L Apvrille
email: ludovic.apvrille@telecom-paritech.fr

P De Saqui-Sannes

TURTLE: Four Weddings and a Tutorial

Keywords: Real-Time UML, requirements, analysis, design, deployment, formal verification, code generation

The paper discusses an educational case study of protocol modelling in TURTLE, a real-time UML profile supported by the open source toolkit TTool. The method associated with TURTLE is step by step illustrated with the connection set up and handover procedures defined for the Future Air navigation Systems. The paper covers the following methodological stages: requirement modeling, usecase driven and scenario based analysis, objectoriented design and rapid prototyping in Java. Emphasis is laid on the formal verification of analysis and design diagrams.

Introduction

A UML profile customizes the Unified Modeling Language [START_REF] Uml | The Unified Modeling Language[END_REF] for specific needs. A profile definition usually adds formality to the OMG-based notation and stimulates tool development. Like UML, a profile needs to be associated with a method. To convince practitioners that a UML profile, a tool and a method meet their needs, it is important to develop teaching material and to make case studies publicly available.

The remark particularly applies to TURTLE [START_REF] Apvrille | TURTLE: A Real-Time UML Profile Supported by a Formal Validation Toolkit[END_REF], the real-time UML profile supported by the open-source toolkit TTool [START_REF] Labsoc | TTool: The TURTLE Toolkit[END_REF]. Therefore, the paper discusses an educational case-study of protocol modeling using TTool, its diagram editors, its formal code generators and interfaces to formal verification tools, as well as its Java code generator. The case study which serves as running example throughout the paper is a subset of the Future Air Navigation System [START_REF]Future Air Navigation System[END_REF]. The connection set up and handover procedures included in the FANS specification document support an explicit description of the TURTLE method, from requirement elicitation to rapid prototyping in Java. The paper particularly points out the benefits of using TTool with formal verification tools [5] [START_REF] Rtl | Real-Time Lotos Laboratory[END_REF] [7] and insists on the user-friendliness of the interface TTool offers for linking UML-based modeling and formal verification.

The paper is organized as follows. Section 2 presents the TURTLE language, the toolkit and the method. Section 3 introduces the FANS. Section 4, 5, 6 and 7 respectively address the requirements, analysis, design and deployment stages of the TURTLE method. Section 8 concludes the paper.

TURTLE

Methodology

The TURTLE language reuses and extends SysML and UML diagrams. TURTLE requirement diagrams are based on the SysML syntax [START_REF]SysML[END_REF], whereas usecase, sequence, class, objects and activity diagrams reuse the UML 2 syntax [START_REF] Uml | The Unified Modeling Language[END_REF] Components may be deployed over execution nodes using UML deployment diagrams.

TTool

The TURTLE toolkit, or TTool for short, belongs to the category of UML front-ends that include code generators for external verification tools, as well as for rapid prototyping. TTool offers user-friendly interfaces to formal verification tools and nicely manages the problem of linking verification results to the identifiers used in the TURTLE model. People with limited knowledge of formal methods may use TTool without reading a line of LOTOS [START_REF]A Formal Description Technique Based on the Temporal Ordering of Observational Behaviour[END_REF], RT-LOTOS [START_REF] Courtiat | Experience with RT Temporal Extension of the LOTOS Formal Description Technique[END_REF], or UPPAAL code [START_REF] Behrmann | A tutorial on UPPAAL[END_REF]. The press-button approach implemented for the verification-oriented code generators has been reused for the Java code generator intended for prototyping.

• TTool includes several code generators that enable application of complementary verification techniques, such as model-checking, transition system minimization and observers. • All diagrams, but the use-case diagram and the informal part of requirement diagrams, have a formal semantics. Therefore, formal verification applies not only to design diagrams but also to analysis and deployment ones. TTool thus enables to apply formal verification to analysis diagrams where other UML tools apply it to design diagrams exclusively. Knowledge of object-oriented design is therefore not an asset for using TTool. For instance, formal verification may be achieved on scenario-based analysis. • TTool bridges the gap between the analysis and design steps. Indeed, it includes a design diagram synthesizer which takes sequence diagrams as input and outputs objects and activity diagrams. Automatically generated design diagrams may be extended manually and formally verified.

Case Study: the FANS

The Future Air Navigation System, or FANS for short, is a highly complex system. An excerpt of its specification document was selected for its capacity to convey an intuition of the importance of carefully working on specification documents before starting a TURTLE model, as well as for its capacity to illustrate the TURTLE method in a reasonable time.

The objective of the paper is not to describe the entire FANS system but to exemplify the TURTLE approach on two procedures: the Initial Notification (IN) and the Request For Notification (RFN). IN is a connection set up procedure which authenticates an aircraft to an Air Traffic Control Center (control tower). RFN is as a handover procedure: an aircraft connected to a tower T1 sets up a connection to another tower T2 and releases its connection to T1.

The case study is educational. Nevertheless, the starting point of the study is not a text formatted by professors but an industry document in plain English that incompletely and sometimes ambiguously describes the IN and RFN procedures. The original text thus needs to be carefully analyzed in terms of incompleteness, ambiguities and contradictions. The purpose is not only to detect defaults but also to take decisions. The output of that clarification process is a specification document which served as input to elaborate the TURTLE model presented in the rest of the paper. The clarification process is not detailed in the paper in order to leave space for a discussion on the use of TURTLE.

Requirements

Discussion in the paper focuses on two requirements attached with the IN and RFN procedures.

• Req1: The IN procedure either completes within 10 minutes or aborts. The pilot accordingly receives a "success" or "abortion" report. • Req2: The RFN procedure either completes within 25 seconds or aborts. The pilot accordingly receives a "success" or "abortion" report. Assuming, the aircraft was originally connected to ATC1 and moves to an area controlled by ATC2, then ATC1 receives a message indicating whether RFN completed or not.

The SysML requirement diagram depicted in Figure 1 contains Req1 and Req2, two requirement nodes stereotyped by <<Requirement>>. Each first-level requirement contains three sub-requirements (see the containment relationship). The leftmost subrequirements deal with success and error messages.

The other sub-requirements associate a time constraint related to the first-level requirement.

Analysis

Modeling

The use case diagram contains two main functions (see Figure The seven scenarios associated with IN are structured by an IOD. Scenarios 1, 2, 3 are executed in sequence. Then, a notification may be correctly transmitted (scenario 4) or lost (scenario 5). When the notification is correctly transmitted, a response is sent to the Aircraft (scenario 3). The IN procedure completes if the response is correctly transmitted (scenario 7). Otherwise the response is lost (scenario 5); the ATST1 timer expires (scenario 6) and the counter of the Aircraft is decreased by 1. If the counter equals 0, the IN procedure fails (scenario 8).

Otherwise, the Aircraft retransmits a notification to the ATC.

The IOD associated with the RFN procedure is far more complex. The number of messages increases and so does the number of potential messages losses. Given the difficulty to model all possible traces using scenarios, the IOD associated with RFN considers that no message may be lost, but the ContactAdvisory message sent from ATC1 to the Aircraft (Figure 5). RFN is modeled as the interconnection of five scenarios:

1. RFN_Init: initialization of a counter in ATC1 (no more than three retransmissions in case of message loss).

RFN_ContactAdvisory: ATC1 transmits the

Contact_Advisory message to the Aircraft. 3. RFN_LossOfContactAdvisory: the message named Contact_Advisory is lost during its transfer through the communication medium. 4. RFN_Failed: the failure of the overall RFN procedure is notified to the controller. 5. RFN_NoLoss: the RFN procedure is successful (see Figure 6).

Design generation

A first version of the architecture and behaviours of the system have been obtained using TTool's automatic design synthesizer. The latter took as input the IOD and the sequence diagrams referenced by that IOD (see section 5). The object diagram and activity diagrams output by the design synthesizer do not represent the entire system. The architecture is built upon analysis instances, and thus results from an automated procedure, not from an experience the designer may have in object-oriented design. The main advantage of using the design synthesizer is to propose a seamless transition from analysis to design and to limit copy/paste errors. The synthesized design needs to be enhanced with architecture information. Examples include functions organized into classes, messages parameterized with more complex data structures, and explicit modeling of routing inside the communication medium making the notion of sending and receiving entity appear. The design generator not only constructs the architecture of the system but also provides behavior to the classes. The activity diagrams associated with the classes are revisited. example, the messages identified by their names in sequences diagrams are now modeled as Protocol Data Units. Also, the Air Tower Control is a generic class that models the three roles described in the FANS: the role played in the IN procedure, and the two roles that an ATC can play in the RFN: an the origin of a handover or an ATC at the destination of the handover.

Reachability graph -Statistics

Formal verification draws to the conclusion that the IN respectively completes after being triggered by the pilot. This does not suffice to prove that the system is not in an infinite 0-time loop (a situation where actions can be performed infinitely whilst time does not evolve). To prove the two procedures, once started, always reach a termination state, the reachability graph may be minimized with respect to the actions of the Environment. Figure 10 depicts the quotient automaton generated by a minimization algorithm, using the relation defined in [13]. The system always performs an "IN_DONE" (i.e. there is no infinite loop in IN). Also, each time an RFN_Begin action is performed, the system eventually performs an RFN_DONE action (i.e., there is not infinite loop in RFN). We thus come to the conclusion that Req1 and Req2 are proved. Req1 and Req2 may also be proved using UPPAAL. TTool makes it possible to directly enter modelchecking formulas that are transparently checked by UPPAAL in the sense that only the result is displayed to the user of TTool. Also, one right click on an action of an activity diagram (In Figure 8, see the red cross on the "error" action) suffices to directly check for the accessibility and liveness of that action. Again UPPAAL is transparently used.

Proof of Req1 and Req2 with UPPAAL includes the following intermediate proofs:

• The IN_Done action is always accessible (liveness). • The RFN_Begin action is reachable.

• None of error actions is reachable, which means that both procedures are completed within their required deadlines (10 seconds for IN, 25 seconds for RFN) temporal specification. • The following formula -translated in CTL -is satisfied: "either the IN fails or succeeds. If it succeeds, the RFN is started and always completes" (see on Figure 11, "Custom formulae").

Figure 11. Formal Verification of Req1 and Req2 using the TTool interface for UPPAAL

Deployment

The deployment phase consists in mapping "software components" on execution nodes, and generating prototyping code to test the system in more realistic conditions. In TURTLE, software components are usually built upon classes extracted from the design. The deployment diagram developed for the FANS system includes four nodes (Figure 12): • The embedded system of the aircraft,

• The first Air Tower Control,

• The second Air Tower Control, and • The communication system, in fact its routing application. For prototyping purposes, the four execution nodes receive a network name which is the one of the computer on which the code is expected to be tested. For example, the "Aircraft" node is expected to run on a computer node called "neac". The nodes are interconnected using UML links. The latter are enhanced with parameters: expected delay of the link, protocol used to send data on that link, and connections between synchronization gates. For example, when a class from the package "PkgAircraft" sends a data on the gate "wi_out", that data is sent to the package PkgRouter using the UDP protocol to the destination port 6542 located on "orgnac".

The deployed packages have been built as follows, reusing classes defined at design stage:

• To test that deployment, the Java code generator of TTool was activated using a press button approach. Once the code has been generated, it can be compiled using, e.g., the javac compiler provided by SUN. At last, the code can be executed on the computer mentioned in the deployment diagram.

Figure 13 shows what happened when the first ATC, the Routing application, and the Aircraft were started. At first, the routing application, and then the ATC1 are started. Then, the aircraft is started: it sends Notification_Contact message to the Routing application, which forwards than message (UDP packet) to ATC1. ATC1 sends the response (Notification_Ack), and ask the Aircraft to contact ATC2 (Contact_Advisory). And so on.

Conclusions

The paper discusses an educational case study of protocol modeling using TURTLE, a real-time UML profile supported by the open-source toolkit TTool. The FANS system was selected to illustrate the TURTLE method and to highlight the set of features that makes TTool different from other UML tools. Examples include automatic synthesis of design diagrams from analysis ones, user-friendly access to complementary verification tools, formal verification of analysis diagrams prior to design diagrams definition, and automatic generation code from verified component and deployment diagrams.

The TURTLE toolkit has evolved over the past six years. First wedding was between UML and the RT-LOTOS process algebra. Second wedding interfaced the TURTLE toolkit with formal verification tools.

 2): InitialNotification (IN) and RequestFor Notification (RFN). One may observe that RFN includes IN (see the <<include>> relation). Both IN and RFN use a timer service. For simplicity, the use case diagram contains human actors (FlightCrew and AirTrafficController) and not hardware ones. The diagram further omits maintenance operations. The boot and power off of the system are also ignored.

Figure 2 .

 2 Figure 2. Use-case diagram Scenarios expressed by sequence diagrams contribute to better understanding of how the system will work. A scenario describes execution traces that document a function or a service modeled by one or several use cases. Scenarios are usually categorized into two groups that distinguish between nominal behavior and error situations, respectively. In TURTLE, an Interaction Overview Diagram (IOD) allows one to structure the scenarios in a flow chart fashion. In practice, an IOD looks like an activity diagram where actions have been replaced with references to sequence diagram names.

Figure 1 .Figure 3 .

 13 Figure 1. Requirement Diagram

Figure 4 .

 4 Figure 4. Initial Notification, IN_ACKTransmitted scenario

Figure 5 .Figure 6 .

 56 Figure 5. Request For Notification -Excerpt of the Interaction Overview Diagram

Figure 7 .

 7 Figure 7. Quotient automaton -Formal verification of analysis diagrams, IN procedure 6. Design

 Let us consider the design generated option. It contains five classes that one by one correspond to an entity identified during the analysis stage. The entities are: Timer__ATST1 CommunicationMedium, FlightCrew and These classes rendezvous on synchronization gates The gates' names match the names of the exchanged by the entities in sequence diagrams 6.2 Reworking the design The architecture and behavioral diagrams synthesized by TTool serve as reference for a manually improved class diagram: • A Timer class taken from the generated design is instantiated twice by two TObjects ATST1:Timer and ATST2_ATST3:Timer • A class named AircraftEmbeddedSystem models the embedded system of the Aircraft entity identified at analysis step. The name change helps identifying the targeted system • A class CommunicationMedium communication medium which links the two control towers and the aircraft. The message no longer transmits untyped messages, but TData which is a class modeling a data structure with several fields: a message source address, a destination address and a data field. Examples of IDs include Contact_Advisory and Response. • A class ATCEmbeddedSystem is twice (ATC1, ATC2) to model handover between two towers. • An Environment class models all interactions between the system and its environment. Environment gathers the behavior of the flight crew and the controllers. The architecture is verification-centric.

6. 3

 3 Figure 8. Activity Diagram -Excerpt with a mark for reachability accessibility

Figure 10 .

 10 Figure 10. Quotient automaton -Formal verification of design diagrams

 PkgATC1 and PkgATC2 contain the ATCEmbeddedSystem class, and a Timer class. • PkgAircraft contains the AircraftEmbeddedSystem class, and a Timer class. • PkgRouter contains the CommunicationMedium class.

Figure 12 .

 12 Figure 12. Deployment diagram

Third wedding linked TURTLE and rapid prototyping in Java. The last wedding was between SysML requirements and TURTLE. The story goes on with the tutorial presented in the paper.