
HAL Id: hal-02267727
https://hal.science/hal-02267727

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multicore Systems – Challenges for the Real-Time
Software Developer

Fridtjof Siebert

To cite this version:
Fridtjof Siebert. Multicore Systems – Challenges for the Real-Time Software Developer. ERTS2 2010,
Embedded Real Time Software & Systems, May 2010, Toulouse, France. �hal-02267727�

https://hal.science/hal-02267727
https://hal.archives-ouvertes.fr


Multicore Systems – Challenges
for the Real-Time Software Developer

Dr. Fridtjof Siebert
aicas GmbH

Haid-und-Neu-Str. 18
76131 Karlsruhe, Germany

siebert@aicas.com

Abstract
Multicore systems have become the norm for desktop
computer systems. The percentage of multicore sys-
tems in the embedded domain is still marginal, but
growing at an incredible pace such that multicore will
become the norm in the embedded area as well. How-
ever, embedded systems have additional requirements
with respect to safety, reliability, and real-time be-
haviour. The use of parallel multicore systems intro-
duces new challenges to the embedded systems devel-
oper who has to fulfil these requirements when devel-
oping new software or porting existing code to multi-
core systems.

This paper gives an overview over typical problems
that arise with the use of multicore systems. Unfortu-
nately, a multicore system in many cases does not be-
have the same as a single core system with multithread-
ing. These differences may result in severe program
errors. A good understanding of the sources of these
errors is required.

It will be explained how problems on multicore sys-
tems can be avoided. Mechanisms present in differ-
ent programming languages such as C/C++ and Java
will be presented. An important role is played by the
memory model provided by the language implemen-
tation and how this may manifest in false program be-
haviour. The memory model permits different compiler
and CPU optimisation on atomic and non-atomic op-
erations, and allow different semantics of the volatile
modifier.

The use of multicore systems may have very sur-
prising negative effects on performance. The paper
describes these effects and how they can be avoided
by avoiding synchronization or using lock-free algo-
rithms. The implications that come from the real-time
requirements on these techniques will be taken into
special account.

Categories and Subject Descriptors C.3 [Computer
Systems Organization]: SPECIAL-PURPOSE AND
APPLICATION-BASED SYSTEMS—Real-time and
embedded systems; D.3.3 [Software]: PROGRAM-
MING LANGUAGES—Language Constructs and Fea-
tures; D.4.7 [Software]: OPERATING SYSTEMS—
Organization and Design: Real-time systems and em-
bedded systems

General Terms algorithms, languages, performance,
reliability

Keywords multicore, parallel, concurrent, real-time,
Java, memory

1. Introduction
The emergence of multicore computer architectures
will have a profound effect on the software develop-
ment process and the implementation of programming
languages. With multicore systems, parallel systems
become the norm even for low-end computers such as
embedded controllers.

1.1 Typical problems
The typical problem on multicore systems arise from
missing synchronization primitives. The basic syn-
chronization primitives available are locks (mutexes,
semaphores) and compiler hints such as the volatile
flag.

1.1.1 Synchronization
As a very simple initial example (in C or Java), I
take the code from figure 1 which declares a counter
variable and a routine to increment it.

Assume that the routine increment() is used concur-
rently by different threads. Incrementing an int using
the post-fix ++ operation is not atomic, so we have a
race condition in this code, concurrently executed calls
to increment() may result in some increments getting



1: int counter;
2:
3: void increment()
4: {
5: counter++;
6: }

Figure 1. Non-synchronized code to increment a
counter variable

missed. However, it may well be that this code never
showed any problems on a single core system.

Assume that increment() is called about 100 times
every second after one of several possible events oc-
curred. On a single-CPU system, the code may work
fine all of the time: If all events are handled by threads
of the same priority the code will not be preempted and
the race condition here is merely theoretical.

On a two CPU system, the event handlers may exe-
cute concurrently. Assuming that increment() requires
100 cycles and we run at 500MHz, the likelihood of a
conflict is about 10% each second. If increment() was
called 1000 times per second, the likelihood of failure
within one second is 99.99%!

Fixing this problem is easy, add synchronization as
in figure 2 (in Java).

1: int counter;
2:
3: synchronized void increment()
4: {
5: counter++;
6: }

Figure 2. Synchronized code to increment a counter
variable

The overhead required for the synchronization is
relatively low, and all the problems described above are
fixed. In Java, it has therefore become practice to add
synchronized keywords generously whenever multiple
threads may simultaneously access modifiable data.

1.2 Theoretical Limits
The performance to be gained on multicore systems by
parallel execution has an important theoretical bound
defined by Amdahl’s law [2]. It is plain and simple, you
gain only on the sections of the application that can be
parallelized, sequential code does not profit from par-
allel CPUs. Unfortunately, if the number of CPUs in-
creases, the remaining sequential code becomes more
and more dominant, such that, e.g., having only 25%
of sequential code will limit the performance gain on
a multicore system to a factor of four, no matter how
many CPUs are available.

However, this paper does not address Amdahl’s
law, but addresses issues of inter-thread communica-
tion that result in a situation that is much worse in
practice: If not designed well and correctly, thread in-
teractions result in failures or severe performance bot-
tlenecks that are much worse than what Amdahl’s law
would predict.

1.3 Memory Model
The basis for software development on a multicore sys-
tem (and even on a multi-threaded system running on a
single core) is the memory model defined in the pro-
gramming language. The memory model defines the
semantics that parallel accesses to memory location
have, and the diversions from straight sequential se-
mantics that the compiler and the CPU implementation
is allowed to make. The memory model is therefore
fundamental for the development of applications with
a well defined behaviour.

Java is very advanced in this respect as the Java
community early on discovered the importance of the
memory model and the flaws of the original specifi-
cation [4], to come up with a robust memory model
[3] the developer can rely on. The C++ programming
languages is catching up by also clarifying its mem-
ory model [1], but the C++ community’s approach is
more relaxed requiring more care by the developer.
The memory model of the C programming language
is undefined for multi-threaded applications, which al-
lows the largest number of compiler optimisations, but
it makes this language unsuitable for the development
of multi-threaded code. In particular with the advent
of more and more multicore systems, the undefined se-
mantics in C render this language a major risk for the
development of safety-critical applications.

The main differences between these memory mod-
els will be explained below in this paper.

2. Correctness on Multicore Systems
Code that was developed for single CPUs and that was
verified and tested extensively on single CPU systems
may be incorrect on a multicore system. Even though a
single CPU system uses multi-threading that gives the
illusion to the software developer that several CPUs are
present, the run-time semantics on multicore systems
are significantly different and allow for interleaving of
code execution that is impossible on a single core and
that can cause fatal failure when moving single-core
code to a multicore system.

Figure 3 shows a simple code sequence that runs
correctly on a single CPU system, but that may fail on
a multicore system. This example uses two real-time
threads that perform a high- and a low-priority task reg-
ularly. This code was developed to run on a real-time



1: volatile int index;
2: byte[] data;
3:
4: void highPriTask()
5: {
6: if (index >= 0)
7: {
8: data[index] = readData();
9: }
10: }
11:
12: void lowPriTask()
13: {
14: if (enabled())
15: {
16: index = currentIndex();
17: }
18: else
19: {
20: index = -10000;
21: }
22: }

Figure 3. A high- and a low-priority task that interact
correctly on a single-core, but that can cause a crash
on a multicore since the high priority task may be
preempted by the low priority task

system with preemptible fixed-priority scheduling, i.e.,
the low priority task may always be preempted by the
high priority task, while the high priority task will al-
ways complete without being preempted by the low
priority task.

These two tasks communicate via a shared variable
index that identifies a data slot to be read by the high
priority task. A negative value for index indicates that
no data should be read. The high priority task reads
index twice, first to check whether it is non-negative,
and, in case this test was successful. to write the read
data into the slot referred to by index. This works
perfectly on a single CPU system since the low priority
task cannot modify index once the high priority task
has started execution.

However, on a multicore system, these two tasks
may actually run in parallel on different CPUs resulting
in the execution interleaving shown in Figure 4. The
low priority task may modify the value of index at
any point during the execution of the high priority task
resulting in using a negative array index.

The problem with this kind of code is that even very
extensive testing might not be sufficient to discover
these kinds of problems. An in-depth review of single-
CPU code is required to ensure that it runs properly on
multicore systems.

The situation becomes worse when the original
code was already poorly designed and contains bugs.
Imagine the two tasks from this example run at the

CPU 1 (highPriTask): CPU 2 (lowPriTask):
1: if (enabled())
2: if (index >= 0)
3: index = -10000;
4: data[index] = readData();

Figure 4. Possible interleaving of example from Fig-
ure 3 that results using the illegal array index -10000.

same priority. The application contains a race condi-
tions that may result in failures during run-time on a
single core systems. However, these failures are very
unlikely since they may only occur in case of a thread
switch right after the first time index was read.

On a multicore system, such a thread switch is not
required, the two tasks will just naturally be assigned to
different CPUs by the OS such that many more possi-
ble interleavings of memory accesses will occur at run
time. This means that race conditions that may exists in
multi-threaded software, but that never manifested in
run-time failure on a single core systems may become
orders of magnitude more likely to result in application
failure on a multicore.

3. Performance on Multicore Systems
When moving a multi-threaded software system from a
single core to a multicore platform, one would hope to
see an increase in performance due to the possibility
to run several threads in parallel on different CPUs,
compared to being limited to one thread at each point
in time on a single CPU system.

Unfortunately, instead of a performance increase,
the result of moving to multicore is a severe perfor-
mance decrease in many cases. The reason for this lies
in different thread communication patterns that may
occur on parallel systems.

Figure 5 illustrates a piece of real-time code that
performs well on a single-CPU system. A low priority
task regularly checks a shared variable index that is
occasionally updated by a high priority task. To avoid
race conditions, all accesses to the shared variable are
synchronized using a Java monitor.

When running this code on a single CPU system,
the high priority task may preempt the low priority task
at any time. If the high priority task is unlucky, this pre-
emption will occur while the low priority task is within
its synchronized block. Then, the high priority task will
have to wait for the low priority task to leave that sec-
tion the first time the high priority task enters the same
lock. Standard priority inheritance techniques ensure
that this happens in bounded time. On any subsequent
iterations of the loop in the high priority task, no syn-
chronization is required: The low priority task cannot



1: int index;
2: byte[] data;
3:
4: void highPriTask()
5: {
6: while (index < 10000)
7: {
8: synchronized (data)
9: {
10: data[index] = readData();
11: index++;
12: }
13: }
14: }
15:
16: void lowPriTask()
17: {
18: int lastIndex;
19: while (true)
20: {
21: synchronized (data)
22: {
23: if (lastIndex != index)
24: {
25: lastIndex = index;
26: updateIndex(index);
27: }
28: }
29: }
30: }

Figure 5. Two communicating threads that perform
well on a single CPU, but that may cause a severe
slowdown in the high priority thread on a multicore
system

run and re-acquire the lock such that no further block-
ing of the high priority task will occur.

On a single core, there is therefore very little inter-
thread communication in this application. The be-
haviour is shown in Figure 6.

When running on a multi core, however, the high
priority task can see an extreme slowdown as shown in
Figure 7. In this case, the low priority thread can run
in parallel to the high priority thread, such that it can
re-acquire the lock again and again, forcing the high
priority thread to block repeatedly.

4. The Memory Models in Java, C++ and C
To understand well what kind of synchronization mech-
anism are required in the code, the developer of parallel
software first needs to understand the memory model
of the underlying programming language that is imple-
mented by the compiler and run-time system in use.
The memory model must allow for sufficient compiler
and hardware optimisations, while it also must give the
developer a good understanding of how the execution
environment may execute the code.

Figure 6. Locking in the example from Figure 5 be-
tween a low-priority and a high-priority thread causes
little thread interaction on a single core.

Figure 7. Locking in the example from Figure 5 be-
tween a low-priority and a high-priority thread causes
extreme slowdown for the high priority thread on a
multicore.

Java was the first mainstream programming lan-
guage for which a reliable memory model was de-
fined [3, 6, 5]. Since this language has built-in support
for threads and synchronization mechanisms, a clear
specification of the behaviour is required. The C++
community is currently working on their own memory
model [1], based on the Java approach, but with impor-
tant relaxations making execution of C++ software less
predictable.

For the C language, the language specification does
not define the memory model at all. Consequently,
only single-threaded applications can be written safely
in C. For multi-threaded applications, the developer
must understand the particular C compiler in use well
enough to know what code this compiler will generate
and possibly include processor-specific memory fences
manually into the code.



The memory model is a contract between the hard-
ware, compiler and the developers. It describes the le-
gal behaviours of multi-threaded code with respect to
shared memory. This is the basis to reason about multi-
threaded programs, to give security guarantees and to
allow optimisations in the compiler.

4.1 The Java memory model
An important part of the Java memory model is the def-
inition of so-called ordering operations. These ordering
operations are entering or exiting synchronized blocks
and accesses to volatile fields. The Java memory model
permits certain reordering of memory accesses, but it is
very strict on the reordering over ordering operations.
Finally, final fields require specific handling in the Java
memory model

The following subsection will describe the aspects
of the memory model in more detail.

4.1.1 Reordering
The Java memory model allows compilers to reorder
independent statements. It in particular allows optimi-
sations that are

• trace preserving, i.e. result in the same memory
access patterns, e.g.

if (r == 1)
x = r;

else
x = 1;

can be replaced by

x = 1;

• removal of irrelevant reads
• memory access reordering, e.g.,

r1 = x; r2 = y; <=> r2 = y; r1 = x;
x = r1; y = r2; <=> y = r2; x = r1;
r1 = x; y = r2; <=> y = r2; r1 = x;

• removal of redundant read after write, e.g.,

x = r1;
r2 = x;

can be replaced by

x = r1;
r2 = r1;

• removal of redundant reads, e.g.,

r1 = x;
r2 = x;

can be replaced by

r1 = x;
r2 = r2;

• removal of redundant write before write, e.g.,

x = r1;
x = r2;

can be replaced by

x = r2;

Not allowed are the following modifications

• additions of irrelevant reads
• removal of redundant writes after read, e.g.,

r1 = x;
x = r1;

can not be replaced by

r1 = x;

• moving memory accesses into a synchronized sec-
tion, e.g.,

x1 = r1; r2 = y1;
synchronized (o)
{
...

}
x2 = r3; r2 = y2;

can not be replaced by

synchronized (o)
{
x1 = r1; r2 = y1;
...
x2 = r3; r2 = y2;

}

4.1.2 volatile fields and synchronization
Entering a synchronized block or reading a volatile
field ensures that all reads of shared memory are com-
pleted before the synchronization operation is per-
formed. Symmetrically, leaving a synchronized block
or writing a volatile field ensures that all writes have
been performed before the synchronization operation
is performed.

The memory model guarantees that certain mem-
ory accesses will not be moved over an ordering op-
eration by the compiler or the underlying hardware. In
particular, no memory reads from shared memory that



occur before entering a synchronized block or reading
a volatile field will be performed after this ordering
operation. Symmetrically, all memory writes to shared
memory that occur before exiting a synchronized block
or writing a volatile field will become visible to other
threads before executing the ordering operation.

4.1.3 final fields
A special treatment of final fields is required by the
Java memory model. If an object’s constructor ini-
tialises a final field before the object reference is
handed over to other threads, it is guaranteed that this
initialisation becomes visible to other threads before
they can access this field, even in the absence of any
synchronization mechanisms.

4.2 The C++ memory model
The memory model used for C++ is more generous
when it comes to permitted optimisations by the com-
piler. This flexibility for the compiler comes at the cost
of loss of predictability: Unlike Java, a C++ application
with data races has an undefined behaviour. It there-
fore lies in the responsibility of the developer to avoid
all race-conditions or to have an in-depth knowledge
about the compiler.

5. Lock-free algorithms – the solution?
Lock-free algorithms avoid the use of high-level syn-
chronization mechanisms such as locks and use more
primitive operations such as compare-and-swap (CAS)
instead. A CAS is an atomic operation with the seman-
tics shown in Figure 8.

1: CAS(VAR var,expected,new)
2: {
3: word result;
4: atomic
5: {
6: result = var;
7: if (result == expected)
8: {
9: var = new;
10: }
11: }
12: return result;
13: }

Figure 8. Semantics of CAS as used in this paper

The use of lock-free algorithms may help to over-
come the performance problems that explicit synchro-
nization introduces. Coming back to the simple exam-
ple from figure 1 that increments a counter: This code
can be made thread safe through usage of lock free op-
erations such as compare-and-swap (CAS) as shown in
figure 9.

1: volatile int counter;
2:
3: void increment()
4: {
5: int old, new, result;
6: do
7: {
8: old = counter;
9: new = old + 1;
10: CAS(counter,old,new,result);
11: }
12: while (old != result);
13: }

Figure 9. Use of Compare-And-Swap to increment a
counter variable

However, this code based on CAS is difficult to un-
derstand, even for this very simple case. More complex
algorithms using such lock-free mechanisms quickly
become extremely difficult to develop and practically
impossible to maintain. It is therefore a good idea to
restrict the use of lock-free algorithms to individu-
ally developed and thoroughly tested libraries. In the
case of Java, the package java.util.concurrent provides
such library code. Figure 10 illustrates how a lock free
counter can be implemented using class AtomicInteger
from this package.

1: AtomicInteger counter = new AtomicInteger();
2:
3: void increment()
4: {
5: counter.incrementAndGet();
6: }

Figure 10. Use of lock-free library code to increment
a counter variable

When developing real-time code, it is required that
we can give reasonable worst-case execution time
bounds for all time-critical code. However, the use of
a CAS instruction typically requires a possibly infinite
number of retries. E.g., for the CAS that is executed
in the loop shown in figure 9 it is difficult to find an
upper bound on the number of iterations of this loop.
Therefore, this code cannot be used in an environment
that requires strict timing bounds.

The following sub-sections explain under which
conditions CAS-based lock-free code can be used even
for time-critical tasks.

5.1 Compare-And-Swap for One-Way State
Changes

An application may make use of state variables whose
value can change only in one specific direction, i.e.,
if the current state is A, the state variable can only be



changed to B. A phase change from A to B may be
attempted by several CPUs in parallel using compare-
and-swap. Only one CPU will succeed with this oper-
ation. However, the failed CPUs do not need to retry
the CAS since the operation failed because some other
CPU made exactly the state change that the failed
CPUs attempted to make. In contrast, a CAS in the
general case can fail and require one or several re-
tries in case another CPU in parallel writes the same
word. One-way state changes do not require a retry
even when performed in parallel.

Care is needed to ensure that a CAS on a state
change does not fail due to a cycle of states (the ABA
problem): e.g., imagine CPU1 attempts to change the
state from A to B and this unlucky CPU is so slow (it
may be pre-empted by the OS to perform some com-
pletely different task) that another CPU2 will perform
the state change to B, will finish phases B, C, D, etc.
and finally put the system back into phase A. If now
CPU1 will execute its compare-and-swap, it will per-
form the state change to B even if the newly started
phase A is not complete yet. To solve this, for any such
cycles in state changes, it has to be ensured that at some
point during the cycle, no CPU is in the middle of at-
tempting a state change.

In general, a CAS for a one-way state change can be
used in a real-time system straightforwardly, a worst-
case execution time can be found since no retries are
needed.

5.2 Compare-And-Swap with Retry
Less useful for real-time systems are CAS-loops that
retry the CAS operation in case it failed. This approach
is sufficient for non-real-time systems that are opti-
mised for average throughput, but not being able to
limit the number of CAS-retries is not acceptable in
a real-time system.

The number of CAS-loop iterations can, however,
be limited to n if the number of CPUs is limited by
n and the number of CPU cycles spent in between
two successive executions of such a loop is at least
n-1 times larger than the time required for one CAS-
loop iteration. The reason for this is that if a CAS
failed on one CPU, a competing CAS on another CPU
must have been successful. Hence, this other CPU will
then perform work outside the CAS-loop. The same
will happen for each following iteration with a failing
CAS. After n-1 failed CAS-loops, all other CPUs will
be in the CAS-free code section and the nth CAS is
guaranteed to succeed1.

1 On real systems, determining the precise time spent in the loop is
more complex, including interrupts or cache effects. Nevertheless,
using a large enough code sequence between two successive CAS-

In consequence, a CAS with a retry-loop is only us-
able in a real-time system if the CAS-free code section
after the CAS-loop can be made large enough. Ideally,
the length of the CAS-free part should be configurable
by a run-time constant to permit scaling for arbitrary
numbers of CPUs.

6. Conclusions
The upcoming multicore systems have a deep impact
on the software development for real-time and embed-
ded systems. It is not possible to port existing single-
processor code to a multicore system without thorough
analysis of the code. In particular real-time software
may show failure or severe performance degradation
as a result of the move to multicore systems.

A thorough understanding of the memory model
provided by the programming language is required for
the development of multi-threaded software that should
benefit from multicores. Java currently provides the
most reliable memory model, while the C++ commu-
nity is currently working on a less strict model. C does
not give any guarantees on the memory model and
multi-threaded execution.

The use of lock-free algorithms may solve some im-
portant performance issues. However, the techniques
are extremely complex and require skilled personnel
and careful engineering to an extend that lock free al-
gorithms will likely remain the realm of a few highly
specialised developers.

An application architecture that avoids most of
these problems while benefiting from multicore sys-
tems would try to be parallel at the large scale: Large
independent code sections that may run in parallel will
not suffer from problems related to synchronization
or inter-thread communication. The goal has to be to
design applications this way.

Acknowledgement
This work was partially funded by the European Com-
mission’s 7th framework program’s JEOPARD project,
#216682.

References
[1] Hans-J. Boehm and Sarita V. Adve. Foundations of the c++

concurrency memory model. In PLDI ’08: Proceedings of the
2008 ACM SIGPLAN conference on Programming language
design and implementation, pages 68–78, New York, NY, USA,
2008. ACM.

[2] Mark D. Hill and Michael R. Marty. Amdahl’s law in the
multicore era. Computer, 41(7):33–38, 2008.

[3] Jeremy Manson, William Pugh, and Sarita V. Adve. The java
memory model. SIGPLAN Not., 40(1):378–391, 2005.

loops can be used to reduce the probability of exceeding n iterations
to an arbitrarily low value.



[4] William Pugh. The java memory model is fatally flawed.
Concurrency - Practice and Experience, 12(6):445–455, 2000.

[5] Jaroslav Ševčı́k. The java memory model (tutorial). September
2009.

[6] Jaroslav Ševčı́k and David Aspinall. On validity of pro-
gram transformations in the java memory model. In ECOOP
’08: Proceedings of the 22nd European conference on Object-
Oriented Programming, pages 27–51, Berlin, Heidelberg,
2008. Springer-Verlag.


