
HAL Id: hal-02267866
https://hal.science/hal-02267866v1

Preprint submitted on 19 Aug 2019 (v1), last revised 17 Apr 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting symmetries when proving equivalence
properties for security protocols (Technical report)

Vincent Cheval, Steve Kremer, Itsaka Rakotonirina

To cite this version:
Vincent Cheval, Steve Kremer, Itsaka Rakotonirina. Exploiting symmetries when proving equivalence
properties for security protocols (Technical report). 2019. �hal-02267866v1�

https://hal.science/hal-02267866v1
https://hal.archives-ouvertes.fr

Exploiting symmetries when proving equivalence properties for
security protocols (Technical report)

Vincent Cheval, Steve Kremer, Itsaka Rakotonirina
INRIA Nancy Grand-Est & LORIA

1 Introduction
Security protocols are distributed programs transmitting

data between several parties. The underlying messages may
be sensitive—for economical, political, or privacy reasons—
and communications are usually performed through an un-
trusted network such as the Internet. Therefore, such pro-
tocols need to guarantee strong security requirements in
an active adversarial setting, i.e., when considering an ad-
versary that has complete control over the communication
network. Formal, symbolic methods, rooted in the semi-
nal work of Dolev and Yao [DY81], have been successful in
analysing complex protocols, including for instance the re-
cent TLS 1.3 proposal [BBK17, CHH+17] and the upcoming
5G standard [BDH+18b].

While some security properties can be formalised as
reachability statements, privacy related properties are gen-
erally de�ned as the indistinguishability of two situations
where the value of a private attribute di�ers. This is why
privacy-type properties such as anonymity, (strong �avors
of) secrecy, unlinkability, or privacy in e-voting are often
modelled as behavioural equivalences in concurrent pro-
cess calculi, such as the applied pi-calculus [ABF18]. The
problem of verifying such equivalences is undecidable in the
full, Turing-complete, calculus. Still, decidability results and
fully automated analysers exist when the number of proto-
col sessions is bounded.

Unfortunately, recent results [CKR18a] show that the
problem has a high computational worst-case complexity
(coNEXP-complete). Yet, other results show that the prob-
lem is exponentially simpler (coNP-complete) for a class
of practical scenarios (determinate processes) [CD09]. This
gap is all the more striking in practice as, for determinate
processes, the veri�cation time can e�ectively be reduced
by several orders of magnitude using partial-order reduc-
tions [BDH15, CKR18b]. This highlights the gap between
the general, pessimistic complexity bound and what can
be achieved by exploiting speci�cities of given instances.

In practice, the processes that are analysed show a great
amount of symmetries as they often consist of several copies
(sessions) of the same protocol executed in parallel. Exploit-
ing this information helps factoring out large, redundant
parts of equivalence proofs, and making theoretically hard
veri�cation feasible in practice.

Contributions
We present optimisations for the veri�cation of trace

equivalence in the applied pi-calculus. For that we exploit
the symmetries of the two processes to be shown equiva-
lent. More speci�cally, our contributions are as follows.

(1) We introduce equivalence by session, a new process
equivalence that implies the classical trace equivalence.
Intuitively, it is a re�nement of trace equivalence de-
signed for two processes sharing a similar structure,
making veri�cation easier.

(2) We show how the partial-order reductions presented
in [BDH15] for determinate processes, can be used for
proving equivalence by session for any processes.

(3) We give a group-theoretic characterisation of internal
process redundancy, inspired by classical formalisations
of symmetries in model checking [ES96], and use it to
reduce further the complexity of deciding equivalence
by session.

(4) We design a symbolic version of the above equivalence
and optimisations, based on the constraint solving tech-
niques of the D���S�� prover [CKR18b], a state-of-the-
art tool for verifying equivalence properties in security
protocols. This allowed us to implement our techniques
in D���S�� and evaluate the gain in veri�cation time
induced by our optimisations.

Note that, while we designed equivalence by session as
an e�cient proof technique for trace equivalence it is also
of independent interest: to some extent, equivalence by ses-
sion models attackers that can distinguish di�erent sessions

1

of a same protocol. This may be considered realistic when
servers allocate a distinct ephemeral port for each session;
in other contexts, e.g. RFID communication this may how-
ever be too strong. When equivalence by session is used as a
proof technique for trace equivalence, false attacks are pos-
sible, as it is a sound, but not complete, re�nement. How-
ever, on the existing protocols we experimented on, each
time equivalence by session was violated, trace equivalence
was violated as well.

Our prototype is able to successfully analyse various se-
curity protocols that are currently out of scope—in terms of
expressivity or exceeding a 12h timeout—of similar state-
of-the-art analysers. We observe improvements of several
orders of magnitude in terms of e�ciency, compared to the
original version of D���S��. Among the case studies that
we consider are

the Basic Acces Control (BAC) protocol [For04] imple-
mented in European e-passports. In previous work, ver-
i�cation was limited to merely 2 sessions, while in this
paper we scale up to 5 sessions.

theHelios e-voting protocol [Adi08]. Automated analyses
of this protocol exist when no revote is allowed, or is lim-
ited to one revote from a honest voter [ACK16, CKR18a].
In this paper, we analyse several models covering revote
scenarios for 7 emitted honest ballots.
This document is the technical report of the conference

paper [CKR19]. It contains full technical proofs and gen-
eralised results, as well as a di�erent running example to
provide a complementary presentation.

Related work
The partial-order reductions (por) for the veri�cation of

cryptographic protocols were �rst introduced by Clark et
al. [CJM03]: while well developed in veri�cation of reac-
tive systems they do not easily carry over to security pro-
tocols, mainly due to the symbolic treatment of attacker
knowledge. Mödersheim et al. [MVB10] proposed por tech-
niques that are suitable for symbolic methods based on con-
straint solving. However, both the techniques of [CJM03]
and [MVB10] are only correct for trace properties.

Partial order reduction techniques for equivalence prop-
erties were only introduced more recently by Baelde et
al. [BDH14, BDH15]: implementing these techniques in the
APTE tool resulted in spectacular speed-ups. Other state-
of-the-art tools, AKISS [CCCK16a] and D���S�� [CKR18a],
integrated these techniques as well. However, these existing
techniques are limited in scope as they require protocols to
be determinate. Examples of protocols that are typically not

modelled as determinate processes are the BAC protocol,
and the Helios e-voting protocol mentioned above. In recent
work, Baelde et al. [BDH18a] propose por techniques that
also apply to non-determinate processes (but do not support
private channels) and implement these techniques in the
D���S�� tool. Unfortunately, these techniques introduce a
computational overhead, that limits the e�ciency gain. As
our experimentswill show, our techniques, although includ-
ing some approximations, signi�cantly improve e�ciency.

There exist other tools for the veri�cation of equivalence
properties in the case of a bounded number of sessions. The
SAT�E��� tool [CDD17] is extremely e�cient, but its scope
is more narrow: it does not support user-de�ned equa-
tional theories and is restricted to determinate processes.
As shown in [CKR18a], the AKISS [CCCK16a] and SPEC
tool [TNH16] were already less e�cient (by orders of mag-
nitude) than the D���S�� tool before our current work.

Finally, our approach can also be compared to tools for
an unbounded number of sessions. The P��V���� [BAF08],
T������ [BDS15] and M�����NPA [SEMM14] tools all
show a process equivalence that is more �ne-grained than
trace-equivalence. The resulting equivalence is often re-
ferred to as di�-equivalence in that it requires that equiv-
alent processes follow the same execution �ow and only
di�er on the data. As a result these techniques may fail
to prove equivalence of processes that are trace equivalent.
Our approach goes in the same direction but equivalence
by session is less �ne-grained, for example capturing equiv-
alence proofs for the BAC protocol. A detailed comparison
between these two equivalences is given in Section 3.1. Be-
sides, the restriction to a bounded number of sessions allows
us to decide equivalence by session, while termination is not
guaranteed for tools in the unbounded case.

2 Model
We �rst present our model for formalising privacy-type

properties of security protocols, represented by trace equiv-
alence of processes in the applied-pi calculus [ABF18].

2.1 Messages and cryptography
To analyse protocols, we rely on symbolic models rooted

in the seminal work of Dolev and Yao [DY81]. Crypto-
graphic operations are modelled by a �nite signature, i.e., a
set of function symbols with their arity F = {f/n, g/m, . . .}.
Atomic data such as nonces, random numbers, or crypto-
graphic keys are represented by an in�nite set of names

N = {a,b,k, . . .} = Npub [Npriv

2

partitioned into public and private names. We also consider
an in�nite set of variables X = {x,�, z, . . .}. Protocol mes-
sages are then modelled as terms obtained by application
of function symbols to names, variables or other terms. If
A ✓ N [X, T(F ,A) refers to the set of terms built from
atoms in A.

Example 2.1. The following signature models the classical
primitives of pairs, randomised symmetric encryption, and
their inverse operations:

F = { h·, ·i/2, proj1/1, proj2/1, senc/3, sdec/2 }
For example, let m 2 Npub, and k, r 2 Npriv modelling a
private key and a random nonce, respectively. The term

c = senc(m, r ,k)
models a ciphertext obtained by encryptingm with the key
k and randomness r , and sdec(c,k) models its decryption.4

An equational theory is a binary relation E on terms. It
is extended to an equivalence relation =E that is the closure
of E by re�exivity, symmetry, transitivity, substitution and
applications of function symbols. All the optimisations we
present in this paper are sound for arbitrary equational the-
ories although, obviously, the implementation in D���S��
naturally inherits the restrictions of the tool (limited to de-
structor subterm convergent rewriting systems). The fol-
lowing equations characterise the behaviour of the primi-
tives introduced in Example 2.1:

proji (hx1, x2i) =E xi sdec(senc(x,�, z), z) =E x

That is, a message encrypted with a key k can be recovered
by decrypting using the same key k . Using the notations of
Example 2.1, we can for instance derive from these equa-
tions that sdec(c,k) =E m.

A substitution � is a mapping from variables to terms, ho-
momorphically extended to a function from terms to terms.
We use the classical post�x notation t� instead of � (t), and
the set notation � = {x1 7! x1� , . . . , xn 7! xn� }. In partic-
ular wemay use operators such as ✓ or\with substitutions.

2.2 Protocols as processes
Syntax Protocols are modelled as concurrent processes
exchanging messages (i.e. terms). We de�ne the syntax of
plain processes by the following grammar:

P,Q := 0 null
P | Q parallel
if u = � then P else Q conditional
c hui.P output
c(x).P input

whereu,� are terms, x 2 X, and c 2 Chwhere Ch denotes a
set of channels. We assume a partition Ch = Chpub [Chpriv
of channels into public and private channels: while pub-
lic channels are under the control of the adversary, private
channels allow con�dential, internal communications. The
0 process is the terminal process which does nothing, the
operator P | Q executes P and Q concurrently, c hui sends
a message u on channel c , and c(x) receives a message (and
binds it to the variable x).

We highlight two restrictions compared to the calculus
of [ABF18]: we only consider a bounded number of proto-
col sessions (i.e. there is no operator for unbounded par-
allel replication) and channels are modelled by a separate
datatype (i.e. they are never used as parts of messages).
The �rst restriction is necessary for decidability [CCCK16b,
TNH16, CKR18a] but still allows to detect many �aws since
attacks tend to require a rather small number of sessions.
Our optimisations also rely on an invariant that private
channels remain unknown to the adversary, hence the re-
striction to disallow channel names in messages.

Example 2.2. We describe a toy protocol that will serve as
a running example throughout the paper. This is a simpli�-
cation of the BAC protocol implemented in the European e-
passports. The system builds upon the signature and equa-
tional theory introduced in Example 2.1. In a preliminary
phase, a reader obtains the private key k of a passport, and
then they communicate as follows (in Alice-Bob notation):

Reader ! Passport : get_challenge

Passport ! Reader : n

Reader ! Passport : senc(n, r ,k) bound as x
Passport ! Reader : ok if sdec(x,k) = n

error otherwise

where n, r 2 Npriv and get_challenge, ok, error 2 Npub. In
particular, the passport triggers an error when it receives
a communication originated from a reader that has not the
right key k , i.e. a reader that has been paired with an other
passport during the preliminary phase. In the applied pi-
calculus, they are modelled by the following processes

P(k,n) = c(x0). if x0 = get_challenge then
c hni. c(x).
if sdec(x,k) = n then c hoki. 0
else c herrori. 0

R(k, r) = c hget_challengei.
c(xn). c hsenc(xn, r ,k)i. 0

where c 2 Chpub. 4

3

Semantics The behaviour of protocols is de�ned by an
operational semantics on processes. Its �rst ingredients
are simplifying rules to normalise processes from non-
observable, deterministic actions (Figure 1).

P | 0 P 0 | P P (P | Q) | R P | (Q | R)
P | Q P

0 | Q
Q | P Q | P 0

�
if P P

0

if u = � then P elseQ
⇢
P if u =E �

Q otherwise

Figure 1: Simpli�cation rules for plain processes

These simplifying rules get rid of 0 processes, and evalu-
ate conditionals at toplevel. We say that a process on which
no more rule applies is in -normal form. This rewriting
relation being convergent, we will denote by P

the unique

 -normal form of P .
The operational semantics then operates on extended pro-

cesses (P,�), where P is a multiset of plain processes (in
 -normal form) and � is a substitution, called the frame.
Intuitively, P is the multiset of processes that are ready to
be executed in parallel, and � is used to record outputs on
public channels. The domain of the substitution � is a sub-
set of a set AX of axioms, disjoint from X: they record the
raw observations of the attacker, that is, they are the ax-
ioms in intruder deduction proofs. The semantics (Figure 2)
takes the form of a labelled transition relation

��! between
extended processes, where� is called an action and indicates
what kind of transition is performed.

The output rule (O��) models that outputs on a public
channel are added to the attacker knowledge, i.e., stored
in � in a fresh axiom. The axioms thus provide handles
for the attacker to refer to these outputs. The input rule
(I�) reads a term � , called a recipe provided by the attacker,
on a public channel. This term � can be e�ectively con-
structed by the attacker as it is built over public names and
elements of dom(�), i.e. previous outputs. The resulting
term is then bound to the input variable x . Rule (C���)
models internal communication on a private channel and
rule (P��) adds processes in parallel to the multiset of ac-
tive processes. These last two actions are internal actions
(label �), unobservable by the attacker.

Traces A trace of an extended process A is a sequence of
reduction steps starting from the extended process A

t : A
�1��! A1

�2��! · · · �n��! An .

When the intermediate processes are not relevant we rather
write

t : A
�1 · · ·�n
=====) An .

We de�ne tr(t) to be the word of actions �1 · · ·�n (including
� ’s), and �(t) to be the frame of An .

The set of the traces ofA is written T(A), and the notation
is extended to plain processes bywritingT(P) forT({{P}},ú).
Indistinguishability against active adversaries will be mod-
elled as relations between such sets of traces.

Example 2.3. Consider again the access-control protocol de-
scribed in Example 2.2. Let S = ({{P(k,n),R(k 0, r)}}, ú), with
k,k 0,n, r 2 Npriv , a system consisting of a passport and a
reader in parallel. The system has the following trace:

S
c hax0 i�����! ({{P(k,n),R0(k 0, r)}},�0)
c(get_challenge)�����������������! ({{P0(k,n),R0(k 0, r)}}, �0)
c hax1 i�����! ({{P1(k,n),R0(k 0, r)}}, �0 [�1)
c(ax1)����! ({{P1(k,n), c hsenc(n, r ,k 0)i}}, �0 [�1)
c hax2 i�����! ({{P1(k,n), 0}}, �0 [�1 [�2)
c(ax2)����! ({{c h�i, 0}}, �0 [�1 [�2)})

with

�0 = {ax0 7! get_challenge}
�1 = {ax1 7! n}
�2 = {ax2 7! senc(n, r ,k 0)}

P(k,n) = c(x0). if x0 = get_challenge then P0(k,n)
P0(k,n) = c hni. P1(k,n)
R(k 0, r) = c hget_challengei.R0(k 0, r)

and � = ok if k = k
0, and � = error if k , k

0. Note that the
input action c(get_challenge) could be replaced by c(ax0).4

2.3 Security properties
Many security properties can be expressed in terms of

indistinguishability (from the attacker’s viewpoint). The
preservation of anonymity during a protocol execution can
for example be modelled as the indistinguishability of two
instances of the protocol with di�erent participants. Strong
�avors of secrecy can also be expressed: after interacting
with the protocol, the attacker is still unable to distinguish
between a secret used during the protocol and a fresh ran-
dom nonce. Our case studies also include such modellings
of unlinkability or vote privacy.

4

(O��) ({{c hui.P}} [P,�) c haxi����! ({{P }} [P,� [{ax 7! u}) c 2 Chpub, ax 2 AX r dom(�)

(I�) ({{c(x).P}} [P,�) c(�)���! ({{P[x 7! ��] }} [P,�) c 2 Chpub, � 2 T(F ,Npub [dom(�))

(C���) ({{c hui.P, c(x).Q}} [P,�) ��! ({{P,Q[x 7! u]}} [P,�) c 2 Chpriv
(P��) ({{P1 | . . . | Pn}} [P,�) ��! ({{P1, . . . , Pn}} [P,�)

Figure 2: Operational semantics of the applied pi-calculus

Static equivalence The ability to distinguish or not be-
tween two situations lies on the attacker’s observations, i.e.
the frame. Indistinguishability of two frames is captured by
the notion of static equivalence. Intuitively, we say that two
frames are statically equivalent if the attacker cannot craft
an equality test that holds in one frame and not in the other.

D��������� 2.1 . Two frames �1 and �2 are statically equiv-
alent, written �1 s �2 when dom(�1) = dom(�2) and, for
any recipes �1, �2 2 T(F ,Npub [dom(�1)),

�1�1 =E �2�1 , �1�2 =E �2�2

We lift static equivalence to traces and write t0 s t1 when
�(t0) s �(t1) and tr0 = tr1, where tri is obtained by remov-
ing � ’s from tr(ti). Removing � actions re�ects that these
actions are unobservable by the attacker.

Trace equivalence While static equivalence models the
(passive) indistinguishability of two sequences of observa-
tions, trace equivalence captures the indistinguishability of
two processes P andQ in the presence of an active attacker.
Intuitively, we require that any sequence of visible actions
executable on P is also executable on Q and yields indistin-
guishable outputs, i.e., statically equivalent frames.

D��������� 2.2 . Let P,Q be plain processes in -normal
form. P is trace included in Q , written P vtr Q , when

8t 2 T(P), 9t 0 2 T(Q), t s t
0 .

We say that P and Q are trace equivalent, written P ⇡tr Q ,
when P vtr Q and Q vtr P .

Example 2.4. Consider again the model of passport and
reader introduced in Example 2.2, and let us write

S(k,n, r) = P(k,n) | R(k, r)
a system consisting of a passport and a reader in parallel
with a shared key k . The unlinkability property can be
stated by the inability for the attacker to distinguish be-
tween two copies of the same passport interacting with

readers, and two di�erent passports. That is,

S(k,n, r) | S(k,n0, r 0) ⇡tr S(k,n, r) | S(k 0,n0, r 0)
with k,k 0,n,n0, r , r 0 2 Npriv pairwise distinct. The inclu-
sion S(k,n, r) | S(k,n0, r 0) vtr S(k,n, r) | S(k 0,n0, r 0) indeed
holds. However, this model of unlinkability is violated in
that the converse inclusion does not hold. Indeed in the
right-hand-side process, making a reader interact with the
wrong passport produces an error message, which is not the
case in the left-hand side (since the two systems share the
same key). Formally, T(S(k,n, r) | S(k 0,n0, r 0)) contains a
trace t such that

tr(t) = � c hax0i c(ax0) c hax1i c(ax1) c hax2i c(ax2) c hax3i
�(t) = {ax0 7! get_challenge, ax1 7! n,

ax2 7! senc(n, r 0,k 0), ax3 7! error} 4

3 Optimising verification
The problem of verifying trace equivalence in the pre-

sented model is coNEXP-complete for equational theories
represented as subterm convergent destructor rewrite sys-
tems [CKR18a]. Despite this high theoretical complexity,
automated analysers can take advantage of the speci�ci-
ties of practical instances. One notable example is the class
of determinate processes that encompasses many practi-
cal scenarios and has received quite some attention [CD09,
BDH15, CCCK16b, CKR18b]. It allows for partial-order re-
ductions [BDH15], speeding up the veri�cation time by sev-
eral orders of magnitude. Our approach, similar in spirit
but applicable in a more general setting, consists in guiding
the decision procedure with the structural similarities of the
two processes that we aim to show equivalent.

3.1 Equivalence by session
We introduce a new equivalence relation, equivalence by

session: the main idea is that, when proving the equivalence
of P and Q , every action of a given parallel subprocess of P
should be matched by the actions of a same subprocess in

5

Q . This is indeed often the case in protocol analysis where
a given session (the execution of an instance of a proto-
col role) on one side is matched by a session on the other
side. By requiring to match sessions rather than individ-
ual actions, this yields a more �ne-grained equivalence and
e�ectively reduces the combinatorial explosion. Moreover,
thanks to the optimisations that exploit the structural prop-
erties of equivalence by session (presented in the following
sections), we obtain signi�cant speed-ups during the veri-
�cation of case studies that are neither determinate nor in
scope of the (even more �ned-grained) di�-equivalence of
P��V���� and T������.

Twin processes To formalise session matchings we use a
notion of twin-process, that are pairs of matched processes
that have the same action at toplevel, called their skeleton.

D��������� 3.1 . A twin-process is a pair of plain processes
in -normal form (P,Q) such that skel(P) = skel(Q), where
if c 2 Chpub: skel(c(x).Q)= {{inc }} skel(c hxi.Q)= {{outc }}
if d 2 Chpriv : skel(d(x).Q)= {{in}} skel(d hxi.Q)= {{out}}

skel(P1 | · · · | Pn) = skel(P1) [. . . [skel(Pn)

An extended twin-processA2 = (P2,�0,�1) is then a triple
where P2 is a multiset of twin-processes and �0,�1 are
frames. This thusmodels two extended processes with iden-
tical skeletons, matched together. We retrieve the original
extended processes by projection,

fst(A2) = ({{P0 | (P0, P1) 2 P2}},�0)
snd(A2) = ({{P1 | (P0, P1) 2 P2}},�1)

The semantics of twin-processes is de�ned in Figure 3 and
mostly requires that the two projections follow the same
reduction steps in the single-process semantics. The rule
(P��) is however replaced by a rule that allows to match
each parallel subprocess from the left with a parallel process
from the right. We underline that, by de�nition of twin-
processes, a transition A

2 ��!s (P2,�) is possible only if for
all (P,Q) 2 P2, it holds that skel(P) = skel(Q).

Similarly to extended processes, we use T(A2) to denote
the set of reduction steps from an extended twin-processA2.
Besides if

t
2 : A2 �1��!s A

2
1 · · ·

�n��!s A
2
n 2 T(A2

1) ,
we also lift the projection functions by writing

fst(t2) : fst(A2) �1��!s fst(A2
1) · · ·

�n��!s fst(A2
n+1)

and similarly for snd(t2). Note that fst(t2) 2 T(fst(A2)).

Equivalence by session Equivalence by session is simi-
lar to trace equivalence but only considers the traces of Q
matching the structure of the trace of P under study. This
structural requirement is formalised by considering traces
of the twin-process (P,Q). Formally speaking, given two
plain processes P andQ in -normal form having the same
skeleton, we write P vs Q when

8t 2 T(P), 9t2 2 T(P,Q), t = fst(t2) s snd(t2) .
We say that P and Q are equivalent by session, referred as
P ⇡s Q , when P vs Q and Q vs P .

While equivalence by session has been designed to in-
crease e�ciency of veri�cation procedures, it is also of in-
dependent interest. Equivalence by session captures a no-
tion of indistinguishability against an adversary that is able
to distinguish actions which originate from di�erent proto-
col sessions. Such an adversarial model may for instance
be considered realistic in protocols where servers dynami-
cally allocate a distinct ephemeral port to each session. An
attacker would therefore observe these ports and always
di�erentiate one session from another. When considering
equivalence by session, this allocation mechanism does not
need to be explicitly modelled as it is already re�ected na-
tively in the de�nition. On the contrary when consider-
ing trace equivalence, an explicit modelling within the pro-
cesseswould be needed. For example equivalence by session
of two protocol sessions operating on a public channel c ,

P(c) | P(c) ⇡s Q(c) | Q(c)
could be encoded by relying on dynamically-generated pri-
vate channels that are revealed to the attacker. This can be
expressed in the original syntax of the applied pi-calclulus
[ABF18] as:

Pfresh | Pfresh ⇡tr Qfresh | Qfresh

where Pfresh = new e . c hei. P(e), Qfresh = new e . c hei.Q(e).
Such encodings however break determinacy and are thus
incompatible with the partial-order reductions of [BDH15].
Our dedicated equivalence o�ers similar-in-spirit optimisa-
tions that are applicable on all processes .

In this paper wemostly focus on the use of equivalence by
session as a heuristic to prove or disprove trace equivalence.

3.2 Comparison to other equivalences
Relation to trace equivalence We �rst show that equiv-
alence by session is a sound re�nement of trace equivalence.

P���������� 3.1 . If P ⇡s Q then P ⇡tr Q .

This is immediate as t2 2 T(P,Q) entails snd(t2) 2 T(Q).

6

({{Pi }},�i)
��! ({{P 0i }},�0i) by rule (I�) or (O��) for all i 2 {0, 1}

({{(P0, P1)}} [P2,�0,�1)
��!s ({{(P 00, P 01)}} [P2,�00,�

0
1)

(IO)

({{Pi ,Qi }},�i)
��! ({{P 0i ,Q 0i }},�i) by rule (C���) for all i 2 {0, 1}

({{(P0, P1), (Q0,Q1)}} [P2,�0,�1)
��!s ({{(P 00, P 01), (Q 00,Q 01)}} [P2,�0,�1)

(C���)

� permutation of n1,no

({{(P1 | · · · | Pn, Q1 | · · · | Qn)}} [P2,�0,�1)
��!s ({{(Pi ,Q� (i))}}ni=1 [P2,�0,�1)

(M����)

Figure 3: Semantics on twin-processes

The converse does not hold in general, meaning that two
processes that are not equivalent by session might be trace
equivalent. The simplest example is, for n 2 Npub,

P = c hni. c hni Q = c hni | c hni
We call false attacks traces witnessing a violation of equiv-
alence by session, but that can still be matched trace-
equivalence-wise. In this example even the empty trace is a
false attack since the two processes fail to meet the require-
ment of having identical skeletons. Such extreme con�gu-
rations are however unlikely: privacy is usually modelled as
the equivalence of two protocol instances where some pri-
vate attributes are changed. In particular the overall struc-
ture in parallel processes remains common to both sides.

More realistic false attacks may arise when the structural
requirements of equivalence by session are too strong, i.e.
when matching the trace requires mixing actions from dif-
ferent sessions. Consider for example the two processes

P = s hni. ahni | s(x).bhni Q = s hni.bhni | s(x). ahni
with a,b 2 Chpub and s 2 Chpriv . These processes �rst syn-
chronise on a private channel s by the means of an inter-
nal communication, and then perform two parallel outputs
on public channels a,b. They are easily seen trace equiva-
lent. However the skeletons at toplevel constrain the ses-
sion matchings, i.e. the application of rule (M����). Hence
any trace executing an output on a or b is a false attack.

Finally false attacks cannot happen for determinate pro-
cesses, i.e. the class of processes for which the partial-order
reductions of [BDH15] were designed. A plain process P is
determinate if it does not contain private channels and,

8P tr
=) ({{P1, . . . , Pn}},�), 8i , j, skel(Pi) , skel(Pj) .

P���������� 3.2 . If P,Q are determinate plain processes
such that P ⇡tr Q then P ⇡s Q .

The core argument is the uniqueness of session match-
ings; that is, there is always at most one permutation that
can be chosen when applying the rule (M����) to a pair
of determinate processes. The proof can be found in Ap-
pendix B: thanks to the structural requirements imposed by
skeletons, we even prove that trace equivalence (⇡tr) and in-
clusion by session (vs) coincide for determinate processes.

Relation to di�-equivalence P��V����, T������ and
M�����NPA are semi-automated tools that can provide
equivalence proofs for an unbounded number of proto-
col sessions. For that they rely on another re�nement of
trace equivalence, called di�-equivalence (⇡d). It relies on
a similar intuition as equivalence by session, adding (much
stronger) structural requirements to proofs. To prove di�-
equivalence of P andQ , one �rst requires that P andQ have
syntactically the same structure and that they only di�er by
the data (i.e. the terms) inside the process. Second, any trace
of P must be matched in Q by the trace that follows exactly
the same control �ow. Consider for example

P = c hui | c h�i | R Q = c hu 0i | c h� 0i | R0

For P and Q to be di�-equivalent, traces of P starting with
c hui need to be matched by traces of Q starting with c hu 0i.

In the original de�nition of di�-equivalence [BAF05] con-
ditional branchings were also required to result into the
same control-�ow. This condition has however been relaxed
within [CB13]: the resulting di�-equivalence can be de�ned
in our formalism as equivalence by session in which the rule
(M����) only performs the identity matching. That is, if we
write Td (P,Q) for the subset of traces of T(P,Q) where the
rule (M����) is replaced by

({{(P1 | · · · | Pn,Q1 | · · · | Qn)}} [P2,�0,�1)
��!s ({{(Pi ,Qi)}}ni=1 [P2,�0,�1)

7

then we de�ne P vd Q as the statement

8t 2 T(P), 9t2 2 Td (P,Q), t = fst(t2) s snd(t2) .
We say that P and Q are di�-equivalent, written P ⇡d Q ,
when P vd Q andQ vd P . By de�nition Td (P,Q) ✓ T(P,Q)
and di�-equivalence therefore re�nes equivalence by ses-
sion. The converse does not hold in general as witnessed
by

P = c hai | c hbi Q = c hbi | c hai a,b 2 Npub distinct

This example is extreme as a simple pre-processing on par-
allel operators would make the processes di�-equivalent.
Such a pre-processing is however not possible for more in-
volved, real-world examples such as the equivalences we
prove on the BAC protocol in Section 7. The underlying rea-
son is that the matchings have to be selected dynamically,
that is, di�erent session matchings are needed to match dif-
ferent traces.

Relation to observational equivalence As a side result
we also compare equivalence by session to observational
equivalence, or more technically the equivalent notion of la-
belled bisimilarity as described in [ABF18, CKR18a]. Just as
equivalence by session, this equivalence is known to be an
intermediate re�nement between di�-equivalence and trace
equivalence [CD09]:

L���� 3.3 . ⇡d ✓ ⇡o ✓ ⇡tr . Besides, ⇡o and ⇡tr coincide for
determinate processes.

In particular by Proposition 3.2 we obtain that trace
equivalence, observational equivalence, and equivalence by
session coincide for determinate processes. However they
are incomparable in general:

L���� 3.4 . ⇡s and ⇡o are incomparable.

Proof. If we write P = c(x).c(x) and Q = c(x) | c(x), then
P ⇡o Q but P 6⇡s Q . Besides, if k0,k1,k2 2 Npriv we de�ne

R(t0, t1, t2) = c hk0i | c hk1i | c hk2i |
c(x). if x = k0 then c ht0i

else if x = k1 then c ht1i
else if x = k2 then c ht2i

If a,b 2 Npub distinct, we have R(a,b,b) ⇡s R(b,a,a) but
R(a,b,b) 6⇡o R(b,a,a). ⇤

To sum up the relations between all equivalences:

P���������� 3.5 . If ⇡ 2 {⇡o,⇡s} then ⇡d (⇡ (⇡tr and,
for determinate processes, ⇡ = ⇡tr .

3.3 Trace refinements
In this section we present an abstract notion of optimisa-

tion, based on trace re�nements. This comes with several
properties on how to compose and re�ne them, providing a
uni�ed way of presenting di�erent concrete optimisations
for the decision of equivalence by session in later sections.

D��������� 3.2 . An optimisation is a pair O = (O8,O9)
where O8 is a set of traces of extended processes (univer-
sal optimisation), and O9 a set of traces of extended twin-
processes (existential optimisation).

Intuitively, an optimisation reduces the set of traces that
are considered when verifying equivalence: when proving
P vs Q , only traces of T(P) \ O8 and T(P,Q) \ O9 will be
studied. That is, we de�ne the equivalence ⇡O =vO \ wO
where P vO Q means

8t 2 T(P) \ O8, 9t2 2 T(P,Q) \ O9, t = fst(t2) s snd(t2) .

In particular ⇡Oall is the equivalence by session, where
Oall = (O8all,O9all) contains all traces. However, of course,
such re�nements may induce di�erent notions of equiva-
lence, hence the need for correctness arguments speci�c to
each layer of optimisation. We specify this as follows: if
O� = (O8� ,O9�) and O� = (O8� ,O9�), we say that O� is a
correct re�nement of O� when

O
8
� ✓ O8� and O

9
� ✓ O9� and ⇡O� = ⇡O� .

Correct re�nements contribute to reducing the complex-
ity of deciding equivalence.

Properties The remainder of this section provides ele-
mentary properties useful when constructing, and compos-
ing optimisations. First we show that they can be con-
structed stepwise.

P���������� 3.6 (transitivity) . IfO1 is a correct re�nement
of O2, and O2 is a correct re�nement of O3, then O1 is a
correct re�nement of O3.

Moreover, we can prove universal and existantial optimi-
sations in a modular way:

P���������� 3.7 (combination) . If (O8opt,O9) and (O8,O9opt)
are correct re�nements of (O8,O9), then (O8opt,O9opt) is a cor-
rect re�nement of (O8,O9).
Proof. Let ⇡⇥⇥, ⇡�⇥, ⇡⇥� and ⇡�� the equivalences induced
by the optimisations (O8,O9), (O8opt,O9), (O8,O9opt) and
(O8opt,O9opt), respectively. As ⇡�⇥ =⇡⇥⇥ =⇡⇥� by hypothe-
sis, the result follows from the straightforward inclusions

8

⇡�� ✓ ⇡�⇥ and ⇡⇥� ✓ ⇡��. ⇤

Relying on this result, we see a universal optimisation
O
8 (resp. existential optimisations O9) as the optimisation

(O8,O9all) (resp. (O8all,O9)). This lightens presentation as we
can now meaningfully talk about universal (resp. existen-
tial) optimisations being correct re�nements of others.

Finally, when implementing such optimisations in tools,
deciding the membership of a trace in the setsO8 orO9 may
sometimes be ine�cient or not e�ective. In these cases we
may want to implement these optimisations partially, using
for example su�cient conditions. The following proposi-
tion states that such partial implementations still result into
correct re�nements.

P���������� 3.8 (partial implementability) . Let us con-
sider O8opt ✓ O8part ✓ O8 and O9opt ✓ O9part ✓ O9. If O8opt is a
correct re�nement of O8 and O9opt is a correct re�nement of
O
9, then (O8part,O9part) is a correct re�nement of (O8,O9).

This is a straightforward corollary of Proposition 3.7.
In the rest of the paper we assume the reader familiar

with group theory (group actions, stabilisers), in particular
the group of permutations (written in cycle notation). Most
of our optimisations are indeed expressed using this termi-
nology.

4 Partial-order reductions
In this section we present partial-order reductions for

equivalence by session. They are inspired by similar tech-
niques developed for proving trace equivalence of determi-
nate processes [BDH15], although they di�er in their tech-
nical development to preserve correctness in our more gen-
eral setting. In particular the optimisations we present ac-
count for non determinacy and private channels.

4.1 Labels and independence
Labels Partial-order reductions identify commutativity
relations in a set of traces and factor out the resulting re-
dundancy. Here we exploit the permutability of concurrent
actions without output-input data �ow. For that we intro-
duce labels to reason about dependencies in the execution:

Plain processes P are labelled [P]` , with ` a word of inte-
gers re�ecting the position of P within the whole process.
Actions � are labelled [�]L to re�ect the label(s) of the
process(es) they originate from. That is, L is either a sin-
gle integer word ` (for inputs and outputs) or a pair of
such, written `1 | `2 (for internal communications).

Labels can be bootstrapped arbitrarily, say, by the empty
word � , and are propagated as follows in the operational
semantics. The (P��) rule extends labels:

({{[P1 | · · · | Pn]`}}] P,�) [�]`���!s ({{[Pi]`.i }}ni=1] P,�)
the rules (I�) and (O��) preserve labels:

({{[P]`}}] P,�) [�]`����!s ({{[P 0]`}}] P,�0)
and so does (C���), however producing a double label:

({{[P]`, [Q]`0}}] P,�) [�]` |`0�����! ({{[P 0]`, [Q 0]`0}}] P,�) .
In particular, we always implicitly assume the invariant pre-
served by transitions that extended processes contain labels
that are pairwise incomparable w.r.t. the pre�x ordering.

Independence Labels materialise �ow dependencies of
processes. Two actions � = [a]L and �

0 = [a0]L0 are said
sequentially dependent if one of the (one or two) words con-
stituting L, and one of those constituting L

0, are compara-
ble w.r.t. the pre�x ordering. Regarding input-output de-
pendencies, we say that � and �

0 are data dependent when
{a,a0} = {c haxi, c(�)} with ax appearing in � .

D��������� 4.1 (independence) . Two actions � and �
0 are

said independent, written � || � 0, when they are sequentially
independent and data independent.

There is some redundancy in the trace space in that, in-
tuitively, swapping adjacent, independent actions in a trace
has no substantial e�ect. Still, this is rather weak: for ex-
ample the recipe proj1(hn, axi) is arti�cially dependent in
the axiom ax, preventing optimisations. Such spurious de-
pendencies can be erased using the following notion:

D��������� 4.2 (recipe equivalence) . Two input transitions

(P,�) [c(�1)]`������! A (P,�) [c(�2)]`������! A

are said recipe equivalent when �1� =E �2�. Two traces are
recipe equivalent if one can be obtained from the other by
replacing some transitions by recipe-equivalent ones.

The rest of this section formalises the intuition that equiv-
alence by session can be studied up to recipe-equivalent
rewriting of traces, and arbitrary permutation of their in-
dependent actions. Proofs can be found in Appendix C.1.

Correctness of por techniques If tr = �1 · · ·�n and � is
a permutation of n1,no, we write

� .tr = �� (1) · · ·�� (n) .

9

This is an action of the group of permutations of n1,no on
action words of size n. We say that � permutes independent
actions of tr if either � = id, or � = �0�(i i+1)with �i || �i+1
and �0 permutes independent actions of (i i +1).tr. Such
permutations preserve the group structure of permutations,
in the sense of these two straightforward propositions:

P���������� 4.1 (composition) . If � permutes independent
actions of tr, and �

0 permutes independent actions of � .tr,
then �

0 � � permutes independent actions of tr.

P���������� 4.2 (inversion) . If � permutes independent
actions of tr, then ��1 permutes independent actions of � .tr.

We will use these two properties implicitly in many
proofs. But more importantly, the action of permutations
on trace words can be lifted to traces:

P���������� 4.3 . If t : A
tr
=) B and � permutes independent

actions of tr, then A
� .tr
===) B. This trace is unique if we take

labels into account, and will be referred as � .t .

Together with recipe equivalence, this is the core notion
for de�ning partial-order reductions. We gather them into
⌘por the smallest equivalence relation over traces contain-
ing recipe equivalence and such that t ⌘por � .t when � per-
mutes independent actions of t . The result below justi�es
that quotients by ⌘por result in correct re�nements.

P���������� 4.4 (correctness of por) . Let O81 ✓ O82 be uni-
versal optimisations. We assume that for all t 2 O82, there
exists t 0 ⌘por text , where t is a pre�x of text such that t 0 2 O81.
Then O81 is a correct re�nement of O82.

4.2 Compression optimisations
We �rst present a compression of traces into blocks of

actions of a same type (inputs, outputs and parallel, or in-
ternal communications) by exploiting Proposition 4.4. We
formalise this idea by using reduction strategies based on
polarity patterns.

Polarities and phases We assign polarities to processes
depending on their toplevel actions: public inputs are pos-
itive (+1), public outputs and parallels are overwhelmingly
negative (�1), and others are null.

polar(c(x).P) = 1 polar(c hui.P) = �1 c 2 Chpub
polar(d(x).P) = 0 polar(d hui.P) = 0 d 2 Chpriv

polar(0) = 0 polar(P | Q) = �1
This notion is lifted to extended processes by summing:

polar((P,�)) =
’
R2P

polar(R) .

In particular, any extended process that contains an exe-
cutable parallel operator or output has polarity �1, and
executing public inputs makes polarity nonincreasing. We
then identify the trace patterns at the core of our partial-
order reductions. We say that a trace

t : A0
[a1]L1�����! · · · [an]Ln������! An

is a negative phasewhen all transitions are outputs or par-
allels, and polar(An) , �1.
is a null phase when polar(A0) > 0, n = 1 and the transi-
tion is an internal communication.

is a positive phase when polar(A0) > 0, all transitions are
inputs, all Li ’s are equal, and polar(A0) > polar(An).
Rephrasing, a negative phase executes all available out-

puts and parallels, a null phase is one internal communica-
tion, and a positive phase executes a whole chain of inputs.
Note that only negative phases may be empty.

Basic compression The �rst optimisation is to only con-
sider traces that can be decomposed into phases. Formally
we write O8c,b the set of traces of the form

t : b�0 · b+1 · b�1 · b+2 · b�2 · · ·b+n · b�n
where each b

+
i is a positive or null phase, and each b

�
i is a

negative phase. We show in Appendix C.3 that any maxi-
mal trace can be decomposed this way after application of
a well-chosen permutation of independent actions. Hence
the following result by Proposition 4.4:

P���������� 4.5 . O8c,b is a correct re�nement of O8all.

Determinism of negative phases Negative phases are
non-deterministic by essence, but the underlying combina-
torial explosion is arti�cial in that most of the actions within
negative phases are independent: we show that they can ac-
tually be executed purely deterministically.

Let us �x an arbitrary total ordering 4 on labelled ac-
tions. A negative phase b�, with tr(b�) = �1 · · ·�n , is said
consistent when for all i < n such that �i || �i+1, we have
�i 4 �i+1. We write O8c the subset of O8c,b of traces whose
negative phases are all consistent.

P���������� 4.6 . O8c is a correct re�nement of O8c,b .

Proof. By Proposition 4.4, it su�cies to prove that for all
negative phases b�, there exists � permuting independent
actions of b� such that � .b� is consistent. This follows
from a well-founded induction on tr(b�) w.r.t the lexico-
graphic extension of 4 on words of actions. ⇤

10

4.3 Reduction optimisations
So far we compressed traces into sequences of phases.

Now we show how independent phases can be reordered to
reduce even further the complexity. These optimisations are
inspired from the reduced semantics and improper blocks
[BDH15], althought our work di�ers in its development.

Blocks A block is a positive or null phase followed by a
negative phase. Any trace ofO8c is therefore composed of an
initial negative phase and a sequence of blocks. Two blocks
b and b 0 are said independent, written b || b 0, if all actions of
the former are independent of all actions of the latter. Anal-
ogously to actions, we refer to permutations � permuting
independent blocks of traces of O8c. All related notations
and results can be cast to blocks thanks to the following
straightforward proposition:

P���������� 4.7 . Let t : bp · · · bn a sequence of blocks,
tri = tr(bi). If � permutes independent blocks of tr = tr(t),
then there is � 0 permuting independent actions of tr s.t.

�
0.tr = � .tr = tr� (p) · · · tr� (n) .

Note in particular the corollary of Proposition 4.4 that
will be at the core of the results of this section, where ⌘b-por
is the analogue of ⌘por where permutation of independent
actions is replaced by permutation of independent blocks:

C�������� 4.8 . Let O81 ✓ O82 ✓ O8c. We assume that for all
t 2 O82, there exists t 0 ⌘b-por t such that t 0 2 O81. Then O81 is
a correct re�nement of O82.

Improper blocks Blocks may contain a negative phase
that does not bring new knowledge to the attacker through
public outputs. Such blocks can always be relegated to the
end of traces, intuitively because they are not essential to
execute other blocks. Formally, we say that a block

b : (P,�) tr
=) (Q,� [{ax1 7! t1, . . . , axn 7! tn})

is improper if
(1) all labels appearing in tr do not appear in Q, except

maybe on null processes; and
(2) for all i 2 n1,no, ti is deducible from �, that is, there

exists a recipe �i such that �i� =E ti .
This is more general than the improper blocks de�ned in

[BDH15, CKR19], that require n = 0. Our �ner optimisation
captures for example outputs of public error codes in the
model of the e-passport in Example 2.2 (error, ok). Wewrite
O
8
c+i the subset of O

8
c of traces not containing an improper

block followed by a proper block.

P���������� 4.9 . O8c+i is a correct re�nement of O8c.

Proof. By Corollary 4.8, it su�cies to show that for all
traces of O8c, there exists a recipe-equivalent trace whose
improper blocks are independent of all blocks following
them. By Item (2) of the de�nition, by replacing each
occurrence of axi by �i in all input actions, we obtain a
recipe-equivalent trace whose improper blocks are data
independent of all blocks following them. Sequential in-
dendence is then justi�ed by Item (1). ⇤

Note that when restricting the de�nition to n = 0, we
obtain a weaker optimisation than the one presented in
[BDH15]. The latter indeed manages to additionally restrict
to traces that contain at most one improper block. This,
however, relies on determinate-speci�c arguments that are
unsound for equivalence by session in general.

Lexicographic reduction Finally, as sequences of inde-
pendent blocks can be permuted arbitrarily, we de�ne an
optimisation that �xes their order. Concretely we let 4 an
ordering on blocks insensitive to recipes, and such that in-
dependent blocks are always strictly comparable. We de�ne
a predicateMinimal(t,b) that tells whether adding the block
b at the end of t still results in a minimal trace w.r.t. the lex-
icographic extension of 4.

Minimal(b�,b) b
� negative phase

Minimal(b1 · · ·bn,b) if ¬(bn || b)
Minimal(b1 · · ·bn,b) if bn � b andMinimal(b1 · · ·bn�1,b)
We say that b is allowed after t if Minimal(t,b 0) for all b 0
recipe equivalent to b. This strengthens the optimisation by
discarding spurious data dependencies. Then O8c+r ✓ O8c is
de�ned by the following inference rules.

b
� negative phase

b
� 2 O8c+r

t 2 O8c+r b allowed after t
t · b 2 O8c+r

To account for improper blocks, we write O8por the set of
traces of the form t : b� · tp · ti , where b� is a negative phase,
tp 2 O8c+r only contains proper blocks, and ti 2 O8c+r only
contains improper blocks. The correctness of this optimisa-
tion relies on Corollary 4.8 and is proved in Appendix C.4.

P���������� 4.10 . O8por is a correct re�nement of O8c+i.

5 Reductions by symmetry
In this section, we show how to exploit process sym-

metries for equivalence by session, referring again to the
framework of Section 3.3. Such symmetries often appear in

11

practice when we verify multiple sessions of a same proto-
col as it results into parallel copies of identical processes,
up to renaming of fresh names. We �rst provide a group-
theoretical characterisation of internal process redundancy,
and then design two optimisations.

5.1 Group actions and process redundancy
Let P = P1 | · · · | Pn be a plain process and � 2 Sn , where

Sn denotes the symmetric group, namely the group of all
permutations on n1,no. Then we denote by ÆP and � . ÆP the
tuples of plain processes

ÆP = hP1, . . . , Pni � . ÆP = hP� (1), . . . , P� (n)i .
We assume ⌘ an equivalence relation on tuples of processes
that is stable under the action of permutations, i.e. for all
tuples ÆP, ÆQ of size n and � 2 Sn

ÆP ⌘ ÆQ) � . ÆP ⌘ � . ÆQ . (1)

Process redundancy w.r.t. ⌘ is then simply captured by the
group stabiliser

Stab⌘(ÆP) = {� 2 Sn | � . ÆP ⌘ ÆP} .
Example 5.1. Stab⌘(hP, . . . , Pi) = Sn models the extreme
case where all parallel subprocesses are identical. On the
contrary, the case where Stab⌘(hP1, . . . , Pni) = {id} mod-
els that there is no redundancy at all between parallel pro-
cesses. Intermediate examples model partial symmetries:
the larger the stabiliser, the more redundancy we have. For
example, if P 6⌘ Q , Stab⌘(hP, P,Q,Q,Qi) is the subgroup of
Sn generated by the permutations (1 2), (3 4) and (3 5). 4

P���������� 5.1 . Stab⌘(ÆP) is a subgroup of Sn .

Proof. Consider the function (� , ÆP) 7! � . ÆP . It is a group
action of Sn on the set of tuples quotiented by the equiv-
alence relation ⌘, thanks to Equation (1). Stab⌘(ÆP) is a
stabiliser of this action, hence the conclusion. ⇤

This formalisation takes root in classical work in model-
checking formalising the symmetries of systems by the
group of their automorphisms [ES96]. Our optimisations
consist of identifying suitable equivalence relations ⌘ and
re�ning the trace space based on the analysis of stabilisers.

5.2 Structural equivalence
We exhibit an equivalence identifying processes that have

an identical structure (up to associativity and commutativ-
ity of parallel operators) andwhose data are equivalent w.r.t.
the equational theory and alpha-renaming of private names.
This will be the basis of our symmetry-based re�nements.

We de�ne structural equivalence ⌘ on plain processes as
the smallest equivalence relation such that

P | Q ⌘ Q | P (P | Q) | R ⌘ P | (Q | R)
and that is closed under context (that is, composition of
equivalent processes with either a same process in parallel,
or an input, output, or conditional instruction at toplevel).
To account for the equational theory, we extend it to

� ,� 0 substitutions P� ⌘ Q� 0 8x 2 X, x� =E x�
0

P� ⌘E Q�
0

Besides we add alpha equivalence of private names: intu-
itively, two agents executing the same protocol are behaving
similarly even though they use their own session nonces.
Formally if A is an extended process we de�ne the relation
⌘A� on tuples of processes by

8i, Pi ⌘E Qi � : Npriv ! Npriv bij. � |names(A) = id

hP1, . . . , Pni ⌘A� hQ1, . . . ,Qni�
That is, only names outside ofA (frame included) may be re-
named. To conclude, it is straightforward that this relation
satis�es the requirements of Section 5.1, i.e.:

P���������� 5.2 . For all extended process A, ⌘A� is an
equivalence relation stable under the action of permutations
(in the sense of Equation (1)).

5.3 Universal symmetry optimisation
We �rst present a universal optimisation, i.e. a re�ne-

ment of O8por. It captures the idea that, when considering
the traces of several parallel protocol sessions, starting the
trace by an action from one session or an other does not
make a substantial di�erence. To formalise this idea, let us
consider a compressed trace

t : [P]� tr
=) ({{[Pi]`i }}ni=1,�0) 2 O8c

The goal is to exhibit conditions discarding some potential
positive phases following t . Technically speaking, we re-
quire that the symmetries observed in t are re�ected in one
way or an other in T(P,Q). In the technical formalisation of
these symmetries, we refer to traces t2 2 T(P,Q) such that
fst(t2) = t using the following notations:

t
2 : ([P]� ,Q) tr

=) ({{([Pi]`i ,Qi)}},�0,�1) (2)

Homogeneous symmetry We �rst de�ne a notion of
symmetry within P that is re�ected in the matching with
Q . If a,b 2 n1,no and � = (a b), we write a !1 b when

� 2 Stab⌘�0� (hP1, . . . , Pni)

12

and for all traces t2 verifying the hypotheses and notations
of Equation (2), there exists a trace of the form

([P]� ,Q) tr
=) ({{([Pi]`i ,Q� (i))}}ni=1,�0,�1) .

Intuitively, the �rst condition expresses that Pa and Pb
have the same traces, and the second ensures that they can
bematched by the same sessions ofQ . In particular for prov-
ing the equivalence by session of P andQ , executing a block
starting in Pa or Pb results into a similar analysis.

Heterogeneous symmetry We now de�ne a notion of
symmetry capturing redundancy occurring at the same time
in P and Q . If a,b 2 n1,no and � = (a b), we write a !2 b

when there exists � permutation of Chpub such that

� .hP1, . . . , Pa�1, Pa�, Pa+1, . . . , Pb�, . . . , Pni ⌘�0
� ÆP

and for all traces t2 verifying the hypotheses and notations
of Equation (2), we have

� .hQ1, . . . ,Qa�1,Qa�,Qa+1, . . . ,Qb�, . . . ,Qni ⌘�1
� ÆQ

These two conditions express symmetries up to channel
renaming. Indeed public channels do not interfere with the
data �ow of traces and, therefore, two processes that are
structurally-equivalent up to bijective renaming of public
channels still have a similar execution �ow.

Reduction by symmetry All in all, we model symme-
tries in equivalence proofs by ! the smallest equivalence
relation containing !1 and !2. The idea of our optimisa-
tion is then, when choosing a positive phase to execute after
t , to consider only one input per equivalence class of !.

This representant should however be picked carefully to
avoid interference with the lexicographic reduction intro-
duced in Section 4.3. For that we refer again to the ordering
on blocks 4 introduced in that section. This ordering can
be lifted to a total ordering on the set

{i 2 n1,no | polar(Pi) > 0}
by writing i 4 j when bi 4 bj for bi and bj arbitrary blocks
starting by an action labelled, respectively, `i and `j . This
cast is indeed well de�ned and total thanks to the assump-
tions that the original ordering on blocks is insensitive to
recipes, and always relate independent blocks.

We thus qualify an input transition on process Pa follow-
ing the trace t as well-formed if a is minimal w.r.t. 4 within
its equivalence class for !. A trace is well-formed when all
such transitions are, and we de�ne the optimisationO8sym as
the set of well-formed traces of O8c. The correctness of this
re�nement is proved in Appendix D.1.

P���������� 5.3 . O8por \ O8sym is a correct re�nement of
O
8
por.

5.4 Existential symmetry optimisation
The goal of this optimisation is to exploit symmetries

when applying the matching rule: when several processes
are structurally equivalent then we do not need to consider
redundant matchings. For instance, suppose that we need
to match P1 | P2 with Q | Q . Just considering the identity
permutation would be su�cient, and the permutation (1 2)
should be considered as redundant. Formally, let us consider
an instance of the rule (M����)

(P2 [{{(P,Q)}},�0,�1)
��!s (P2 [{{(Pi ,Q� (i))}}ni=1,�0,�1)

(3)
with P = P1 | · · · | Pn and Q = Q1 | · · · | Qn . We let
A = (snd(P2),�0), and de�ne the relation on permutations

� s �
0 i� 9u 2 Stab⌘A� (ÆQ), �

0 = � � u .
P���������� 5.4 . s is an equivalence relation.

Proof. This essentially follows from Proposition 5.1, i.e.
from the fact that Stab⌘A� (ÆQ) is a group. Re�exivity: a
group of permutations contains the identity; symmetry: a
group is closed by inverse; transitivity: a group is closed
by composition. ⇤

Let us say that an instance of Equation (3) is well-formed
when � is minimal within its equivalence class for s, w.r.t.
an arbitrary total ordering on permutations. We denote by
O
9
sym the set of traces of extended twin-processes whose in-

stances of (3) are all well-formed. The correctness of this
optimisation is stated below and proved in Appendix D.2.

P���������� 5.5 . O9sym is a correct re�nement of O9all.

6 Symbolic se�ing
Even though we do not consider unbounded replication,

the semantics of our process calculus de�nes an in�nite
transition system due to the unbounded number of possi-
ble inputs that can be provided by the adversary. To per-
form exhaustive veri�cation of such in�nite systems, it is
common to resort to symbolic techniques abstracting inputs
by symbolic variables and constraints. We brie�y describe
in this section how our optimisations are integrated in the
symbolic procedure underlying the D���S�� tool.

6.1 D���S��’s baseline procedure
Symbolic se�ing In the D���S�� tool [CKR18b] and its
underlying theory [CKR18a], the deduction capabilities of

13

the attacker are represented by so-called deduction facts
X `? u, intuitively meaning that the attacker is able to
deduce the term u by the means of a recipe represented
by the variable X . Additionally, conditional branching, e.g.
if u = � then . . . else . . ., is represented by equationsu =? �
and disequations u ,? � .

To represent in�nitely many processes, [CKR18a] relies
on symbolic processes (P,�, C) where P and � are, as in
our setting, a multiset of processes and a frame respectively.
The di�erence is that the processes and frame may contain
free variables: theymodel the variables bound by inputs and
are subject to constraints in C. These constraints are a con-
junction of deduction facts, equations and disequations. For
example, if we consider the process

P = c(x). if proj1(x) = t then c hh(x)i
then after executing symbolically the input and the positive
branch of the test, we reach the symbolic process

({{0}}, {ax 7! h(x)}, X `? x ^ proj1(x) =? t)

A concrete extended process is thus represented by any
ground instantiation of the free variables of the symbolic
process that satis�es the constraints in C. Such instantia-
tions are called solutions, and therefore form an abstraction
of concrete traces treated as symbolic objects and constraint
solving.

Example 6.1. Let us consider again the simpli�ed model of
BAC of Example 2.2. When executing the passport process
P(k,n) until reaching the success token ok, the constraints
aggregate as

C = X0 `? x0 ^ x0 =
? get_challenge ^

X `? x ^ sdec(x,k) =? n
Intuitively the internal constraint solver will gradually de-
duce that solutions to this constraint need to map x to a
term of the form senc(�1,�2,�3), and will add the equations
�1 =

?
n and �3 =? k . 4

Partition tree To decide trace equivalence between two
plain processes P andQ , the procedure underlyingD���S��
builds a re�ned tree of symbolic executions of P and Q ,
called a partition tree. This �nite, symbolic tree intuitively
embodies all scenarios of (potential violations of) equiva-
lence, and the �nal decision criterion is a simple syntactic
check on this tree.

More technically, nodes of the partition tree contain sets
of symbolic processes derived from P orQ ; that is, a branch
is a symbolic abstraction of a subset of T(P) [T(Q). It is
constructed in away that each node contains all—and only—

equivalent processes reachable from P orQ with given trace
actions tr. When generating this partition tree, trace equiv-
alence holds if and only if each node contains at least one
symbolic process derived from P and one from Q .

6.2 Symbolic matching
Subprocess matchings In order to make the integration
intoD���S�� easier, we used an alternative characterisation
of equivalence by session that is closer to trace equivalence.
In essence, it expresses the structural constraints imposed
by twin processes as explicit bijections between labels (as
de�ned in Section 4.1) that we call session matchings. A pre-
cise de�nition is given in Appendix A, as well as a proof
that this is equivalent to the twin-process-based de�nition
of equivalence.

In practice, our implementation consists of keeping track
of these session matchings into the nodes of the partition
tree generated by D���S��. The set of all these bijections
is then updated at each new symbolic transition step in the
partition tree, among others to satisfy the requirement that
matched subprocesses should have the same skeleton (recall
De�nition 3.1).

Example 6.2. Consider two initial processes

P = c(x).P0 | c(x).P1 | c hui.P2
Q = c(x).Q0 | c hu 0i.Q1 | c(x).Q2 .

In the root of the partition tree, P and Q will be labeled by
0, i.e. the root will contain the two symbolic processes

({[P]0},ú,ú) ({[Q]0},ú,ú) .
There is only a single bijection between their labels, i.e. the
identity 0 7! 0. Upon receiving this initial node, D���S��
applies the symbolic transition corresponding to our rule
(P��), hence generating the two symbolic processes

({{[c(x).P0]0.1 ; [c(x).P1]0.2 ; [c hui.P2]0.3}},ú,ú)
({{[c(x).Q0]0.1; [c hu 0i.Q1]0.2; [c(x).Q2]0.3}},ú,ú)

There are then only two possible bijection of labels that re-
spect the skeleton requirement of twin processes:

0.1 7! 0.1 0.1 7! 0.3
0.2 7! 0.3 and 0.2 7! 0.1
0.3 7! 0.2 0.3 7! 0.2 4

These bijections are kept within the node of the partition
tree and updated along side the other transformation rules
of D���S��. For obvious performance reasons, we cannot
represent them by a naive enumeration of all process per-
mutations. Fortunately, the skeleton requirement ensures

14

an invariant that the set S of sessionmatchings between two
processes A and B is always of the form

S = {� | 8i,8` 2 Ci , � (`) 2 Di }
where the sets C1, . . . ,Cn form a partition of the labels of
A and D1, . . . ,Dn a partition of the labels of B. In particu-
lar, S can succinctly be stored as a simple association list of
equivalence classes.

Decision of equivalence Finally, as our trace re�ne-
ments depend on two sets O8 and O9, we annotate each
symbolic process in the node by 8, 9 or 89 tags. They mark
whether the trace from the root of the partition tree to the
tagged process is determined to be inO8, O9 or both respec-
tively. For instance, the two initial symbolic processes in
the root of the partition tree are labeled by 89. We also pro-
vide a decision procedure for inclusion by session vs that
consists of tagging one of the initial processes as 8 and the
other one as 9.

The decision criterion for equivalence is then strenght-
ened. For equivalence to hold, not only each node of the
partition tree should contain at least one process originated
from P and one process originated fromQ , but each of them
that has the tag 8 should be paired with at least one other
process of the node with the tag 9.

6.3 Integration
From a high-level of abstraction, the integration of the

universal optimisations described in sections Sections 4
and 5 prune some branches of the partition tree—those that
abstract traces that do not belong to O8c+r+s . For instance
in Section 4.2, we showed that to prove equivalence by ses-
sion, we can always perform non-input actions in priority.
Therefore on a process c hui.P | c(x).Q , we preventD���S��
from generating a node corresponding to the execution of
the input due to the presence of the output.

The integration of other optimisations is more technical
in a symbolic setting, in particular the lexicographic reduc-
tionO8c+r described in Section 4.3. Remember that it discards
traces that do not satisfy the predicateMinimal, that identi-
�es lexicographically-minimal traces among those obtained
by permutation of independent blocks. Unfortunately, the
de�nition of independence (De�nition 4.1) is only de�ned
for ground actions—and not their symbolic counterpart, that
intuitively abstracts a set of ground actions. A branch may
therefore be removed only if all its solutions violate the
predicate Minimal. However, by Proposition 3.8, it is cor-
rect to only partially implement such optimisations.

7 Experiments
In practice Based on the high-level description of the pre-
vious section, we extended the implementation of D���S��
to decide equivalence by session of P andQ . Upon complet-
ing an analysis, two cases can arise:
(1) The two processes are proved equivalent by session.

Then they are also trace equivalent by Proposition 3.1.
(2) The two processes are not equivalent by session and

D���S�� returns an attack trace t , say, in P , as a result.
In the second case, when using equivalence by session
as a heuristic for trace equivalence, the conclusion is not
straightforward. As discussed in Section 3.2, the witness
trace t may not violate trace equivalence (false attack).
We integrated a simple test to our prototype, that checks
whether this is the case or not. For that we leverage the in-
ternal procedure of D���S�� by, intuitively, restricting the
generation of the partition tree for checking P vtr Q to the
unique branch corresponding to the trace t .

If this trace t appears to violate trace equivalence, which
is the case for example in our analysis of two sessions of the
BAC protocol, we naturally conclude that P 6⇡tr Q . Other-
wise, the false attack may guide us to discover a real attack:
our analysis of session equivalence consider traces with a
speci�c shape (see Sections 4 and 5). Thus, we implemented
a simple heuristic that, whenever a false attack is discov-
ered, also checks whether di�erent permutations of actions
of this false attack could lead to a true attack. For instance,
this heuristic allowed us to disprove trace equivalence in
some analyses of n > 3 sessions of BAC. When our heuris-
tic cannot discover a true attack, the result is not conclusive:
the processes may well be trace equivalent or not. We leave
to future work the design of an e�cient and complete de-
cision procedure for trace equivalence that builds on a pre-
liminary analysis of equivalence by session.

Experimental se�ing We report experiments (Figure 4)
comparing the scope and e�ciency of the following two ap-
proaches for proving trace equivalence:

The original version of D���S�� as a baseline;
The analysis leveraging our contributions (preliminary
analysis of equivalence by session, test of false attack if
it fails, and the heuristic attempting to reconstruct a true
attack from false ones).
We describe the benchmarks below in more details. The

column # roles is an indicator of the intricacy of the system
(number of parallel processes that the model �le exhibits).

Benchmarks were carried out on 20 Intel Xeon 3.10GHz

15

cores, with 50 Gb of memory. We ran the toy example de-
scribed in this paper on a single core to illustrate simply
the algorithmic improvements compared to D���S��. As
D���S�� supports parallelisation, we distributed the com-
putation of the other, bigger proofs over 20 cores. The
implementation and the speci�cation �les are available at
https://deepsec-prover.github.io/.

Running example: toy BAC Wemodelled the simpli�ed
analysis of unlinkability in the BAC protocol described in
Examples 2.2 and 2.4 as a simple example to compare our
prototype andD���S�� in terms of scope and e�ciency. For
that we gather several variants of the analysis:

for 2 sessions: both D���S�� and our prototype are able
to �nd an attack trace (the same trace violates trace
equivalence and equivalence by session).
for 3 sessions: D���S�� times out and our prototype �nds
a false attack. This is due to the fact that, by executing
outputs in priority (recall our por), more intermediate ac-
tions are available to match the trace. However our sim-
ple heuristic manages to reconstruct a true attack trace
by delaying some output actions.
we also consider a variant of the analysis where we re-
move the get_challenge messages from the protocol.
Our prototype now �nds a false attack and the heuris-
tic reconstructs a true attack for 2 sessions, but fails to
conclude for 3 sessions.

BAC We also studied a more realistic model of BAC, ac-
counting for more involved messages. The baseline version
of D���S�� still fails to analyse 3 ormore sessions, while our
prototype reaches up to 5 sessions. On one side of the equiv-
alence all n systems are distinct (fresh), while on the other
side a same system may appear several times: our analysis
indicates that, depending on the precise setting, the security
property may be violated in the model or not. This is due to
the error codes raised when a passport communicates with
a wrong reader: depending on how many identical systems
the process contains, the same number of such errors may
not be observable.

Although not present in the result table, we also imple-
mented inclusion by session (i.e. vs) as it is sometimes used
to de�ne other �avours of unlinkability.

Helios We also consider the Helios protocol for electronic
voting [Adi08]. We analyse vote privacy of a version that
uses zero-knowledge proofs to ensure the voter knows the
plaintext of her vote, thus avoiding copy-attacks [CS13].
Vote privacy is formalised as in our running example, us-
ing a vote-swapping model, that is, we want to prove the

equivalence of two situations where two honest votes have
been exchanged.

A reduction result of Arapinis et al. [ACK16] ensures that,
for suchmodels, it is su�cient to consider two honest voters
and one dishonest voter (that is implicit in the model, em-
bedded in the intruder capabilities) to obtain a proof of the
system for an unbounded number of sessions. Such scenar-
ios could already be handled by automated analysers, e.g.
D���S�� [CKR18a]. However, when revoting is allowed, as
it is the case for Helios, one needs to consider all scenar-
ios when the tally accepts 7 ballots. In particular, it is not
su�cient to consider only re-votes by the adversary, but
also arbitrary revotes of the two honest voters. In Figure 4
we listed several scenarios, indexed by how many times the
honest voters A and B are sending revotes.

This kind of analysis is out of the scope of many auto-
mated analysers. For example, Figure 4 shows thatD���S��
fails to prove after 12h of computation any scenarios where
more than one honest revote is emitted. In [ACK16] the
P��V���� proofs are limited to dishonest revotes. We com-
piled several intermediary scenarios to give an overview of
the veri�cation-time growth using our prototype, but all are
subsumed by the last scenario were we allow A to revote 7
times and B 3 times. Indeed, using a simple symmetry ar-
gument on A and B this covers all scenarios where honest
voters cast a total of 7 ballots or less. Note however that,
strictly speaking, the reduction result of [ACK16] does not
bound the number of emitted honest revotes (that may not
be e�ectively received by the ballot box) that have to be con-
sidered during an analysis of vote privacy; extensions of this
reduction should be considered in the future.

We also experimented an other model of voting privacy
inspired by the game-based de�nition BPRIV [BCG+15]. In
this de�nition the (re)votes are dicted to honest voters by
the adversary, which permits to e�ectively model revotes of
arbitrary values. As reported in Figure 4 D���S�� was able
to handle the 19 queries modelling all revote scenarios for 7
emitted ballots, in a total of a few minutes.

About the modelling of mixnets. The version of Helios we
analyse relies on a mixnet, which can be represented in sev-
eral ways that may trigger or not a false attack. Mixnets
are usually modelled as processes receiving the values to
mix, and then outputing them in an arbitrary order induced
by the inherent non-determinism of concurrency. However
this can be performed using two models (where c 2 Chpriv):

MixSeq = c(x). c(�). (c hxi | c h�i)
MixPar = (c(x). c hxi) | (c(�) | c h�i)

16

Protocol scenario # roles D���S�� D���S��
baseline eq. by session

Toy BAC 2 identical 4 E <1s E <1s
2 identical + 1 fresh 6 E <1s

Toy BAC
no get_challenge

2 identical 4 E <1s E <1s
2 identical + 1 fresh 6 7 <1s

BAC

1 identical + 1 fresh 4 E <1s E <1s
2 identical + 1 fresh 6 E 2s
3 identical + 1 fresh 8 E 3s
2 identical + 2 fresh 8 3 1m20s
4 identical + 1 fresh 10 E 4s
3 identical + 2 fresh 10 E 9m22s
2 identical + 3 fresh 10 3 11h06m

Helios
vote swap

no revote 6 3 <1s 3 <1s
2 ⇥ A 1 ⇥ B 11 3 2h41m 3 1m2s
3 ⇥ A 1 ⇥ B 12 3 2m40s
3 ⇥ A 2 ⇥ B 13 3 7m40s
4 ⇥ A 2 ⇥ B 14 3 16m36s
7 ⇥ A 3 ⇥ B 18 3 3h53m

Helios 2 honest + 1 dishonest 9
3

3m26s
(total)BPRIV 7 ballots (19 scenarios) (each)

Scytl vote privacy 5 3 3m8s 3 1s

AKA anonymity 8 3 30s 3 4s

3 trace equivalence veri�ed E trace equivalence violated timeout (12 hours)
7 false attack (disproves session equivalence but unable to conclude for trace equivalence)

Figure 4: Experimental evaluation

In the second case, subprocess-matching constraints arise
earlier in the trace, triggering a false attack. However, the
natural modelling of MixSeq allows to complete a security
proof. We observed the same behaviour on other experi-
mentation on voting protocols with mixnets.

Other case studies As side experiments, we also tried
our prototype on other model �les of similar tools that
we could �nd in the literature. We performed for exam-
ple an analysis of vote privacy of an e-voting protocol by
Scytl deployed in the Swiss canton of Neuchâtel, based on
the P��V���� �le presented in [CGT18]. We also studied
anonymity in a model of the AKA protocol deployed in 3G
telephony networks [AMR+12] (without XOR), presented in
the previous version of D���S�� [CKR18a].

8 Conclusion and future work
In this paper we introduce a new process equivalence, the

equivalence by session. We show that it is a sound proof
technique for trace equivalence which allows for several op-
timisations when performing automated veri�cation. This
includes powerful partial order reductions, that were previ-
ously restricted to the class of determinate processes, and
allows to exploit symmetries that naturally arise when veri-
fyingmultiple sessions of a same protocol. In addition to the
theoretical basis we have implemented these techniques in
the D���S�� tool and evaluated their e�ectiveness in prac-
tice. The optimisations indeed allowed for e�cient veri�ca-
tion of non-determinate processes that were previously out
of scope of existing techniques.

We also discussed how to handle the false attacks, that

17

are a natural consequence of the fact that equivalence by
session is a strict re�nement of trace equivalence. We im-
plemented a test to verify automatically, when equivalence
by session is disproved, whether the underlying attack is
genuine with respect to trace equivalence. When this is not
the case, as part of future work it would be interesting to
re�ne the part of the proof that failed, while exploiting that
some parts of the system has already been shown to satisfy
equivalence.

References
[ABF18] Martín Abadi, Bruno Blanchet, and Cédric Fournet.

The applied pi calculus: Mobile values, new names,
and secure communication. J. ACM, 2018.

[ACK16] MyrtoArapinis, Véronique Cortier, and Steve Kremer.
When are three voters enough for privacy properties?
In European Symposium on Research in Computer Se-
curity (ESORICS), 2016.

[Adi08] B. Adida. Helios: web-based open-audit voting. In
Conference on Security symposium (SS), 2008.

[AMR+12] M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde,
K. Redon, and R. Borgaonkar. New privacy issues
in mobile telephony: �x and veri�cation. In ACM
Conference on Computer and Communications Security
(CCS), 2012.

[BAF05] Bruno Blanchet, Martín Abadi, and Cédric Fournet.
Automated veri�cation of selected equivalences for
security protocols. In 20th IEEE Symposium on Logic
in Computer Science (LICS), 2005.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet.
Automated veri�cation of selected equivalences for
security protocols. J. Log. Algebr. Program., 2008.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Veri�ed models and reference implemen-
tations for the TLS 1.3 standard candidate. In IEEE
Symposium on Security and Privacy (S&P), 2017.

[BCG+15] David Bernhard, Véronique Cortier, David Galindo,
Olivier Pereira, and Bogdan Warinschi. A compre-
hensive analysis of game-based ballot privacy de�-
nitions. In IEEE Symposium on Security and Privacy
(S&P), 2015.

[BDH14] David Baelde, Stéphanie Delaune, and Lucca Hirschi.
A reduced semantics for deciding trace equivalence
using constraint systems. In International Conference
on Principles of Security and Trust (POST), 2014.

[BDH15] David Baelde, Stéphanie Delaune, and Lucca Hirschi.
Partial order reduction for security protocols. Interna-
tional Conference on Concurrency Theory (CONCUR),
2015.

[BDH18a] David Baelde, Stéphanie Delaune, and Lucca Hirschi.
POR for security protocol equivalences - beyond ac-
tion determinism. In European Symposium on Re-

search in Computer Security (ESORICS), 2018.
[BDH+18b] David A. Basin, Jannik Dreier, Lucca Hirschi, Sasa

Radomirovic, Ralf Sasse, and Vincent Stettler. A
formal analysis of 5g authentication. In ACM Con-
ference on Computer and Communications Security
(CCS), 2018.

[BDS15] David A. Basin, Jannik Dreier, and Ralf Sasse. Auto-
mated symbolic proofs of observational equivalence.
InACMConference on Computer and Communications
Security (CCS), 2015.

[CB13] Vincent Cheval and Bruno Blanchet. Proving more
observational equivalences with proverif. In Proceed-
ings of the 2nd International Conference on Principles
of Security and Trust (POST’13), 2013.

[CCCK16a] Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and
Steve Kremer. Automated veri�cation of equivalence
properties of cryptographic protocol. ACM Transac-
tions on Computational Logic, 2016.

[CCCK16b] Rohit Chadha, Vincent Cheval, Ştefan Ciobâcă, and
Steve Kremer. Automated veri�cation of equivalence
properties of cryptographic protocols. ACM Transac-
tions on Computational Logic, 2016.

[CD09] Véronique Cortier and Stéphanie Delaune. A method
for proving observational equivalence. In IEEE Com-
puter Security Foundations Symposium (CSF), 2009.

[CDD17] Véronique Cortier, Stéphanie Delaune, and Antoine
Dallon. Sat-equiv: an e�cient tool for equivalence
properties. In IEEE Computer Security Foundations
Symposium (CSF), 2017.

[CGT18] Véronique Cortier, David Galindo, and Mathieu Tu-
ruani. A formal analysis of the neuchâtel e-voting
protocol. In IEEE European Symposium on Security
and Privacy (EuroS&P), 2018.

[CHH+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam
Scott, and Thyla van der Merwe. A comprehensive
symbolic analysis of TLS 1.3. In ACM Conference on
Computer and Communications Security (CCS), 2017.

[CJM03] EdmundM. Clarke, Somesh Jha, andWilfredo R.Mar-
rero. E�cient veri�cation of security protocols using
partial-order reductions. STTT, 2003.

[CKR18a] Vincent Cheval, Steve Kremer, and Itsaka Rakotoni-
rina. DEEPSEC: Deciding Equivalence Properties in
Security Protocols – Theory and Practice. In IEEE
Symposium on Security and Privacy (S&P), 2018.

[CKR18b] Vincent Cheval, Steve Kremer, and Itsaka Rakotoni-
rina. The DEEPSEC prover. In International Confer-
ence on Computer Aided Veri�cation (CAV), 2018.

[CKR19] Vincent Cheval, Steve Kremer, and Itsaka Rakotoni-
rina. Exploiting symmetries when proving equiv-
alence properties for security protocols. In ACM
Conference on Computer and Communications Security
(CCS), 2019.

[CS13] Véronique Cortier and Ben Smyth. Attacking and �x-
ing helios: An analysis of ballot secrecy. Journal of

18

Computer Security, 2013.
[DY81] D. Dolev and A.C. Yao. On the security of public key

protocols. In Symposium on Foundations of Computer
Science (FOCS), 1981.

[ES96] E Allen Emerson and A Prasad Sistla. Symmetry and
model checking. Formal methods in system design,
1996.

[For04] PKI Task Force. PKI for machine readable travel doc-
uments o�ering ICC read-only access. Technical re-
port, International Civil Aviation Organization, 2004.

[MVB10] Sebastian Mödersheim, Luca Viganò, and David A.
Basin. Constraint di�erentiation: Search-space re-
duction for the constraint-based analysis of security
protocols. Journal of Computer Security, 2010.

[SEMM14] Sonia Santiago, Santiago Escobar, Catherine Mead-
ows, and José Meseguer. A formal de�nition of pro-
tocol indistinguishability and its veri�cation using
Maude-NPA. In International Workshop on Security
and Trust Management (STM), 2014.

[TNH16] Alwen Tiu, Nam Nguyen, and Ross Horne. SPEC: an
equivalence checker for security protocols. In Asian
Symposium on Programming Languages and Systems
(APLAS), 2016.

A Explicit session matchings
In this section we present an alternative characterisation

of equivalence by session. The process matchings operated
by twin processes—in particular in the rule (M����) of the
semantics—are represented by an explicit permutation with
properties mirroring the structure of twin processes.

Twin-process based characterisations makes it easier to
de�ne symmetry-based optimisations and limit the manip-
ulation of permutations to the minimum, thus simplifying
many proofs. On the contrary, the formalism presented here
makes a closer link with the de�nition of trace equivalence:

this is the characterisation we use in the implementation,
�tting better to the existing procedure of the D���S��
prover for trace equivalence;

we use it in Appendix B for proving the completeness of
equivalence by session for determinate processes.

Session matchings We �rst characterise the condition
under which, given two traces t, t 0, there exists t2 such that
fst(t2) = t and snd(t2) = t

0. For that we rely on the no-
tion of labels introduced in Section 4.1 to make reference to
subprocess positions. In the rest of the paragraph, we re-
fer to two plain processes in -normal form P,Q such that
skel(P) = skel(Q) and two labelled traces t 2 T(P), t 0 2 T(Q)

such that tr(t) = tr(t 0):

t : A0
[�1]`1�����! · · · [�n]`n������! An t

0 : B0
[�1]`

0
1

�����! · · · [�n]`0n������! Bn

We write L and L
0 the sets of labels appearing in t and t

0,
respectively.

D��������� A.1 . A session matching for t and t 0 is a bijec-
tion � : L! L

0 verifying the following properties
(1) � (�) = �

(2) 8i 2 n1,no, � (`i) = `0i
(3) 8` · p 2 dom(�), 9q, � (` · p) = � (`) · q
(4) for all i 2 n0,no, if � (`) = `0 and Ai and Bi respec-

tively contain a process [P]` and a process [Q]`0 , then
skel(P) = skel(Q).

P����������A.1 . The following two points are equivalent:
(1) There exists a session matching for t and t 0.
(2) 9t2 2 T(P,Q), fst(t2) = t and snd(t2) = t

0.

Proof of (1))(2). The trace t
2 can be easily constructed

by induction on the length of t :
Items (1) and (4) of De�nition A.1 ensure that the twin-
processes in t2 are composed of pairs of processes with
the same skeleton as expected,
Item (2) ensures that pairs of transitions of P andQ can
be mapped into transitions of twin-processes, and
The permutations required by applications of the rule
(M����) can be inferred from Item (3). Indeed, con-
sider two instances of the rule (P��) in t and t 0:

({{[P1 | . . . | Pn]`}} [P,�) ��! ({{[Pi]` ·i }}ni=1 [P,�)
({{[Q1 | . . . | Qn]`

0}} [Q,�) ��! ({{[Qi]`
0 ·i }}ni=1 [Q,�)

Given � a session matching for t and t
0, we consider

the permutation of n1,no mapping i 2 n1,no to the
(unique) j such that � (` · p) = `0 · j. This permutation
can be used to construct the instance of rule (M����)
corresponding to these two (P��) transitions. ⇤

Proof of (2))(1). Let t2 be a trace given by Item (2). We
lift the labellings of t = fst(t2) and t

0 = snd(t2) to the
twin processes appearing in t2; that is, if P2 is such a pro-
cess, we may refer to the labellings of fst(P2) and snd(P2).
Thus, each instance of rule (M����) in t

2

({{([P1 | · · · | Pn]`, [Q1 | · · · | Qn)]`
0}} [P2,�0,�1)

��!s ({{([Pi]` ·i , [Q� (i)]`
0 ·i)}}ni=1 [P2,�0,�1)

can be associated with a permutation � and two labels

19

`, `0. We list all such elements �1, `1, `01, . . . ,�p, `p, `
0
p

when considering all instances of rule (M����) in t
2. In

particular the `i ’s are pairwise distinct and, if L is the set
of labels appearing in t , we have

L = {�} [–p
i=1{`i · j | j 2 dom(�i)} .

An analoguous statement can be done for L0 the set of
labels appearing in t

0. Therefore the following equations
well de�ne a bijection � : L! L

0:

� (�) = � 8p 2 dom(�i), � (`i · p) = `0i · �i (p) .
A quick induction on the length of t2 shows that � is a
session matching for t and t 0. ⇤

Link with equivalence As a direct corollary, we give an
alternative characterisation of equivalence by session.

P����������A.2 . Let P,Q be plain processes in -normal
form such that skel(P) = skel(Q). The following points are
equivalent:
(1) P vs Q
(2) for all t 2 T(P), there exist t 0 2 T(Q) and a session

matching for t and t
0, such that tr(t) = tr(t 0) (labels

removed) and �(t) s �(t 0)

B Proofs of Section 3
In this section we give a detailed proof of the proposition:

P���������� 3.2 . If P,Q are determinate plain processes
such that P ⇡tr Q then P ⇡s Q .

In the proof, by slight abuse of notation, we may say that
an extended process is determinate. We also cast the notion
of skeleton to extended processes by writing

skel((P,�)) = skel(P) = –
P 2P skel(P) ,

and to traces with

skel(A0
�1��! · · · �n��! An) = skel(A0) · skel(A1) · . . . · skel(An) .

That is, the skeleton of a trace is the sequence of the skele-
tons of the processes of which it is composed. Thus, if

t : A0
�1��! · · · �n��! An t

0 : B0
�1��! · · ·

�p��! Bp

we have skel(t) = skel(t 0) i� n = p and for all i 2 n0,no,
skel(Ai) = skel(Bi).

Simplifying equivalence First we simplify the problem
by forcing the application of (P��) rules in priority in traces.
D��������� B.1 . If P is a plain process in -normal form,
we write T� (P) the set of traces where the rule (P��) is al-
ways performed in priority, i.e. where the rules (I�) and

(O��) are never applied to extended processes (P,�) such
that P contains a process with a parallel a its root (i.e. a
process P such that |skel(P)| > 1).

P���������� B.1 . If P,Q are plain processes in -normal
form such that skel(P) = skel(Q):

P vtr Q i� 8t 2 T� (P), 9t 0 2 T� (Q), t s t
0

P vs Q i� 8t 2 T� (P), 9t2 2 T(P,Q), t = fst(t2) s snd(t2)
Proof. The �rst point is standard. The proof of the second
point can be seen as a corollary of the compression opti-
misations of equivalence by session (see Section 4.2). ⇤

D��������� B.2 . We say that A = ({{P1, . . . , Pn}},�) is � -
deterministic if there is at most one i 2 n1,no such that Pi
has a parallel operator at its root (i.e. |skel(Pi)| > 1).

The � -determinism will be an invariant in proofs by in-
duction on the length of traces. More precisely, if A,B are
extended processes we call Inv(A,B) the property stating
(i) Ai ,Bi are determinate
(ii) skel(Ai) = skel(Bi)
(iii) Ai s Bi

(iv) Ai ,Bi are � -deterministic, and Ai contains a process
with a parallel operator at its root (i.e. a process Pi
such that |skel(Pi)| > 1) i� Bi does.

Equivalence and inclusion We prove that trace equiv-
alence coincides with a notion of trace inclusion strength-
ened with identical actions and skeleton checks.

P���������� B.2 . If P,Q are determinate plain processes
in -normal form s.t. skel(P) = skel(Q), then the following
points are equivalent
(1) P ⇡tr Q

(2) 8t 2 T� (P), 9t 0 2 T� (Q),
8>><
>>:

tr(t) = tr(t 0)
�(t) s �(t 0)
skel(t) = skel(t 0)

Proof of (2))(1). Given two determinate extended pro-
cesses A,B, we write �(A,B) the property stating that

8t 2 T� (A), 9t 0 2 T� (B),
8>><
>>:

tr(t) = tr(t 0)
�(t) s �(t 0)
skel(t) = skel(t 0)

.

Note that �(A,B) implies skel(A) = skel(B) by choosing
the empty trace. In particular, to prove (2))(1), it su�cies
to prove that for all A,B determinate, �(A,B)) A vtr B
and �(A,B)) �(B,A).

The �rst implication is immediate. As for the second,

20

we prove that for all extended processes A0,B0 such that
�(A0,B0) and Inv(A0,B0), and all

t
0 : B0

�1��! · · · �n��! Bn 2 T� (B0) ,
there exists

t : A0
�1��! · · · �n��! An 2 T� (A0) ,

s.t. for all i 2 n0,no, Inv(Ai ,Bi). This is su�cient to con-
clude as Inv(P,Q) holds for any determinate plain pro-
cesses P,Q in -normal form s.t. skel(P) = skel(Q).

We proceed by induction on n. If n = 0 the conclusion
is immediate. Otherwise, assume by induction hypothesis
that it holds for any trace of length n � 1.
. case 1: �1 = � .

We know that B0 does not contain private channels by
determinacy (Inv(A0,B0) Item (i)). Therefore, the transi-
tion B0

��! B1 is derived by the rule (P��). In particu-
lar by Inv(A0,B0) Item (iv), there also exists a transition
A0

��! A1. The conclusion can now follow from the in-
duction hypothesis applied to A1,B1; but to apply it we
have to prove that �(A1,B1) and Inv(A1,B1) hold.
! proof that �(A1,B1).

Let s 2 T� (A1). Then (A0
��! A1) · s 2 T� (A0) and

by �(A0,B0) there exists (B0
��! B

0
1) · s 0 2 T� (B0) such

that tr(s) = tr(s 0), �(t) s �(t 0) and skel(t) = skel(t 0).
But by � -determinism of B0 we deduce that B1 = B

0
1, and

s
0 2 T� (B1) satis�es the expected requirements.

! proof that Inv(A1,B1).
(i) A0 and B0 are determinate and determinacy is pre-

served by transitions.
(ii) skel(A1) = skel(A0) = skel(B0) = skel(B1)
(iii) A0 s B0 and the rule (P��) does not a�ect the frame.
(iv) A0 and B0 are � -deterministic and � -determinism is

preserved by transitions (w.r.t. T�). Besides due to
the -normalisation, we know that neither of A1
nor B1 contain a parall operator, hence the result.

. case 2: �1 , � .

By de�nition T� (B0), we know that the rule (P��) is
not applicable to B0; neither toA0 by Inv(A0,B0) Item (iv),
which means that traces of T� (B0) may start by an ap-
plication of rules (I�) or (O��). Using this and the fact
that skel(A0) = skel(B0) (Inv(A0,B0) Item (ii)), we obtain
that there exists a transition A0

�1��! A1. The conclusion
can now follow from the induction hypothesis applied to

A1,B1; but to apply it we have to prove that �(A1,B1) and
Inv(A1,B1) hold.
! proof that �(A1,B1).
The argument is the same as its analogue in case 1, us-

ing the determinacy of B0 instead of its � -determinism.

! proof that Inv(A1,B1).
(i) A0 and B0 are determinate and determinacy is pre-

served by transitions.
(ii) By applying �(A0,B0) with the trace t0 : A0

�1��! A1,
we obtain a trace t 00 : B0

�1��! B
0
1 such that skel(A1) =

skel(B01). But by determinacy of B0, the transition
B0

�1��! B1 is the only transition from B0 that has label
�1, hence B1 = B

0
1 and the conclusion.

(iii) Identical proof as that of Item (ii) above, using the
fact that A1 s B

0
1 instead of skel(A1) = skel(B01).

(iv) Let us write

A0 = ({{P0}} [P,�) A1 = ({{P1}} [P,�0)
B0 = ({{Q0}} [Q,�) B1 = ({{Q1}} [Q,�0)

As we argued already at the beginning of case 2, nei-
ther P nor Q contain processes with parallel opera-
tors at their roots. Therefore, we only have to prove
that P1 has a parallel operator at its root i� Q1 does.
For cardinality reasons, this a direct corollary of the
following points:
– skel(P0) = skel(Q0) (same action �1 being exe-

cutable at topelevel),
– skel(A0) = skel(B0) (hypothesis Inv(A0,B0)), and
– skel(A1) = skel(B1) (Item (ii) proved above). ⇤

Proof of (1))(2). The proof will follow in the steps as the
other implication (we construct the trace t 0 by induction
on the length of t while maintaining the invariant Inv).

More formally, we prove that for all extended processes
A0,B0 such that A0 ⇡tr B0 and Inv(A0,B0), and all

t : A0
�1��! · · · �n��! An 2 T� (A0) ,

there exists

t
0 : B0

�1��! · · · �n��! Bn 2 T� (B0) ,
s.t. for all i 2 n0,no, Inv(Ai ,Bi).

We proceed by induction on n. We proceed by induc-
tion onn. Ifn = 0 the conclusion is immediate. Otherwise,
assume by induction hypothesis that it holds for any trace
of length n � 1.

21

. case 1: �1 = � .

Similarly to the converse implication, there exists a
transition B0

��! B1 (derived by (P��)) and it su�cies to
prove thatA1 ⇡tr B1 and Inv(A1,B1) hold in order to apply
the induction hypothesis and conclude.

! proof that A1 ⇡tr B1.

Let s 2 T� (A1). Then (A0
��! A1) · s 2 T� (A0) and since

A0 ⇡tr B0 there is (B0
��! B

0
1) · s 0 2 T� (B0) such that

(A0
��! A1) · s s (B0

��! B
0
1) · s 0 .

But by � -determinism of B0 we deduce that B1 = B
0
1, and

thus s 0 2 T� (B1) and s s s
0. This justi�es that A1 vtr B1,

and a symmetric argument can be used for the converse
inclusion B1 vtr A1.

! proof that Inv(A1,B1).
By the exact same arguments as that of the analogue

case in the converse implication.

. case 2: �1 , � .

Similarly to the converse implication, there exists a
transition B0

�1��! B1 and it su�cies to prove thatA1 ⇡tr B1
and Inv(A1,B1) hold in order to apply the induction hy-
pothesis and conclude.

! proof that A1 ⇡tr B1.

The argument is the same as its analogue in case 1, us-
ing the determinacy of B0 instead of its � -determinism.

! proof that Inv(A1,B1).
This is the proof obligation whose arguments substan-

tially di�er from that of the converse implication.

(i) A0 and B0 are determinate and determinacy is pre-
served by transitions.

(ii) We assume by contradiction that skel(A1) , skel(B1).
By symmetry, say that skel(A1) * skel(B1) and let
s 2 skel(A1) r skel(B1). By de�nition of T� (A0), we
know that the rule (P��) is neither applicable to A0

nor B0; in particular, there exists a transitionA1
��! A

derived from rule (I�) or (O��) (the one correspond-
ing to the skeleton s) such that B1 6

��!.
But by determinacy of B0, the transition B0

�1��! B1 is
the only transition from B0 that has label �1. Thus,
this yields a contradiction with A0 ⇡tr B0: more pre-
cisely the trace A0

�1��! A1
��! A is not matched.

(iii) By determinacy of B0, the transition t
0
0 : B0

�1��! B1
is the only transition from B0 that has label �1. In
particular, using the hypothesisA0 ⇡tr B0, we obtain
that t 00 2 T� (B0) is the only trace such that

t0 : (A0
�1��! A1) s t

0
0 .

In particular A1 s B1.
(iv) Same cardinality argument as the analogue case in

the converse implication. ⇤

Session matchings Proposition B.2 is the core result of
the proof. We now connect it with the equivalence by ses-
sion by using the characterisation of Appendix A.

P���������� B.3 . Let P,Q two determinate plain processes
in -normal form and two labelled traces t 2 T� (A0) and
t
0 2 T� (Q) such that tr(t) = tr(t 0) and skel(t) = skel(t 0).
Then there exists a session matching for t and t 0.

Proof. We prove that for all � -deterministic, determinate
extended processes A0 and B0, and

t : A0
[�1]`1�����! · · · [�n]`n������! An t

0 : B0
[�1]`

0
1

�����! · · · [�n]`0n������! Bn

if skel(t) = skel(t 0), then there exists a session matching
for t and t

0. We proceed by induction on n. If n = 0 the
session matching is � : � 7! � . Otherwise, let us write

An�1 = ({{[P]`n }} [P,�) Bn�1 = ({{[Q]`0n }} [Q,�)
By induction hypothesis, let � be a session matching for
the �rstn�1 transitions of t and t 0; in particular, the labels
of An�1 are in the domain of � .

. case 1: �n , � .

In this case we write

An = ({{[P 0]`n }} [P,�0) Bn = ({{[Q 0]`0n }} [Q,�0)

First of all, we observe that skel(P) = skel(Q) because
the same observable action �n can be performed at the
root of P and Q . In particular, by determinacy (hypoth-
esis), unicity of the process with a given label (invariant
of the labelling procedure), and Item (4) of De�nition A.1,
we deduce that � (`n) = `0n .

Therefore by the hypothesis skel(An�1) = skel(Bn�1),
we obtain skel(P) = skel(Q). Hence skel(P 0) = skel(Q 0)
by the hypothesis skel(An) = skel(Bn). All in all, � is a
session matching for the whole traces t and t 0.

. case 2: �n = � .

22

In this case we write

P = P1 | · · · | Pk An = ({{[Pi]`n ·i }}ki=1 [P,�0)
Q = Q1 | · · · | Qk 0 Bn = ({{[Qi]`

0
n ·i }}k 0i=1 [Q,�0)

Since determinacy excludes private channels, the last
transition of t and t

0 is derived from the rule (P��). By
� -determinism, this means that P andQ are the only pro-
cesses in An�1 and Bn�1, respectively, that contain a par-
allel operator at their roots. In particular, by Item (4) of
De�nition A.1, we deduce that � (`n) = `0n and skel(P) =
skel(Q); and thus k = k 0.

Therefore, there exists a permutation � of n1,ko such
that for all i 2 n1,ko, skel(Pi) = skel(Q� (i)) (although this
is not needed for the proof, this permutation appears to
be unique by determinacy). Thus if � 0 : L ! L

0 is the
function extending � and such that

8i 2 n1,ko, � 0(` · i) = � (`) · � (i) ,
then �

0 is a session matching for t and t 0. ⇤

Altogether Propositions A.2 to B.3 justify the following
corollary—that actually appears to be stronger than the ex-
pected Proposition 3.2.

C�������� B.4 . If P andQ are determinate plain processes
in -normal form, P ⇡tr Q i� P vs Q .

C Proofs of Section 4
C.1 Permutability of independent actions

In this section we give the proofs of the main technical
results of our partial-order reductions, namely that traces
can be considered up to permutation of independent actions.
First we prove Proposition 4.3 for traces of two actions.

P���������� C.1 . If � || � and t : A
� �
==) B, then there

exists a trace u : A
��
==) B. It has the property that for all

traces u2 : A2 ��
==)s B

2 such that fst(u2) = u, there exists

t
2 : A2 � �

==)s B
2 such that fst(t2) = t .

Proof. Since the labels of � and � are incomparable w.r.t.
the pre�x ordering by independence, the trace t needs
have the form

A = (P[Q[R,�) ��! (P 0[Q[R,�0) ��!s (P 0[Q 0[R,�00)

with (P,�) ��! (P 0,�0) and (Q,�0) ��! (Q 0,�00). Now we
construct the trace u, by a case analysis on � and � . In

each case, we omit the construction of the trace t
2 that

can be inferred easily.

. case 1: � and � are inputs or � actions.

In particular �00 = �0 = � and it su�cies to choose

u : (P[Q[R,�) ��! (P[Q 0[R,�) ��! (P 0[Q 0[R,�) .
. case 2: � is an output and � is an input or a � action.

In particular �00 = �0 = � [{ax 7! m} with ax <
dom(�) and ax does not appear in � . Then it su�cies to
choose the trace

u : (P[Q[R,�) ��! (P[Q 0[R,�) ��! (P 0[Q 0[R,�0) .
. case 3: � is an input or a � action and � is an output.

Similar to case 2.

. case 4: � and � are both outputs.

Then �0 = � [{ax 7! m} and �00 = �0 [{ax0 7! m
0}

with ax , ax0, {ax, ax0} \ dom(�) = ú. Then we choose

u : (P [Q [R,�) ��! (P [Q 0 [R,� [{ax0 7!m
0})

��! (P 0 [Q 0 [R,�00) . ⇤

Then Proposition 4.3 can be obtained by induction on the
hypothesis of � permuting independent actions of tr, using
Proposition C.1. We actually prove the stronger result:

P���������� C.2 . If t : A
tr
=) B and � permutes indepen-

dent actions of tr, then A
� .tr
===) B. This trace is unique if we

take labels into account, and is referred as � .t . It has the
property that for allu2 : A2 � .tr

===)s B
2 such that fst(u2) = � .t ,

there exists t2 : A2 tr
=)s B

2 such that fst(t2) = t .

Proof. The uniqueness of � .t is immediate, as a quick in-
duction on the length of traces shows that any labelled
trace u is uniquely determined by the action word tr(u)
(labels included). We then construct � .t by induction on
the hypothesis that � permutes independent actions of
tr(t). Let us write

t : A = A0
�1��! · · · �n��! An = B .

If � = id it su�cies to choose � .t = t . Otherwise let us
write � = �0 � (i i+1) with �i || �i+1 and �0 permutes
independent actions of tr0 = �p · · ·�i�1�i+1�i�i+2 · · ·�n .
By Proposition C.1, there exists a trace

u : A0
�1��! · · · �i�1���! Ai�1

�i+1�i
=====) Ai+1

�i+2���! · · · �n��! An

23

such that for allu2 : A2 tr0
=)s B

2 verifying fst(u2) = u, there
exists t2 : A2 tr

=)s B
2 such that fst(t2) = t . Then since �0

permutes independent actions of tr0 = tr(u), it su�cies to
choose � .t = �0.u by induction hypothesis. ⇤

Then we can easily extend this result to ⌘por.

P���������� C.3 . Let t : A
tr
=) B be a trace and t

0 ⌘por t .
Then writing tr(t 0) = tr0 we have t 0 : A

tr0
=) B and, for all

u
2 : A2 tr0

=) B
2 such that t 0 = fst(u2) s snd(t2), there exists

t
2 : A2 tr

=) B
2 such that t = fst(t2) s snd(t2).

Proof. For the sake of reference, let us write H (t, t 0) the
property to prove. We reason by induction on the hypoth-
esis t ⌘por t 0.
. case 1: t 0 = � .t , � permutes independent actions of t .

Direct consequence of Proposition C.2.

. case 2: t 0 is recipe-equivalent to t .

Let u2 with t 0 = fst(u2) s snd(u2) . By static equivence,
for any recipes �1, �2 such that

�1�(fst(u2)) =E �2�(fst(u2)) ,
we also have

�1�(snd(u2)) =E �2�(snd(u2)) .
In particular, t2 can be obtained by operating on the sec-
ond component ofu2 the same recipe transformations that
have been operated to transform t

0 = fst(u2) into t .
. case 3: (transitivity) H (t, s) and H (s, t 0) for some trace
s .

Let u2 with t
0 = fst(u2) s snd(u2) . By hypothesis

H (s, t 0) there exists s2 such that s = fst(s2) s snd(s2).
Hence the result by hypothesis H (t, s). ⇤

And �nally we have the Proposition 4.4 that is a corollary
of this result.

P���������� 4.4 (correctness of por) . Let O81 ✓ O82 be uni-
versal optimisations. We assume that for all t 2 O82, there
exists t 0 ⌘por text , where t is a pre�x of text such that t 0 2 O81.
Then O81 is a correct re�nement of O82.

Proof. Let ⇡i= vi \ wi the notion of equivalence induced
byO8i . The inclusion ⇡2 ✓ ⇡1 is immediate. Let us then as-
sume P v1 Q and prove P v2 Q . Let t 2 T(P) \O82. With-
out loss of generality, we assume t maximal, i.e. that there
are no transitions possible from its last process. Therefore

by hypothesis, there exists t 0 ⌘por t such that t 0 2 O81.
Since P v1 Q , there is u2 2 T(P,Q) such that

t
0 = fst(u2) s snd(u2) .

Therefore by Proposition C.3, there exists t2 2 T(P,Q)
such that t = fst(t2) s snd(t2). ⇤

C.2 Additional results
We provide some utility results on independent permuta-

tions of actions. First, about composition of permutations:

P���������� C.4 . Let t be a trace, � permuting indepen-
dent actions of t , and �

0 permuting independent actions of
� .t . Then � .� 0.t = (� � � 0).t .

Proof. By de�nition, if t : A
tr
=) B, � .� 0.t is the unique

trace of the form A
� .� 0 .tr
=====) B, and (� � � 0).t is the unique

trace of the form A
(��� 0).tr
=======) B. Hence the result since

� .� 0.tr = (� � � 0).tr by de�nition of a group action. ⇤

This formally justi�es that the group-action properties of
(� , tr) 7! � .tr carry on to traces. Then, we also discuss the
domain extension of permutations. If � is a permutation of
n1,no, we de�ne �+q+p permutation of n1,n + p + qo by

�
+q
+p (x) =

⇢
p + � (x � p) if p < x 6 n + p
x otherwise

in particular, the following result is immediate:

P���������� C.5 (extension) . If � permutes independent
actions of � , �+ |w |

+ |u | permutes independent actions of u�w .

C.3 Decomposition into phases
In this sectionwe prove correct the re�nement at the very

basis of our partial-order reductions, namely that all traces
can be decomposed into phases (modulo permutation of in-
dependent actions).

P���������� 4.5 . O8c,b is a correct re�nement of O8all.

Proof. By Proposition 4.4, it su�cies to prove that for all
traces t that are maximal (i.e. whose last process is irre-
ducible), there exists � permuting independent actions of
t such that � .t can be decomposed into phases.

We prove this by induction on the length of t . If t is
empty the result is immediate: � is the identity and the
phase decomposition consists of a unique empty negative
block. Otherwise let us write

t : (A ��! B) · t 0 .

24

Note in particular that the trace t
0 is also maximal. By

induction hypothesis, there exists � 0 permuting indepen-
dent actions of t 0 such that

�
0.t 0 = b�0 · b+1 · b�1 · b+2 · b�2 · · ·b+n · b�n

where each b+i is a positive or null phase, and each b�i is a
negative phase.

. case 1: � is an output or a parallel action.

Then (A ��! B) · b�0 is a negative phase and it su�cies
to choose � = (� 0)+0+1.

. case 2: � = [�]`1 |`2 (internal communication).

Let us write E the multiset of actions of the word tr(b�0).
We partition it into E = F]G where

F = {{� 2 E | � || �}}
G = {{[a]` 2 E | `1 4pref ` or `2 4pref `}}

where 4pref refers to the pre�x ordering on words. This
is indeed a partition of E thanks to the invariant that any
label appearing in t

0 is either incomparable with `1 and
`2, or a su�x of `1 or `2. For the same reason, all actions
in F are independent of all actions in G: it is therefore
straightforward to construct ��0 permuting independent
actions of b�0 such that

�
�
0 .b
�
0 : B

trF ·trG
=====) C trF 2 F? trG 2 G? .

Then, we let � permuting independent actions of

s = (A ��! B) · (��0 .b�0)

such that � .s = A
trF
==) B

0 ��! B
00 trG
==) C . By de�nition of

F and G, we have polar(B0) , 1. And by the hypothesis
that b�0 is a negative phase, its last process C has not a

polarity of �1 neither. ThereforeA
trF
==) B

0 and B00
trG
==) C

are negative phases. All in all, it su�cies to choose

� = �
+p
+0 � (��0)

+p
+1 � (� 0)+0+1 with p =

n’
i=1

|b+i | + |b�i |

. case 3: � = [c(�)]` .
Let us write

A = ({{[c(x).P]`}} [P,�) B = ({{[P 0]`}} [P,�)
If the label ` does not appear in tr(t 0), then by maximality
of t it needs be that polar(P 0) = 0 and (A ��! B) is therefore
a positive phase. In particular � 0.t is already decomposed
into phases and it su�cies to choose � = (� 0)+0+1.

Otherwise assume that ` appears in tr(t 0). We write

tr�i = tr(b�i) tr+i = tr(b+i)
We also consider the phase of t 0 in which the �rst action
of P 0 is executed, i.e. the �rst phase b such that ` appears
in tr(b). Note that, thanks to the invariant that any label
appearing in t 0 is either incomparable or a su�x of `, � is
independent of all actions of all phases of t 0 preceding b.

. case 3a: b = b+i is a positive or null phase.

Then we �x � permuting independent actions of

� · tr with tr = tr�0 · tr+1 · tr�1 · · · tr+i�1 · tr�i�1
such that, writing s = (A ��! B) · b�0 · b+1 · b�1 · · ·b+i�1 · b�i�1,

� .s : A
tr
=) A

0 ��! A
00 .

If b = b+i is a null phase, A0
��! A

00 is a positive phase. If b
is a positive phase, (A0 ��! A

00) · b is a positive phase too.
In both cases, it su�cies to choose

� = �
+p
+0 � (� 0)+0+1 with p =

n’
j=i

|b+j | + |b�j |

. case 3b: b = b�i is a negative phase.

Similarly to case 2, we �x E the multiset of actions ap-
pearing in the word tr�i and we partition it as E = F]G

F = {� 2 E | � || �} G = {[a]`0 2 E | ` 4pref `0} .
And again we let ��i permuting tr�i such that

�
�
i .b
�
i : R

trF
==) S

trG
==) T trF 2 F? trG 2 G? .

Then we let � permuting independent actions of

� · tr · trF with tr = tr�0 · tr+1 · tr�1 · · · tr+i
such that, writing s = (A ��! B) ·b�0 ·b+1 ·b�1 · · ·b+i · (��i .b�i),

� .s : A
tr
=) A

0 trF
==) A

00 ��! S
trG
==) T .

For the same reason as in case 2, A0
trF
==) A

00 and S
trG
==) T

are negative phases. It therefore su�cies to choose

� = �
+p
+0 � (��i)

p
1+ |tr | � (�

0)+0+1 with p =
n’

j=i+1
|b+j | + |b�j | ⇤

C.4 Lexicographic reduction
In this section we prove the correctness of the optimi-

sation O8c+i+r introduced in Section 4.3. We recall that we
assume a total ordering 4 on blocks that is insensitive to
recipes. We write 4lex the lexicographic extension of 4 on

25

words of same length of blocks (i.e two words of di�erent
length are always incomparable w.r.t. 4lex). The core of the
proof is to establish a link between O8c+r and

O
8
lex = {t 2 O8c | t minimal}

where minimal means minimal within its equivalence class
for ⌘b-por w.r.t. 4lex .
P���������� C.6 . O8lex ✓ O8c+r
Proof. Let t 2 O8lex and prove by induction on the number
of blocks of t that t 2 O8c+r. If t is a single negative phase,
the conclusion follows from the de�nition. Otherwise let
us write t : b� · b1 · · ·bn . Since lexicographic minimality
is preserved by pre�x,we have t 0 2 O8lex with

t
0 : b� · b1 · · ·bn�1 .

Then by induction hypothesis we obtain t
0 2 O8c+r. To

conclude, by de�nition of O8c+r, it now su�cies to prove
that bn is allowed after t 0.

Suppose by contradiction that it is not, and let b recipe
equivalent to bn such that Minimal(t 0,b) does not hold.
By a quick induction on the hypothesisMinimal(t 0,b), we
can show that there exists i 2 n2,n � 1o such that
(1) bi � · · · � bn�1 � b

(2) b � bi�1

(3) 8j 2 ni,n � 1o,bi || b .
In particular � = (i i+1 · · · n�1 n) permutes independent
actions of t 0 ·b and � .(t 0 ·b) 4lex t 0 ·b. Since 4 is insensitive
to recipes, this contradicts the minimality of t . ⇤

Also note that, thanks to Proposition C.5, we also obtain
the useful property that ⌘b-por is closed by context:

P���������� C.7 . If � ⌘b-por � 0 then u�w ⌘b-por u� 0w .

Proof. Easy induction on the hypothesis � ⌘b-por � 0. ⇤

Using these two properties, we can eventually prove the
correctness of O8por by relying on Corollary 4.8.

P���������� 4.10 . O8por is a correct re�nement of O8c+i.

Proof. Let O8 the set of traces of the form t : b� · tp · ti ,
where b

� is a negative phase, tp 2 O8lex only contains
proper blocks, and ti 2 O8lex only contains improper
blocks. By Proposition C.6, O8 ✓ O8por. By partial imple-
mentability (Proposition 3.8) it therefore su�cies to prove
that O8 is a correct re�nement of O8c+i.

We rely on Corollary 4.8, i.e. we prove that for any

t 2 O8c+i, there is t 0 ⌘b-por t such that t 0 2 O8lex . We write

t : b� · tp · ti (notations of the de�nition)

and let t 0p and t 0i the 4lex-minimal elements of the ⌘b-por-
equivalence classes of, respectively, tp and ti . Naturally
tp ⌘b-por t 0p and ti ⌘b-por t 0i . Therefore t 0 : b� ·t 0p ·t 0i 2 O8lex .
But by closure under context (Proposition C.7) we also
have t 0 ⌘b-por t , hence the conclusion. ⇤

D Proofs of Section 5
D.1 Universal symmetries

In this section we prove the correctness of the universal
reduction by symmetry, i.e.

P���������� 5.3 . O8por \ O8sym is a correct re�nement of
O
8
por.

First of all we isolate the core property that symmetric
processes verify, which will be the key argument for the
proofs of this section. Let us consider a compressed trace

t : [P]� tr
=) ({{[Pi]`i }}ni=1,�0) 2 O8c

and let a,b 2 n1,no and � = (a b). We also assume that
there exists �c permutation of Chpub such that

� .hP1, . . . , Pa�1, Pa�c , Pa+1, . . . , Pb�c , . . . , Pni ⌘�0
� ÆP (4)

P���������� D.1 . Let a trace of the form

s = t · ((P0,�0)�
[a1]L1�����! · · · [an]Ln������! (Pn,�n)�) (?)

for some substitution � and L1 = `b . Then there exists �
permutation of Npriv , and � 0 =E � and a trace

t · ((Q0,�0)� 0�
[a1�c]L

0
1

�������! · · · [an�c]L
0
n

��������! (Qn,�n)� 0�)
and � a bijection of labels such that
(1) if ` 2 dom(�) then `a is a pre�x of `, and if ` 2 im(�)

then `b is a pre�x of `. Besides if `a or `b is a pre�x of
` and ` appears in the trace s , then ` 2 dom(�)[im(�).

(2) � (`a) = `b
(3) if `, ` · i 2 dom(�) then � (` · i) = � (`) · j for some j
(4) if Li 2 dom(�) then L

0
i = � (Li); if Li 2 im(�) then

L
0
i = �

�1(Li); otherwise L0i = Li .
(5) if Pi contains a process P labelled ` 2 dom(�) (resp.
` 2 im(�)), then Qi contains a process Q labelled � (`)
(resp. ��1(`)) such that Pi ⌘ Qi�

0
� (if i < {a,b}) and

Pi ⌘ Qi�
0
��c (if i 2 {a,b}).

26

Proof. The case n = 1 follows from hypothesis (Equa-
tion (4)), and the proposition can then be proved by in-
duction on n. ⇤

In particular we obtain the following two core arguments:

P���������� D.2 . Assume a !1 b and that, for all traces
s of the form of Equation (?) (with L1 = `a), there exists
s
2 2 T(P,Q) such that s = fst(s2) s snd(s2). Then for all
traces s of the form of Equation (?) (with L1 = `b), there
exists s2 2 T(P,Q) such that s = fst(s2) s snd(s2).

Proof. Let a trace s of the form of Equation (?) (with
L1 = `b). With �c = id we consider the trace s

0 given
by Proposition D.1 (we will use the same notations). In
particular we have L01 = `a . By hypothesis, there there-
fore exists u2 2 T(P,Q) such that s 0 = fst(u2) s snd(u2).
Using now the hypothesis that a !1 b, there also exists
�
2 2 T(P,Q)matching the �rst |tr| actions of s 0 andwhose

processes matching Pa and Pb are swapped. From u
2 and

�
2 we can then construct by induction on n a trace s2 such

that s = fst(s2) s snd(s2). ⇤

P���������� D.3 . Assume a !1 b and that, for all traces
s of the form of Equation (?) (with L1 = `a), there exists
s
2 2 T(P,Q) such that s = fst(s2) s snd(s2). Then for all
traces s of the form of Equation (?) (with L1 = `b), there
exists s2 2 T(P,Q) such that s = fst(s2) s snd(s2).

Proof. Let a trace s of the form of Equation (?) (with
L1 = `b). We consider the trace s

0 given by Proposi-
tion D.1 (we will use the same notations). In particular
we have L

0
1 = `a . By hypothesis, and using the char-

acterisation of Appendix A, there exists u 2 T(Q) and
a session matching for s 0,u such that tr(s 0) = tr(u) and
�(s 0) s �(u). Thanks to the hypothesis a !2 b, we can
then apply Proposition D.1 to the traceu too. In particular
there exists a trace u 0 2 T(Q) such that tr(t) = tr(u 0) and
�(t) s �(u 0), hence the conclusion. ⇤

Using these two propositions we obtain the straightfor-
ward corollary (by induction on the hypothesis that a ! b)
that justi�es Proposition 5.3:

C�������� D.4 . Assume a ! b and that, for all traces
s of the form of Equation (?) (with L1 = `a), there exists
s
2 2 T(P,Q) such that s = fst(s2) s snd(s2). Then for all
traces s of the form of Equation (?) (with L1 = `b), there
exists s2 2 T(P,Q) such that s = fst(s2) s snd(s2).

D.2 Existential symmetries
In this section we prove the existential optimisation rely-

ing on symmetries of matchings:

P���������� 5.5 . O9sym is a correct re�nement of O9all.

For that we introduce a notion of equivalence of traces;
this is intuitively the invariant preserved by permutation of
structurally-equivalent subprocesses.

D��������� D.1 . We write

({{(Pi ,Qi)}}ni=1,�0,�1) ⌘� ({{(Pi ,Q 0i�)}}ni=1,�0,�
0
1�)

when � is a bijective renaming of private names, Qi ⌘E Q
0
i

for all i , and �1 ⌘E �01. We extend this to traces by writing
A
2
0

�1��!s · · ·
�n��!s A

2
n ⌘� B

2
0

�1��!s · · ·
�n��!s B

2
n when A

2
0 = B

2
0

and A2
i ⌘� B

2
i for all i > 0.

L���� D.5 . ⌘� is an equivalence relation.

Proof. Re�exivity and Symmetry are immediate, but tran-
sitivity requires the observation that for any terms t, t 0
and bijective renaming of private names �, t =E t

0 entails
t� =E t

0
�. ⇤

P���������� D.6 . The relation ⌘� has the properties:
(i) 8t2 2 T(A2), 9s2 2 O9sym, s2 ⌘� t

2

(ii) if t2 ⌘� s
2, then fst(t2) s snd(t2) i� fst(s2) s snd(s2)

(iii) if t2 ⌘� s
2, then fst(t2) = fst(s2)

Proof. The property (i) can be proved by induction on the
length of the trace. Themain argument is that ifA2 ��!s B

2

is ill-formed, then there exists a well-formed transition
A
2 ��!s C

2 such that B2 ⌘� C
2. The property (ii) follows

from the fact that � =E �0 implies � s �0, and � s �� for
any bijective renaming of private names �. The property
(iii) is immediate. ⇤

Proof of Proposition 5.5. We write ⇡ the notion of equiv-
alence induced by the optimisation O9sym. The inclusion
⇡ ✓ vs is immediate. Let us then assume that P vs Q and
prove that P v Q . Let t 2 T(P). By hypothesis, there is
t
2 2 T(P,Q) such that

t = fst(t2) s snd(t2) .
By Proposition D.6 (Item (i)), there exists s2 2 O9sym such
that t2 ⌘� s

2. Therefore we have, by Items (i) and (ii),
t = fst(s2) s snd(s2) . ⇤

27

