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Abstract.

In addition to the weak-dipolar state and to the fluctuating-multipolar state, widely

discussed in the literature, a third regime has been identified in (Dormy 2016). It

corresponds to a strong-dipolar branch which appears to approach, in a numerically

affordable regime, the magnetostrophic limit relevant to the dynamics of the Earth’s

core. We discuss the transitions between these states and point to the relevance to

this strong-dipolar state to Geodynamo modelling.
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1. Introduction

The Earth’s magnetic field is sustained by self-exciting dynamo action in the liquid core

of our planet. Part of the kinetic energy of the flow is transferred to magnetic energy. In

fact, in the Earth’s core, most of the energy is anticipated to be dissipated by electrical

currents. We describe here the existing numerical models and show how they appear to

fall into three distinct branches characteristic of different forces balances.

Since the first full numerical models of dynamo action (Zhang & Busse 1988, Zhang

& Busse 1989, Glatzmaier & Roberts 1995), many parameter space surveys have been

performed. This has allowed to produce phase-diagrams which, depending on the

controlling parameters, describe which dynamo states can be achieved. Wide parameters

surveys (e.g. Christensen & Aubert 2006, Schrinner et al. 2012) clearly identified two

branches of dynamo action. The first one is characterised by a dominant axial dipole,

while the second one, at larger forcing, is largely multipolar, with a fluctuating dipolar

component. It was shown (Simitev & Busse 2009) that the transition between these two

dynamo states can be hysteretic if stress-free boundary conditions were considered.

Sadly, upon closer investigation none of these two states turned out to be relevant

for the Geodynamo. The first state, characterised by a dominant axial dipole, was

shown to be largely controlled by viscous effects (King & Buffett 2013, Oruba &

Dormy 2014a), and the second one to involve significant inertial effects (Christensen

& Aubert 2006, Schrinner et al. 2012, Oruba & Dormy 2014b).

The Earth rotates with one revolution per day, given the viscosity of liquid

iron at these temperature and pressure (see de Wijs et al. 1998), we can easily

conclude that viscous effects will only become relevant at very small scales. A naive

dimensional analysis approach yields `2ν ∼ ν/Ω. Asymptotic developments (e.g. Dormy

& Soward 2007) reveal more elaborate scalings of the form `αν ∼ ν/ΩLα−2 (where L

denotes the typical size of the Earth’s core). The first relevant length scale for a vertical

shear, for example, corresponds to α = 3 . For geophysically relevant estimates, these

length scales would be of a few meters, less than a kilometer. Length scales which lie

below the resolution of current numerical models.

Typical velocities in the Earth’s core can be inferred from the secular variation of

the magnetic field (Holme 2007), this yields U ' 10−4m s−1 . There again, dimensional

analysis reveals the length scale at which inertial effects will be comparable to the effects

of global rotation (the so-called Rossby radius), `I ∼ U/Ω, again of the order of a few

meters. So that inertial effects are not expected to play a significant role, on the time

scale of secular variation, at the large spatial scale.

The relevant balance for the Earth’s core is therefore one in which both viscous

effects and inertial effects are negligible on the large scales. This is known as the

magnetostrophic balance (see Moffatt 1978). The issue of whether the limit system of

equations (i.e. omitting both the viscous term and the inertial term in the governing

equations) is well posed is a challenging one. First put forward by Taylor in 1963

(Taylor 1963), this system proved extremely difficult to solve numerically. The well-
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posedness of this limit raises complicated mathematical issues (Gallagher & Gérard-

Varet 2016). A first set of solutions in the case of an axi-symmetric configuration has

however recently been achieved (Roberts & Wu 2014, Wu & Roberts 2015).

We here take the simpler point of view of retaining all the terms in the equations,

but vary the parameters, so as to try and approach a magnetostrophic equilibrium.

The crucial issue in doing so, is to assess that inertial and viscous effects are indeed

small in the realised solution. To that end, a useful tool is to study the bifurcation

diagram for various choices of the parameters, the different branches on this diagram

naturally corresponding to different forces balances. The bifurcation diagram for

dynamo action in the limit relevant to the Earth’s core has been the focus of many

analytical or mixed analytical-numerical studies (Eltayeb & Roberts 1970, Childress &

Soward 1972, Soward 1974, Fautrelle & Childress 1982, Roberts 1988). The main result is

that the bifurcation diagram should consist of two branches. The first branch necessarily

involves significant viscous effects and is referred to as the “weak-field” branch. On

this branch, viscous effects are necessary to allow deviation from the Proudman-Taylor

constraint (i.e. the tendency for the flow in a rapidly rotating reference frame to be

independent on the coordinate in the direction of the axis of rotation). The flow will

thus develop short length scales in the directions orthogonal to the axis of rotation.

The most obvious of these length scales involving an E1/3 dependence (see Dormy &

Soward 2007, for example). As the strength of convection increases, both the flow and

the field gain in amplitude. A transition, characterised by a turning point, is anticipated

when the Lorentz force becomes large enough. When this turning point is reached, the

weak-field solution becomes unstable, and the magnetic field experiences a runaway

amplification. Saturation will be achieved when the field reaches a strength sufficient

for the Lorentz force to be comparable with the Coriolis force. This second branch is

referred to as the “strong-field” branch. On this branch the amplitude of the Lorentz

force is comparable to that of the Coriolis force.

The above description was so far disconnected from direct numerical simulations

of spherical dynamos. Recently, however, Dormy (2016) pointed out the existence

of a third dynamo state, numerically achievable at the cost of an under-estimated

magnetic diffusivity. This regime appears to approach the relevant magnetostrophic

force balance. This strong-dipolar dynamo state, described numerically, is characterised

by an hysteresis with respect to the viscous-state. The transition occurs at a turning

point, which is characterised by a runaway field growth. This bifurcation sequence

establishes a first connection between direct numerical models and earlier asymptotic

developments.

In this article, we will rapidly review the available results on dynamo states available

from numerical simulations. We further investigate the numerical strong-dipolar (SD)

branch, describe its relation with the earlier theoretical bifurcation sequence, and ponder

on the relevance of the strong-dipolar state to the Geodynamo.
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2. Governing equations

Let us start by introducing the standard mathematical model for the Geodynamo. The

numerical simulations discussed in this paper are restricted Boussinesq models. The

computational domain consists of a spherical shell with aspect ratio ri/ro = 0.35 . The

flow is thermally driven, and a fixed difference of temperature is imposed between the

inner and outer boundaries. It should be noted, that in the Earth’s core, buoyancy

effects are associated with both thermal and compositional effects. The simplest form of

governing equations is however similar in both cases (see Braginsky & Roberts 1995, for

a detailed discussion). All the simulations used in this work rely on no-slip mechanical

boundary conditions as well as an insulating outer domain. The inner core is insulating

in most simulations, and a few simulations involve a conducting inner core with the

same conductivity as the fluid.

The governing equations in the rotating frame of reference can then be written in

their non-dimensional form – using L = ro − ri as unit of length, L2/η as unit of time,

∆T as unit of temperature, and (ρµηΩ)1/2 as unit for the magnetic field – as

Eη [∂tu + (u ·∇)u] = −∇π+ E ∆u− 2ez×u + Ra qT r + (∇×B)×B , (1)

∂tB = ∇× (u×B) + ∆B , ∂tT + (u ·∇)T = q ∆T , (2)

with ∇ · u = ∇ ·B = 0 . (3)

System (1–3) involves four independent non-dimensional parameters, which are the

Ekman number E = ν/(ΩL2) , the magnetic Ekman number Eη = η/(ΩL2) , the Roberts

number q = κ/η , and the modified Rayleigh number Ra = αg∆TL/(κΩ) , in which ν

is the kinematic viscosity of the fluid, α the coefficient of thermal expansion, g is the

gravity at the outer bounding sphere (the gravity profile is linear in radius), κ its

thermal diffusivity, and η its magnetic diffusivity. The modified Rayleigh number Ra ,

as defined above, differs from its most classical definition αg∆TL3/(νκ) , to which it is

related via an Ekman factor. Whereas the later is the relevant parameter to measure

energy input in the standard Rayleigh-Bénard setup, it is not any longer relevant in the

magnetostrophic limit.

The above four independent parameters are enough to fully define the system. We

shall now consider the relevant values of these parameters for the Earth’s core. The

orders of magnitude of the dimensional coefficients outlined in the introduction reveal

E ' 10−15 , Eη ' 10−9 , q ' 10−5 . (4)

The last non-dimensional parameter, Ra, controlling the strength of thermal convection

is difficult to quantify in a Boussinesq formalism. While the heat gradient across the

core is of the order of 103 K, most of the heat in the actual core is carried along the

adiabat. Only the super-adiabatic gradient is relevant in the Boussinesq framework.

This deviation is only of the order of 10−3K (see Gubbins 2001, Jones 2011), so difficult

to estimate with great precision. This results in the following estimate for our definition

of the Rayleigh number Ra ' 1013 (Gubbins 2001). Obviously this value should be large
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enough, so that, even though q is a vanishing number, the product R̃a = Ra q remains

of order unity. The above estimate yields R̃a ' 108 .

The non-dimensional form chosen in (1–3), often referred to as the “strong-field

scaling”, highlights the primary magnetostrophic balance (order one terms) and the

three vanishing parameters (4). The Taylor state introduced above (Taylor 1963)

amounts to dropping all small terms in (1–3). The only parameter left to control

this limit system is then the modified Rayleigh number R̃a . So that the strength of the

magnetic field in this limit should depend on this sole parameter.

It is worth pondering on the ratios of the small terms in (1–3). The ratio of

the Ekman number to the magnetic Ekman number defines the magnetic Prandtl

number Pm = E/Eη , this defines the ratio of two small parameters (vanishing in the

geophysically relevant magnetostrophic limit), but as we shall see controlling this ratio

in the limiting process is essential. The ratio of the magnetic Prandtl number to the

Roberts number defines the classical hydrodynamic Prandtl number, Pr = Pm/q. There

again, both Pm and q are small numbers, but their ratio remains an important quantity.

The importance of the ratio of small parameters in a double (or even tripple in

our case) limit, will not come as a surprise to the mathematical community. Besides,

its importance has recently been stressed in physical applications when considering

the saturation properties of MHD turbulence (Fromang & Papaloizou 2007, Fromang

et al. 2007).

Our analysis is tested against a wide numerical database corresponding to some 300

direct numerical simulations. The data sample is composed of 180 runs kindly provided

by U. Christensen, and of additional runs, either previously reported in Morin & Dormy

(2009), Schrinner et al. (2012) and Dormy (2016), or presented in Table 1.

3. The Weak-Dipolar dynamo state

The first and most documented dynamo state is for obvious reason the dipolar state.

Dynamos in this state have been reported since the very early days of dynamo modelling.

Owing to their dipolar nature, these models have even often been argued to be relevant

to the Geodynamo. It is now evident that viscous effects are present at leading order in

the forces balances.

This branch is the first dynamo mode produced as the modified Rayleigh R̃a is

increased away from its critical value for the onset of convection R̃ac (which can itself

be subcritical (see Guervilly et al. 2015)). The onset of dynamo action, or dynamo

bifurcation, has been carefully investigated in Morin & Dormy (2009). Depending on

the parameters being considered, they reported either super-critical, sub-critical or isola

branches for the onset of dynamo action (see figure 1). It is important to stress that

each point on these numerical bifurcation diagrams corresponds to a time averaged fully

three-dimensional simulation.

The Ekman number was varied between 10−3 and 10−4, and the bifurcation type

over this range appears to depend only on the parameter Eη. Super-critical bifurcations
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were obtained for both E = 3 × 10−4 and E = 10−4, with Eη < 5 × 10−5; Sub-critical

bifurcations for both E = 3× 10−4 and E = 10−4, with 5× 10−5 < Eη < 2× 10−4; and

Isola were obtained for both E = 10−3 and E = 3 × 10−4 with Eη > 2 × 10−4. These

simulations were all performed at fixed Pr = E E−1η q−1 = 1 .

The physical explanation for this change of behaviour has not been achieved so

far, but the ordering highlighted above points to the importance of inertial effects in

controlling the nature of the transition.§
The importance of the flow helicity on the dynamo generation mechanism for this

dynamo state has been highlighted by Olson et al. (1999). Besides, Sreenivasan & Jones

(2011) argue that kinematic helicity enhancement by the magnetic field could provide

a mechanism for the occurrence of sub-critical dynamo branches.

The importance of viscous forces in this dynamo branch has long been overlooked.

It was however recently pointed out (King & Buffett 2013) that the typical length scale

of the flow exhibits a clear E1/3 dependence, characteristic as explained above of the

viscous-Coriolis dominant force balance.

We present in figure 2 three different length scales. The first one, `upeak, is defined by

considering the time averaged kinetic energy spectrum. It is defined as `upeak = π/lpeak
where lpeak corresponds to the spherical harmonic degree for the peak of the energy

spectrum. The second length scale `uCA06 corresponds to the length scale defined

in Christensen & Aubert (2006) and used in King & Buffett (2013), it is defined as

`uCA06 = π/lCA06 where lCA06 corresponds to the mean value of the spherical harmonics

degree in the time-averaged kinetic energy spectrum (see Christensen & Aubert 2006,

equation (27)). The third length scale `uvort , introduced by Oruba & Dormy (2014a),

is defined as

`u
2
vort =

〈u2〉
〈(∇× u)2〉

, (5)

where 〈·〉 denotes time and volume averaged quantities.

Figure 2 highlights that the three typical length scales defined above follow an

Ekman dependence characteristic of the viscous, E1/3, scaling.

Because viscous forces are important in this branch, and to attempt a link with the

earlier asymptotic studies listed above, we will in the sequel refer to this branch as the

weak-dipolar (WD) branch. Of course this branch is saturated, and non-linear effects

are affecting the flow, both via the non-linear inertial term and via the Lorentz force.

4. From Weak-Dipolar dynamos to Fluctuating-Multipolar dynamos

As the forcing is increased, i.e. as the modified Rayleigh Ra is further increased

away from Rac , a transition to a fluctuating-multipolar (FM) dynamo state has been

initially reported by Kutzner & Christensen (2002) and described in further details in

Christensen & Aubert (2006).

§ Note that the original paper (Morin & Dormy 2009) uses a different ordering based on the magnetic

Prandtl number at fixed Ekman number.



7

a. 0 2 4 6 8 10 12
0

2

4

6

8

10

12

Ra/Rac

Λ

b. 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Ra/Rac

Λ

c. 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ra/Rac

Λ

Figure 1. Bifurcation diagrams obtained for E = 3×10−4 and (a) Eη = 5×10−5 , (b)

Eη = 10−4 , (c) Eη = 2×10−4 (◦ stable, × unstable, ⊗meta-stable). These respectively

correspond to a super-critical, a sub-critical and an isola bifurcation diagram. The

same sequence of transitions between the various bifurcation diagrams were obtained

at different values of E, for similar values of Eη (see Morin & Dormy 2009).
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Figure 2. Evolution of the typical length scales of the flow as a function of the

Ekman number for dynamos in the weak-dipolar state. (a) The length scale at which

the energy spectrum peaks `upeak ; (b) the averaged length scale `uCA06; and (c) the

vorticity length scale `uvort. The dashed line indicates the E1/3 scaling. The best

fit, derived from a least squares method, in Eα, is indicated by a solid line, and the

corresponding value of α is reported on each panel. On the first graph, larger symbols

are used when several dynamos produced the same `upeak .
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Figure 3. Evolution of the typical length scales of the flow as a function of the

Ekman number, same representation as in figure 2, but for numerical dynamos in the

multipolar-fluctuating state.

This transition was very early associated with the strength of inertial effects. Indeed

Christensen & Aubert (2006) pointed out that the transition was controlled by the

“local” Rossby number Ro` = U(Ω `u
?
CA06)

−1 based on the mean velocity length scale

`uCA06 , defined above (the ? denotes dimensional quantities). This clearly indicates that

inertial effects become significant at the flow length scale when the weak-dipolar mode

is lost. More recently, Oruba & Dormy (2014b) showed that rather than measuring the

typical length scale of the realised flow, one could account for the transition with the

parameter Ro E−1/3, where Ro = U (ΩL)−1, because of the above mentioned dependence

of the flow length scale as E1/3 L in the weak-dipolar branch.

The typical length scales are presented as a function of the Ekman number on

figure 3. While the length scales `uvort and `uCA06 are by construction affected by the

viscous dissipation length scale, the length scale `upeak (corresponding to the energy

spectrum peak) exhibits a much weaker dependence on the Ekman number (we stress

however the large dispersion due to the small data sample and the difficulty to precisely

estimate lpeak, which is a small integer). This appears as a signature of inertial effects

at the dominant scale of the flow.
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Figure 4. Fraction of viscous dissipation as a function of Ro E−1/3 . The transition

from the weak-dipolar (circles) to the fluctuating-multipolar state (grey squares) is

clearly controlled by Ro E−1/3, characterising the importance of inertial effects at the

flow length scale. The fraction of viscous dissipation is significant in both regimes and

appears enhanced by inertial effects.

A way to further assess the importance of viscosity is to consider the fraction of

energy being dissipated by viscous forces fν . The ratio of the energy being dissipated

by viscous forces to the total energy dissipation (viscous and ohmic)

fν =
E〈(∇× u)2〉

E〈(∇× u)2〉+ 〈(∇×B)2〉
=

ρν 〈(∇× u?)2〉
ρν 〈(∇× u?)2〉+ ηµ−1 〈(∇×B?)2〉

(6)

is reported on figure 4 as a function of the Rossby number based on the viscous scale

(Oruba & Dormy 2014b). The relevance of this parameter Ro E−1/3 to distinguish weak-

dipolar and fluctuating-multipolar dynamos is evident. We should stress that Schrinner

(2013) investigated the behaviour of fν (actually fohm = 1 − fν) and concluded that

fν was increasing with the local Rossby number, for which Ro E−1/3 offers a very good

proxy in the weak-dipolar state.

The fraction of viscously dissipated energy is in general significant in both dynamo

states (though some end members models of the weak-dipolar state, reach 10% of viscous

dissipation). It is worth noting that this fraction is on average larger in the multipolar

regime, for which the field is weaker and the ohmic dissipation is thus lower.

The transition from the weak-dipolar to the fluctuating-multipolar state is

illustrated in figure 5. Here again the simulations were performed at fixed Pr =

E E−1η q−1 = 1 . The two branches are identified with different symbols. These are easily

identified by measuring the strength of the dipolar component relative to the total field

intensity. The dipolar state is indicated with circles, whereas the fluctuating-multipolar

state is indicated with grey squares. In these graphs the magnetic energy density of

the non-dimensional magnetic field is reported: Λ = 〈B2〉/2 , this corresponds to the

Elsasser number. In terms of dimensional variables, this amounts to

Λ = 〈B?2〉/ (2Ωρµη) . (7)
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Figure 5. Weak-dipolar (circles) and fluctuating-multipolar (grey squares) branches

with no-slip boundary conditions for (a) E = 3 × 10−5 , Eη = 1.2 × 10−4 , q = 0.25 ,

(b) E = 10−4 , Eη = 10−4 , q = 1 , and (c) E = 3× 10−4 , Eη = 10−4 , q = 3 .

Figures 5a and 5b highlight the discontinuity in the dynamo branches. Figure 5c shows

that for some parameters, the efficiency of the viscous dynamo state starts to decrease

before the transition occurs. This highlights that although the primary force balance

on this branch involves the viscous term, non-linear effects are important, in saturating

the field growth, but also in modifying the flow (which, in this case, provides a lower

saturation level at larger forcing).

Non-linear effects in a rotating flow are known to drive zonal flows through the

Reynolds stress. Such zonal flows are very weakly damped. If their radial structure
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Figure 6. Weak-dipolar (circles) and fluctuating-multipolar (grey squares) branches

for E = 10−4 , Eη = 10−4 , q = 1 , in the case of stress-free boundary conditions.

is larger than E1/4L they are dominated by boundary layers dissipation (Morin &

Dormy 2006). It results that the large-scale zonal flows will behave in a different

manner in the case of stress-free boundary conditions (for which only the bulk viscous

effects will be relevant). This will, of course be particularly true when the Ekman

number is moderately small (as is the case in most numerical models). As the Ekman

number decreases, the correction due to the boundary layer dissipation (via Ekman

pumping) will become less and less important. For stress-free boundary conditions the

possible bistability between the weak-dipolar state and the fluctuating-multipolar state

was first highlighted by Simitev & Busse (2009). This is directly associated with the

zonal flow, which once present prevents the formation of an organized large-scale field.

So that the transition to the fluctuating-multipolar branch is hysteretic and once on

this branch, the controlling parameter (the Rayleigh number) can be decreased below

the transitional value without recovering the weak-dipolar state. Schrinner et al. (2012)

further demonstrated that in this case the controlling parameter was still a local Rossby

number, but which needed to be based on the amplitude of the convective flow, and not

of the zonal flow itself. This bistability is illustrated by figure 6.

This second dynamo state is characterised by fluctuations of the dipolar component.

For this reason, it has sometimes been argued that geomagnetic polarity reversals

may be due to the fact the Geodynamo operates near this transition (Olson &

Christensen 2006, Christensen 2010). Indeed, an estimation of the parameter Ro E−1/3

in the Earth’s core would be very close to the critical value observed in numerical

simulations (below, but close to 10−1). It is however most unlikely that the Geodynamo

operates on the viscous dipolar branch. The resulting viscous length scale would be

extremely small, less than 100 m. The strong-dipolar state described previously is

most likely the relevant one, and this transition is probably not relevant to the actual

Geodynamo reversals (see discussions in Oruba & Dormy 2014b).
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Figure 7. Weak-dipolar (circles) and strong-dipolar (bullets) branches for E =

3× 10−4, Eη = 1.7× 10−5, q = 18 . Crosses indicate unstable solutions. The Elsasser

number is represented in a linear scale on panel (a) and a log-scale on panel (b), thus

highlighting the lower branch.

5. The Strong-Dipolar dynamo state

Recently, Dormy (2016) has shown that if Eη was small enough in the numerical

simulations, the viscous-dipolar mode could exhibit a transition to a very different state,

of stronger, yet still dipolar, magnetic field. The corresponding bifurcation diagram

is illustrated in figure 7. Dormy (2016) pointed that a “cusp catastrophe” occurs in

the bifurcation diagram as Eη is decreased at fixed E . This catastrophe acounts for

the transition between the single branch reported on figure 1a, yet characterised by a

sudden increase near Ra/Rac ' 3, and the turning points highlighted by figure 7.

The Elsasser number Λ is usually assumed to be of order unity in the strong-

dipolar state. As can be seen in figure 7, while the values are “of the order of unity”

(compared to the extreme values of some parameters, such as those listed in (4)), they

are significantly greater than unity. For this reason a modified Elsasser number

Λ′ = ΛL/(Rm `?B) , (8)

was used in Dormy (2016), and was shown to offer a closer measurement of the balance

between the Coriolis and the Lorentz forces. In the above definition, we used

Rm =
U L

η
, and `B

2 =
〈B2〉

〈(∇×B)2〉
. (9)

Writting in dimensional form the ratio of the Lorentz to the Coriolis force yields

{(µρ)−1∇×B×B}
{2Ω× u}

=
B2

2ΩµρU`?B
. (10)

The classical Elsasser number stems from U`?B ' η, which is a sensible approximation

in an asymptotic sense, as the magnetic Reynolds number is neither very large nor very

small in this problem. The modified Elsasser number offers a finer measure of this

balance by writting U`?B/η ' Rm`?B/L .

Dormy (2016) has shown that this dynamo state corresponds to a primarily

magnetostrophic balance, by comparing the radial components of the curl of the Lorentz
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Figure 8. Evolution of the typical length scales of the flow as a function of the

Ekman number, same representation as in figure 2, but for numerical dynamos in the

strong-dipolar state.

force and the Coriolis force (in order to get rid both of the pressure gradient and of the

buoyancy force).

The transition from the viscous-dipolar to the strong-dipolar state, characterised

by a runaway field growth, as the turning point of the weak-dipolar state is reached,

was also reproduced in Dormy (2016).

6. Geophysical relevance of the strong-dipolar state

We discuss here additional simulations performed in the range E ∈ [3 × 10−4, 10−5] ,

Eη ∈ [1.4 × 10−6, 2.5 × 10−5] , q ∈ [5, 18] (see Table 1). In these simulations the

parameters were chosen such that the strong-field state reported in the previous section

was maintained in the limiting process of decreasing both E and Eη. This corresponds

to a distinguished limit, relating the small parameters, as introduced in Dormy (2016).

We can first consider, as we did for the first two dynamo states, the length scales

dependency with the Ekman number. These are presented in figure 8. While viscosity

clearly affects the small length scales of the flow, the length scale `upeak (corresponding

to the energy spectrum peak) appears reasonably independent on the Ekman number,

consistent with a large-scale magnetostrophic balance.

In order to assess that these simulations offer a sensible approximation to the

magnetostrophic limit, the Elsasser number Λ is reported in figure 9a as a function

of the combination R̃a = Ra q . We also report the modified Elsasser number Λ′ as

a function of R̃a in figure 9b. As the field increases with Rm in these simulations,

the modified Elsasser number presents a narrower range of variations than the Elsasser

number. The first important observation in the strong-dipolar state is that indeed,

whereas the Elsasser number is larger than unity and exhibits a clear variation with

R̃a , the modified Elsasser number is much closer to unity for all the simulations in

the strong-dipolar state (whereas a wide disparity can be observed in both plots for

the weak-field state, though with a narrower range in the case of the modified Elsasser

number).

The second essential information, is that despite the variations in E , Eη , and q all

the strong-dipolar points appear to sit on a single curve. They are only (or almost only)
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Figure 9. Strength of the magnetic field, as measured by (a) the Elsasser number Λ ,

(b) the modified Elsasser number Λ′, both as a function of the modified Rayleigh

number R̃a, in the weak-dipolar regime (circles) and in the strong-dipolar regime

(bullets). The insets present an enlarged representation of dynamos in the strong-

dipolar state.

functions of R̃a . This vindicates the scenario of Dormy (2016) that these dynamos are

approaching a dominant magnetostophic balance.

A key prediction on the strong-dipolar branch is that the kinetic energy should be

significantly lower than the magnetic energy. This contrasts with the strongly inertial

regime in which equipartition is eventually expected. Because of the smallness of the

magnetic Ekman number Eη in (1), the magnetic energy EM should here be much larger

than the kinetic energy EK. We report in figure 10 the evolution of the ratio of the kinetic

energy EK over the magnetic energy EM as a function of the inverse Ekman number for

the three dynamo states discussed in this article. This quantity varies significantly in

the weak-dipolar state (see figure 10a). It is less than unity for most models, but no

clear trend with the Ekman number can be emphasised. In the multipolar-fluctuating

state, the field is generally weaker, while the driving by buoyancy is stronger, as a result,

most of these dynamos are characterised by a ratio larger than unity (see figure 10b).

In figure 10c, the strong-dipolar models exhibit a clear and systematic decrease of this

ratio with the inverse Ekman number. They always correspond to lower values of this

ratio than those achieved in the weak-dipolar state. For the smallest Ekman number

considered here, this ratio reaches a value lower than on the two other branches. This

contrasts with Yadav et al. (2016) who argue that largely super-critical dynamos are

needed to decrease this ratio (a result which is however most likely correct on the weak-

field branch).

Of course, viscous forces are still present in the strong-dipolar state simulations.

Their importance can be quantified by considering, as we did for the weak and multipolar

states, the fraction of viscous dissipation. The ratio of the energy being dissipated by

viscous forces to the total energy dissipation (viscous and ohmic) should vanish as one

approaches the magnetostrophic limit. Figure 11 presents the evolution of the ratio fν
as a function of various parameters. Figure 11a shows fν as a function of the modified
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Figure 10. Ratio of the kinetic energy EK over the magnetic energy EM as a function

of the inverse Ekman number, for (a) weak-dipolar, (b) fluctuating-multipolar and (c)

strong-dipolar dynamo states.

Elsasser number Λ′ . It highlights that the strong-dipolar state simulations span over a

wide range of fν . While the viscous dissipation never amounts to more than 50% of the

total dissipation, this is a very significant variation. It is then enlightening to represent

fν as a function of the inverse Ekman number. This graph, represented in figure 11b,

shows that, for those dynamos that are in the strong-dipolar state, the fraction of viscous

dissipation indeed vanishes as the Ekman number decreases. So that most of the energy

is dissipated via ohmic dissipation for the smaller Ekman numbers considered.
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and (b) the inverse Ekman number E−1, in the weak-dipolar state (circles) and in the

strong-dipolar state (bullets).

The relation between figure 10c and figure 11 is subtle. With our choice of non-

dimensional form, the kinetic and magnetic energy are expressed, in units of ΩρηL3,

as

EK =
Eη

2

∫
u2 dV , EM =

1

2

∫
B2 dV . (11)

If our choice of units yields order one values for the integrals, then the ratio EK/EM will

vanish as Eη.

If we now form the energy equations, after integration by parts, we get

dEK

dt
=

∫
Ra qT u · r dV −

∫
∇× (u×B) ·B dV −E

∫
(∇×u)2 dV ,(12)

dEM

dt
=

∫
∇× (u×B) ·B dV −

∫
(∇×B)2 dV , (13)

The above two equations can be rewritten in a condensed form

dEK

dt
= P − L− EDu ,

dEM

dt
= L−DB . (14)

The first term on the right of (12) is the energy production term P . In non-magnetic

hydrodynamics, this energy has to be entirely dissipated in a statistically steady state

by the last lerm on the right-hand-side of (12), i.e. the viscous dissipation EDu. In

magnetohydrodynamics, however, the second term on the right-hand-side of (12), L,

allows a transfer of energy to the induction equation (it is equal and opposite to the

first term on the right of (13)), where the energy can be ohmically dissipated via the

last term in (13), DB. Equation (14) stresses that fν = EDu/(EDu + DB) vanishes in

the limit of small Ekman numbers.

7. Conclusion

We discussed the different dynamo states obtained in numerical models of the

Geodynamo. We show that at least three distinct states, characterised by different forces



17

Ra/Rac

E
−1

η

SD

WD

FM

Figure 12. Phase-diagram illustrating, for a given Ekman number, the three different

dynamo states observed in numerical simulations of the Geodynamo, namely the weak-

dipolar (WD), the fluctuating-multipolar (FM) and the strong-dipolar (SD) states.

The cusp indicates the region of bistability between the WD and the SD states. The

grey shaded region marks the explored strong-dipolar state.

balances can be highlighted in the available databases of numerical dynamos. These are

represented on a schematic phase-diagram at fixed Ekman number on figure 12. The

question of the most relevant choice of Eη at a given E is a difficult one. Dormy (2016)

suggested that the ratio of these two small parameters should be determined through

a distinguished limit, instead of systematically trying to maximise Eη at a given E (i.e.

minimise Pm).

It should be noted that the distinguished limit advocated above consists in relating

the two small parameters Eη and E in the limiting process, with the ratio E/Eη ≡ Pm

vanishing in the limit. This constrasts with an alternative approach, which consists in

dropping the inertial term, either entirely, or for the non-zonal terms only (Glatzmaier

& Roberts 1995, Jones & Roberts 2000, Hughes & Cattaneo 2016), which amounts to

an infinite Pm limit.

The first dynamo state (WD), and probably the most documented one, corresponds

to a state in which viscosity is entering the main balance, and influencing the convection

length-scale. It does not mean to say that these dynamos correspond to a pure “VAC”

(Viscous-Archemedian-Coriolis) balance. Other terms, such as inertial effects or Lorentz

force, obviously affect the solution. The second state (FM), originally highlighted by

Kutzner & Christensen (2002), corresponds to a state in which inertial forces became

strong enough so that the Rossby radius became comparable with the convection length

scale. In this state the dipolar component no longer dominates the solution, and the

field is referred to as multipolar. The third state (SD), introduced by Dormy (2016), is

characterised by a runaway field growth from the weak state, due to a cusp catastrophe

in the bifurcation diagram. This state appears to correspond to the magnetostrophic

force balance anticipated in the Earth’s core. Of course, viscous effects, and inertial

effects are still present, but they do not enter the leading order balance.

As the co-existence of the weak and the strong-dipolar states for a given set of

parameters (bistability) is associated with the occurence of a fold in the bifurcation
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diagram due to a cusp catastrophe, some models obtained at values of Pm = E/Eη

below the appearance of this catastrophe will necessarily share some properties of the

strong-dipolar state.

The strong-field state can only be achieved in numerical models so far by adopting

a large value of Pm = E/Eη . This is only due to computational limitations, and this

ratio can be decreased, following a distinguished limit as advocated in Dormy (2016).

Key issues remain, such as: whether dynamo action can be observed for Ra/Rac
lower than unity. This analytical prediction on the strong-field branch has so far never

been reproduced in numerical models – whether the point at which the cusp catastrophe

occurs indeed decreases to lower values of Pm = E/Eη as E is decreased – whether

a transition from the strong-dipolar state to the fluctuating-multipolar state can be

observed for larger forcing. Further studies will undoubtably be useful to address such

open issues.

Appendix A. Numerical data
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Table A1. Direct Numerical Simulations performed in the strong-dipolar state.

R̃a Nu `uvort `uCA06 `upeak `B Rm Λ EK/EM fν
E = 3× 10−4 Eη = 2.50× 10−5 q = 12

1800 1.50 0.0696 0.4760 0.7854 0.0817 167 11.32 0.0312 0.34

2100 1.60 0.0700 − − 0.0733 205 12.70 0.0410 0.35

2400 1.68 0.0674 0.4586 0.7854 0.0712 228 15.00 0.0433 0.37

2700 1.85 0.0647 0.4425 0.7854 0.0648 265 17.32 0.0503 0.38

3000 1.92 0.0651 0.3653 1.0472 0.0617 300 18.22 0.0617 0.40

3300 2.04 0.0638 0.3530 1.0472 0.0584 330 19.92 0.0691 0.41

3840 2.23 0.0622 0.3653 0.7854 0.0526 389 21.35 0.0900 0.44

E = 3× 10−4 Eη = 1.67× 10−5 q = 18

1890 1.23 − 0.4987 − − 145 6.60 0.0262 1.00

2250 1.38 − 0.4553 − − 207 12.00 0.0289 1.00

3150 1.55 0.0655 − − 0.0690 285 22.50 0.0295 0.37

3600 1.71 0.0648 0.4189 − 0.0595 348 23.60 0.0428 0.39

4050 1.84 0.0632 − − 0.0555 396 27.27 0.0479 0.40

4500 1.93 0.0622 0.3977 0.7854 0.0533 438 30.35 0.0527 0.41

E = 1× 10−4 Eη = 8.33× 10−6 q = 12

2160 1.45 0.0528 0.3927 0.6283 0.0711 205 10.50 0.0165 0.26

2400 1.60 0.0508 − − 0.0671 240 13.72 0.0175 0.27

2640 1.76 0.0429 − − 0.0620 270 16.25 0.0148 0.27

2880 1.83 0.0487 0.3452 0.6283 0.0603 298 18.20 0.0206 0.28

3300 1.95 0.0478 0.3173 0.7854 0.0564 341 20.35 0.0248 0.29

3840 2.21 0.0455 0.2964 0.6283 0.0502 422 23.05 0.0319 0.32

E = 3× 10−5 Eη = 3.00× 10−6 q = 10

3000 1.81 0.0362 0.2732 0.6283 0.0496 335 11.25 0.0148 0.22

3600 2.13 0.0350 0.2493 0.6283 0.0474 394 17.60 0.0136 0.20

4200 2.40 0.0332 0.2212 0.6283 0.0467 455 24.40 0.0134 0.21

E = 1× 10−5 Eη = 2.00× 10−6 q = 5

1800 2.00 0.0363 0.2513 − 0.0638 198 8.20 0.0049 0.07

2000 2.17 0.0267 0.2513 − 0.0632 211 10.00 0.0044 0.11

E = 1× 10−5 Eη = 1.43× 10−6 q = 7

2310 1.90 0.0327 0.2474 − 0.0579 246 10.80 0.0040 0.08

2520 2.12 0.0294 0.2310 − 0.0546 285 12.75 0.0046 0.10

2800 2.30 0.0265 0.2137 − 0.0518 320 14.50 0.0051 0.12
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