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Abstract: The aim of this article is to present a model-
driven approach proposed by the SPQCIFY project for
spacecraft on-board software development. This ap-
proach is based on a formal globally asynchronous lo-
cally synchronous language called Synoptic, and on a set
of transformations allowing code generation and model
verification.

1 Introduction

SPACIFY is a research project aiming at developing a
design environment for spacecraft flight software. The
project promotes a top-down method based upon multi-
clock synchronous modeling, formally-verified transfor-
mations, exhaustive verification through model-checking
and a middleware featuring real-time distribution and
dynamic-reconfiguration services. The various tools de-
veloped are released under FLOSS (free/libre/open-source
software) licenses, favouring cost-sharing and sustainabil-
ity. The project is led by the French Space Agency and
gathers prime contractors Astrium Satellites and Thales
Alenia Space, ISV’s GeenSys (formerly TNI Software)
and Anyware Technologies, and academic teams Cama
from TELECOM Bretagne, Espresso from Irisa, MV from

LaBRI and Acadie from IRIT. It is a 3-years project (start-
ing in February 2007) partly funded by the French Re-
search Agency (ref. ANR 06 TLOG 27).

1.1 Context: space systems
Space systems [I1] generally differs from other ground
systems by their environmental constraints:

e Most of the time, the communication with a space-
craft is only intermittent, depending on visibility
phases. There are two important consequences: the
first one is the small amount of data communicable
with the ground segment; while the second one lies
in the inability for the ground to react quickly to an
on-board anomaly.

e Once a spacecraft has been launched, there is ob-
viously no way to operate and observe it except
through TC (telecommands) and TM (telemetries).
This implies that flight software should have been de-
signed in a suitable way, such that it remains possible
to operate the spacecraft in ways unpreviewed at the
time of specification.

e Another aspect is that hardware is often limited com-
pared to standard computers, both for what regards
memory size and computational power.



e Validation is also generally a harder task than for
other ground systems, mostly because some parts of
the system simply cannot be tested “for real” before
launching.

e Finally, the whole lifecycle of flight software may
last from 10 to 20 years. Platform and software
designers usually do not keep following the same
project for so many years, which may cause a loss
of knowledge about the way the product works. This
problem becomes strong when update operation are
required on a space system specification and design,
even when in flight.

1.2 Spacecraft on-board software

Spacecraft on-board software, and more precisely satel-
lite software, can be either central or remote, which
means that various pieces of software can run on the cen-
tral processing unit or on remote terminal units (e.g., a
star-tracking software, a processing unit dedicated to the
AOCS, etc.). Modeling techniques for spacecraft on-
board software should then take into account such a dis-
tributed nature.

The main functions implemented by on-board platform
are derived from functional chains (power management,
thermal management, AOCS (Attitude and Orbit Con-
trol System) management, etc.) and are supported by
real-time executives (such as RTEMS ) providing basic
services (task management, scheduling, synchronization
and communication facilities, memory management, etc.).
Modern central flight software usually comprises around
10 to 20 tasks, a few of them being periodic, the others
being sporadic or completely aperiodic. These tasks are
generally managed through fixed-priority static schedul-
ing (rate-monotonic style).

1.3 The adressed problem and the SPACIFY contri-
bution
The hardest part in developing on-board software, both
platform and payload parts, lies in the ability, or not, to
verify and to validate it. It already happened to find very
well-designed software that was almost unverifiable stati-
cally (this being due for instance to a large use of function
pointers). Obviously, the most difficult tasks concern dy-
namic and performance matters. Finally, FDIR (Failure
Detection, Isolation, and Recovery) is also problematic,
as validating it means being able to guess possible failures
and to simulate them (which is sometimes impossible for
some space equipment). Moreover, some FDIR strategies
are so complex that they are almost impossible to validate
(for this reason, there has been a movement towards using

simple FDIR strategies, possibly needing ground interven-
tion, rather than smart but hard to understand strategies).
The use of formal methods (FM), i.e., fundamental no-
tations and techniques for modeling, analysis, validation
of systems in a provably sound way, coupled with model-
driven engineering (MDE) approach all along the concep-
tion could be an efficient help for designer to ensure some
quality in the development.

The SPACIFY project aims at bringing advances in FM
and MDE to the spacecraft on-board software indus-
try. It focuses on software development and maintenance
phases of spacecraft life-cycles. The project advocates
a top-down approach built on a domain-specific model-
ing language named Synoptic. In line with previous ap-
proaches to real-time modeling such as Statecharts and
Simulink, Synoptic features hierarchical decomposition in
synchronous block diagrams and state machines. Thanks
to the formal semantics of Synoptic, formal transforma-
tion from Synoptic to two other formal languages have
been developed. The first transformation, from Synoptic
to AltaRica enables formal verification on Synoptic mod-
els. The second one from Synoptic to Signal enable ef-
ficient embedded code generation. All these models and
transformations form the SPACIFY development process
presented in the following sections.

2 The SPaCIFY approach

2.1 Overview

The SPACIFY development process is depicted figure
The main ambition of this process is to enable developers
to focus on design rather than on implementation, and to
work with design models promoting a high level of ab-
straction. In this context, the main manual part of the de-
sign process is the edition and the definition of a “func-
tional” Synoptic model. Other models are obtained using
a bunch of (almost) automated transformations (each ar-
row figures a chain of various transformations).

The SPACIFY development process is strongly based on
the Synoptic language. Synoptic allows to describe an on-
board software at different layers and from different view-
points:

1. At the highest level, only functional aspects are
described by using syntactic constructions such as
dataflow diagrams, automata (including mode au-
tomata). Functional components may be imported
from other formalisms such as Simulink/Stateflow.
At this level, and from a semantic point of view, the
systems is considered as a GALS (Globally Asyn-
chronous Locally Synchronous) systems composed
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Figure 1. SPOCIFY development process

of a set of communicating synchronous islets. Com-
munication between islets are supported by external
variables seens as middleware ports. This Synop-
tic funcitonal model may be refined by successive
transformations (automata ellicitation, function split-
ting, etc.). Notice that “functional” does not mean
untimed. Temporal information such as rate, fre-
quency, latency, etc. are taken into account in or-
der to allow a complete and formal specification of
the expected behavior of the system. Formal veri-
fication can be achieved at this level by transform-
ing a Synoptic model into an AltaRica one and by
model checking techniques. Such a formal verifica-
tion method allows to check on the Synoptic specifi-
cation functional properties such as recovery failure
requirements.

Plateform information such as hardware and soft-
ware architectures (in terms of threads, resources,
and mapping from the firsts to the seconds) are taken
into account at a lower level. The dynamic software
architecture and the hardware architecture (speci-
fied in an external formalism, for instance, AADL)
are then introduced. Synoptic functional compo-
nents are split or grouped into threads components
and mapped onto resources according to architectural
choices defined by the designer.

Finally, two transformation are applied at the low
level model: code generation, and middleware con-
figuration generation. These transformation are sup-

ported by an intermediate transformation from Syn-
optic to the synchronous Signal language, enabling
the use at the Synoptic level of the Polychrony suite
tools.

2.2 The Synoptic modeling language

Synoptic is a Domain Specific Modeling Language
(DSML) which aims to support all aspects of embed-
ded flight-software design. As such, Synoptic consists of
heterogeneous modeling and programming principles de-
fined in collaboration with the industrial partners and end
users of the SPACIFY project. The aim of this section is
only to give a brief overview of this language. See [13]
for a detailled presentation oo Synoptic.

Used as the central modeling language of the SPQCIFY
model driven engineering process, Synoptic allows to de-
scribe different layers of abstraction: at the highest level,
the software architecture models the functional decompo-
sition of the flight software. This is mapped to a dynamic
architecture which defines the thread structure of the soft-
ware. It consists of a set of threads, where each thread is
characterized by properties such as its frequency, priority
and activation pattern (periodic, sporadic). At the lowest
level, the hardware architecture permits to define devices
(processors, sensors, actuators, busses) and their proper-
ties.

Synoptic permits to describe three types of mappings be-
tween these layers:

e mappings which define a correspondence between
the software and the dynamic architecture, by speci-
fying which blocks are executed by which threads;

e mappings which describe the correspondences be-
tween the dynamic and hardware architecture, by
specifying which threads are executed by which pro-
CEssor,

e and mappings which describe a correspondence be-
tween the software and hardware architecture, by
specifying which data is transported by which bus
for instance.

Figure [2] depicts the principles discussed above. Our aim
is to synthesize as much of these mappings as possible,
for example by appealing to internal or external sched-
ulers. However, to allow for human intervention, it is pos-
sible to give a fine-grained mapping, thus overriding or
bypassing machine-generated schedules. Anyway, con-
sistency of the resulting dynamic architecture is verified
by the SPACIFY tool suite, based on the properties of the
software and dynamic model.
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Figure 2. Global view : layers and architec-
ture mappings

At each step of the development process, it is also useful to
model different abstraction levels of the system under de-
sign inside a same layer (functional, dynamic or hardware
architecture). Synoptic offers this capability by providing
an incremental design framework and refinement features.
To summarize, Synoptic deals with dataflow diagrams,
mode automata, blocks, components, dynamic and hard-
ware architecture, mapping and timing.

In this section we focus on the functional part of the Syn-
optic language which permits to model software architec-
ture. This sub-language is well adapted to model syn-
chronous islands and to specify interaction points between
these islands and the middleware platform using the con-
cept of external variables.

Synchronous islands and middleware form a Globally
Asynchronous and Locally Synchronous (GALS) system.
The development of the Synoptic software architecture
language has been tightly coordinated with the definition
of the GeneAuto language [24]. Synoptic uses essentially
two types of modules, called blocks in Synoptic, which
can be mutually nested: dataflow diagrams and mode au-
tomata. Nesting favors a hierarchical design and allows to
view the description at different levels of details.

By embedding blocks in the states of state machines, one
can elegantly model operational modes: each state repre-
sents a mode, and transitions correspond to mode changes.
In each mode, the system may be composed of other sub-
blocks or have different connection patterns among com-
ponents.

Apart from structural and behavioral aspects, the Synoptic
software architecture language allows to define temporal

properties of blocks. For instance, a block can be param-
eterized with a frequency and a worst case execution time
which are taken into account in the mapping onto the dy-
namic architecture.

The formal semantics of the Synoptic language relies on
the polychronous paradigm. This semantics was used for
the definition of the transformation of Synoptic models to-
wards the synchronous language SIGNAL and SME mod-
els [4] following a MDE approach. This transformation
allows to use the Polychrony platform for model transfor-
mation hints for the end user, such as splitting of software
as several synchronous islands and simulation code gen-
eration purposes. On the other hand, the formal semantics
definition allows for neat integration of verification envi-
ronments for ascertaining properties of the system under
development.

Synoptic is equipped with an assertion language that al-
lows to state desired properties of the model under devel-
opment. We are mainly interested in properties that permit
to express, for example, coherence of the modes (“if com-
ponent X is in mode ml, then component Y is in mode
m2” or “... can eventually move into mode m?2”). Specific
transformations extract these properties and pass them to
the verification tools.

2.3 Verification methodology

Verification of the Synoptic model takes place at an early
step in the software development process. It is mainly
intended to track conception inadequacies and logic er-
rors in the model. Thus, the model-checker is fed with
the Synoptic model and does not handle the lower levels
of the development process (source code generation and
middleware configuration).

In short, the Synoptic model and its specifications are first
translated into the AltaRica language [1,[21]] and then veri-
fied with Ar or Mec §7[[14]]. When an error is discovered
by the model-checker, a concrete run is extracted from the
symbolic trace and back-translated and mapped onto the
Synoptic model.

2.3.1 AltaRica Language and Tools

AltaRica is a high-level language designed for the mod-
elling of complex systems. The well-defined semantics of
AltaRica is based on the Arnold-Nivat model but applied
to Constraint Automata. Synchronisation of constraint au-
tomata is made up of’ (a) the standard Arnold-Nivat strong
synchronization of events; (b) boolean constraints on vari-
ables shared by automata; ans (c) a weakest synchroniza-

Thttp://altarica.labri.u-bordeaux.fr/tools:arc
Zhttp://altarica.labri.u-bordeaux.fr/tools:mec_5



tion mechanism of events that is similar to a broadcast
mechanism.

Several tools exist for the analysis or the compilation of
theAltaRica language. Below, are listed the ones devel-
oped mainly by the MF/MV theme of the LaBRI. There
also exist commercial tools [2} |18}, 19] but these tools work
with restricted variants of the AltaRica language.

e ARC s an AltaRica model checker based on both ex-
plicit and symbolic representation of transition sys-
tems. ARC computes the semantics with a syntactic
flattening of the AltaRica hierarchical model. ARC
can also be used as a gateway with other languages.
In particular, there exists translators linking the Al-
taRica and Lustre languages.

e Mec 5 is a model-checker based on the Binary De-
cision Diagram (BDD) technology [5] and uses Al-
taRica descriptions as input. Mec 5 computes the
semantics inductively based on the hierarchy of the
AltaRica model. It can be used to check p-calculus
formulas against AltaRica models but it can also be
used as a simple p-calculus calculator over finite do-
mains. The current version of Mec 5 does not support
the full syntax of the AltaRica.

Basically, the difference between the two tools can be
summed up as follow: The ARC model-checker is used
to deal with big models and simple properties, whereas
Mec 5 is a more academic tools intended to deal with
small models and complex properties.

2.3.2 Translation from Synoptic to AltaRica

The process of translating the Synoptic model into an Al-
taRica model is preserving: the hierarchy of the original
model, the operational semantics coded in the automata.
Many other features are supported but the float variables
and clocks.

The main problem raised while conceiving the automatic
translation was to deal with the asynchronous model when
AltaRica is synchronous. Anyway, this issue has been
solved by forcing the synchronicity of all the components
and exploring the different shifts that can occur.

It also worth noticing that the translation has been done in
a way that preserve back-translation of error trace onto the
original model. It is thus possible to syntactically relate
the error trace sent by the model-checker to the original
Synoptic model.

3 SPaCIFY middleware

In order to support the execution of code generated from
Synoptic model, a middleware has been defined. This
SPACIFY middleware addresses two main points: the
scarceness of resources in a spacecraft, and the large vari-
ety of spacecraft platforms from one project to another.
To take into account the scarceness of resources, the mid-
dleware is tailored to the domain and adapted to each
specific project. This notion of generative middleware
is inherited from the ASSER project which has stud-
ied proof-based engineering of real-time applications but
is here specialised to the area of satellite software. AS-
SERT defines a so-called virtual machine, which denotes
a RTOS kernel along with a middleware and provides a
language-neutral semantics of the Ravenscar profile [9].
It relies on PolyORB-HI [15]], a high integrity version of
PolyORB refining the broker design pattern [10], which
fosters the reuse of large chunks of code when implement-
ing multiple middleware personalities. Satisfying restric-
tions from the Ravenscar profile, PolyORB-HI can suit-
ably be used as a runtime support for applications built
with AADL code generators. In our context, the support
of a precise adaptation to the need of the middleware is ob-
tained thanks to its generation based on the requirements
expressed in the Synoptic models (mainly through the in-
teraction contracts attached to external variables).

3.1 Middleware architecture

Figure [3| depicts the overall architecture of the SPQCIFY
middleware. Following previous work on middlewares for
real-time embedded systems [3, 22]], the SPAQCIFY mid-
dleware has a microkernel-like or service-based architec-
ture. That way, high flexibility allows to embed only
the services that are required, depending on the satel-
lite. While previous work has focused on techniques to
reduce the time during which the reconfigured system is
suspended, along with an analysis to bound that time, our
work aims at: (a) using application model to specify re-
configuration, (b) proposing a contract approach to the
specification of relation between applications and the mid-
dleware, and (c) providing on demand generation of the
needed subset of the middleware for a given satellite.

The RTOS kernel offers the usual basic services such as
task management and synchronisation primitives. The
core middleware is built on top of this RTOS and provides
core services of composition and communication. They
are not intended to be used by application-level software.
They rather provide means to structure the middleware it-
self in smaller composable entities, the services. Upon

3http://www.assert-project.net/
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these abstractions are built general purpose services and
domain specific services. These services are to be used
(indirectly) by the application software (here the various
synchronous islets). They can be organized in two cate-
gories as follows:

e The first layer is composed of general purpose ser-
vices that may be found in usual middleware. Among
them, the naming service implements a namespace
that would be suitable for distributed systems. The
persistency service provides a persistent storage for
keeping data across system reboots. The redundancy
service helps increasing system reliability thanks to
transparent replication management. The reconfig-
uration service, further described in subsection [3.3}
adds flexibility to the system as it allows to mod-
ify the software at runtime. The task & event ser-
vice contributes real-time dispatching of processors
according to the underlying RTOS scheduler. It pro-
vides skeletons for various kinds of tasks, includ-
ing periodic, sporadic and aperiodic event-triggered
tasks, possibly implementing sporadic servers or
similar techniques [23} [16].

e The second layer contains domain-specific services
to capture the expertise in the area of satellite
flight control software. These services are often
built following industry standards such as PUS [12].
The TM/TC service implements the well established
telemetry/telecommand link with ground stations or
other satellites. The AOCS (attitude and orbit con-
trol system) controls actuators in order to ensure the
proper positioning of the satellite.

To support the execution the platform use hardware re-
sources provided by the satellite. As the hardware plat-

form changes from one satellite to another, it must be ab-
stracted even for the middleware services. Only the imple-
mentation of specific drivers must be done for each hard-
ware architecture. During the software development life-
cycle, the appropriate corresponding service implementa-
tions are configured and adapted to the provided hardware.
As already exposed, one particularity of the SPQCIFY ap-
proach is the use of the synchronous paradigm. To sup-
port the use of the middleware services within this ap-
proach, we propose to use an abstraction, the external
variable. Such a variable abstracts the interaction between
synchronous islets or between a synchronous islet and the
middleware relaxing the requirements of synchrony. In
the model, when the software architect wants to use a mid-
dleware service, he provides a contract describing its re-
quirements on the corresponding set of external variables
and the middleware is in charge to meet these require-
ments. Clearly, this mediation layer in charge of the ex-
ternal variables management is specific to each satellite.
Hence the contractual approach drives the generation of
the proper management code. This layer is made of back-
ends that capture all the asynchronous concerns such as
accessing to a device or any aperiodic task , hence imple-
menting asynchronous communications of the GALS ap-
proach. The middleware is in charge of the orchestration
of the exchange between external variables, their manag-
ing backends and the services while ensuring the respect
of quality of service constraints (such temporal one) spec-
ified in their contracts.

3.2 The middleware kernel and external variables

As stated above, the middleware is built around a RTOS
providing tasks and synchronisation. As the RTOS can-
not be fixed due to industrial constraints, the middleware



kernel must provide a common abstraction. It therefore
embeds its own notion of task and for specific RTOS an
adaptor must be provided. The implementation of such
adaptors has been left for future until now. Notice that
the use of this common abstraction forbids the use of spe-
cific and sophisticated services offered by some RTOS.
The approach here is more to adapt the services offered
by the middleware to the business needs rather using low
level and high performance services.

The task is the unit of execution. Each task can contain
Synoptic components according to the specification of the
dynamic architecture of the application. Tasks have tem-
poral features (processor provisioning, deadline, activa-
tion period) inherited from the Synoptic model. The mid-
dleware kernel is in charge of their execution and their
monitoring. It is also in charge of provisioning resources
for the aperiodic and sporadic tasks.

Communication inside a task results from the compilation
of the synchronous specification of the various compo-
nents it must support. All communication outside a task
must go through external variables limiting interaction to
only one abstraction. External variables are decomposed
in two sub abstractions:

e The frontend identified in the Synoptic model and
that constitutes the interaction point. It appears as
usual signal in the synchronous model and may be
used as input or output. The way it is provided or
consumed is abstracted in a contract that specify the
requirements on the signal (such as its timing con-
straints). An external variable is said to be asyn-
chronous because no clock constraint is introduced
between the producer of the signal and its consumer.
In the code generated access to such variables are
compiled into getter and setter function implemented
by the middleware. The contract must include usage
requirements specifying the way the signal is used by
the task (either an input or an output). They may also
embed requirements on the freshness of the value or
on event notifying value change.

e The backend specified using stereotypes in the con-
tract configure the middleware behavior for non syn-
chronous concerns. For example, persistency con-
tract specify that the external variable must be saved
in a persistent memory. Acquisition contracts can be
used by a task to specify which data it must get be-
fore its execution. Such backends are collected and
global acquisition plan are built and executed by the
middleware.

As the middleware supports the reconfiguration of appli-
cations at runtime, tasks can be dynamically created. The

dynamic modification of the features is also provided by
the middleware. The middleware will have to ensure that
these constraints are respected. Beware that any modifi-
cation must be made on the model and validated by the
SPACIFY tools to only introduce viable constraints. Each
task has a miss handler defined. This defensive feature
makes the middleware execute corrective actions and re-
port an error whenever the task does not respect its dead-
line.

3.3 Reconfiguration service

Among, domain specific services offered by the middle-
ware, the reconfiguration service is the one that had the
most impact on the middleware conception.

The design of the reconfiguration service embedded in
the SPACIFY middleware is driven by the specific re-
quirements of satellite onboard software. Reconfiguration
is typically controlled from ground stations via teleme-
try and telecommands. Human operators not only de-
sign reconfigurations, they also decide the right time at
which reconfigurations should occur, for instance while
the mission is idle. Due to resource shortage in satellites,
the reconfiguration service must be memory saving in the
choice of embedded metadata. Last, in families of satel-
lites, software versions tend to diverge as workarounds
for hardware damages are installed. Nevertheless, some
reconfigurations should still apply well to a whole fam-
ily despite the possible differences between the deployed
software.

In order to tackle these challenges, the reconfiguration ser-
vice rely on the structural model (Synoptic models) of the
OBSW enriched by the current state of the satellite as de-
scribed in Figure [ Using the structure of the software
allows to abstract the low-level implementation details
when performing reconfigurations. While designing re-
configurations, operators can work on models of the soft-
ware, close to those used at development time, and spec-
ify so called abstract reconfiguration plan like: change the
flow between blocks A and B by a flow between A and C.
An abstract reconfiguration plan use high level elements
and operations which may increase the CPU consumption
of reconfigurations compared to low level patches. Typ-
ical operations such as pattern matching of components
make the design of reconfiguration easier, but they are
compute intensive. Instead of embedding the implementa-
tion of those operations into the satellite middleware, pat-
terns may be matched offline, at the ground station, thanks
to the knowledge of the flying software. We therefore
define a hierarchy of reconfiguration languages, ranging
from high-level constructs presented to the reconfigura-
tion designer to low-level instructions implemented in the
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satellite runtime. Reconfigurations are compiled in a so
called concrete reconfiguration plan before being sent to
the satellite. For instance, the abstract plan upgrade A
may be compiled to stop A and B; unbind A and B; patch
the implementation of A; rebind A and B; restart A and
B. This compilation process uses proposed techniques to
reduce the size of the patch sent to the satellite and the
time to apply it [25]. Another interest of this compilation
scheme is to enable the use of the same abstract recon-
figuration plan to a whole family of satellites. While tra-
ditional patch based approaches make it hard to apply a
single reconfiguration to a family, each concrete plan may
be adapted to the precise state of each of the family mem-
ber.

Applying the previously model driven approach to recon-
figurations of satellite software raise a number of other
issues that are described in [[6]. Work remains to be
conducted to get the complete reconfiguration tool chain
available. The biggest challenge being the specification of
reconfiguration plan. Indeed, considering reconfiguration
at the level of the structural model implies to include the
reconfigurability concern in the metamodel of Synoptic.
If reconfigurability is designed as an abstract framework
(independent of the modeling language), higher modular-
ity is achieved when deciding the elements that are recon-
figurable. First experiments made on Fractal component
model [7] allow us to claim that focusing on the points
of interest in application models, metadata for reconfigu-
ration are more efficient. Indeed, separating reconfigura-
bility from Synoptic allows to download metadata on de-
mand or to drop them at runtime, depending on requested
reconfigurations.

Lastly, applying reconfiguration usually require that the
software reach a quiescent state [20]]. Basically, the idea
consists in ensuring that the pieces of code to update are
not active nor will get activated during their update. For
reactive and periodic components as found in the OBSW,
such states where reconfiguration can be applied may not

be reached. We have proposed another direction [8]. We
consider that active code can be updated consistently. Ac-
tually, doing so runs into low-level technical issues such
as adjusting instruction pointers, and reshaping and relo-
cating stack frames. Building on previous work on con-
trol operators and continuation, we have proposed to deal
with the low level difficulties using the notion of contin-
uation and operators to manipulates continuations. This
approach do not make updating easier but gives the oppor-
tunity to relax the constraints on update timing and allow
updates without being anticipated.

4 Modeling environment

The SPACIFY design process has been equipped with an
Eclipse-based modeling workbench. To ensure the long-
term availability of the tools, the Synoptic environment
rely on open-source technologies: it guarantees the dura-
bility and the adaptability of tools for space projects which
can last more than 15 years. We hope this openess will
also facilitate adaptations to other industries requirements.

The development of the Eclipse-based modeling work-
bench started with the definition of the Ecore meta-model
of the Synoptic language. The definition of this meta-
model has relied on the experience gained during the Ge-
neAuto project. This definition is the result of a collabo-
rative and iterative process. In a first step, a concrete syn-
tax relying on the meta-model has been defined using aca-
demic tools such as TCS (Textual Concrete Syntax) [17].
This textual syntax was used to validate the usability of the
language through a pilot case study. These models have
helped to improve the Synoptic language and to adapt it to
industrial know-how. Once the language was stabilized, a
graphical user editor was designed. A set of structural and
typing constraints have been formalized, encoded in OCL
(Object Constraint Language), and integrated into the en-
vironment.



5 Industrial case study

The industrial partner of the project (Astrium and Thales
Alenia Space) intend to experiment the SPQCIFY tech-
nologies and tool chain using two complementary case
studies. The first one is a real industrial use case and
the experimentation is meant to cover a horizontal slice
of the SPACIFY engineering process. The second one is
a simplified use case meant to allow us, in turn, to cover
the entire SPACIFY process. The first case study targets
on the one hand the evaluation of the Synoptic model-
ing language for early system engineering phases, and on
the other hand the evaluation of the Altarica-based model-
checker, especially with respect to its scalability. During
early system engineering phases, the main concern is to
ensure the correctness of the system specifications that
are defined. Such specifications include system architec-
ture in terms of sensors, actuators, and command/control
mode automata (in a later phase, the control algorithms are
plugged on this architecture). Errors at this level usually
have disastrous impact on the rest of the project, thus en-
suring the correctness of the mode automata specifications
is of prime importance. For classical satellites, this task is
based on expert human reasoning. The increasing com-
plexity of space systems, such as constellations of satel-
lites flying in formation, makes it more and more difficult
or even impossible, as the human faces combinatorial ex-
plosion. Formation flying is of increasing interest in the
space domain, as it offers the possibility to distribute com-
plex instruments over several spacecrafts. Indeed, the per-
formance of today’s space science missions is restricted
by limitations on instrument size. The capabilities of tele-
scopes, interferometers, coronagraphs, etc. are directly
related to the size of their optics. Thus, several Euro-
pean Formation Flying missions composed of 2 or 3 satel-
lites are under preparation. The main specificity of such
missions is the importance of the coordination among
satellites, especially for collision avoidance. Within the
SPACIFY project, we aim to model the command/control
and FDIR (Failure Detection Isolation and Recovery) au-
tomata in Synoptic and to use the Altarica-based model-
checker to automatically check the expected properties of
system the architecture. The resulting models may be-
come the actual specification, while the model-checking
results would definitely bring confidence in the specifica-
tions. The second case study targets the experimentation
of the entire SPQCIFY process by going through all its
phases. This experimentation will allow us to evaluate the
SPACIFY process in a realistic context and identify pos-
sible areas where tuning may be necessary. For practical
reasons, the experimentation will be based on a simplified
but sufficiently representative flight software for a classi-

cal satellite.

6 Conclusion

The SPACIFY ANR exploratory project proposes a de-
velopment process and associated tools for hard real time
embedded space applications. The main originality of the
project is to combine model driven engineering, formal
methods and synchronous paradigms in a single homo-
geneous design process. The domain specific language
Synoptic has been defined in collaboration with industrial
end-users of the project combining functional models de-
rived from Simulink / Stateflow and architectural models
derived from AADL. Synoptic provides several views of
the system under design: software architecture, hardware
architecture, dynamic architecture and mappings between
them. Synoptic is especially well adapted for control and
command algorithm design. The GALS paradigm adopted
by the project is also a key point in the promoted ap-
proach. Synoptic language allows to model synchronous
islands and to specify how these islands exchange asyn-
chronous information by using the services of a dedicated
middleware. In particular, SPQCIFY proposed a contract
approach to the specification of the relations between ap-
plications and the middleware.
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