. An
attacker would therefore observe these ports and always di�eren-
tiate one session from another. When considering equivalence by
session, this allocation mechanism does not need to be explicitly
modelled as it is already re�ected natively in the de�nition. On
the contrary for trace equivalence, an explicit modelling within
the processes would be needed. For example equivalence by ses-
sion of two protocol sessions operating on a public channel c ,

P(c) | P(c) ≈s Q(c) | Q(c)

could be encoded by relying on dynamically-generated private
channels that are revealed to the attacker. This can be expressed
in the original syntax of the applied pi-calclulus [ABF18] as:

Pfresh | Pfresh ≈tr Qfresh | Qfresh

where Pfresh = new e . c 〈e〉. P(e), Qfresh = new e . c 〈e〉.Q(e). Such
encodings however break determinacy and are thus incompati-
ble with the partial-order reductions of [BDH15]. Our dedicated
equivalence o�ers similar-in-spirit optimisations that are applica-
ble on all processes .

5



({{Pi }},Φi )
α
−→ ({{P ′i }},Φ

′
i ) by rule (In) or (Out) for all i ∈ {0, 1}

({{(P0, P1)}} ∪ P
2,Φ0,Φ1)

α
−→s ({{(P

′
0, P
′
1)}} ∪ P

2,Φ′0,Φ
′
1)

(IO)

({{Pi ,Qi }},Φi )
τ
−→ ({{P ′i ,Q

′
i }},Φi ) by rule (Comm) for all i ∈ {0, 1}

({{(P0, P1), (Q0,Q1)}} ∪ P
2,Φ0,Φ1)

τ
−→s ({{(P

′
0, P
′
1), (Q

′
0,Q
′
1)}} ∪ P

2,Φ0,Φ1)
(Comm)

π permutation of n1,no
({{(P1 | · · · | Pn, Q1 | · · · | Qn )}} ∪ P

2,Φ0,Φ1)
τ
−→s ({{(Pi ,Qπ (i))}}

n
i=1 ∪ P

2,Φ0,Φ1)
(Match)

Figure 3: Semantics on twin-processes

3.2 Comparison to other equivalences

Relation to trace equivalence We �rst show that equivalence
by session is a sound re�nement of trace equivalence.

Proposition 3.1 . If P ≈s Q then P ≈tr Q .

This is immediate as t2 ∈ T(P,Q) entails snd(t2) ∈ T(Q). The
converse does not hold in general, meaning that two processes that
are not equivalent by session might be trace equivalent. The sim-
plest example is, for n ∈ Npub ,

P = c 〈n〉. c 〈n〉 Q = c 〈n〉 | c 〈n〉

We call false attacks traces witnessing a violation of equivalence
by session, but that can still be matched trace-equivalence-wise.
In this example even the empty trace is a false attack since the two
processes fail to meet the requirement of having identical skele-
tons. Such extreme con�gurations are however unlikely to occur
in practice: privacy is usually modelled as the equivalence of two
protocol instances where some private attributes are changed. In
particular the overall structure in parallel processes remains com-
mon to both sides.

More realistic false attacks may arise when the structural re-
quirements of equivalence by session are too strong, i.e. when
matching the trace requires mixing actions from di�erent sessions.
Consider for example the two processes

P = s 〈n〉. a〈n〉 | s(x).b〈n〉 Q = s 〈n〉.b〈n〉 | s(x). a〈n〉

with a,b ∈ Chpub and s ∈ Chpriv . These processes �rst synchro-
nise on a private channel s by the means of an internal communi-
cation, and then perform two parallel outputs on public channels
a,b. They are easily seen trace equivalent. However the skeletons
at toplevel constrain the session matchings, i.e. the application of
rule (Match). Hence any trace executing an output on a or b is a
false attack.

Finally false attacks cannot happen for determinate processes,
i.e. the class of processes for which the partial-order reductions of
[BDH15] were designed. A plain process P is determinate if it does
not contain private channels and,

∀P
tr
=⇒ ({{P1, . . . , Pn }},Φ), ∀i , j, skel(Pi ) , skel(Pj ) .

Proposition 3.2 . If P,Q are determinate plain processes such that
P ≈tr Q then P ≈s Q .

The core argument is the uniqueness of session matchings; that
is, there is always at most one permutation that can be chosen
when applying the rule (Match) to a pair of determinate processes.
The proof can be found in Appendix B: thanks to the structural re-
quirements imposed by skeletons, we even prove that trace equiv-
alence (≈tr ) and inclusion by session (vs) coincide for determinate
processes.

Relation to di�-equivalence ProVerif, Tamarin and Maude-
NPA are semi-automated tools that can provide equivalence proofs
for an unbounded number of protocol sessions. For that they rely
on another re�nement of trace equivalence, called di�-equivalence
(≈d ). It relies on a similar intuition as equivalence by session,
adding (much stronger) structural requirements to proofs. To
prove di�-equivalence of P and Q , one �rst requires that P and
Q have syntactically the same structure and that they only di�er
by the data (i.e. the terms) inside the process. Second, any trace of
P must be matched in Q by the trace that follows exactly the same
control �ow. Consider for example

P = c 〈u〉 | c 〈v〉 | R Q = c 〈u ′〉 | c 〈v ′〉 | R′

For P and Q to be di�-equivalent, traces of P starting with c 〈u〉
need to be matched by traces of Q starting with c 〈u ′〉.

In the original de�nition of di�-equivalence in [BAF05] the con-
ditional branchings were also required to result into the same
control-�ow. This condition has however been relaxed within
[CB13]: the resulting di�-equivalence can be de�ned in our for-
malism as equivalence by session in which the rule (Match) only
performs the identity matching. That is, if we write Td (P,Q) for
the subset of traces of T(P,Q) where rule (Match) is replaced by

({{(P1 | · · · | Pn,Q1 | · · · | Qn )}} ∪ P
2,Φ0,Φ1)

τ
−→s ({{(Pi ,Qi )}}

n
i=1 ∪ P

2,Φ0,Φ1)

then we de�ne P vd Q as the statement

∀t ∈ T(P), ∃t2 ∈ Td (P,Q), t = fst(t2) ∼ snd(t2) .

We say that P and Q are di�-equivalent, written P ≈d Q , when
P vd Q and Q vd P . By de�nition Td (P,Q) ⊆ T(P,Q) and
di�-equivalence therefore re�nes equivalence by session. The con-
verse does not hold in general, e.g.

P = c 〈a〉 | c 〈b〉 Q = c 〈b〉 | c 〈a〉 a,b ∈ Npub distinct

6



This example is extreme as a pre-processing on parallel operators
would make the processes di�-equivalent. Such a pre-processing is
however not possible for more involved, real-world examples such
as the equivalences we prove on the BAC protocol in Section 7. The
reason is that the matchings have to be selected dynamically, that
is, di�erent session matchings are needed to match di�erent traces.

Relation to observational equivalence As a side result we
also compare equivalence by session to observational equivalence
≈o , or technically to the equivalent notion of labelled bisimilar-
ity as described in [ABF18, CKR18a]. Just as equivalence by ses-
sion, it is known to be an intermediate re�nement between di�-
equivalence and trace equivalence [CD09]:

Lemma 3.3 . ≈d ⊆ ≈o ⊆ ≈tr . Besides, ≈o and ≈tr coincide for de-
terminate processes.

In particular by Proposition 3.2 we obtain that the trace, ses-
sion, and observational equivalences coincide for determinate pro-
cesses. However they are incomparable in general:

Lemma 3.4 . ≈s and ≈o are incomparable.

Proof. If we write P = c(x).c(x) andQ = c(x) | c(x), then P ≈o Q
but P 6≈s Q . Besides, if k0,k1,k2 ∈ Npriv we de�ne

R(t0, t1, t2) = c 〈k0〉 | c 〈k1〉 | c 〈k2〉 |
c(x). if x = k0 then c 〈t0〉

else if x = k1 then c 〈t1〉
else if x = k2 then c 〈t2〉

If a,b ∈ Npub distinct, we have R(a,b,b) ≈s R(b,a,a) but
R(a,b,b) 6≈o R(b,a,a). �

To sum up the relations between all equivalences:

Proposition 3.5 . If ≈ ∈ {≈o,≈s} then ≈d ( ≈ ( ≈tr and, for
determinate processes, ≈ = ≈tr .

3.3 Trace refinements

In this section we present an abstract notion of optimisation, based
on trace re�nements. This comes with several properties on how
to compose and re�ne them, providing a uni�ed way of presenting
di�erent concrete optimisations for the decision of equivalence by
session in later sections.

Definition 3.2 . An optimisation is a pair O = (O∀,O∃) with O∀ a
set of traces of extended processes (universal optimisation), andO∃
a set of traces of extended twin-processes (existential optimisation).

Intuitively, an optimisation reduces the set of traces that are
considered when verifying equivalence: when proving P vs Q ,
only traces of T(P) ∩ O∀ and T(P,Q) ∩ O∃ will be studied. That is,
we de�ne the equivalence ≈O =vO ∩ wO where P vO Q means

∀t ∈ T(P) ∩ O∀, ∃t2 ∈ T(P,Q) ∩ O∃, t = fst(t2) ∼ snd(t2) .

In particular ≈Oall is the equivalence by session, where Oall =
(O∀all,O

∃

all) contains all traces. However, of course, such re�ne-
ments may induce di�erent notions of equivalence, hence the need

for correctness arguments speci�c to each layer of optimisation.
We specify this as follows: if Oα = (O∀α ,O∃α ) and Oβ = (O∀β ,O

∃

β ),
we say that Oα is a correct re�nement of Oβ when

O∀α ⊆ O
∀

β and O∃α ⊆ O
∃

β and ≈Oα = ≈Oβ .

Correct re�nements contribute to reducing the complexity of
deciding equivalence.
Properties The remainder of this section provides elementary
properties useful when constructing, and composing optimisa-
tions. First we show that they can be constructed stepwise.

Proposition 3.6 (transitivity) . IfO1 is a correct re�nement ofO2,
and O2 is a correct re�nement of O3, then O1 is a correct re�ne-
ment of O3.

Moreover, we can prove universal and existantial optimisations
in a modular way:

Proposition 3.7 (combination) . If (O∀opt,O
∃) and (O∀,O∃opt ) are

correct re�nements of (O∀,O∃), then (O∀opt,O
∃

opt ) is a correct re-
�nement of (O∀,O∃).

Proof. Let≈××,≈◦×,≈×◦ and≈◦◦ the equivalences induced by the
optimisations (O∀,O∃), (O∀opt,O

∃), (O∀,O∃opt ) and (O∀opt,O
∃

opt ),
respectively. As ≈◦× =≈×× =≈×◦ by hypothesis, the result fol-
lows from the straightforward inclusions ≈◦◦ ⊆ ≈◦× and ≈×◦ ⊆
≈◦◦. �

Relying on this result, we see a universal optimisation O∀ (resp.
existential optimisations O∃) as the optimisation (O∀,O∃all) (resp.
(O∀all,O

∃)). This lightens presentation as we can now meaningfully
talk about universal (resp. existential) optimisations being correct
re�nements of others.

Finally, when implementing such optimisations in tools, decid-
ing the membership of a trace in the sets O∀ or O∃ may sometimes
be ine�cient or not e�ective. In these cases we may want to im-
plement these optimisations partially, using for example su�cient
conditions. The following proposition states that such partial im-
plementations still result into correct re�nements.

Proposition 3.8 (partial implementability) . Let us consider the
optimisations O∀opt ⊆ O

∀

part ⊆ O
∀ and O∃opt ⊆ O

∃

part ⊆ O
∃. If O∀opt

is a correct re�nement of O∀ and O∃opt is a correct re�nement of
O∃, then (O∀part,O

∃

part ) is a correct re�nement of (O∀,O∃).

In the rest of the paper we assume the reader familiar with group
theory (group actions, stabilisers), in particular the group of per-
mutations (written in cycle notation). Most of our optimisations
are indeed expressed using this terminology.

4 PARTIAL-ORDER REDUCTIONS

In this section we present partial-order reductions for equivalence
by session. They are inspired by similar techniques developed for
proving trace equivalence of determinate processes [BDH15], al-
though they di�er in their technical development to preserve cor-
rectness in our more general setting. In particular the optimisa-
tions we present account for non determinacy and private chan-
nels which will be useful when analysing e-voting protocols.

7



4.1 Labels and independence

Labels Partial-order reduction techniques identify commutativ-
ity relations in a set of traces and factor out the resulting redun-
dancy. Here we exploit the permutability of concurrent actions
without output-input data �ow. For that we introduce labels to
reason about dependencies in the execution:

Plain processes P are labelled [ P ]` , with ` a word of integers
re�ecting the position of P within the whole process.
Actions α are labelled [α ]L to re�ect the label(s) of the pro-
cess(es) they originate from. That is, L is either a single integer
word ` (for inputs and outputs) or a pair of such, written `1 | `2
(for internal communications).
Labels can be bootstrapped arbitrarily, say, by the empty word

ε , and are propagated as follows in the operational semantics. The
(Par) rule extends labels:

({{[ P1 | · · · | Pn ]
`}} ] P,Φ)

[ τ ]`
−−−−→s ({{[ Pi ]

`.i }}ni=1 ] P,Φ)

the rules (In) and (Out) preserve labels:

({{[ P ]`}} ] P,Φ)
[α ]`
−−−−→s ({{[ P

′ ]`}} ] P,Φ′)

and so does (Comm), however producing a double label:

({{[ P ]`, [Q ]`
′

}} ] P,Φ)
[ τ ]` |`

′

−−−−−−→ ({{[ P ′ ]`, [Q ′ ]`
′

}} ] P,Φ) .

In particular, we always implicitly assume the invariant preserved
by transitions that extended processes contain labels that are pair-
wise incomparable w.r.t. the pre�x ordering.

Independence Labels materialise �ow dependencies. Two ac-
tions α = [a ]L and α ′ = [a′ ]L

′

are said sequentially dependent if
one of the (one or two) words constituting L, and one of those con-
stituting L′, are comparable w.r.t. the pre�x ordering. Regarding
input-output dependencies, we say that α and α ′ are data depen-
dent when {a,a′} = {c 〈ax〉, c(ξ )} with ax appearing in ξ .

Definition 4.1 (independence) . Two actions α and α ′ are said in-
dependent, written α || α ′, when they are sequentially independent
and data independent.

There is some redundancy in the trace space in that, intuitively,
swapping adjacent, independent actions in a trace has no sub-
stantial e�ect. Still, this is rather weak: for example the recipe
proj1(〈n, ax〉) is arti�cially dependent in the axiom ax, preventing
optimisations. Such spurious dependencies can be erased using the
following notion:

Definition 4.2 (recipe equivalence) . Two input transitions

(P,Φ)
[ c(ξ1) ]`
−−−−−−−→ A (P,Φ)

[ c(ξ2) ]`
−−−−−−−→ A

are said recipe equivalent when ξ1Φ =E ξ2Φ. Two traces are recipe
equivalent if one can be obtained from the other by replacing some
transitions by recipe-equivalent ones.

The rest of this section formalises the intuition that equiva-
lence by session can be studied up to recipe-equivalent rewriting
of traces, and arbitrary permutation of their independent actions.
Proofs can be found in Appendix C.1.

Correctness of por techniques If tr = α1 · · ·αn and π is a per-
mutation of n1,no, we write

π .tr = απ (1) · · ·απ (n) .

This is an action of the group of permutations of n1,no on action
words of size n. We say that π permutes independent actions of tr
if either π = id, or π = π0 ◦ (i i + 1) with αi || αi+1 and π0
permutes independent actions of (i i +1).tr. Such permutations
preserve the group structure of permutations, in the sense of these
two straightforward propositions:

Proposition 4.1 (composition) . If π permutes independent ac-
tions of tr, and π ′ permutes independent actions of π .tr, then π ′◦π
permutes independent actions of tr.

Proposition 4.2 (inversion) . If π permutes independent actions
of tr, then π−1 permutes independent actions of π .tr.

We will use these two properties implicitly in many proofs. But
more importantly, the action of permutations on trace words can
be lifted to traces:

Proposition 4.3 . If t : A
tr
=⇒ B and π permutes independent ac-

tions of tr, then A
π .tr
===⇒ B. This trace is unique if we take labels

into account, and will be referred as π .t .

Together with recipe equivalence, this is the core notion for
de�ning partial-order reductions. We gather them into ≡por the
smallest equivalence relation over traces containing recipe equiv-
alence and such that t ≡por π .t when π permutes independent
actions of t . The result below justi�es that quotients by ≡por result
in correct re�nements.

Proposition 4.4 (correctness of por) . Let O∀1 ⊆ O
∀

2 be universal
optimisations. We assume that for all t ∈ O∀2, there exists t ′ ≡por
text , where t is a pre�x of text such that t ′ ∈ O∀1. Then O∀1 is a
correct re�nement of O∀2.

4.2 Compression optimisations

We �rst present a compression of traces into blocks of actions of
a same type (inputs, outputs and parallel, or internal communi-
cations) by exploiting Proposition 4.4. We formalise this idea by
using reduction strategies based on polarity patterns.

Polarities and phases We assign polarities to processes de-
pending on their toplevel actions: public inputs are positive (+1),
public outputs and parallels are overwhelmingly negative (−∞),
and others are null.

polar(c(x).P) = 1 polar(c 〈u〉.P) = −∞ c ∈ Chpub

polar(d(x).P) = 0 polar(d 〈u〉.P) = 0 d ∈ Chpriv
polar(0) = 0 polar(P | Q) = −∞

This notion is lifted to extended processes by summing:

polar((P,Φ)) =
∑
R∈P

polar(R) .

In particular, extended processes containing an executable parallel
operator or output has polarity −∞, and executing public inputs

8



makes polarity nonincreasing. We then identify the trace patterns
at the core of our partial-order reductions. We say that a trace

t : A0
[a1 ]L1
−−−−−−→ · · ·

[an ]Ln
−−−−−−→ An

is a negative phase when all transitions are outputs or parallels,
and polar(An ) , −∞.
is a null phase when polar(A0) > 0, n = 1 and the transition is
an internal communication.
is a positive phase when polar(A0) > 0, all transitions are inputs,
all Li ’s are equal, and polar(A0) > polar(An ).
Rephrasing, a negative phase executes all available outputs and

parallels, a null phase is one internal communication, and a posi-
tive phase executes a whole chain of inputs. Note that only nega-
tive phases may be empty.

Basic compression The �rst optimisation is to only consider
traces that can be decomposed into phases. Formally we writeO∀c,b
the set of traces of the form

t : b−0 · b
+
1 · b

−
1 · b

+
2 · b

−
2 · · ·b

+
n · b

−
n

where each b+i is a positive or null phase, and each b−i is a negative
phase. We show in Appendix C.3 that any maximal trace can be de-
composed this way after application of a well-chosen permutation
of independent actions. Hence by Proposition 4.4:

Proposition 4.5 . O∀c,b is a correct re�nement of O∀all.

Determinism of negative phases Negative phases are non-
deterministic by essence, but the underlying combinatorial explo-
sion is arti�cial in that most of the actions within negative phases
are independent: we show that they can actually be executed
purely deterministically.

We �x an arbitrary total ordering 4 on labelled actions. A neg-
ative phase b−, with tr(b−) = α1 · · ·αn , is said consistent when for
all i < n such that αi || αi+1, we have αi 4 αi+1. We write O∀c the
subset of O∀c,b of traces whose negative phases are all consistent.

Proposition 4.6 . O∀c is a correct re�nement of O∀c,b .

Proof. By Proposition 4.4, it su�cies to prove that for all neg-
ative phases b−, there exists π permuting independent actions
of b− such that π .b− is consistent. This follows from a well-
founded induction on tr(b−)w.r.t the lexicographic extension of
4 on words of actions. �

4.3 Reduction optimisations

So far we compressed traces into sequences of phases. Now we
show how independent phases can be reordered to reduce even
further the complexity. This takes inspiration from the reduced
semantics and improper blocks [BDH15].

Blocks A block is a positive or null phase followed by a negative
phase. Any trace of O∀c is therefore composed of an initial nega-
tive phase and a sequence of blocks. Two blocks b and b ′ are said
independent, written b || b ′, if all actions of the former are indepen-
dent of all actions of the latter. Analogously to actions, we refer to

permutations π permuting independent blocks of traces of O∀c. All
related notations and results can be cast to blocks by using:

Proposition 4.7 . Let t : bp · · · bn a sequence of blocks, tri =
tr(bi ). If π permutes independent blocks of tr = tr(t), then there is
π ′ permuting independent actions of tr s.t.

π ′.tr = π .tr = trπ (p) · · · trπ (n) .

Note in particular this corollary of Proposition 4.4 that will be at
the core of the results of this section, where ≡b-por is the analogue
of ≡por where permutation of independent actions is replaced by
permutation of independent blocks:

Corollary 4.8 . LetO∀1 ⊆ O
∀

2 ⊆ O
∀
c. We assume that for all t ∈ O∀2,

there exists t ′ ≡b-por t such that t ′ ∈ O∀1. Then O∀1 is a correct
re�nement of O∀2.

Improper blocks Blocks may contain a negative phase that
does not bring new knowledge to the attacker through public out-
puts. Such blocks can always be relegated to the end of traces,
intuitively because they are not essential to execute other blocks.
Formally, we say that a block

b : (P,Φ)
tr
=⇒ (Q,Φ ∪ {ax1 7→ t1, . . . , axn 7→ tn })

is improper if
(1) all labels appearing in tr do not appear in Q, except maybe

on null processes; and
(2) for all i ∈ n1,no, ti is deducible from Φ, that is, there exists a

recipe ξi such that ξiΦ =E ti .
This generalises improper blocks de�ned in [BDH15, CKR19],

that require n = 0. Our �ner optimisation captures for example
outputs of public error codes in the model of the e-passport in Ex-
ample 2.2 (error, ok). We write O∀c+i the subset of O∀c of traces not
containing an improper block followed by a proper block.

Proposition 4.9 . O∀c+i is a correct re�nement of O∀c.

Proof. By Corollary 4.8, it su�cies to show that for all traces of
O∀c, there exists a recipe-equivalent trace whose improper blocks
are independent of all blocks following them. By Item (2) of the
de�nition, by replacing each occurrence of axi by ξi in all in-
put actions, we obtain a recipe-equivalent trace whose improper
blocks are data independent of all blocks following them. Se-
quential indendence is then justi�ed by Item (1). �

Note that when restricting the de�nition to n = 0, we obtain
a weaker optimisation than the one presented in [BDH15]. The
latter indeed additionally restricts to traces that contain at most
one improper block. This, however, relies on determinate-speci�c
arguments that are unsound for equivalence by session in general.

Lexicographic reduction Finally, as sequences of independent
blocks can be permuted arbitrarily, we de�ne an optimisation that
�xes their order. Concretely we let 4 an ordering on blocks in-
sensitive to recipes, and such that independent blocks are always
strictly comparable. We de�ne a predicate Minimal(t,b) that tells

9



whether adding the block b at the end of t still results in a minimal
trace w.r.t. the lexicographic extension of 4.

Minimal(b−,b) b− negative phase
Minimal(b1 · · ·bn,b) if ¬(bn || b)
Minimal(b1 · · ·bn,b) if bn ≺ b and Minimal(b1 · · ·bn−1,b)

We say that b is allowed after t if Minimal(t,b ′) for all b ′ recipe
equivalent to b. This strengthens the optimisation by discarding
spurious data dependencies. Then O∀c+r ⊆ O∀c is de�ned by the
following inference rules.

b− negative phase
b− ∈ O∀c+r

t ∈ O∀c+r b allowed after t
t · b ∈ O∀c+r

To account for improper blocks, we write O∀por the set of traces
of the form t : b− · tp · ti , where b− is a negative phase, tp ∈ O∀c+r
only contains proper blocks, and ti ∈ O∀c+r only contains improper
blocks. The correctness of this optimisation relies on Corollary 4.8
and is proved in Appendix C.4.

Proposition 4.10 . O∀por is a correct re�nement of O∀c+i.

5 REDUCTIONS BY SYMMETRY

In this section, we show how to exploit process symmetries for
equivalence by session. Such symmetries often appear in practice
when we verify multiple sessions of a same protocol as it results
into parallel copies of identical processes, up to renaming of fresh
names. We �rst provide a group-theoretical characterisation of in-
ternal process redundancy, and then design two optimisations.

5.1 Group actions and process redundancy

Let P = P1 | · · · | Pn be a plain process and π ∈ Sn , where Sn de-
notes the symmetric group, namely the group of all permutations
on n1,no. We denote by ®P and π . ®P the tuples of plain processes

®P = 〈P1, . . . , Pn〉 π . ®P = 〈Pπ (1), . . . , Pπ (n)〉 .

We assume ≡ an equivalence relation on tuples of processes that
is stable under the action of permutations, i.e. for all tuples ®P, ®Q of
size n and π ∈ Sn

®P ≡ ®Q ⇒ π . ®P ≡ π . ®Q . (1)

Process redundancy is then simply captured by the group stabiliser

Stab≡( ®P) = {π ∈ Sn | π . ®P ≡ ®P} .

Example 5.1. Stab≡(〈P, . . . , P〉) = Sn models the case where all
parallel subprocesses are identical. On the contrary, the case where
Stab≡(〈P1, . . . , Pn〉) = {id} models that there is no redundancy at
all between parallel processes. Intermediate examples model par-
tial symmetries: the larger the stabiliser, the more redundancy we
have. For example, if P 6≡ Q , Stab≡(〈P, P,Q,Q,Q〉) is the subgroup
of Sn generated by the permutations (1 2), (3 4) and (3 5). 4

Proposition 5.1 . Stab≡( ®P) is a subgroup of Sn .

Proof. Consider the function (π , ®P) 7→ π . ®P . It is a group action
of Sn on the set of tuples quotiented by the equivalence relation

≡. Such an action is well-de�ned by Equation (1). Stab≡( ®P) is a
stabiliser of this action, hence the conclusion. �

This formalisation takes root in classical work in model check-
ing formalising the symmetries of systems by the group of their
automorphisms [ES96]. Our optimisations consist of identifying
suitable equivalence relations ≡ and re�ning the trace space based
on the analysis of stabilisers.

5.2 Structural equivalence

We exhibit an equivalence identifying processes that have an iden-
tical structure (up to associativity and commutativity of parallel
operators) and whose data are equivalent w.r.t. the equational the-
ory and alpha-renaming of private names. This will be the basis of
our symmetry-based re�nements.

We de�ne structural equivalence ≡ on plain processes as the
smallest equivalence relation such that

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

and that is closed under context (that is, composition of equiva-
lent processes with either a same process in parallel, or an input,
output, or conditional instruction at toplevel). To account for the
equational theory, we extend it to

σ ,σ ′ substitutions Pσ ≡ Qσ ′ ∀x ∈ X, xσ =E xσ ′

Pσ ≡E Qσ ′

Besides we add alpha equivalence of private names: intuitively,
two agents executing the same protocol are behaving similarly
even though they use their own session nonces. Formally ifA is an
extended process we de�ne the relation ≡Aα on tuples of processes

∀i, Pi ≡E Qi ϱ : Npriv → Npriv bij. ϱ |names(A) = id

〈P1, . . . , Pn〉 ≡
A
α 〈Q1, . . . ,Qn〉ϱ

That is, only names outside ofA (frame included) may be renamed.
To conclude, it is straightforward that this relation satis�es the
requirements of Section 5.1, i.e.:

Proposition 5.2 . For all extended processA, ≡Aα is an equivalence
relation stable under the action of permutations (in the sense of
Equation (1)).

5.3 Universal symmetry optimisation

We �rst present a universal optimisation, i.e. a re�nement ofO∀por.
It captures the idea that, when considering the traces of several
parallel protocol sessions, starting the trace by an action from one
session or an other does not make a substantial di�erence. To for-
malise this idea, let us consider a compressed trace

t : [ P ]ε
tr
=⇒ ({{[ Pi ]

`i }}ni=1,Φ0) ∈ O∀c

The goal is to exhibit conditions discarding some potential posi-
tive phases following t . Technically speaking, we require that the
symmetries observed in t are re�ected in one way or an other in
T(P,Q). In the technical formalisation of these symmetries, we re-
fer to traces t2 ∈ T(P,Q) such that fst(t2) = t using the following
notations:

t2 : ([ P ]ε ,Q)
tr
=⇒ ({{([ Pi ]

`i ,Qi )}},Φ0,Φ1) (2)

10



Homogeneous symmetry We �rst de�ne a notion of symme-
try within P that is re�ected in the matching withQ . If a,b ∈ n1,no
and π = (a b), we write a ←→1 b when

π ∈ Stab
≡
Φ0
α
(〈P1, . . . , Pn〉)

and for all traces t2 verifying the hypotheses and notations of
Equation (2), there exists a trace of the form

([ P ]ε ,Q)
tr
=⇒ ({{([ Pi ]

`i ,Qπ (i))}}
n
i=1,Φ0,Φ1) .

Intuitively, the �rst condition expresses that Pa and Pb have the
same traces, and the second ensures that they can be matched by
the same sessions of Q . In particular for proving the equivalence
by session of P andQ , executing a block starting in Pa or Pb results
into a similar analysis.

Heterogeneous symmetry We now de�ne a notion of symme-
try capturing redundancy occurring at the same time in P and Q .
If a,b ∈ n1,no and π = (a b), we write a ←→2 b when there exists
ϱ permutation of Chpub such that

π .〈P1, . . . , Pa−1, Paϱ, Pa+1, . . . , Pbϱ, . . . , Pn〉 ≡
Φ0
α ®P

and for all traces t2 verifying the hypotheses and notations of
Equation (2), we have

π .〈Q1, . . . ,Qa−1,Qaϱ,Qa+1, . . . ,Qbϱ, . . . ,Qn〉 ≡
Φ1
α ®Q

These conditions express symmetries up to channel renaming.
Indeed public channels do not interfere with the data �ow of traces
and, therefore, two processes that are structurally-equivalent up to
bijective renaming of such channels have a similar execution �ow.

The optimisation All in all, we model symmetries in equiva-
lence proofs by ←→ the smallest equivalence relation containing
←→1 and←→2. The idea of our optimisation is then, when choos-
ing a positive phase to execute after t , to consider only one input
per equivalence class of←→.

This representant should however be picked carefully to avoid
interference with the lexicographic reduction (Section 4.3). For
that we refer again to the ordering on blocks 4 introduced in that
section. This ordering can be lifted to a total ordering on the set

{i ∈ n1,no | polar(Pi ) > 0}

by writing i 4 j when bi 4 bj for bi and bj arbitrary blocks start-
ing by an action labelled, respectively, `i and `j . This ordering is
well-de�ned and total thanks to the assumptions that the origi-
nal ordering on blocks is insensitive to recipes, and always relate
independent blocks.

We thus qualify an input transition on process Pa following the
trace t as well-formed if a is minimal w.r.t. 4 within its equiva-
lence class for←→. A trace is well-formed when all such transitions
are, and we de�ne the optimisation O∀sym as the set of well-formed
traces of O∀c. Its correctness is proved in Appendix D.1.

Proposition 5.3 . O∀por ∩ O∀sym is a correct re�nement of O∀por.

5.4 Existential symmetry optimisation

The goal of this optimisation is to exploit symmetries when ap-
plying the matching rule: when several processes are structurally

equivalent then we do not need to consider redundant matchings.
For instance, suppose that we need to match P1 | P2 with Q | Q .
Just considering the identity permutation would be su�cient, and
the permutation (1 2) should be considered as redundant. For-
mally, let us consider an instance of the rule (Match)

(P2 ∪ {{(P,Q)}},Φ0,Φ1)
τ
−→s (P

2 ∪ {{(Pi ,Qπ (i))}}
n
i=1,Φ0,Φ1) (3)

with P = P1 | · · · | Pn and Q = Q1 | · · · | Qn . We let A =
(snd(P2),Φ0), and de�ne the relation on permutations

π ∼ π ′ i� ∃u ∈ Stab≡Aα (
®Q), π ′ = π ◦ u .

Proposition 5.4 . ∼ is an equivalence relation.

Proof. This essentially follows from Proposition 5.1, i.e. from
the fact that Stab≡Aα (

®Q) is a group. Re�exivity: a group of per-
mutations contains the identity; symmetry: a group is closed by
inverse; transitivity: a group is closed by composition. �

Let us say that an instance of Equation (3) is well-formed when
π is minimal within its equivalence class for ∼, w.r.t. an arbitrary
total ordering on permutations. We denote by O∃sym the set of
traces of extended twin-processes whose instances of (3) are all
well-formed. The correctness of this optimisation is stated below
and proved in Appendix D.2.

Proposition 5.5 . O∃sym is a correct re�nement of O∃all.

6 SYMBOLIC SETTING

Even though we do not consider unbounded replication, the se-
mantics of our process calculus de�nes an in�nite transition sys-
tem due to the unbounded number of possible inputs that can be
provided by the adversary. To perform exhaustive veri�cation of
such in�nite systems, it is common to resort to symbolic tech-
niques abstracting inputs by symbolic variables and constraints.
We brie�y describe in this section how our optimisations are inte-
grated in the symbolic procedure underlying the DeepSec tool.

6.1 DeepSec’s baseline procedure

Symbolic se�ing In the DeepSec tool [CKR18b] and its under-
lying theory [CKR18a], the deduction capabilities of the attacker
are represented by so-called deduction facts X `? u, intuitively
meaning that the attacker is able to deduce the termu by the means
of a recipe represented by the variableX . Additionally, conditional
branching, e.g. if u = v then . . . else . . ., is represented by equa-
tions u =? v and disequations u ,? v .

To represent in�nitely many processes, [CKR18a] relies on sym-
bolic processes (P,Φ, C)whereP andΦ are, as in our setting, a mul-
tiset of processes and a frame respectively. The di�erence is that
the processes and frame may contain free variables: they model
the variables bound by inputs and are subject to constraints in C.
These constraints are a conjunction of deduction facts, equations
and disequations. For example, if we consider the process

P = c(x). if proj1(x) = t then c 〈h(x)〉

11



then after executing symbolically the input and the positive branch
of the test, we reach the symbolic process

({{0}}, {ax 7→ h(x)}, X `? x ∧ proj1(x) =
? t)

A concrete extended process is thus represented by any ground
instantiation of the free variables of the symbolic process that sat-
is�es the constraints in C. Such instantiations are called solutions,
and therefore form an abstraction of concrete traces treated as
symbolic objects and constraint solving.

Example 6.1. Let us consider again the simpli�ed model of BAC
of Example 2.2. When executing the passport process P(k,n) until
reaching the success token ok, the constraints aggregate as

C = X0 `
? x0 ∧ x0 =

? get_challenge ∧

X `? x ∧ sdec(x,k) =? n

Intuitively the internal constraint solver will gradually deduce that
solutions to this constraint need to map x to a term of the form
senc(y1,y2,y3), and will add the equations y1 =? n and y3 =? k . 4

Partition tree To decide trace equivalence between two plain
processes P and Q , the procedure underlying DeepSec builds a re-
�ned tree of symbolic executions of P andQ , called a partition tree.
This �nite, symbolic tree intuitively embodies all scenarios of (po-
tential violations of) equivalence, and the �nal decision criterion
is a simple syntactic check on this tree.

More technically, nodes of the partition tree contain sets of sym-
bolic processes derived from P orQ ; that is, a branch is a symbolic
abstraction of a subset of T(P) ∪ T(Q). It is constructed in a way
that each node contains all—and only—equivalent processes reach-
able from P orQ with given trace actions tr. When generating this
tree, trace equivalence holds if and only if each node contains at
least one symbolic process derived from P and one from Q .

6.2 Symbolic matching

Subprocess matchings To make the integration into DeepSec
easier, we used an alternative characterisation of equivalence by
session that is closer to trace equivalence. In essence, it expresses
the structural constraints imposed by twin processes as explicit bi-
jections between labels (as de�ned in Section 4.1) that we call ses-
sion matchings. A precise de�nition is given in Appendix A, with a
proof that this is equivalent to the twin-process-based de�nition.

In practice, our implementation consists of keeping track of
these session matchings into the nodes of the partition tree gener-
ated by DeepSec. The set of all these bijections is then updated at
each new symbolic transition step in the partition tree, among oth-
ers to satisfy the requirement that matched subprocesses should
have the same skeleton.

Example 6.2. Consider two initial processes

P = c(x).P0 | c(x).P1 | c 〈u〉.P2

Q = c(x).Q0 | c 〈u
′〉.Q1 | c(x).Q2 .

In the root of the partition tree, P and Q will be labeled by 0, i.e.
the root will contain the two symbolic processes

({[ P ]0},�,�) ({[Q ]0},�,�) .

There is only a single bijection between their labels, i.e. the iden-
tity 0 7→ 0. Upon receiving this initial node, DeepSec applies the
symbolic transition corresponding to our rule (Par), hence gener-
ating the two symbolic processes

({{[ c(x).P0 ]0.1 ; [ c(x).P1 ]0.2 ; [ c 〈u〉.P2 ]0.3}},�,�)
({{[ c(x).Q0 ]0.1; [ c 〈u ′〉.Q1 ]0.2; [ c(x).Q2 ]0.3}},�,�)

There are then only two possible bijection of labels that respect
the skeleton requirement of twin processes:

0.1 7→ 0.1 0.1 7→ 0.3
0.2 7→ 0.3 and 0.2 7→ 0.1
0.3 7→ 0.2 0.3 7→ 0.2 4

These bijections are kept within the node of the partition tree
and updated along side the other transformation rules of DeepSec.
For obvious performance reasons, we cannot represent them by a
naive enumeration of all process permutations. Fortunately, the
skeleton requirement ensures an invariant that the set S of session
matchings between two processes A and B is always of the form

S = {π | ∀i,∀` ∈ Ci , π (`) ∈ Di }

where the sets C1, . . . ,Cn form a partition of the labels of A and
D1, . . . ,Dn a partition of the labels of B. In particular, S can suc-
cinctly be stored as a simple association list of equivalence classes.

Decision of equivalence Finally, as our trace re�nements de-
pend on two sets O∀ and O∃, we annotate each symbolic process
in the node by ∀, ∃ or ∀∃ tags. They mark whether the trace from
the root of the partition tree to the tagged process is determined
to be in O∀, O∃ or both respectively. For instance, the two initial
symbolic processes in the root of the partition tree are labeled by
∀∃. We also provide a decision procedure for inclusion by session
vs that consists of tagging one of the initial processes as ∀ and the
other one as ∃.

The decision criterion for equivalence is then strenghtened. For
equivalence to hold, not only each node of the partition tree should
contain at least one process originated from P and one process
originated from Q , but each of them that has the tag ∀ should be
paired with at least one other process of the node with the tag ∃.

6.3 Integration

From a high-level of abstraction, the integration of the universal
optimisations described in sections Sections 4 and 5 prune some
branches of the partition tree—those that abstract traces that do
not belong to O∀c+r+s . For instance in Section 4.2, we showed that
to prove equivalence by session, we can always perform non-input
actions in priority. Therefore on a process c 〈u〉.P | c(x).Q , we pre-
vent DeepSec from generating a node corresponding to the execu-
tion of the input due to the presence of the output.

The integration of other optimisations is more technical in a
symbolic setting, in particular the lexicographic reduction O∀c+r de-
scribed in Section 4.3. Remember that it discards traces that do
not satisfy the predicateMinimal, that identi�es lexicographically-
minimal traces among those obtained by permutation of indepen-
dent blocks. Unfortunately, the de�nition of independence (De�-
nition 4.1) is only de�ned for ground actions—and not their sym-

12



bolic counterpart, that intuitively abstracts a set of ground actions.
A branch may therefore be removed only if all its solutions violate
the predicate Minimal. However, by Proposition 3.8, it is correct
to only partially implement such optimisations.

7 EXPERIMENTS

In practice Based on the high-level description of the previous
section, we extended the implementation of DeepSec to decide
equivalence by session of P and Q . Upon completing an analysis,
two cases can arise:

(1) The two processes are proved equivalent by session. Then
they are also trace equivalent by Proposition 3.1.

(2) The two processes are not equivalent by session and DeepSec
returns an attack trace t , say, in P , as a result.

In the second case, when using equivalence by session as a heuris-
tic for trace equivalence, the conclusion is not straightforward. As
discussed in Section 3.2, the witness trace t may not violate trace
equivalence (false attack). We integrated a simple test to our proto-
type, that checks whether this is the case or not. For that we lever-
age the internal procedure of DeepSec by, intuitively, restricting
the generation of the partition tree for checking P vtr Q to the
unique branch corresponding to the trace t .

If this trace t appears to violate trace equivalence, which is the
case for example in our analysis of two sessions of the BAC pro-
tocol, we naturally conclude that P 6≈tr Q . Otherwise, the false at-
tack may guide us to discover a real attack: our analysis of session
equivalence consider traces with a speci�c shape (see Sections 4
and 5). Thus, we implemented a simple heuristic that, whenever a
false attack is discovered, also checks whether di�erent permuta-
tions of actions of this false attack could lead to a true attack. For
instance, this heuristic allowed us to disprove trace equivalence in
some analyses ofn > 3 sessions of BAC. When our heuristic cannot
discover a true attack, the result is not conclusive: the processes
may well be trace equivalent or not. We leave to future work the
design of a complete decision procedure for trace equivalence that
builds on a preliminary analysis of equivalence by session.

Experimental se�ing We report experiments (Figure 4) com-
paring the scope and e�ciency of the following two approaches
for proving trace equivalence:

The original version of DeepSec as a baseline;
The analysis leveraging our contributions (preliminary analysis
of equivalence by session, test of false attack if it fails, and then
the heuristic attempting to reconstruct a true attack).
We describe the benchmarks below in more details. The column

# roles is an indicator of the intricacy of the system (number of
parallel processes that the model �le exhibits).

Benchmarks were carried out on 20 Intel Xeon 3.10GHz cores,
with 50 Gb of memory. We ran the toy example described in this
paper on a single core to illustrate simply the algorithmic improve-
ments compared to DeepSec. As DeepSec supports parallelisation,
we distributed the computation of the other, bigger proofs over 20
cores. The implementation and the speci�cation �les are available
at https://deepsec-prover.github.io/.

Running example: toy BAC We modelled the simpli�ed anal-
ysis of unlinkability in the BAC protocol described in Examples 2.2
and 2.4 as a simple instance to compare our prototype and DeepSec
in terms of scope and e�ciency. We gather several variants of the
analysis:

2 sessions: both DeepSec and our prototype are able to �nd an
attack trace
3 sessions: DeepSec times out and our prototype �nds a false
attack. This is due to the fact that, by executing outputs in pri-
ority (recall the por in Section 4), more intermediate actions are
available to match the trace. However our heuristic manages to
reconstruct a true attack trace by delaying some output actions.
we also consider a variant where we remove the get_challenge

message from the protocol description. Our prototype now re-
ports a false attack for 3 sessions and fails to conclude.
The failure in the last variant is not a limitation of our heuristic:

by pushing the limits of the baseline version of DeepSec, we ac-
tually obtained after 8 days of computation that trace equivalence
held. This is intuitively because the attacker cannot statically dis-
tinguish between a fresh nonce n (as output by passports) and a
cipher senc(n′, r ,k) (as output by readers). In particular, without
the get_challenge, each passport can perform at toplevel an out-
put action that is indistinguishable from a reader output, leaving
much more possibilities for matching traces.

On the contrary if we assume that the adversary can distinguish
between passport and reader actions (which can be achieved in
the model by using two distinct channels for the passport and the
reader processes), our prototype manages to disprove trace equiv-
alence again.

BAC We also studied a more realistic model of BAC [For04]. The
baseline version of DeepSec still fails to analyse 3 or more sessions,
while our prototype reaches up to 5 sessions. On one side of the
equivalence all n systems are distinct (fresh), while on the other
side a same system may appear several times: our analysis indi-
cates that, depending on the precise setting, the security property
may be violated in the model or not. This is due to the error codes
raised when a passport communicates with a wrong reader: de-
pending on how many identical systems the process contains, the
same number of errors may not be observable.

Although not present in the result table, we also implemented
inclusion by session (see Section 6.2) as it is sometimes used to
de�ne other �avours of unlinkability.

Helios We also consider the Helios protocol for electronic vot-
ing [Adi08]. We analyse vote privacy of a version that uses zero-
knowledge proofs to ensure the voter knows the plaintext of her
vote, thus avoiding copy-attacks [CS13]. Vote privacy is formalised
using a classical vote-swapping model, that is, we want to prove
the equivalence of two situations where two honest votes have
been exchanged.

A reduction result of Arapinis et al. [ACK16] ensures that, for
such models, it is su�cient to consider two honest voters and one
dishonest voter (that is implicit in the model, embedded in the
intruder capabilities) to obtain a proof of the system for an un-
bounded number of sessions. Such scenarios could already be han-

13

https://deepsec-prover.github.io/


Protocol scenario # roles

DeepSec DeepSec
baseline eq. by session

Toy BAC 2 identical 4 E <1s E <1s
2 identical + 1 fresh 6 � E <1s

Toy BAC
no get_challenge

2 identical 4 E <1s E <1s
2 identical + 1 fresh 6 3 8 days (=�) 7 <1s

BAC

1 identical + 1 fresh 4 E <1s E <1s
2 identical + 1 fresh 6 � E 2s
3 identical + 1 fresh 8 � E 3s
2 identical + 2 fresh 8 � 3 1m20s
4 identical + 1 fresh 10 � E 4s
3 identical + 2 fresh 10 � E 9m22s
2 identical + 3 fresh 10 � 3 11h06m

Helios
vote swap

no revote 6 3 <1s 3 <1s
2 × A 1 × B 11 3 2h41m 3 1m2s
3 × A 1 × B 12 � 3 2m40s
3 × A 2 × B 13 � 3 7m40s
4 × A 2 × B 14 � 3 16m36s
7 × A 3 × B 18 � 3 3h53m

Helios 2 honest + 1 dishonest 9
� 3

3m26s
(total)BPRIV 7 ballots (19 scenarios) (each)

Scytl vote privacy 5 3 3m8s 3 1s

AKA anonymity 8 3 30s 3 4s

3 trace equivalence veri�ed E trace equivalence violated � timeout (12 hours)
7 false attack (disproves session equivalence but unable to conclude for trace equivalence)

Figure 4: Experimental evaluation

dled by automated analysers, e.g. DeepSec [CKR18a]. However,
when revoting is allowed, as it is the case for Helios, one needs to
consider all scenarios when the tally accepts 7 ballots. In particu-
lar, it is not su�cient to consider only re-votes by the adversary,
but also arbitrary revotes of the two honest voters. In Figure 4 we
listed several scenarios, indexed by how many times the honest
voters A and B are sending revotes.

This kind of analysis is out of the scope of many automated
analysers. For example, Figure 4 shows that DeepSec fails to prove
after 12h of computation any scenarios where more than one hon-
est revote is emitted. In [ACK16] the ProVerif proofs are limited
to dishonest revotes. We compiled several intermediary scenarios
to give an overview of the veri�cation-time growth using our pro-
totype, but all are subsumed by the last scenario were we allow A
to revote 7 times and B 3 times. Indeed, using a simple symmetry
argument on A and B this covers all scenarios where honest voters
cast a total of 7 ballots. Note however that, strictly speaking, the
reduction result of [ACK16] does not bound the number of emitted
honest revotes (that may not be e�ectively received by the ballot
box) that have to be considered during an analysis of vote privacy;
extensions of this reduction should be considered in the future.

We also experimented an other model of voting privacy inspired
by the game-based de�nition BPRIV [BCG+15]. In this de�nition
the (re)votes are dicted to honest voters by the adversary, which
permits to e�ectively model revotes of arbitrary values. As re-
ported in Figure 4 the prototype handles the 19 queries modelling
all revote scenarios for 7 emitted ballots, in a total of a few minutes.

About the modelling of mixnets. The version of Helios we anal-
yse relies on a mixnet, which can be represented in several ways
that may trigger or not a false attack. Mixnets are usually modelled
as processes receiving the values to mix, and then outputing them
in an arbitrary order induced by the inherent non-determinism of
concurrency. However this can be performed using two models
(where c ∈ Chpriv ):

MixSeq = c(x). c(y). (c 〈x〉 | c 〈y〉)

MixPar = (c(x). c 〈x〉) | (c(y) | c 〈y〉)

In the second case, subprocess-matching constraints arise earlier
in the trace, triggering a false attack. However, the natural mod-
elling of MixSeq allows to complete a security proof. We observed
the same behaviour on other experimentation on voting protocols
with mixnets.

14



Other case studies As side experiments, we also tried our pro-
totype on other model �les of similar tools that we could �nd in the
literature. We performed for example an analysis of vote privacy
of an e-voting protocol by Scytl deployed in the Swiss canton of
Neuchâtel, based on the ProVerif �le presented in [CGT18]. We
also studied anonymity in a model of the AKA protocol deployed
in 3G telephony networks [AMR+12] (without XOR), presented in
the previous version of DeepSec [CKR18a].

8 CONCLUSION AND FUTURE WORK

In this paper we introduce a new process equivalence, the equiv-
alence by session. We show that it is a sound proof technique
for trace equivalence which allows for several optimisations when
performing automated veri�cation. This includes powerful par-
tial order reductions, that were previously restricted to the class
of determinate processes, and allows to exploit symmetries that
naturally arise when verifying multiple sessions of a same proto-
col. In addition to the theoretical basis we have implemented these
techniques in the DeepSec tool and evaluated their e�ectiveness
in practice. The optimisations indeed allowed for e�cient veri�-
cation of non-determinate processes that were previously out of
scope of existing techniques.

We also discussed how to handle the false attacks, that are a nat-
ural consequence of the fact that equivalence by session is a strict
re�nement of trace equivalence. We implemented a test to verify
automatically, when equivalence by session is disproved, whether
the underlying attack is genuine with respect to trace equivalence.
When this is not the case, as part of future work it would be inter-
esting to re�ne the part of the proof that failed, while exploiting
that some parts of the system has already been shown to satisfy
equivalence.

REFERENCES

[ABF18] Martín Abadi, Bruno Blanchet, and Cédric Fournet. The ap-
plied pi calculus: Mobile values, new names, and secure com-
munication. Journal of the ACM (JACM), 2018.

[ACK16] Myrto Arapinis, Véronique Cortier, and Steve Kremer. When
are three voters enough for privacy properties? In European
Symposium on Research in Computer Security (ESORICS), 2016.

[Adi08] Ben Adida. Helios: web-based open-audit voting. In Confer-
ence on Security symposium (SS), 2008.

[AMR+12] Myrto Arapinis, Loretta Mancini, Eike Ritter, Mark Ryan,
Nico Golde, Kevin Redon, and Ravishankar Borgaonkar. New
privacy issues in mobile telephony: �x and veri�cation. In
ACM Conference on Computer and Communications Security
(CCS), 2012.

[BAF05] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Auto-
mated veri�cation of selected equivalences for security proto-
cols. In IEEE Symposium on Logic in Computer Science (LICS),
2005.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Auto-
mated veri�cation of selected equivalences for security pro-
tocols. The Journal of Logic and Algebraic Programming, 2008.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Veri�ed models and reference implementations
for the TLS 1.3 standard candidate. In IEEE Symposium on
Security and Privacy (S&P), 2017.

[BCG+15] David Bernhard, Véronique Cortier, David Galindo, Olivier
Pereira, and Bogdan Warinschi. A comprehensive analysis
of game-based ballot privacy de�nitions. In IEEE Symposium
on Security and Privacy (S&P), 2015.

[BDH14] David Baelde, Stéphanie Delaune, and Lucca Hirschi. A re-
duced semantics for deciding trace equivalence using con-
straint systems. In International Conference on Principles of
Security and Trust (POST), 2014.

[BDH15] David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial
order reduction for security protocols. International Confer-
ence on Concurrency Theory (CONCUR), 2015.

[BDH18a] David Baelde, Stéphanie Delaune, and Lucca Hirschi. POR for
security protocol equivalences - beyond action determinism.
In European Symposium on Research in Computer Security (ES-
ORICS), 2018.

[BDH+18b] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa
Radomirovic, Ralf Sasse, and Vincent Stettler. A formal
analysis of 5g authentication. In ACM Conference on
Computer and Communications Security (CCS), 2018.

[BDS15] David A. Basin, Jannik Dreier, and Ralf Sasse. Automated
symbolic proofs of observational equivalence. InACMConfer-
ence on Computer and Communications Security (CCS), 2015.

[CB13] Vincent Cheval and Bruno Blanchet. Proving more observa-
tional equivalences with proverif. In Proceedings of the 2nd
International Conference on Principles of Security and Trust
(POST’13), 2013.

[CCCK16] Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and Steve Kre-
mer. Automated veri�cation of equivalence properties of
cryptographic protocols. ACM Transactions on Computational
Logic, 2016.

[CD09] Véronique Cortier and Stéphanie Delaune. A method for
proving observational equivalence. In IEEE Computer Secu-
rity Foundations Symposium (CSF), 2009.

[CDD17] Véronique Cortier, Stéphanie Delaune, and Antoine Dallon.
Sat-equiv: an e�cient tool for equivalence properties. In IEEE
Computer Security Foundations Symposium (CSF), 2017.

[CDSV04] Ivan Cibrario, Luca Durante, Riccardo Sisto, and Adriano
Valenzano. Exploiting symmetries for testing equivalence in
the spi calculus. In International Symposium on Automated
Technology for Veri�cation and Analysis (ATVA), 2004.

[CGT18] Véronique Cortier, David Galindo, and Mathieu Turuani. A
formal analysis of the neuchâtel e-voting protocol. In IEEE
European Symposium on Security and Privacy (EuroS&P), 2018.

[CHH+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott,
and Thyla van der Merwe. A comprehensive symbolic analy-
sis of TLS 1.3. In ACM Conference on Computer and Commu-
nications Security (CCS), 2017.

[CJM03] Edmund Clarke, Somesh Jha, and Will Marrero. E�cient ver-
i�cation of security protocols using partial-order reductions.
STTT, 2003.

[CKR18a] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina.
DEEPSEC: Deciding Equivalence Properties in Security Pro-
tocols – Theory and Practice. In IEEE Symposium on Security
and Privacy (S&P), 2018.

[CKR18b] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. The
DEEPSEC prover. In International Conference on Computer
Aided Veri�cation (CAV), 2018.

[CKR19] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. Ex-
ploiting symmetries when proving equivalence properties for
security protocols. In ACM Conference on Computer and Com-
munications Security (CCS), 2019.

[CS13] Véronique Cortier and Ben Smyth. Attacking and �xing he-
lios: An analysis of ballot secrecy. Journal of Computer Secu-
rity, 2013.

15



[DSV03] Luca Durante, Riccardo Sisto, and Adriano Valenzano. Au-
tomatic testing equivalence veri�cation of spi calculus spec-
i�cations. ACM Transactions on Software Engineering and
Methodology (TOSEM), 2003.

[DY81] Danny Dolev and Andrew C. Yao. On the security of pub-
lic key protocols. In Symposium on Foundations of Computer
Science (FOCS), 1981.

[ES96] E Allen Emerson and A Prasad Sistla. Symmetry and model
checking. Formal methods in system design, 1996.

[For04] PKI Task Force. PKI for machine readable travel documents
o�ering ICC read-only access. Technical report, International
Civil Aviation Organization, 2004.

[MVB10] Sebastian Mödersheim, Luca Viganò, and David A. Basin.
Constraint di�erentiation: Search-space reduction for the
constraint-based analysis of security protocols. Journal of
Computer Security, 2010.

[SEMM14] Sonia Santiago, Santiago Escobar, Catherine Meadows, and
José Meseguer. A formal de�nition of protocol indistinguisha-
bility and its veri�cation using Maude-NPA. In International
Workshop on Security and Trust Management (STM), 2014.

[TNH16] Alwen Tiu, Nam Nguyen, and Ross Horne. SPEC: an equiva-
lence checker for security protocols. In Asian Symposium on
Programming Languages and Systems (APLAS), 2016.

A EXPLICIT SESSION MATCHINGS

In this section we present an alternative characterisation of equiv-
alence by session. The process matchings operated by twin
processes—in particular in the rule (Match) of the semantics—are
represented by an explicit permutation with properties mirroring
the structure of twin processes.

Twin-process based characterisations makes it easier to de�ne
symmetry-based optimisations and limit the manipulation of per-
mutations to the minimum, thus simplifying many proofs. On the
contrary, the formalism presented here makes a closer link with
the de�nition of trace equivalence:

this is the characterisation we use in the implementation, �tting
better to the existing procedure of the DeepSec prover for trace
equivalence;
we use it in Appendix B for proving the completeness of equiv-
alence by session for determinate processes.

Session matchings We �rst characterise the condition under
which, given two traces t, t ′, there exists t2 such that fst(t2) = t
and snd(t2) = t ′. For that we rely on the notion of labels intro-
duced in Section 4.1 to make reference to subprocess positions. In
the rest of the paragraph, we refer to two plain processes in -
normal form P,Q such that skel(P) = skel(Q) and two labelled
traces t ∈ T(P), t ′ ∈ T(Q) such that tr(t) = tr(t ′):

t : A0
[α1 ]`1
−−−−−−→ · · ·

[αn ]`n
−−−−−−→ An t ′ : B0

[α1 ]
`′1

−−−−−−→ · · ·
[αn ]`

′
n

−−−−−−→ Bn

We write L and L′ the sets of labels appearing in t and t ′.

Definition A.1 . A session matching for t and t ′ is a bijection π :
L→ L′ verifying the following properties

(1) π (ε) = ε

(2) ∀i ∈ n1,no, π (`i ) = `′i
(3) ∀` · p ∈ dom(π ), ∃q, π (` · p) = π (`) · q

(4) for all i ∈ n0,no, if π (`) = `′ and Ai and Bi respectively
contain a process [ P ]` and a process [Q ]`

′

, then skel(P) =
skel(Q).

Proposition A.1 . The following two points are equivalent:
(1) There exists a session matching for t and t ′.
(2) ∃t2 ∈ T(P,Q), fst(t2) = t and snd(t2) = t ′.

Proof of (1)⇒ (2). The trace t2 can be easily constructed by in-
duction on the length of t :

Items (1) and (4) of De�nition A.1 ensure that the twin-
processes in t2 are composed of pairs of processes with the
same skeleton as expected,
Item (2) ensures that pairs of transitions of P and Q can be
mapped into transitions of twin-processes, and
The permutations that are required by applications of the rule
(Match) can be inferred from Item (3). Indeed, consider two
instances of the rule (Par) in t and t ′:

({{[ P1 | . . . | Pn ]
`}} ∪ P,Φ)

τ
−→ ({{[ Pi ]

` ·i }}ni=1 ∪ P,Φ)

({{[Q1 | . . . | Qn ]
`′}} ∪ Q,Ψ)

τ
−→ ({{[Qi ]

`′ ·i }}ni=1 ∪ Q,Ψ)

Given π a session matching for t and t ′, we consider the per-
mutation of n1,no mapping i ∈ n1,no to the (unique) j such
that π (` · p) = `′ · j. This permutation can be used to con-
struct the instance of rule (Match) corresponding to these
two (Par) transitions. �

Proof of (2)⇒ (1). Let t2 be a trace given by Item (2). We lift the
labellings of t = fst(t2) and t ′ = snd(t2) to the twin processes
appearing in t2; that is, if P2 is such a process, we may refer to
the labellings of fst(P2) and snd(P2). Thus, each instance of rule
(Match) in t2

({{([ P1 | · · · | Pn ]`, [Q1 | · · · | Qn ) ]
`′}} ∪ P2,Φ0,Φ1)

τ
−→s ({{([ Pi ]

` ·i , [Qσ (i) ]
`′ ·i )}}ni=1 ∪ P

2,Φ0,Φ1)

can be associated with a permutation σ and two labels `, `′. We
list all such elements σ1, `1, `′1, . . . ,σp , `p , `

′
p when considering

all instances of rule (Match) in t2. In particular the `i ’s are
pairwise distinct and, if L is the set of labels appearing in t , we
have

L = {ε} ∪
⋃p
i=1{`i · j | j ∈ dom(σi )} .

An analoguous statement can be done for L′ the set of labels
appearing in t ′. Therefore the following equations well de�ne a
bijection π : L→ L′:

π (ε) = ε ∀p ∈ dom(σi ), π (`i · p) = `′i · σi (p) .

A quick induction on the length of t2 shows that π is a session
matching for t and t ′. �

Link with equivalence As a direct corollary, we give an alter-
native characterisation of equivalence by session.

Proposition A.2 . Let P,Q be plain processes in -normal form
such that skel(P) = skel(Q). The following points are equivalent:

16



(1) P vs Q

(2) for all t ∈ T(P), there exist t ′ ∈ T(Q) and a session match-
ing for t and t ′, such that tr(t) = tr(t ′) (labels removed) and
Φ(t) ∼ Φ(t ′)

B FALSE ATTACKS AND DETERMINACY

In this section we give a detailed proof of the claim of Section 3
that false attacks cannot arise for determinate processes, i.e.:

Proposition 3.2 . If P,Q are determinate plain processes such that
P ≈tr Q then P ≈s Q .

In the proof, by slight abuse of notation, we may say that an ex-
tended process is determinate. We also cast the notion of skeleton
to extended processes by writing

skel((P,Φ)) = skel(P) =
⋃
P ∈P skel(P) ,

and to traces with

skel(A0
α1
−−→ · · ·

αn
−−→ An ) = skel(A0) · skel(A1) · . . . · skel(An ) .

That is, the skeleton of a trace is the sequence of the skeletons of
the processes of which it is composed. Thus, if

t : A0
α1
−−→ · · ·

αn
−−→ An t ′ : B0

β1
−−→ · · ·

βp
−−→ Bp

we have skel(t) = skel(t ′) i� n = p and for all i ∈ n0,no, skel(Ai ) =
skel(Bi ).

Simplifying equivalence First we simplify the problem by
forcing the application of (Par) rules in priority in traces.

Definition B.1 . If P is a plain process in  -normal form, we
write Tτ (P) the set of traces where the rule (Par) is always per-
formed in priority, i.e. where the rules (In) and (Out) are never ap-
plied to extended processes (P,Φ) such that P contains a process
with a parallel a its root (i.e. a process P such that |skel(P)| > 1).

Proposition B.1 . If P,Q are plain processes in  -normal form
such that skel(P) = skel(Q):

P vtr Q i� ∀t ∈ Tτ (P), ∃t ′ ∈ Tτ (Q), t ∼ t ′

P vs Q i� ∀t ∈ Tτ (P), ∃t2 ∈ T(P,Q), t = fst(t2) ∼ snd(t2)

Proof. The �rst point is standard. The proof of the second point
can be seen as a corollary of the compression optimisations of
equivalence by session (see Section 4.2). �

Definition B.2 . An extended process A = ({{P1, . . . , Pn }},Φ) is τ -
deterministic if there is at most one i ∈ n1,no such that Pi has a
parallel operator at its root (i.e. |skel(Pi )| > 1).

The τ -determinism will be an invariant in proofs by induction
on the length of traces. More precisely, if A,B are extended pro-
cesses we call Inv(A,B) the property stating

(i) Ai ,Bi are determinate
(ii) skel(Ai ) = skel(Bi )

(iii) Ai ∼ Bi
(iv) Ai ,Bi are τ -deterministic, and Ai contains a process with

a parallel operator at its root (i.e. a process Pi such that
|skel(Pi )| > 1) i� Bi does.

Equivalence and inclusion We prove that trace equivalence
coincides with a notion of trace inclusion strengthened with iden-
tical actions and skeleton checks.

Proposition B.2 . If P,Q are determinate plain processes in -
normal form s.t. skel(P) = skel(Q), then the following points are
equivalent

(1) P ≈tr Q

(2) ∀t ∈ Tτ (P), ∃t ′ ∈ Tτ (Q),


tr(t) = tr(t ′)
Φ(t) ∼ Φ(t ′)
skel(t) = skel(t ′)

Proof of (2)⇒ (1). Given A,B two determinate extended pro-
cesses we write φ(A,B) the property stating that

∀t ∈ Tτ (A), ∃t
′ ∈ Tτ (B),


tr(t) = tr(t ′)
Φ(t) ∼ Φ(t ′)
skel(t) = skel(t ′)

.

Note that φ(A,B) implies skel(A) = skel(B) by choosing the
empty trace. In particular, to prove (2) ⇒ (1), it su�cies to
prove that for all A,B determinate, φ(A,B) ⇒ A vtr B and
φ(A,B) ⇒ φ(B,A).

The �rst implication is immediate. As for the second, we
prove that for all extended processes A0,B0 such that φ(A0,B0)
and Inv(A0,B0), and all

t ′ : B0
α1
−−→ · · ·

αn
−−→ Bn ∈ Tτ (B0) ,

there exists

t : A0
α1
−−→ · · ·

αn
−−→ An ∈ Tτ (A0) ,

s.t. for all i ∈ n0,no, Inv(Ai ,Bi ). This is su�cient to conclude
as Inv(P,Q) holds for any determinate plain processes P,Q in
 -normal form s.t. skel(P) = skel(Q).

We proceed by induction on n. If n = 0 the conclusion is
immediate. Otherwise, assume by induction hypothesis that it
holds for any trace of length n − 1.
. case 1: α1 = τ .

We know that B0 does not contain private channels by deter-
minacy (Inv(A0,B0) Item (i)). Therefore, the transition B0

τ
−→ B1

is derived by the rule (Par). In particular by Inv(A0,B0) Item (iv),
there also exists a transition A0

τ
−→ A1. The conclusion can now

follow from the induction hypothesis applied to A1,B1; but to
apply it we have to prove that φ(A1,B1) and Inv(A1,B1) hold.
→ proof that φ(A1,B1).

Let s ∈ Tτ (A1). Then (A0
τ
−→ A1)·s ∈ Tτ (A0) and byφ(A0,B0)

there exists (B0
τ
−→ B′1) · s

′ ∈ Tτ (B0) such that tr(s) = tr(s ′),
Φ(t) ∼ Φ(t ′) and skel(t) = skel(t ′). But by τ -determinism of B0
we deduce that B1 = B′1, and s ′ ∈ Tτ (B1) satis�es the expected
requirements.
→ proof that Inv(A1,B1).

(i) A0 and B0 are determinate and determinacy is preserved
by transitions.

(ii) skel(A1) = skel(A0) = skel(B0) = skel(B1)

17



(iii) A0 ∼ B0 and the rule (Par) does not a�ect the frame.
(iv) A0 and B0 are τ -deterministic and τ -determinism is pre-

served by transitions (w.r.t. Tτ ). Besides due to the  -
normalisation, we know that neither of A1 nor B1 contain
a parall operator, hence the result.

. case 2: α1 , τ .
By de�nitionTτ (B0), we know that the rule (Par) is not appli-

cable to B0; neither to A0 by Inv(A0,B0) Item (iv), which means
that traces of Tτ (B0) may start by an application of rules (In)
or (Out). Using this and the fact that skel(A0) = skel(B0)
(Inv(A0,B0) Item (ii)), we obtain that there exists a transition
A0

α1
−−→ A1. The conclusion can now follow from the induction

hypothesis applied to A1,B1; but to apply it we have to prove
that φ(A1,B1) and Inv(A1,B1) hold.
→ proof that φ(A1,B1).

The argument is the same as its analogue in case 1, using the
determinacy of B0 instead of its τ -determinism.
→ proof that Inv(A1,B1).

(i) A0 and B0 are determinate and determinacy is preserved
by transitions.

(ii) By applying φ(A0,B0) with the trace t0 : A0
α1
−−→ A1, we

obtain a trace t ′0 : B0
α1
−−→ B′1 such that skel(A1) = skel(B′1).

But by determinacy of B0, the transition B0
α1
−−→ B1 is the

only transition from B0 that has label α1, hence B1 = B′1
and the conclusion.

(iii) Identical proof as that of Item (ii) above, using the fact that
A1 ∼ B′1 instead of skel(A1) = skel(B′1).

(iv) Let us write

A0 = ({{P0}} ∪ P,Φ) A1 = ({{P1}} ∪ P,Φ
′)

B0 = ({{Q0}} ∪ Q,Ψ) B1 = ({{Q1}} ∪ Q,Ψ
′)

As we argued already at the beginning of case 2, neither
P nor Q contain processes with parallel operators at their
roots. Therefore, we only have to prove that P1 has a paral-
lel operator at its root i� Q1 does. For cardinality reasons,
this a direct corollary of the following points:
– skel(P0) = skel(Q0) (same action α1 being executable at

topelevel),
– skel(A0) = skel(B0) (hypothesis Inv(A0,B0)), and
– skel(A1) = skel(B1) (Item (ii) proved above). �

Proof of (1)⇒ (2). The proof will follow in the steps as the other
implication (we construct the trace t ′ by induction on the length
of t while maintaining the invariant Inv).

More formally, we prove that for all extended processesA0,B0
such that A0 ≈tr B0 and Inv(A0,B0), and all

t : A0
α1
−−→ · · ·

αn
−−→ An ∈ Tτ (A0) ,

there exists

t ′ : B0
α1
−−→ · · ·

αn
−−→ Bn ∈ Tτ (B0) ,

s.t. for all i ∈ n0,no, Inv(Ai ,Bi ).

We proceed by induction on n. We proceed by induction on
n. If n = 0 the conclusion is immediate. Otherwise, assume by
induction hypothesis that it holds for any trace of length n − 1.
. case 1: α1 = τ .

Similarly to the converse implication, there exists a transi-
tion B0

τ
−→ B1 (derived by (Par)) and it su�cies to prove that

A1 ≈tr B1 and Inv(A1,B1) hold in order to apply the induction
hypothesis and conclude.
→ proof that A1 ≈tr B1.

Let s ∈ Tτ (A1). Then (A0
τ
−→ A1) · s ∈ Tτ (A0) and since

A0 ≈tr B0 there is (B0
τ
−→ B′1) · s

′ ∈ Tτ (B0) such that

(A0
τ
−→ A1) · s ∼ (B0

τ
−→ B′1) · s

′ .

But by τ -determinism of B0 we deduce that B1 = B′1, and thus
s ′ ∈ Tτ (B1) and s ∼ s ′. This justi�es that A1 vtr B1, and
a symmetric argument can be used for the converse inclusion
B1 vtr A1.
→ proof that Inv(A1,B1).

By the exact same arguments as that of the analogue case in
the converse implication.
. case 2: α1 , τ .

Similarly to the converse implication, there exists a transition
B0

α1
−−→ B1 and it su�cies to prove thatA1 ≈tr B1 and Inv(A1,B1)

hold in order to apply the induction hypothesis and conclude.
→ proof that A1 ≈tr B1.

The argument is the same as its analogue in case 1, using the
determinacy of B0 instead of its τ -determinism.
→ proof that Inv(A1,B1).

This is the proof obligation whose arguments substantially
di�er from that of the converse implication.

(i) A0 and B0 are determinate and determinacy is preserved
by transitions.

(ii) We assume by contradiction that skel(A1) , skel(B1).
By symmetry, say that skel(A1) * skel(B1) and let s ∈
skel(A1)r skel(B1). By de�nition of Tτ (A0), we know that
the rule (Par) is neither applicable toA0 nor B0; in particu-
lar, there exists a transitionA1

α
−→ A derived from rule (In)

or (Out) (the one corresponding to the skeleton s) such
that B1 6

α
−→.

But by determinacy of B0, the transition B0
α1
−−→ B1 is the

only transition from B0 that has label α1. Thus, this yields
a contradiction with A0 ≈tr B0: more precisely the trace
A0

α1
−−→ A1

α
−→ A is not matched.

(iii) By determinacy of B0, the transition t ′0 : B0
α1
−−→ B1 is the

only transition from B0 that has label α1. In particular, us-
ing the hypothesis A0 ≈tr B0, we obtain that t ′0 ∈ Tτ (B0)
is the only trace such that

t0 : (A0
α1
−−→ A1) ∼ t ′0 .

18



In particular A1 ∼ B1.
(iv) Same cardinality argument as the analogue case in the con-

verse implication. �

Session matchings Proposition B.2 is the core result of the
proof. We now connect it with the equivalence by session by using
the characterisation of Appendix A.

Proposition B.3 . Let P,Q two determinate plain processes in -
normal form and two labelled traces t ∈ Tτ (A0) and t ′ ∈ Tτ (Q)
such that tr(t) = tr(t ′) and skel(t) = skel(t ′). Then there exists a
session matching for t and t ′.

Proof. We prove that for all τ -deterministic, determinate ex-
tended processes A0 and B0, and

t : A0
[α1 ]`1
−−−−−−→ · · ·

[αn ]`n
−−−−−−→ An t ′ : B0

[α1 ]
`′1

−−−−−−→ · · ·
[αn ]`

′
n

−−−−−−→ Bn

if skel(t) = skel(t ′), then there exists a session matching for t
and t ′. We proceed by induction on n. If n = 0 the session
matching is π : ε 7→ ε . Otherwise, let us write

An−1 = ({{[ P ]
`n }} ∪ P,Φ) Bn−1 = ({{[Q ]

`′n }} ∪ Q,Ψ)

By induction hypothesis, let π be a session matching for the �rst
n − 1 transitions of t and t ′; in particular, the labels of An−1 are
in the domain of π .
. case 1: αn , τ .

In this case we write

An = ({{[ P
′ ]`n }} ∪ P,Φ′) Bn = ({{[Q

′ ]`
′
n }} ∪ Q,Ψ′)

First of all, we observe that skel(P) = skel(Q) because the
same observable action αn can be performed at the root of P
andQ . In particular, by determinacy (hypothesis), unicity of the
process with a given label (invariant of the labelling procedure),
and Item (4) of De�nition A.1, we deduce that π (`n ) = `′n .

Therefore by the hypothesis skel(An−1) = skel(Bn−1), we ob-
tain skel(P) = skel(Q). Hence skel(P ′) = skel(Q ′) by the hy-
pothesis skel(An ) = skel(Bn ). All in all, π is a session matching
for the whole traces t and t ′.
. case 2: αn = τ .

In this case we write

P = P1 | · · · | Pk An = ({{[ Pi ]
`n ·i }}ki=1 ∪ P,Φ

′)

Q = Q1 | · · · | Qk ′ Bn = ({{[Qi ]
`′n ·i }}k

′

i=1 ∪ Q,Ψ
′)

Since determinacy excludes private channels, the last transi-
tion of t and t ′ is derived from the rule (Par). By τ -determinism,
this means that P andQ are the only processes inAn−1 and Bn−1,
respectively, that contain a parallel operator at their roots. In
particular, by Item (4) of De�nition A.1, we deduce that π (`n ) =
`′n and skel(P) = skel(Q); and thus k = k ′.

Therefore, there exists a permutation σ of n1,ko such that
for all i ∈ n1,ko, skel(Pi ) = skel(Qσ (i)) (although this is not
needed for the proof, this permutation appears to be unique by
determinacy). Thus if π ′ : L → L′ is the function extending π

and such that

∀i ∈ n1,ko, π ′(` · i) = π (`) · σ (i) ,
then π ′ is a session matching for t and t ′. �

Altogether Propositions A.2 to B.3 justify the following corol-
lary (that actually appears to be stronger than Proposition 3.2).

Corollary B.4 . If P andQ are determinate plain processes in -
normal form, P ≈tr Q i� P vs Q .

C CORRECTNESS OF POR

In this section we prove the results related to the partial-order re-
ductions presented in Section 4.

C.1 Permutability of independent actions

We give the proof of the core correctness argument, namely that
traces can be considered up to permutation of independent actions
(Proposition 4.3). First we prove it for traces of two actions.

Proposition C.1 . If α || β and t : A
α β
===⇒ B, then there exists

a trace u : A
βα
===⇒ B. It has the property that for all traces u2 :

A2 βα
===⇒s B2 such that fst(u2) = u, there exists t2 : A2 α β

===⇒s B2

such that fst(t2) = t .

Proof. Since the labels of α and β are incomparable w.r.t. the
pre�x ordering by independence, the trace t needs have the form

A = (P ∪ Q ∪R,Φ)
α
−→ (P ′ ∪Q ∪R,Φ′)

β
−→s (P

′ ∪Q ′ ∪R,Φ′′)

with (P,Φ)
α
−→ (P ′,Φ′) and (Q,Φ′)

β
−→ (Q ′,Φ′′). Now we con-

struct the traceu, by a case analysis on α and β . In each case, we
omit the construction of the trace t2 that can be inferred easily.
. case 1: α and β are inputs or τ actions.

In particular Φ′′ = Φ′ = Φ and it su�cies to choose

u : (P ∪ Q ∪ R,Φ)
β
−→ (P ∪ Q ′ ∪ R,Φ)

α
−→ (P ′ ∪ Q ′ ∪ R,Φ) .

. case 2: α is an output and β is an input or a τ action.
In particular Φ′′ = Φ′ = Φ∪{ax 7→m} with ax < dom(Φ) and

ax does not appear in β . Then it su�cies to choose the trace

u : (P ∪ Q ∪ R,Φ)
β
−→ (P ∪ Q ′ ∪ R,Φ)

α
−→ (P ′ ∪ Q ′ ∪ R,Φ′) .

. case 3: α is an input or a τ action and β is an output.
Similar to case 2.
. case 4: α and β are both outputs.

Then Φ′ = Φ ∪ {ax 7→ m} and Φ′′ = Φ′ ∪ {ax′ 7→ m′} with
ax , ax′, {ax, ax′} ∩ dom(Φ) = �. Then we choose

u : (P ∪ Q ∪ R,Φ)
β
−→ (P ∪ Q ′ ∪ R,Φ ∪ {ax′ 7→m′})

α
−→ (P ′ ∪ Q ′ ∪ R,Φ′′) . �

Then Proposition 4.3 can be obtained by induction on the hy-
pothesis of π permuting independent actions of tr, using Proposi-
tion C.1. We actually prove the stronger result:

19



Proposition C.2 . If t : A
tr
=⇒ B and π permutes independent ac-

tions of tr, then A
π .tr
===⇒ B. This trace is unique if we take la-

bels into account, and is referred as π .t . It has the property that
for all u2 : A2 π .tr

===⇒s B2 such that fst(u2) = π .t , there exists
t2 : A2 tr

=⇒s B
2 such that fst(t2) = t .

Proof. The uniqueness of π .t is immediate, as a quick induc-
tion on the length of traces shows that any labelled trace u is
uniquely determined by the action word tr(u) (labels included).
We then construct π .t by induction on the hypothesis that π
permutes independent actions of tr(t). Let us write

t : A = A0
α1
−−→ · · ·

αn
−−→ An = B .

If π = id it su�cies to choose π .t = t . Otherwise let us write π =
π0 ◦ (i i+1)with αi || αi+1 and π0 permutes independent actions
of tr′ = αp · · ·αi−1αi+1αiαi+2 · · ·αn . By Proposition C.1, there
exists a trace

u : A0
α1
−−→ · · ·

αi−1
−−−−→ Ai−1

αi+1αi
======⇒ Ai+1

αi+2
−−−−→ · · ·

αn
−−→ An

such that for all u2 : A2 tr′
==⇒s B2 verifying fst(u2) = u, there

exists t2 : A2 tr
=⇒s B2 such that fst(t2) = t . Then since π0 per-

mutes independent actions of tr′ = tr(u), it su�cies to choose
π .t = π0.u by induction hypothesis. �

Then we can easily extend this result to ≡por.

Proposition C.3 . Let t : A
tr
=⇒ B be a trace and t ′ ≡por t . Then

writing tr(t ′) = tr′ we have t ′ : A
tr′
==⇒ B and, for all u2 : A2 tr′

==⇒ B2

such that t ′ = fst(u2) ∼ snd(t2), there exists t2 : A2 tr
=⇒ B2 such

that t = fst(t2) ∼ snd(t2).

Proof. For the sake of reference, let us writeH (t, t ′) the property
to prove. We reason by induction on the hypothesis t ≡por t ′.
. case 1: t ′ = π .t , π permutes independent actions of t .

Direct consequence of Proposition C.2.
. case 2: t ′ is recipe-equivalent to t .

Let u2 with t ′ = fst(u2) ∼ snd(u2) . By static equivence, for
any recipes ξ1, ξ2 such that

ξ1Φ(fst(u2)) =E ξ2Φ(fst(u2)) ,

we also have

ξ1Φ(snd(u2)) =E ξ2Φ(snd(u2)) .

In particular, t2 can be obtained by operating on the second com-
ponent of u2 the same recipe transformations that have been
operated to transform t ′ = fst(u2) into t .
. case 3: (transitivity) H (t, s) and H (s, t ′) for some trace s .

Let u2 with t ′ = fst(u2) ∼ snd(u2) . By hypothesis H (s, t ′)
there exists s2 such that s = fst(s2) ∼ snd(s2). Hence the result
by hypothesis H (t, s). �

And �nally we have the Proposition 4.4 that is a corollary of this
result.

Proposition 4.4 (correctness of por) . Let O∀1 ⊆ O
∀

2 be universal
optimisations. We assume that for all t ∈ O∀2, there exists t ′ ≡por
text , where t is a pre�x of text such that t ′ ∈ O∀1. Then O∀1 is a
correct re�nement of O∀2.

Proof. Let≈i= vi ∩ wi the notion of equivalence induced byO∀i .
The inclusion ≈2 ⊆ ≈1 is immediate. Let us then assume P v1 Q
and prove P v2 Q . Let t ∈ T(P)∩O∀2. Without loss of generality,
we assume t maximal, i.e. that there are no transitions possi-
ble from its last process. Therefore by hypothesis, there exists
t ′ ≡por t such that t ′ ∈ O∀1. Since P v1 Q , there is u2 ∈ T(P,Q)
such that

t ′ = fst(u2) ∼ snd(u2) .

Therefore by Proposition C.3, there exists t2 ∈ T(P,Q) such that
t = fst(t2) ∼ snd(t2). �

C.2 Additional results

We provide some utility results on independent permutations of
actions. First, about composition of permutations:

Proposition C.4 . Let t be a trace, π permuting independent ac-
tions of t , and π ′ permuting independent actions of π .t . Then
π .π ′.t = (π ◦ π ′).t .

Proof. By de�nition, if t : A
tr
=⇒ B, π .π ′.t is the unique trace of

the form A
π .π ′ .tr
======⇒ B, and (π ◦ π ′).t is the unique trace of the

form A
(π◦π ′).tr
========⇒ B. Hence the result since π .π ′.tr = (π ◦ π ′).tr

by de�nition of a group action. �

This formalises that the group-action properties of (π , tr) 7→
π .tr carry on to traces. Then, we also discuss the domain extension
of permutations. If π is a permutation of n1,no, we de�ne π+q+p
permutation of n1,n + p + qo by

π
+q
+p (x) =

{
p + π (x − p) if p < x 6 n + p
x otherwise

in particular, the following result is immediate:

Proposition C.5 (extension) . If π permutes independent actions
of v , π+ |w |

+ |u | permutes independent actions of uvw .

C.3 Decomposition into phases

In this section we prove correct the re�nement at the very basis of
our partial-order reductions, namely that all traces can be decom-
posed into phases (modulo permutation of independent actions).

Proposition 4.5 . O∀c,b is a correct re�nement of O∀all.

Proof. By Proposition 4.4, it su�cies to prove that for all traces
t that are maximal (i.e. whose last process is irreducible), there
exists π permuting independent actions of t such that π .t can be
decomposed into phases.

We prove this by induction on the length of t . If t is empty
the result is immediate: π is the identity and the phase decom-
position consists of a unique empty negative block. Otherwise

20



let us write
t : (A

α
−→ B) · t ′ .

Note in particular that the trace t ′ is also maximal. By induction
hypothesis, there exists π ′ permuting independent actions of t ′
such that

π ′.t ′ = b−0 · b
+
1 · b

−
1 · b

+
2 · b

−
2 · · ·b

+
n · b

−
n

where each b+i is a positive or null phase, and each b−i is a neg-
ative phase.
. case 1: α is an output or a parallel action.

Then (A
α
−→ B) · b−0 is a negative phase and it su�cies to

choose π = (π ′)+0
+1.

. case 2: α = [τ ]`1 |`2 (internal communication).
Let us write E the multiset of actions of the word tr(b−0 ). We

partition it into E = F ]G where

F = {{β ∈ E | α || β}}

G = {{[a ]` ∈ E | `1 4pref ` or `2 4pref `}}

where 4pref refers to the pre�x ordering on words. This is in-
deed a partition of E thanks to the invariant that any label ap-
pearing in t ′ is either incomparable with `1 and `2, or a su�x of
`1 or `2. For the same reason, all actions in F are independent of
all actions in G: it is therefore straightforward to construct π−0
permuting independent actions of b−0 such that

π−0 .b
−
0 : B

trF ·trG
======⇒ C trF ∈ F

? trG ∈ G
? .

Then, we let σ permuting independent actions of

s = (A
α
−→ B) · (π−0 .b

−
0 )

such that σ .s = A
trF
==⇒ B′

α
−→ B′′

trG
===⇒ C . By de�nition of F

and G, we have polar(B′) , ∞. And by the hypothesis that b−0
is a negative phase, its last process C has not a polarity of −∞

neither. ThereforeA
trF
==⇒ B′ and B′′

trG
===⇒ C are negative phases.

All in all, it su�cies to choose

π = σ
+p
+0 ◦ (π

−
0 )
+p
+1 ◦ (π

′)+0+1 with p =
n∑
i=1
|b+i | + |b

−
i |

. case 3: α = [ c(ξ ) ]` .
Let us write

A = ({{[ c(x).P ]`}} ∪ P,Φ) B = ({{[ P ′ ]`}} ∪ P,Φ)

If the label ` does not appear in tr(t ′), then by maximality of t it
needs be that polar(P ′) = 0 and (A

α
−→ B) is therefore a positive

phase. In particular π ′.t is already decomposed into phases and
it su�cies to choose π = (π ′)+0

+1.
Otherwise assume that ` appears in tr(t ′). We write

tr−i = tr(b−i ) tr+i = tr(b+i )

We also consider the phase of t ′ in which the �rst action of P ′
is executed, i.e. the �rst phase b such that ` appears in tr(b).
Note that, thanks to the invariant that any label appearing in t ′

is either incomparable or a su�x of `, α is independent of all
actions of all phases of t ′ preceding b.
. case 3a: b = b+i is a positive or null phase.

Then we �x σ permuting independent actions of

α · tr with tr = tr−0 · tr
+
1 · tr

−
1 · · · tr

+
i−1 · tr

−
i−1

such that, writing s = (A
α
−→ B) · b−0 · b

+
1 · b

−
1 · · ·b

+
i−1 · b

−
i−1,

σ .s : A
tr
=⇒ A′

α
−→ A′′ .

If b = b+i is a null phase, A′
α
−→ A′′ is a positive phase. If b is

a positive phase, (A′
α
−→ A′′) · b is a positive phase too. In both

cases, it su�cies to choose

π = σ
+p
+0 ◦ (π

′)+0+1 with p =
n∑
j=i
|b+j | + |b

−
j |

. case 3b: b = b−i is a negative phase.
Similarly to case 2, we �x E the multiset of actions appearing

in the word tr−i and we partition it as E = F ]G

F = {β ∈ E | α || β} G = {[a ]`
′

∈ E | ` 4pref `
′} .

And again we let π−i permuting tr−i such that

π−i .b
−
i : R

trF
==⇒ S

trG
===⇒ T trF ∈ F

? trG ∈ G
? .

Then we let σ permuting independent actions of

α · tr · trF with tr = tr−0 · tr
+
1 · tr

−
1 · · · tr

+
i

such that, writing s = (A
α
−→ B) · b−0 · b

+
1 · b

−
1 · · ·b

+
i · (π

−
i .b
−
i ),

σ .s : A
tr
=⇒ A′

trF
==⇒ A′′

α
−→ S

trG
===⇒ T .

For the same reason as in case 2, A′
trF
==⇒ A′′ and S

trG
===⇒ T are

negative phases. It therefore su�cies to choose

π = σ
+p
+0 ◦ (π

−
i )

p
1+ |tr | ◦ (π

′)+0+1 with p =
n∑

j=i+1
|b+j | + |b

−
j | �

C.4 Lexicographic reduction

In this section we prove the correctness of the optimisation O∀c+i+r
introduced in Section 4.3. We recall that we assume a total order-
ing 4 on blocks that is insensitive to recipes. We write 4lex the
lexicographic extension of 4 on words of same length of blocks
(i.e two words of di�erent length are always incomparable w.r.t.
4lex ). The core of the proof is to establish a link between O∀c+r and

O∀lex = {t ∈ O
∀

c | t minimal}

where minimal means minimal within its equivalence class for
≡b-por w.r.t. 4lex .

Proposition C.6 . O∀lex ⊆ O
∀
c+r

Proof. Let t ∈ O∀lex and prove by induction on the number of
blocks of t that t ∈ O∀c+r. If t is a single negative phase, the
conclusion follows from the de�nition. Otherwise let us write
t : b− · b1 · · ·bn . Since lexicographic minimality is preserved by

21



pre�x,we have t ′ ∈ O∀lex with

t ′ : b− · b1 · · ·bn−1 .

Then by induction hypothesis we obtain t ′ ∈ O∀c+r. To conclude,
by de�nition of O∀c+r, it now su�cies to prove that bn is allowed
after t ′.

Suppose by contradiction that it is not, and let b recipe equiv-
alent to bn such that Minimal(t ′,b) does not hold. By a quick
induction on the hypothesis Minimal(t ′,b), we can show that
there exists i ∈ n2,n − 1o such that

(1) bi ≺ · · · ≺ bn−1 ≺ b

(2) b ≺ bi−1
(3) ∀j ∈ ni,n − 1o,bi || b .

In particular π = (i i+1 · · · n−1 n) permutes independent
actions of t ′ · b and π .(t ′ · b) 4lex t ′ · b. Since 4 is insensitive to
recipes, this contradicts the minimality of t . �

Also note that, thanks to Proposition C.5, we also obtain the
useful property that ≡b-por is closed by context:

Proposition C.7 . If v ≡b-por v ′ then uvw ≡b-por uv
′w .

Proof. Easy induction on the hypothesis v ≡b-por v ′. �

Using these two properties, we can eventually prove the cor-
rectness of O∀por by relying on Corollary 4.8.

Proposition 4.10 . O∀por is a correct re�nement of O∀c+i.

Proof. Let O∀ the set of traces of the form t : b− · tp · ti
where b− is a negative phase, tp ∈ O∀lex only contains proper
blocks, and ti ∈ O

∀

lex only contains improper blocks. By Propo-
sition C.6, O∀ ⊆ O∀por. By partial implementability (Proposi-
tion 3.8) it therefore su�cies to prove thatO∀ is a correct re�ne-
ment of O∀c+i. We rely on Corollary 4.8, i.e. we prove that for
any t ∈ O∀c+i, there is t ′ ≡b-por t such that t ′ ∈ O∀lex . We write

t : b− · tp · ti (notations of the de�nition)

and let t ′p and t ′i the 4lex -minimal elements of the equivalence
classes of, respectively, tp and ti w.r.t. ≡b-por. Naturally tp ≡b-por
t ′p and ti ≡b-por t ′i . Therefore t ′ : b− ·t ′p ·t ′i ∈ O

∀

lex . But by closure
under context (Proposition C.7) we also have t ′ ≡b-por t . �

D CORRECTNESS OF SYMMETRIES

In this section we prove the correctness of the optimisations pre-
sented in Section 5, i.e. the reduction by symmetries.

D.1 Universal symmetries

Let us prove the correctness of the universal optimisation, i.e.

Proposition 5.3 . O∀por ∩ O∀sym is a correct re�nement of O∀por.

First of all we isolate the core property that symmetric processes
verify, which will be the key argument for the proofs of this sec-
tion. Let us consider a compressed trace

t : [ P ]ε
tr
=⇒ ({{[ Pi ]

`i }}ni=1,Φ0) ∈ O∀c

and let a,b ∈ n1,no and π = (a b). We also assume that there
exists ϱc permutation of Chpub such that

π .〈P1, . . . , Pa−1, Paϱc , Pa+1, . . . , Pbϱc , . . . , Pn〉 ≡
Φ0
α ®P (4)

Proposition D.1 . Let a trace of the form

s = t · ((P0,Φ0)σ
[a1 ]L1
−−−−−−→ · · ·

[an ]Ln
−−−−−−→ (Pn,Φn )σ ) (?)

for some substitution σ and L1 = `b . Then there exists ϱ permuta-
tion of Npriv , and σ ′ =E σ and a trace

t · ((Q0,Φ0)σ
′ϱ
[a1ϱc ]

L′1
−−−−−−−−→ · · ·

[anϱc ]L
′
n

−−−−−−−−−→ (Qn,Φn )σ
′ϱ)

and π a bijection of labels such that
(1) if ` ∈ dom(π ) then `a is a pre�x of `, and if ` ∈ im(π ) then
`b is a pre�x of `. Besides if `a or `b is a pre�x of ` and `
appears in the trace s , then ` ∈ dom(π ) ∪ im(π ).

(2) π (`a ) = `b
(3) if `, ` · i ∈ dom(π ) then π (` · i) = π (`) · j for some j

(4) if Li ∈ dom(π ) then L′i = π (Li ); if Li ∈ im(π ) then L′i =

π−1(Li ); otherwise L′i = Li .
(5) if Pi contains a process P labelled ` ∈ dom(π ) (resp. ` ∈

im(π )), then Qi contains a process Q labelled π (`) (resp.
π−1(`)) such that Pi ≡ Qiσ

′ϱ (if i < {a,b}) and Pi ≡ Qiσ
′ϱϱc

(if i ∈ {a,b}).

Proof. The case n = 1 follows from hypothesis (Equation (4)),
and the proposition can then be proved by induction on n. �

In particular we obtain the following two core arguments:

Proposition D.2 . Assume a ←→1 b and that, for all traces s of
the form of Equation (?) (with L1 = `a ), there exists s2 ∈ T(P,Q)
such that s = fst(s2) ∼ snd(s2). Then for all traces s of the form
of Equation (?) (with L1 = `b ), there exists s2 ∈ T(P,Q) such that
s = fst(s2) ∼ snd(s2).

Proof. Let a trace s of the form of Equation (?) (with L1 = `b ).
With ϱc = id we consider the trace s ′ given by Proposition D.1
(we will use the same notations). In particular we have L′1 = `a .
By hypothesis, there therefore existsu2 ∈ T(P,Q) such that s ′ =
fst(u2) ∼ snd(u2). Using now the hypothesis that a ←→1 b, there
also exists v2 ∈ T(P,Q) matching the �rst |tr| actions of s ′ and
whose processes matching Pa and Pb are swapped. Fromu2 and
v2 we can then construct by induction on n a trace s2 such that
s = fst(s2) ∼ snd(s2). �

Proposition D.3 . Assume a ←→1 b and that, for all traces s of
the form of Equation (?) (with L1 = `a ), there exists s2 ∈ T(P,Q)
such that s = fst(s2) ∼ snd(s2). Then for all traces s of the form
of Equation (?) (with L1 = `b ), there exists s2 ∈ T(P,Q) such that
s = fst(s2) ∼ snd(s2).

Proof. Let a trace s of the form of Equation (?) (with L1 = `b ).
We consider the trace s ′ given by Proposition D.1 (we will use
the same notations). In particular we have L′1 = `a . By hypoth-
esis, and using the characterisation of Appendix A, there exists
u ∈ T(Q) and a session matching for s ′,u such that tr(s ′) = tr(u)

22



and Φ(s ′) ∼ Φ(u). Thanks to the hypothesis a ←→2 b, we can
then apply Proposition D.1 to the trace u too. In particular there
exists a traceu ′ ∈ T(Q) such that tr(t) = tr(u ′) and Φ(t) ∼ Φ(u ′),
hence the conclusion. �

Using these two propositions we obtain the straightforward
corollary (by induction on the hypothesis that a ←→ b) that jus-
ti�es Proposition 5.3:

Corollary D.4 . Assume a ←→ b and that, for all traces s of the
form of Equation (?) (with L1 = `a ), there exists s2 ∈ T(P,Q) such
that s = fst(s2) ∼ snd(s2). Then for all traces s of the form of
Equation (?) (with L1 = `b ), there exists s2 ∈ T(P,Q) such that
s = fst(s2) ∼ snd(s2).

D.2 Existential symmetries

In this section we prove the existential optimisation:

Proposition 5.5 . O∃sym is a correct re�nement of O∃all.

For that we introduce a notion of equivalence of traces; this is
intuitively the invariant preserved by permutation of structurally-
equivalent subprocesses.

Definition D.1 . We write

({{(Pi ,Qi )}}
n
i=1,Φ0,Φ1) ≡α ({{(Pi ,Q

′
iϱ)}}

n
i=1,Φ0,Φ

′
1ϱ)

when ϱ is a bijective renaming of private names, Qi ≡E Q ′i for
all i , and Φ1 ≡E Φ′1. We extend this to traces by writing A2

0
α1
−−→s

· · ·
αn
−−→s A

2
n ≡α B20

α1
−−→s · · ·

αn
−−→s B

2
n when A2

0 = B20 and A2
i ≡α B2i

for all i > 0.

Lemma D.5 . ≡α is an equivalence relation.

Proof. Re�exivity and Symmetry are immediate, but transitivity
requires the observation that for any terms t, t ′ and bijective
renaming of private names ϱ, t =E t ′ entails tϱ =E t ′ϱ. �

Proposition D.6 . The relation ≡α has the properties:
(i) ∀t2 ∈ T(A2), ∃s2 ∈ O∃sym, s

2 ≡α t2

(ii) if t2 ≡α s2, then fst(t2) ∼ snd(t2) i� fst(s2) ∼ snd(s2)
(iii) if t2 ≡α s2, then fst(t2) = fst(s2)

Proof. The property (i) can be proved by induction on the length
of the trace. The main argument is that if A2 α

−→s B2 is ill-
formed, then there exists a well-formed transition A2 α

−→s C2

such that B2 ≡α C2. The property (ii) follows from the fact that
Φ =E Φ′ implies Φ ∼ Φ′, and Φ ∼ Φϱ for any bijective renaming
of private names ϱ. The property (iii) is immediate. �

From this the proof of Proposition 5.5 follows:
Proof of Proposition 5.5. We write ≈ the notion of equivalence
induced by the optimisation O∃sym. The inclusion ≈ ⊆ vs is im-
mediate. Let us then assume that P vs Q and prove that P v Q .
Let t ∈ T(P). By hypothesis, there is t2 ∈ T(P,Q) such that

t = fst(t2) ∼ snd(t2) .

By Proposition D.6 (Item (i)), there exists s2 ∈ O∃sym such that
t2 ≡α s2. Thus by Items (i) and (ii), t = fst(s2) ∼ snd(s2). �

23


	Introduction
	Model
	Messages and cryptography
	Protocols as processes
	Security properties

	Optimising verification
	Equivalence by session
	Comparison to other equivalences
	Trace refinements

	Partial-order reductions
	Labels and independence
	Compression optimisations
	Reduction optimisations

	Reductions by symmetry
	Group actions and process redundancy
	Structural equivalence
	Universal symmetry optimisation
	Existential symmetry optimisation

	Symbolic setting
	DeepSec's baseline procedure
	Symbolic matching
	Integration

	Experiments
	Conclusion and future work
	Explicit session matchings
	False attacks and determinacy
	Correctness of POR
	Permutability of independent actions
	Additional results
	Decomposition into phases
	Lexicographic reduction

	Correctness of symmetries
	Universal symmetries
	Existential symmetries


