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efficiency in growing pigs
Farouk Messad1, Isabelle Louveau1, Basile Koffi1, Hélène Gilbert2 and Florence Gondret1*

Abstract

Background: Improving feed efficiency (FE) is a major challenge in pig production. This complex trait is
characterized by a high variability. Therefore, the identification of predictors of FE may be a relevant strategy to
reduce phenotyping efforts in breeding and selection programs. The aim of this study was to investigate the
suitability of expressed muscle genes in prediction of FE traits in growing pigs. The approach considered different
transcriptomics experiments to cover a large range of FE values and identify reliable predictors.

Results: Microarrays data were obtained from longissimus muscles of two lines divergently selected for residual
feed intake (RFI). Pigs (n = 71) from three experiments belonged to generations 6 to 8 of selection, were fed either
a diet with a standard composition or a diet rich in fiber and lipids, received feed ad libitum or at restricted level,
and weighed between 80 and 115 kg at slaughter. For each pig, breeding value for RFI was estimated (RFI-BV), and
feed conversion ratio (FCR) and energy-based feed conversion ratio (FCRe) were calculated during the test periods.
Gradient boosting algorithms were used on the merged muscle transcriptomes to identify very important
predictors of FE traits. About 20,405 annotated molecular probes were commonly expressed in longissimus muscle
across experiments. Six to 267 expressed muscle genes covering a variety of biological processes were found as
important predictors for RFI-BV (R2 = 0.63–0.65), FCR (R2 = 0.61–0.70) and FCRe (R2 = 0.49–0.52). The error of
prediction was less than 8% for FCR. Altogether, 56 predictors were common to RFI-BV and FCR. Expression levels
of 24 target genes were further measured by qPCR. Linear regression confirmed the good accuracy of combining
mRNA levels of these genes to fit FE traits (RFI-BV: R2 = 0.73, FRC: R2 = 0.76; FCRe: R2 = 0.75). Stepwise regression
procedure highlighted 10 genes (FKBP5, MUM1, AKAP12, FYN, TMED3, PHKB, TGF, SOCS6, ILR4, and FRAS1) in a
linear combination predicting FCR and FCRe. In addition, FKBP5 and expression levels of five other genes (IGF2,
SERINC3, CSRNP3, EZR and RPL16) significantly contributed to RFI-BV.

Conclusion: It was possible to identify few genes expressed in muscle that might be reliable predictors of feed
efficiency.
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Introduction
Improving feed efficiency (FE) is an utmost challenge for
the profitability of pig production with additional bene-
fits on its ecological footprint. In production farms, FE
during growth is assessed by its inverse trait, the feed
conversion ratio (FCR) calculated as daily feed intake di-
vided by daily growth rate over a defined period. Re-
sidual feed intake (RFI) has been specifically proposed to
capture the efficiency of feed use independent from the
production needs [1], corresponding to the so-called net
feed efficiency. The RFI can be computed at the genetic
or phenotypic levels as the difference between observed
feed intake and feed intake predicted from production
and maintenance needs. Thanks to a moderate (~ 0.40)
genetic correlation between RFI and FCR, selection ex-
periments for RFI have been successful in generating
low and high RFI divergent lines, which also displayed a
large difference in FCR [2, 3]. Several high-throughput
studies based on microarrays [4–8] and RNA sequencing
[9–12] have been conducted on small numbers of pigs
with extremely low or high RFI phenotypes. These stud-
ies were helpful to ascribe how molecular pathways
within and across tissues, namely muscle, adipose tis-
sues, liver and intestine, can be related to variations in
FE traits. Pathways related to oxidative stress response,
inflammation, and immune system have been reported
as consistently involved in the differences between RFI
genetic lines [4] or extreme RFI phenotypes [11]. Identi-
fying molecular hubs in co-expression networks of genes
associated with high and low FE traits has been also con-
sidered to propose candidate biomarkers in the liver or
duodenum in pigs and cows [11, 13]. Finally, machine
learning algorithms have gained increasing attention to
handle high dimensional datasets where the number of
potential explanatory variables vastly exceeds the num-
ber of observations, and to select an optimal subset of
variables for classification or prediction of particular
phenotypes. The importance scores generated by ran-
dom forest and support vector machines, two methods
considered as state-of-the art of machine learning algo-
rithms, have been recently applied to whole-genome mo-
lecular markers for prediction of RFI in beef cattle [14,
15]. Support vector machine, random forest, elastic net,
and nearest shrunken centroid algorithms have been also
successfully tested for their ability to classify extreme
pigs on high/low RFI from RNAseq data in liver and
duodenum [16]. When applied on microarray datasets
from human subjects to predict health outcomes [17],
the best prediction accuracy was obtained for the gradi-
ent tree boosting machine (GTB) among seven machine
learning approaches including random forest and sup-
port vector machine. This algorithm is considered to
produce an excellent fit of predicted to observed values,
even if the specific nature of the relationships between

the predictor variables and the dependent variable is
very complex. This suggests that this approach can be
suitable for regression problems such as the prediction
of FE values.
The numbers of differentially expressed genes between

low and high RFI pigs were found much higher in
muscle than in the liver or adipose tissues [4], suggesting
that muscle may be a relevant target to unravel the com-
plexity of FE. However, very few overlaps were found be-
tween lists of differentially expressed muscle genes from
different studies [8, 9]. The amount and type of feed of-
fered, energy supply, animal sex and body weight, season
of rearing, etc. interact with the genetic background to
influence variations in RFI and other FE traits [18].
Likely, this adds to the difficulty to find common candi-
dates to explain and predict FE. Combining different mo-
lecular datasets to provide a larger number of animals and
wider ranges of experimental conditions may be a relevant
strategy to obtain a robust description of predictors in-
volved in the phenotypes of interest [19, 20]. This study
aimed to identify important muscle genes for prediction
of FE in growing pigs. Experiments run on two pig lines
divergently selected for RFI that have been already ana-
lyzed separately [4, 8] and included differences in selection
generations, feed allowance and diet composition, sex and
live weight of the pigs were combined. The GTB algo-
rithms were then used as a resampling machine learning
approach to re-examine muscle microarray datasets and
to predict different FE traits.

Results
Descriptive statistics on merged molecular datasets
Microarrays data from longissimus muscle of 71 barrows
and female pigs of two lines divergently selected for RFI
and reared under different experimental conditions were
reanalysed from available molecular repositories. A total
of 20,405 expressed annotated molecular probes were
successfully matched over repositories and included in a
new merged dataset. In this new dataset, pigs were as-
cribed to low or high RFI groups according to their gen-
etic lines. Traits related to FE were available from
references publications [21, 22] or newly calculated from
data obtained on littermates in the selection farms [3].
Descriptive statistics are shown in Table 1. The RFI
breeding values (RFI-BV) ranged from − 108.7 to 91.6 g/
d, and the mean value was significantly lower, as ex-
pected from selection, for pigs of the low RFI line than
for pigs of the high RFI line. The FCR was 2.75 kg/kg on
average (min = 2.25; max = 3.28). It was 27MJ/kg BW on
the net energy basis (FCRe: min = 22; max = 32). As ex-
pected, pigs of the low RFI line had lower feed conver-
sion ratios (FCR, FCRe) than pigs of the high RFI line
(P < 0.001). Because pigs were reared under different ex-
perimental conditions, a large range of values for feed
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intake (FI) was observed (min =1725 g/day; max = 3026
g/day). A large range of FCR values was covered in the
merged dataset, with some interpenetration between pigs
of the low and high RFI lines (Fig. 1).
Principal Component Analysis (PCA) was then used to

handle the 20,405 expressed probes in longissimus muscle
on a common frame, to detect outliers and visualize links
between variables. The first principal component (PC1)
summarized 46.8% of the observed variance, whereas the
second principal component (PC2) summarized 13.7% of
the variability. Pigs of the low RFI group were opposed to
pigs of the high RFI group on PC1 (Fig. 2), whereas PC2
did not allow any distinction between the two RFI groups.
The FCR was significantly (P < 0.001) correlated with PC1
(r = 0.53) and PC2 (r = − 0.41). The FCRe was also signifi-
cantly (P < 0.001) correlated with PC1 (r = 0.49) and PC2
(r = − 0.44). The partition of pigs due to their genetic lines
(low or high RFI) and the datasets of origin is shown in
Suppl. File 1.

Selection of very important expressed muscle genes to
predict feed efficiency
Gradient Tree Boosting (GTB) was applied as a machine
learning method that processes with thousands decision
trees to successively produce prediction models for RFI-
BV, FCR and FCRe with relevant subsets of annotated
probes called very important variables in prediction
(VIP) for these traits. Conditional accuracy parameters
(RMSE, R2) were estimated for each FE trait (Table 2).

The lists of identified VIP and their corresponding scores
in prediction models were provided into Additional file 2
for RFI-BV, Additional file 3 for FCR and Additional file 4
for FCRe, respectively.
For RFI-BV, 384 molecular probes corresponding to

222 unique annotated genes were first identified as VIP
in the predictive model (R2 = 0.63). Biological meaning
of these VIP was further explored using DAVID bio-
informatics resources. Fifteen biological pathways (cut-
offs: enrichment score E > 1, P < 0.05) were listed
(Table 3). They corresponded to enzyme linked receptor
protein signaling pathway, regulation of cell motion and
cell growth, responses to hormone stimulus, inorganic
substance or nutrient levels, the regulation of homeo-
static process and different metabolic related processes
(hexose metabolic process, glycerol-phospholipid meta-
bolic process, organic acid biosynthetic process and pro-
tein amino acid phosphorylation), regulation of muscle
development, and the inflammatory response. Iterative
steps allowed to increase the accuracy of the model with
a reduced number of variables, so that 50 molecular
probes corresponding to 27 unique genes were further
proposed as top VIP (R2 = 0.65).
For FCR, 421 molecular probes corresponding to 267

unique identified genes were identified as VIP (R2 = 0.61;
RMSE = 0.23). Twelve biological pathways were listed
across VIP (Table 3). They were related to energy meta-
bolic process (glucose metabolism, glycogen metabolic
process, carbohydrate catabolic process) and protein
catabolic process, regulation of muscle development
(muscle tissue development, skeletal tissue development,
regulation of cell development, cell morphogenesis), cell
adhesion and cytoskeleton organisation, blood vessel de-
velopment, and leukocyte activation. Model reduction
further led to identify a subset of 50 probes correspond-
ing to 33 unique genes with an increased accuracy of the
prediction (R2 = 0.67; RMSE = 0.22). Thus, the error of
prediction was 8% of the mean of the trait.
For FCRe, 318 probes corresponding to 218 unique genes

were retained in the prediction model (R2 = 0.49; RMSE =
2.0). Nine biological pathways (enrichment score E > 1, P <
0.05) were listed across VIP for FCRe (Table 5). They were
homeostatic process, coenzyme metabolic process, purine
nucleotide metabolic process, cellular protein localization,
regulation of cell motion, blood vessel development and
blood vessel morphogenesis, reproductive developmental
process, and negative regulation of apoptosis. Iterative steps
led to a drastic reduction of the predictors with only 7
probes corresponding to 6 unique identified genes identi-
fied as top VIP (R2 = 0.52; RMSE = 1.9). The error of pre-
diction was 7% of the mean of the trait.
The GTB algorithm was also applied to predict ADG,

but model performance was lower (R2 = 0.45 and
RMSE = 70.32; data not shown) than for feed efficiency

Table 1 Descriptive statistics for feed efficiency traits and
growth performance

Variable Line n Mean SEM StDev Minimum Maximum

RFI-BV Low RFI 31 − 66.5a 3.6 20.1 −108.7 −39.5

High RFI 40 55.9b 1.7 10.9 33.5 91.6

ADG Low RFI 31 885.0a 15.9 88.7 700 1068

High RFI 40 827.4b 15.7 99.2 543 1012

FI Low RFI 31 2288.3a 34.2 190.4 1914 2658

High RFI 40 2362.7a 40.5 255.9 1725 3026

FCR Low RFI 31 2.60b 0.03 0.18 2.25 2.91

High RFI 40 2.87a 0.03 0.21 2.46 3.28

FCRe Low RFI 31 25b 0.3 2 22 29

High RFI 40 28a 0.3 2 24 32

Abbreviations used: ADG Average daily gain (g/d), FI feed intake (g/kg), FCR
Feed conversion ratio (kg/kg), FCRe Net energy feed conversion ratio (MJ/kg),
RFI-BV Breeding value for residual feed intake (g/d). Data were obtained in n =
71 growing pigs from two lines divergently selected for residual feed intake
(low/high) and reared under different conditions. ADG, FI and FCR were
obtained from referenced publications [21, 22]. The FCRe was newly calculated
using the net energy content of diets that was provided in the same
publications. Genetic RFI values were newly calculated from performance
recorded on pig littermates reared in the selection farm (Rouillé, France). For
each trait, data obtained from pigs of both lines were compared by ANOVA; a,
b: for a given trait, means with different superscript letter differed between
low and high RFI lines (P < 0.05)
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traits. This means that the prediction was better for
composite traits than for individual traits in this
situation.

Common VIP to predict RFI, FCR and FCRe
Lists of VIP proposed in the models for the different FE
traits were handled into a Venn diagram (Fig. 3). There
were 56 VIP in common for prediction of RFI and FCR,
15 common VIP between RFI and FCRe predictors, and
25 common VIP for FCR and FCRe. Finally, six VIP

were found in common from the models predicting RFI,
FCR and FCRe. The corresponding genes were listed in
Table 4. When the smallest subsets of VIP obtained after
models reduction were considered, none genes were
common across the three traits.

Model evaluation for FCR prediction
Because FCR is the most widely used indicator of FE at
the farm level, a deeper evaluation of the model per-
formance was carried out for this trait. Predicted (X)

a

b

Fig. 1a Distribution of residual feed intake (RFI) b Distribution of feed conversion ratio (FCR). Barrows and females growing pigs from generations
6 to 8 of a divergent selection for RFI were considered. Pigs from the low or high RFI lines were fed different diets according to referenced
publications [21, 22]. Black dot blot: pigs of the low RFI line; red dot blot: pigs of the high RFI line
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and observed (Y) values were compared (X - Y), using
the GLM procedure. The model was considered unbiased
when the intercept was not different from 0 and the slope
was not significantly different from 1, and the quality of
the relationships was also evaluated on the basis of RMSE
of prediction (RMSEP) obtained by a leave-one-out cross-
validation from the value of the predicted residual sum of
squares. Observed and predicted values for FCR were
close together when evaluated on all pigs (R2 = 0.70,
RMSEP = 0.13; Fig. 4). When examined by RFI line, inter-
cept and slope of the regression line were not significantly
different from 0 and 1, respectively, for pigs of the low RFI
line (R2 = 0.71; RMSEP = 0.09), but the intercept was sig-
nificantly (P < 0.05) different from 0 for pigs of the high
RFI line (R2 = 0.51; RMSEP = 0.15). Bad prediction con-
cerned 7 pigs (R2 = 0.27), which belonged to the high RFI
line and had very high FCR values (3.17 kg/kg on average).
They originated from different experiments including 2
pigs feed-restricted during the growing-finishing period
and 5 pigs fed ad libitum either a control diet or a high-fat
high-fiber diet. When these 7 pigs were removed, the
quality of the prediction for the remaining animals
(n = 64) was clearly improved (R2 = 0.80; RMSEP = 0.09),
and no more difference was observed in model prediction
quality between low RFI (R2 = 0.71; RMSEP = 0.10) and
high RFI (R2 = 0.75; RMSEP = 0.09) lines. A detailed repre-
sentation of the regression slopes when calculated within

the RFI groups and datasets of origin is available in
Additional file 5.

Expression levels of target genes and linear regression
models on feed efficiency traits
The mRNA levels of genes, identified as VIP for at least
two FE traits or participating in pathways judged by ex-
pertise as biologically relevant in FE, were further mea-
sured by qPCR to provide further validation and to
propose simplified regression models. Twenty-four target
genes were chosen among the VIP, and the majority (75%)
but not all of these genes had a differential expression
(P < 0.05) as evaluated by variance analysis, between pigs
of the low or high RFI groups (Table 5). Linear regression
models with RSQUARE selection (independent variables
that best predict the dependent variable by linear regres-
sion) or stepwise option (variables are added one by one
to the model), were then applied. Linear combination of
mRNA levels of the 24 target genes allowed to predict FE
traits with very good accuracy (RFI-BV: R2 = 0.73, FRC:
R2 = 0.76; FCRe: R2 = 0.75). Complementary analyses using
final BW of pigs as an additional explicative variable in re-
gression did not change the accuracy of prediction for feed
efficiency traits (RFI-BV: R2 = 0.75, FRC: R2 = 0.77; FCRe:
R2 = 0.76; data not shown). Finally, stepwise linear regres-
sion highlights a combination of mRNA levels of 10 or 11
genes to explain about 71% of the total variability in FCR

Fig. 2 Plot of the first two principal components unraveling whole variability in the merged molecular dataset. Pigs are represented on the scatter plot
created with the first two principal components (PC) of a Principal Component analysis (PCA) which aggregated the whole transcriptomic data (20,405
annotated expressed probes) in the longissimus muscle of different studies. The first PC of the PCA (PC1) represented 46.8% of the whole transcriptomic
variability and discriminated pigs from the low or high RFI selection lines. This allows considering PC1 of the PCA as a relevant summary of the main
molecular probes involved across the pigs in divergence for RFI. Black dot blot: pigs of the low RFI line; red dot blot: pigs of the high RFI line black dot
blot: pigs of the low RFI line; red dot blot: pigs of the high RFI line
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and FCRe, respectively, whereas expression levels of 6
genes contributed to 58% of the variability in RFI-BV
(Table 6).

Discussion
Because FE is recognized as a complex trait that involves
many biological processes [3] and is influenced by genet-
ics and environmental factors, FE related traits are diffi-
cult to predict. In this study, subsets of molecular
predictors for different measures of FE were identified
by using a machine learning method on muscle tran-
scriptomes that were merged from original experiments
to provide a larger number of animals and wider ranges
of conditions. Very recently, Piles and colleagues [16]
reported that machine learning algorithms provided
good performance on RNAseq expression data to classify
pigs into high or low RFI phenotypic groups when based
on 100–200 very important genes expressed in liver (ac-
curacy: 0.78) or duodenum (accuracy: 0.69). Although
RNA sequencing data and microarray data are highly

correlated, short and less abundant transcripts may have
a higher possibility to be detected by the microarray ap-
proach [23]. Moreover, the longissimus muscle was
found as the primary affected site, among four examined
tissues including liver, by a divergent selection for RFI in
growing pigs [4]. Therefore, we focused on microarray
datasets obtained from longissimus muscle in different
studies. Good accuracy was found (R2~0.65–0.70) for
gradient tree boosting (GTB) models in prediction of
RFI-BV, the measure of the net FE which was used as
the selection criterion, and FCR, another measure of FE
that is more easily obtained in most circumstances in
pig farms. The error of prediction for FCR was less than
8% when calculated on all pigs. While data were in-
cluded in the model without any (supervised) indication
of genetic lines of origin, the deviation between observed
and predicted values was higher for pigs from the high
RFI line than for pigs from the low RFI line. Bad predic-
tion concerned seven pigs with very high FCR, with no
apparent bias arising from diets and feeding regimen.
This suggests that the model cannot handle very high
FCR values because they might be under a different
metabolic control not captured in the dataset. In sup-
port, the metabolic phenotypes described in the refer-
enced publications [21, 22] indicated higher glycaemia
(1.7 vs 1.4 g/L) and leptinemia (1.9 vs 2.87 ng/L) but
lower blood phospholipids concentrations (0.83 vs 1.0 g/
L) in the seven pigs for which prediction of FCR largely
deviated from the observations. These blood parameters
may refer to something associated to energy homeosta-
sis. Therefore, GTB models were built to predict FCR
when expressed on a net energy basis. The prediction
accuracy (R2) was slightly lower for FCRe than for FCR,
and this may sign how the environment influences the
two traits [24]. When a subset of the molecular predictors
was further examined by qPCR to provide a technical val-
idation of microarray data, linear regression models ap-
plied on mRNA levels of target genes confirmed the better
accuracy of combination of several genes rather than one
gene to predict RFI-BV, FCR and FCRe.
The molecular predictors identified as split variables

for the different FE traits participated to a large variety
of biological processes. Remarkably, most of these pro-
cesses have been identified as pathways affected by FE
divergence in pig muscle [4, 9, 25] and chicken breast
[26]. Altogether, 56 predictors were common to RFI-BV
and FCR, and six predictors were common between RFI-
BV, FCR and FCRe. Finding common predictors of dif-
ferent FE traits is a challenge of interest, because the
corresponding genes might be used as multiple bio-
markers to reduce the effort of phenotyping in breeding
programs. Among the six expressed genes proposed as
common predictors for the three FE traits, FKBP5 (FKBP
prolyl isomerase 5) is a member of the immunophilin

Table 2 Number of probes and encoded genes identified as
VIP for feed efficiency traits

Nb annotated probes Nb unique genes R2 RMSE

RFI-BV 384 222 0.63 42.9

280 161 0.64 39.6

50 27 0.65 39.3

FCR 421 267 0.61 0.23

88 52 0.70 0.22

50 33 0.67 0.22

FCRe 318 218 0.49 2.2

50 29 0.52 2.0

7 6 0.52 2.0

Machine learning procedure (gradient tree net boosting) was applied on
microarrays dataset (20,405 expressed annotated probes) generated from the
longissimus muscle of 71 growing pigs to identify models able to predict
residual feed intake (RFI), feed conversion ratio (FCR) and net energy-based
feed conversion ratio (FCRe). A randomly selected bootstrap pig sample (n =
50) was used for learning, whereas the remaining pigs (n = 21) was used for
validation test. The first rounds led to model stabilization with 384 molecular
probes as very important variables (VIP) for RFI-BV prediction, 421 probes for
FCR prediction and 318 probes for FCRe prediction, respectively, out of the
20,405 expressed annotated probes. The second entry was an iterative step of
the former procedure but considering the VIP that were identified in the first
step as the new inputs. This increased the accuracy of the prediction
evaluated by the root mean square error (RMSE) and the coefficient of
determination (R2). The last entry was another iterative step using the VIP
identified at the second step as the new inputs, which led to identify the
smallest number of VIP able to predict the target trait with a good accuracy.
The numbers (Nb) of annotated probes and their corresponding unique genes
identified as VIP for the three feed efficiency traits were indicated. Lists of the
VIP (probes and their corresponding gene name when applicable) are
provided in Additional files 1, 2 and 3
TreeNet boosting procedure was applied to 20,405 annotated probes
expressed in the longissimus muscle of 71 pigs to release very important
predictors (VIP) that can be used to predict residual feed intake (RFI) values. A
total of 384 molecular probes were identified. Iterative steps led to reduce the
set to 50 molecular probes corresponding to 30 unique encoded genes. These
genes were listed by the order of importance (score) in prediction. Expression
levels of genes indicated in bold face were further measured by qPCR
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Table 3 Main overrepresented biological processes shared by genes selected as predictors of feed efficiency traits

GO terms Nb
genes

E P
Value

Clustered genes

RFI (clustered pathways among 222 VIP)

GO:0051270~regulation of cell motion 12 3.35 <
0.001

BCL2, F10, HBZGF, HDAC5, INS-IGF2, LAMA4, NTN1, NRP1, PIK3R1,
PDGFRB, SERPINE2, TGFR3

GO:0007167~enzyme linked receptor
protein signaling pathway

14 2.36 <
0.001

AMHR2, NRP1, INS-IGF2, TIPARP, TRIO, GRB10, UTP11L, PDGFRB, SPTBN1, HBEGF,
ROR2, TGFBR3, ANGPTL1, PIK3R1

GO:0001558~regulation of cell growth 8 1.86 0.008 NRP1, CD44, INS-IGF2, ABTB2, BCL2, HBEGF, NTN1, MAP 2 K5

GO:0009725~response to hormone
stimulus

12 1.81 0.004 HDAC5, PLA2G4A, AR, GRB10, CCND2, INS-IGF2, BCL2, NCOA6, TGFBR3, MGP,
CA2, PIK3R1

GO:0019318~hexose metabolic process 8 1.79 0.008 PDK1, TPI1, PHKB, INS-IGF2, UGDH, FUT2, SLC35A2, PMM1

GO:0007517~muscle organ development 8 1.79 0.01 SRPK3, GATA6, TIPARP, PDGFRB, TGFBR3, HBEGF, ZFPM2, CBY1

GO:0032844~regulation of homeostatic
process

5 1.38 0.05 PLA2G4A, CD44, BCL2, RYR2, CA2

GO:0060284~regulation of cell
development

10 1.33 <
0.001

HDAC5, NRP1, PSEN1, CCND2, INS-IGF2, BCL2, HOXD3, RTN4R, TGFBR3, NTN1

GO:0048705~skeletal system
morphogenesis

7 1.31 0.004 TULP3, PSEN1, HOXD3, TIPARP, PDGFRB, ROR2, MGP

GO:0006468~protein amino acid
phosphorylation

15 1.30 0.03 SRPK3, PDK1, AMHR2, TWF1, TRIO, ADRBK1, CDKL2, PSEN1, BCL2, SPTBN1, ROR2,
PDGFRB, TGFBR3, MERTK, MAP 2 K5

GO:0010035~response to inorganic
substance

9 1.24 0.003 ACTB, PLA2G4A, SLC1A3, BCL2, UROS, RYR2, MGP, ADRBK1, CA2

GO:0006954~inflammatory response 8 1.20 0.08 HDAC5, CD44, INS-IGF2, FCN2, TICAM2, PSEN1, NLRP3, NFX1

GO:0031667~response to nutrient levels 8 1.10 0.08 PLA2G4A, PSEN1, CD44, BCL2, RYR2, MGP

GO:0006650~glycerophospholipid
metabolic process

5 1.08 0.08 PLA2G4A, ABHD5, ADNP, LPCAT2, PIK3R1

GO:0016053~organic acid biosynthetic
process

6 1.08 0.04 TPI1, SLC1A3, SCD, ABHD5, UROS, UGDH

FCR (clustered pathways among 267 VIP)

GO:0007010~cytoskeleton organization 13 2.4 0.001 RND3, ACTC1, EZR, MACF1, CALD1, BCL2, SSH2, KRT8, ABI2, CNN1, TTN, PRKG1,
EPB49

GO:0007155~cell adhesion 20 1.85 0.011 TECTA, NRP1, OLR1, GMDS, LGALS4, CNKSR3, NLGN3, CLDN10, CLDN11, CD84,
RND3, LAMA4,
EZR, ROBO1, COL27A1, BCL2, ACAN, MSN, PDZD2, EDA

GO:0060284~regulation of cell
development

8 1.78 0.038 NRP1, LYN, ROBO1, INS-IGF2, BCL2, HOXD3, SMAD3, IGF2, NTN1

GO:0006006~glucose metabolic process 7 1.66 0.03 TPI1, PYGM, PHKB, PYGL, INS-IGF2, SDS, UGDH, IGF2

GO:0060537~muscle tissue development 8 1.66 0.003 MYF6, ACTC1, GATA6, TIPARP, TTN, CHRNA1, HOMER1, PTEN

GO:0005977~glycogen metabolic process 3 1.61 0.099 PYGM, PHKB, PYGL

GO:0000902~cell morphogenesis 10 1.50 0.095 EZR, NRP1, SEMA6C, MACF1, ROBO1, BCL2, LIFR, SOX6, NTN1, MYCBP2

GO:0001568~blood vessel development 9 1.42 0.034 CCM2, LAMA4, NRP1, ROBO1, TIPARP, TGFA, DBH, FIGF, PTEN

GO:0045321~leukocyte activation 8 1.35 0.077 LYN, INS-IGF2, FYN, BCL2, SMAD3, MALT1, IGF2, HSPD1, ZNF3

GO:0001501~skeletal system development 10 1.29 0.055 GNAQ, INS-IGF2, GFPT1, BCL2, HOXD3, TIPARP, ACAN, SMAD3, GNAS, IGF2,
SOX6

GO:0016052~carbohydrate catabolic
process

6 1.27 0.025 GPD1L, OVGP1, TPI1, PYGM, PYGL, FUT1

GO:0030163~protein catabolic process 15 1.19 0.093 FEM1C, SOCS3, WWP1, USP9X, SOCS6, HECTD2, MALT1, ASB13,
SMURF1, UBE2J2, SPOPL, UBE2Q1, USP32, MYCBP2, RNF111

FCR (clustered pathways among 218 VIP)

GO:0051270~regulation of cell motion 15 1.95 0.001 RET, MSH2, MDGA1, ARID5B, NR4A2, KDR, DSTN, IGSF8, MACF1, FYN, BAX, PAK4,
FOXE1, THBS1, ACVR1

GO:0034613~cellular protein localization 13 1.58 0.004 COPA, CLTA, YWHAZ, LTBP2, AP1G1, AKAP12, PTPRU, SYNGR1, MACF1, RPL23,
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Table 3 Main overrepresented biological processes shared by genes selected as predictors of feed efficiency traits (Continued)

GO terms Nb
genes

E P
Value

Clustered genes

BAX, CHM, RAB11A

GO:0006163~purine nucleotide metabolic
process

7 1.54 0.02 ATP1B1, ENPP1, MSH2, ATP1B4, RAB11A, ACLY, MYH7

GO:0001568~blood vessel development 9 1.49 0.009 EPAS1, BAX, CHM, ZFPM2, TNNI3, THBS1, MMP2, KDR, ACVR1

GO:0006732~coenzyme metabolic process 6 1.25 0.04 DLD, ACLY, ALDH1L2, GCLM, MTHFD1L, MOCS1

GO:0042592~homeostatic process 17 1.22 0.02 ENPP1, EPAS1, PTH1R, PRDX3, TNNI3, GCLM, MBP, KDR, RPS19, SLC4A11, RHCG,
IL20RB, BAX, DLD, FABP4, IKBKB, CLN6

GO:0003006~reproductive developmental
process

8 1.10 0.04 HSPA2, MSH2, BAX, DLD, SF1, DHCR24, KDR, ACVR1

GO:0048514~blood vessel morphogenesis 7 1.08 0.04 EPAS1, BAX, ZFPM2, TNNI3, THBS1, KDR, ACVR1

GO:0043066~negative regulation of
apoptosis

11 1.04 0.01 YWHAZ, MSH2, BAX, BTC, NR4A2, PRDX3, IKBKB, THBS1, GCLM, DHCR24, ACVR1

Very important genes (VIP) for prediction of feed efficiency traits (RFI: residual feed intake; FCR: feed conversion ratio; FCRe: net energy based-feed conversion
ratio). Genes were clustered into functional groups using DAVID tool. The enrichment score (E > 1) for each cluster and P-value of the enrichment for the
corresponding Gene Ontology (GO) terms are provided. Expression levels of genes indicated in bold font were further measured by qPCR

Fig. 3 Venn diagrams to identify commonalities between lists of VIP for feed efficiency trait. Predictive models were built from microarrays
transcriptomics dataset to identify the most important annotated expressing probes in the longissimus muscle able to predict breeding values of
RFI, and feed-conversion-ratio (FCR) and net energy-based feed conversion ratio (FCRe) values. The lists of these probes identified as VIP (very
important variables in prediction) were then uploaded by their corresponding gene name in the VENNY tool. Venn diagram was edited to
enlighten commonalities between the lists of unique genes identified as VIP for the three traits
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protein family which plays a role in immune regulation
and basic cellular processes involving protein folding
and trafficking. In juvenile pigs, FKBP5 was proposed
as a candidate gene for a better understanding of the
stress response, notably due to its connexion with the
glucocorticoid receptor [27]. Interestingly, it is known
that FE is associated with the susceptibility to stress
in cattle [28], and that RFI and cortisol response are
also positively associated in rams [29]. Among the
expressed genes identified as VIP which were further
studied by qPCR, IL4R (interleukin 4 receptor), SER-
INC3 (serine incorporator 3) and SOCS6 (suppressor
of cytokine signalling 6) also participated to immune
and defense response. Difference in the activity of
adaptive immunity has been previously underlined in
pigs that were genetically [4] or phenotypically [9]

different in FE. Another important gene predictor
identified in this study was EZR (ezrin), which en-
codes a protein playing roles in cytoskeleton
organization, cell adhesion, and morphogenesis. This
gene was identified as a hub in a network of co-
expressed genes involved in fat metabolism and highly
related to RFI in cows [13]. In our study, different
genes involved in the regulation of apoptosis/cell
death were also proposed as important predictors of
FE traits. In this category, CSRNP3 (cysteine and
serine rich nuclear protein 3) codes for a transcrip-
tional factor that was identified as lower expressed in
muscle of low RFI pigs compared with high RFI pigs
[8]. Importantly, IGF2, a member of the insulin-like
growth factor family implicated in the regulation of cell
development and muscle growth, was ranked among the

Table 4 Lists of muscle genes identified as common predictors for feed efficiency traits

Traits Common VIP

RFI/FCR ANKRD1; ANKRD42; ARF3; BCL2; BLCAP; BNC2; C15orf40; CNN1; CREBRF; CSRNP3; DMTF1; EPHX1; EZR; FAM43B; FKBP5; FRAS1;
GATA6; GPR153; HOXD3; IL4R; INS-IGF2; LAMA4; MACF1; MBTPS1; MX2; NRP1; NTN1; PDZD2; PFDN4; PHKB; POR; PSTK; QRSL1;
RASL11B; RBP1; RPGR; SAMD4A; SDR39U1; SEPN1; SERINC3; SLC41A1; SOCS6; SYNE2; TICAM2; TIPARP; TPI1; TRIM38; UGDH; UROS;
ZNF280D; ZNF443; ZNF644

RFI/FCRe AKAP12; ANKRD1; DMTF1; EZR; FCN2; FKBP5; MACF1; NCOA6; NGB; OAZ3; SLC35A2; TNFRSF21; ZFAND3; ZFPM2; ZNF644

FCR/FCRe ANKRD1; ATP1B1; BVES; C4orf21; CCDC91; DMTF1; EZR; FKBP5; FOXN3; FYN; GMDS; GZMK; HIST1H2BD; HSPA2; KCNJ2; LOC100505669;
MACF1; MEF2A; MTHFD1L; RAB28; RPL6; SEMA4A; SERPINA1; WWP1; ZNF644

RFI/FCR/
FCRe

ANKRD1; DMTF1; EZR; FKBP5; MACF1; ZNF644

Very important expressed muscle genes (VIP) identified as important for prediction of residual feed intake (n = 384 VIP), feed conversion ratio (FCR, n = 421 VIP) or
net energy based-feed conversion ratio (FCRe, n = 318 VIP) were indicated. Genes indicated in bold font were further considered for qPCR analysis

Fig. 4 Regression between observed and predicted FCR values. The predictive model was built from microarrays transcriptomics dataset by
TreeNet boosting procedure to identify the most important annotated expressing probes in the longissimus muscle able to predict feed-
conversion-ratio (FCR) from n = 71 pigs of two divergent selection lines for residual feed intake (RFI). The graph was then computed between
observed and predicted FCR values. The red line represents pigs of the high RFI group, the black line represents pigs of the low RFI group. Bad
prediction concerned seven pigs (encircled) of the high RFI line
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top predictors of RFI-BV by GTB and linear regression
models. The research on IGF2 gene polymorphism had re-
vealed SNP with potential effects on growth rate and
muscle mass in pigs [30, 31] and on FCR in beef cattle
[32]. Moreover, RNA-seq analyses revealed an up-regu-
lated expression of IGF2 in low RFI compared with high
RFI pigs [10]. However, in this study, there was no signifi-
cant difference in IGF2 expression level between low and
high RFI pigs. Finally, FE predictors belonging to MAP
kinase family, protein kinase and interleukins were found
in muscle (this study) as in liver or duodenum [16].
Altogether, this study confirms that feed efficiency is

underlined by variations in transcripts of different genes
participating in many functional pathways. Because feed

intake, BW gain, and body adiposity must be recorded
for each animal to calculate feed efficiency during a test
period, which is time-consuming, expensive and even
difficult for group-reared animals, this study can be
viewed as a proof of concepts that a small subset of
expressed genes can be identified as a proxy for this
complex trait. The loin muscle is largely affected by RFI
selection [4]. It can be sampled at any stages of growth
using biopsies, and more readily at market age during
the slaughtering procedure, which can still have direct
values to approximate the trait of interest. Therefore, it
could be assumed that expressed muscle genes could
serve to increase the accuracy of prediction of feed effi-
ciency in next selection programs and (or) to indicate
valuable biological pathways to update knowledge. Re-
cent studies have rather proceeded using liver or digest-
ive tract to identify genes associated with feed efficiency
in growing pigs [16]. Finally, the GTB algorithm used for
the prediction of feed efficiency traits is considered to be
robust to partially inaccurate data and resistant to out-
liers in both predictors and target traits. In support, it
gave a good fit of predicted to observed values even if
the specific nature of the relationships between the pre-
dictor variables and the dependent variable is very com-
plex. Mixing datasets encompassing different rearing
conditions would have also maximized the chances for
genericity of the candidates. However, the next steps will
be to test the ability of the identified muscle genes to

Table 5 Average expression levels of target genes studied by
qPCR

RFI line

Gene symbol VIP for Low High P value

ACACB FCR 0.92 + 0.09 0.68 + 0.08 0.05

AKAP12 RFI, FCRe 0.74 + 0.04 0.93 + 0.03 0.008

ATP1B1 FCR, FCRe 0.78 + 0.04 1.00 + 0.03 < 0.001

BLCAP RFI, FCR 0.80 + 0.04 1.04 + 0.04 < 0.001

CD40 RFI 1.06 + 0.21 1.64 + 0.16 0.03

CSRNP3 RFI, FCR 1.33 + 0.20 2.49 + 0.17 < 0.001

EZR RFI, FCR, FCRe 0.61 + 0.07 0.99 + 0.06 < 0.001

FKBP5 RFI, FCR, FCRe 0.74 + 0.14 1.48 + 0.12 < 0.001

FRAS1 RFI, FCR 1.06 + 0.10 1.17 + 0.09 0.40

FYN FCRe, FCR 1.00 + 0.09 1.27 + 0.08 0.02

HSD11B1 FCR 1.29 + 0.29 2.81 + 0.25 < 0.001

IGF2 RFI, FCR 0.99 + 0.07 0.89 + 0.06 0.93

IL4R RFI, FCR 0.94 + 0.08 1.22 + 0.06 0.009

MUM1 RFI 0.97 + 0.05 1.22 + 0.04 0.001

PDZD2 RFI, FCR 0.61 + 0.07 0.73 + 0.06 0.24

PHKB RFI, FCR 0.74 + 0.04 0.87 + 0.03 0.02

PSEN1 RFI 0.79 + 0.05 0.96 + 0.04 0.02

RPL6 FCR, FCRe 0.90 + 0.03 0.91 + 0.03 0.90

SERINC3 RFI, FCR 0.61 + 0.05 0.87 + 0.04 < 0.001

SERPINA1 FCR, FCRe 1.32 + 0.14 0.89 + 0.14 0.03

SOCS6 RFI, FCR 0.48 + 0.06 0.58 + 0.05 0.17

TFG FCR 1.04 + 0.04 1.18 + 0.04 0.02

TMED3 FCR 0.79 + 0.07 0.76 + 0.06 0.76

UGDH RFI, FCR 0.87 + 0.08 1.14 + 0.07 0.01

Abbreviations used: FCR Feed conversion ratio, FCRe Net energy feed conversion
ratio, RFI Residual feed intake, VIP Very important variable in prediction. Muscle
transcriptomes from pigs (n = 71) of two lines divergently selected for RFI and
reared under different conditions were considered. The qPCR technology was
used to assess expression levels of target genes that were identified by a
gradient tree boosting procedure as very important for prediction (VIP) of RFI,
FCR or FCRe individual values. ANOVA was then used to evaluate the differences
in expression levels of those genes between the two RFI lines
bold face highlights significant differences (P < 0.05) between lines

Table 6 Top contributing genes to the linear prediction of feed
efficiency

RFI FCR FCRe

24 VIP1 R2 = 0.73 R2 = 0.76 R2 = 0.75

Subset2

Gene P value Gene P value Gene P value

FKBP5 < 0.001 FKBP5 < 0.001 FKBP5 < 0.001

SERINC3 0.02 MUM1 0.03 MUM1 0.04

IGF2 0.03 AKAP12 0.03 AKAP12 0.03

CSRNP3 0.03 FYN 0.03 PHKB 0.08

EZR 0.09 TMED3 0.08 SOCS6 0.07

RPL16 0.08 PHKB 0.08 FYN 0.08

TFG 0.02 TFG 0.02

SOCS6 0.07 TMED3 0.09

ILR4 0.10 ILR4 0.10

FRAS1 0.12 FRAS1 0.12

R2 = 0.58 R2 = 0.73 R2 = 0.71
1A total of 24 target genes was used in a linear model for prediction of
residual feed intake (RFI), feed-conversion ratio (FCR) and energy-based feed
conversion ratio (FCRe)
2Stepwise selection was also used to retain the most significant variables in
regression models for feed efficiency traits. Associated P-value for the entry of
each variable (mRNA level of the gene) in the best model was indicated. All
variables with P < 0.15 were considered
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predict FCR in populations of pigs with different genetic
structures.

Conclusions
This study demonstrates the feasibility of finding few
molecular predictors of complex traits such as feed effi-
ciency from microarray datasets. Good accuracy of pre-
diction models was obtained for RFI, FCR, and FCRe to
a lesser extent, by using the expression levels of 6 to 267
expressed genes in longissimus muscle of pigs under dif-
ferent diets, feeding regimen and years. Other studies
are required to validate these candidate genes in differ-
ent studies and confirm the generality of the obtained
predictions as planed via the combination of experimen-
tal designs. Our study can be viewed as a proof of con-
cepts that small subset of expressed genes can be
identified as a proxy of complex traits such as feed effi-
ciency. Further studies must be conducted to apply the
same procedures to peripheral blood as a relevant and
easy sampling source of biological information.

Methods
Microarray data sets
Microarray data were available through GEO subseries
accession numbers (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc = GSE47769 for n = 23 pigs and
GSE84092 for n = 48 pigs) repositories. Experiments
used the Agilent-026440 Sus scrofa 44 K Oligo Micro-
array v2 and Agilent-037880/INRA Sus scrofa 60 K Oligo
Microarray v1 (Agilent Technologies, Massy, France), re-
spectively. The 037880/INRA microarray contained 60,
306 porcine probes, and derived at 71% from the porcine
commercial Agilent-026440 microarray (43,803 probes)
with the remaining 29% corresponding to a set of probes
enriched with immune system, muscle and adipose tis-
sue genes. An updated (April 2016) annotation of the
microarrays was used to check the correspondence be-
tween probe sequences and corresponding genes. On
the 037880/INRA microarray (60 k), 63% of the probes
are annotated, whereas on the Agilent-026440 micro-
array (44 k), 50% of the probes are annotated. The data
were obtained from longissimus muscle from two pure-
bred Large White pig lines divergently selected for RFI
during 6 to 8 generations over three different trials.
Across experiments, muscles were collected from bar-
rows (n = 48) and females (n = 23) with body weight
(BW) ranging from 80 to 115 kg. Pigs had free access to
pelleted diets of standard composition (n = 39) or rich in
dietary fibers and lipids (n = 24), and a subset of high
RFI pigs (n = 8) were feed-restricted (− 10% of ad libitum
intake) during the growing-finishing period.
In the merged dataset, pigs were classified into low or

high RFI groups, respectively, according to their genetic
lines (n = 40 for the high RFI line and n = 31 for the low

RFI line). Selection principles have been described by
Gilbert and colleagues [3]. Breeding values for RFI
(RFI-BV) were newly estimated for these pigs by run-
ning a genetic evaluation of the trait combining data
obtained on the full pedigree, based on their relative
performance recorded in the selection farm (INRA
GenESi, Rouillé, France). The RFI-BV were −
64.2 + 18.5 g/d on average in low RFI pigs and +
54.2 + 16.3 g/d in high RFI pigs. Feed conversion ra-
tio (FCR) was calculated from individually measured
daily feed intake (FI) and average daily gain (ADG)
during the test periods as explained in the referenced
publications [21, 22]. Net energy-based feed conver-
sion ratio (FCRe) was obtained by considering net en-
ergy composition of the different diets together with
daily FI and ADG of each pig.

Descriptive statistics and gradient tree boosting
procedure
Processing of molecular data
In the original publications, raw spot intensities ob-
tained after hybridization reactions have been submit-
ted to quality filtration (intensity, uniformity,
saturation, and outlier detection) and intensities of fil-
tered spots have been log2 transformed. Microarrays
datasets from the different experiments were merged
in a single new dataset by using the probes ID as ref-
erences. This merged dataset included 20,405 anno-
tated muscle probes expressed in the 71 pigs. In the
merged dataset, the molecular data were normalized
by mean centering, i.e. subtracting the mean value
across all probes from all raw values for each pig
sample, to obtain consolidated expression values
across originally separated datasets. Master matrix of
71 pigs considered in the study with values of three
feed efficiency traits, the metadata and the microarray
expression profiles was provided in Additional file 6.

Principal component analysis (PCA)
The variables were represented on a same frame to
describe the heterogeneity and consistency of the
data, and to define the nature and importance of the
links between the variables. Principal component ana-
lysis (PCA) was performed as an unsupervised
method that summarizes the large number of
expressed probes into a set of uncorrelated principal
components (PC) by means of their covariance struc-
ture. No outliers were identified. Pigs’ coordinates for
each PC were used to identify which PC separated
pigs according to RFI groups. Pearson correlation co-
efficients were also calculated between FCR, FCRe
and PC.
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Gradient tree boosting
The Gradient Tree Boosting (GTB) procedure was used
to identify very important variables in prediction (VIP)
for traits of interest (RFI, FCR and FCRe). The GTB is
an advanced machine-learning algorithm for regression
analysis that offers a more powerful data mining tool to
generate accurate models when compared with single
models or by ensembles such as bagging or conventional
boosting [33–35]. The algorithm typically generates
thousands of small decision trees built in a sequential
error–correcting process to converge to an accurate
model [33]. The model is similar to Fourier or Taylor
series, which is a sum of factors that becomes progres-
sively more accurate as the expansion continues. In
other terms, the GTB machine builds a sequential series
of decision trees, where each tree corrects the residuals
in the predictions made by the previous trees; after each
step of boosting, the algorithm scales the newly added
weights, which balances the influence of each tree.
Therefore, at each stage of gradient boosting, it was as-
sumed that there was some imperfect model so that the
gradient boosting algorithm was improving it by con-
structing a new model that added an estimator to pro-
vide a better model. Moreover, the accuracy of the
algorithm was typically improved by introducing
randomization through training the base learner on dif-
ferent randomly selected datasets at each iteration. As
opposed to neural networks, this methodology is not
sensitive to data errors and needs no time-consuming
data preparation, pre-processing or imputation of miss-
ing values. In the present study, GTB prediction models
were generated with the Salford Predictive Modeler 8.0
(SPM 8.0®) software. In the current study, about 1114 to
1500 trees were created for each FE trait, with each tree
typically containing about six terminal nodes as recom-
mended for boosting [35]. Each tree was built on a ran-
domly selected bootstrap sample, by using 70% of the
original dataset for learning (n = 50 pigs) and a randomly
selected subset of variables. Consequently, each boot-
strap sample called “out-of-bag” data (OOB) excluded
30% of the data that were used for testing in the valid-
ation step (n = 21 pigs). The random partition of the
muscle samples between learning and validation sets in
relation to the datasets of origin was carefully checked.
Significant variables were selected using the Gini index
to evaluate discriminative ability defined as:

Gi ¼ 1‐
X

j p j jjtð Þ

Where pj ( | ) is the estimated class probability
for feature or node in a decision tree and is an
output data. Only the variables that improved Gini index
and minimized the OOB error rate were retained as VIP.

The root mean square error (RMSE) was then calculated
as the square root of the difference between the realized
and the predicted observation within the OOB data after
permuting each predictor variable in the training dataset
divided by the number of trees. The adjusted coefficient
of determination (R2) was also computed.
For FCR, predicted (X) and observed (Y) values were

further compared (X - Y), using the GLM procedure.
The model was considered unbiased when the intercept
was not different from 0 and the slope was not signifi-
cantly different from 1. The quality of the relationships
was evaluated on the basis of RMSE of prediction
(RMSEP), obtained by a leave-one-out cross-validation
from the value of the predicted residual sum of squares
(PRESS) statistics [36]. Model evaluation was performed
for all pigs, and RFI line by RFI line.

Functional pathways represented across the VIP
The gene ontology terms for biological processes
(GOBP) were automatically searched within each list of
VIP which were uploaded by their official gene symbol.
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) bioinformatics resource data-
base (v6.7; http://david.abcc.ncifcrf.gov) was used, with
Homo sapiens as background for mapping and enrich-
ment analysis. The results were downloaded using the
“Functional annotation clustering” option of the DAVID
tool, and medium clustering stringency was selected to
generate the functional groups across the genes based
on a priori knowledge [37]. For each term, the enrich-
ment (E) score (measured by the geometric mean of the
EASE score of all enriched annotations terms for each
cluster) and the modified Fisher exact P-value were ob-
tained. Altogether, E > 1.0 and P < 0.05 were considered
to list the significantly top-enriched clusters of genes.

Commonalities across VIP between feed efficiency traits
To deduce the commonalities across the VIP retained
for the different FE traits (RFI, FCR and FCRe), the free
online VENNY tool [http://bioinfogp.cnb.csic.es/tools/
venny/index.html] was used to handle each VIP by its
corresponding gene name, and then, to edit VENN
diagrams.

Quantitative real-time PCR (qPCR)
Expression levels of 24 target genes identified as com-
mon VIP for at least two FE traits and (or) participating
to pathways judged as biologically-relevant for one FE
trait, were further determined in the same longissimus
muscle samples (n = 71) where microarrays data have
been generated. The SmartChip Real-Time PCR system
(Wafergen) available at the Human and Environmental
Genomics (GEH) technological core facilities (Rennes,
France), was used. Total RNA was extracted as described
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previously [4, 8]. First-strand cDNA synthesis was per-
formed with 1 μg of total RNA used for microarray ana-
lysis, by using High Capacity RNA to cDNA Kit
(Applied Biosystems, Foster City, USA). Primers (Add-
itional file 7) were designed from porcine sequences
available in Ensembl or NCBI databases using Primer
Express® v3.0 software (Applied Biosystems). Detailed in-
formation on the primer sequences (forward and re-
verse) is provided in Additional file 4. Amplification
reactions were carried out using LightCycler 480 SYBR
Green 1 Master (Roche Diagnostics, Meylan, France)
with a final cDNA concentration of 1 ng/μL and a pri-
mer concentration of 500 nM dispensed using the
WaferGene SmartChip Multisample Nanodispenser.
Amplification conditions were as follows: 5 min at 95 °C
followed by 50 cycles of 30 s at 95 °C, 30 s at 60 °C and
30 s at 72 °C, followed by 15 s at 95 °C and 1min at
60 °C. Specificity of the amplification products was
checked by dissociation curve analysis. As stated by the
GeNorm algorithm (https://genorm.cmgg.be/), RPL4
and TBP1 were identified as the most stable housekeep-
ing genes among other tested reference genes, and were
used to calculate the normalization factor (NF). For each
gene, the normalized expression level N was calculated
according to the formula: N = E-ΔCq (sample-calibra-
tor)/NF where E was calculated from the slope of cali-
bration curve, Cq was the quantification cycle, and the
calibrator was a newly generated biological sample con-
stituted by the pool of the 71 samples. For all studied
genes, E was between 1.82 and 2.10.

Linear regression models
Differences in expression values of the 24 genes between
low and high RFI groups were first evaluated using vari-
ance analysis (GLM procedure) for the effect of RFI line
on the SAS software (SAS, Cary NC). Then, regression
models on mRNA levels of these 24 genes were applied to
determine the prediction accuracy for RFI, FCR and FCRe,
respectively, considering RSQUARE selection (i.e., the in-
dependent variables that best predict the dependent vari-
able by linear regression) or stepwise option (i.e., the
variables are added one by one to the model). As recom-
mended, P < 0.15 was used as threshold to retain signifi-
cant variables in the stepwise regression model.
Additional regression analyses were also performed using
final BW as an explicative factor of FCR in supplement to
expression levels of the target genes.

Additional files

Additional file 1 Plot of the first two principal components unraveling
whole variability in the merged molecular dataset (DOCX 58 kb)

Additional file 2 Top-ranked genes contributing to RFI prediction (XLSX
36 kb)

Additional file 3 Top-ranked genes contributing to FCR prediction
(XLSX 38 kb)

Additional file 4 Top-ranked genes contributing to FCRe prediction
(XLSX 33 kb)

Additional file 5 Regression slopes between observed and predicted
values of feed conversion ratio (FCR) for pigs categorized according to
their genetic lines and dataset of origin. (PDF 287 kb)
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