
HAL Id: hal-02267720
https://hal.science/hal-02267720v1

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Avionic Software Development with TOPCASED SAM
Pierre Gaufillet, Sébastien Gabel

To cite this version:
Pierre Gaufillet, Sébastien Gabel. Avionic Software Development with TOPCASED SAM. ERTS2
2010, Embedded Real Time Software & Systems, May 2010, Toulouse, France. �hal-02267720�

https://hal.science/hal-02267720v1
https://hal.archives-ouvertes.fr

Avionic Software Development with TOPCASED SAM
A. Pierre GAUFILLET1, B. Sébastien GABEL 2

1: Airbus Operations S.A.S, M8621, 316 route de Bayonne, 31060 TOULOUSE Cedex 9

2: CS Systèmes d’Information, Rue Brindejonc des Moulinais, BP 15872, 31506 Toulouse Cedex 05, FRANCE

Abstract: SAM, a graphical language dedicated to
functional split up activities, has been introduced in
several pilot projects at Airbus to support software
specification. This article presents the needs that led
to its development, the main components of its
toolset and the conclusions after a few months of
usage in an industrial context.

Keywords: models, SAM, Topcased, avionics,
requirements, verification.

1. Airbus avionics development cycle

The development process of avionics equipment at
Airbus follows a classical V cycle (see Figure 1).
System engineers produce functional requirements
documents that are analysed by avionic equipment
teams. These requirements are then allocated to
hardware or software subsets.

Let's focus on the phase of software specification in
this process: the first operation of the software
specifiers consists in defining hierarchically a
functional architecture organizing the answer to the
upstream requirements. Beyond this organization,
the data and control flows between the functions
need to be identified.

Figure 1 - V model

Once this stage has been reasonably completed, the
terminal functions of this functional split up are
allocated to industrial subsets – these subsets are
defined depending on various industrial constraints
like teamwork, industrial partnerships, physical
partition, re-use of existing components, segregation

of different level of criticality, etc. Each subset is then
exported to a specific team who will refine the
functional split up until the required level of details.
This refinement will be the basis of the subsequent
technical design.

2. Software specification

To perform these specification stages, only a few
abstractions are necessary:

2.1 Requirements

To ensure that the applications fulfil the needs of the
customer, development choices have to be tracked
step by step. Of course, those choices are more or
less detailed depending on the considered stage of
development, but they all cover one or more
upstream needs, and will be covered by one or more
lower level choices until the implementation stage.
These customer needs and development choices
are called requirements. They may be described
informally – natural language, free-hand schemas –
or formally – abstract code, state machines, activities
flow.

2.2 Functions

Fundamental building block of these specifications,
functions identifies behavioral sets featuring inputs
and outputs. Functions may be decomposed in
smaller functions, to ensure that the complexity of
the description is limited to the strict minimum for a
given level of description. Terminal function’s
behavior is specified by requirements.

2.3 Flows

Flows are a side effect of the functional split up: they
bridge the gap between the functions that have been
defined, ensuring the communication of events and
data between them. Flows require a special care, as
they will lead more or less directly to define the API
of the applications.

3. Modeling

3.1 SAM history

To improve maintainability and automatize as much
operations as possible, we chose years ago to follow
a MDE approach to support the specification stages.

Page 1/6

It led us to derive a simple modeling language from
the SART concepts called SAM – for Structured
Analysis Model. SAM has been designed to cover
precisely the concepts seen in section 2, and was
initially supported by Sildex, a tool based on the
SIGNAL language and developed by the company
Geensys. As SAM gathers only a mere 50 concepts
compared to hundreds in UML, it was a good
candidate in Topcased 1 to develop a complete tool
chain as required by our process. As most of
Topcased tools, SAM ones have been themselves
developed using MDE paradigm: the graphical editor
for example is based on an ECORE meta-model and
has been partially generated.

When Topcased 2 was published in 2008, SAM core
tools were mature enough to be deployed on pilot
projects. We therefore began to add typically
industrial new features and to refine the existing
components with the pilot project teams. This
collaboration brought a lot of improvements and
some brand new features like requirement
management in SAM models.

3.2 SAM concepts

SAM defines a limited – but sufficient – number of
concepts in order to facilitate learning and
understanding the models produced. The current
version, SAM 1.2, includes 40 concepts, and the
version to come, SAM 1.3, will grow up to 48
concepts. Only SAM 1.2 will be covered here (SAM
1.3 extends the hierarchical approach to flows
description).

3.2.1 Hierarchical approach

SAM, accordingly to the software specification needs
described in section 2, defines a hierarchical
architecture of functions. The software – or
sometimes its environment - being designed is
modeled as the root function. It is then successively
decomposed into several sub-functions until the
expected degree of detail is reached.

There are 2 kinds of function:

System: it represents a function that may be
decomposed into smaller functions or not, with input
and output interfaces (ports Cf. §3.2.2) connected
via flows.
Automaton: closely related to Mealy state machines,
Automata are a convenient mean to describe
formally deterministic behaviors and therefore
requirements that generate an output based on their
current state and input. Of course, Automata are
leaves of SAM models, and can own control, data
and message input ports and control output ports.
Depending on the destination of an Automaton
(documentation, code / test plans / formal properties
generation, model checking), data and message
input ports may be forbidden.

Figure 2 : System and Automaton with flows

 3.2.2 System children

SAM also includes the following detailed features
that may be contained by a System:

Port: define input and output interfaces of the
different components. Ports can be typed as data (a
typed value), control (an event) or message (both
typed value and event) to propagate a piece of
information.

Flow: connect two ports of the same type and define
communication means and synchronisation methods
for systems and automata. This notion is oriented.

DataStorage: this component, once connected on a
data flow, means that this flow is persistent: i.e. data
are kept from one system’s life phase to another.

Figure 3 : DataStorage figure

Broadcast, Merge and Split : these components allow
to multiply the number of flow producers or
consumers.

Figure 4 : Broadcast, Merge and Split figures

Composition and Decomposition: used to define
structured data. The first one allows gathering
several data flows, while the second extracts data
flows from a composite flow.

Figure 5 : Composition and Decomposition

3.2.3 Automaton children

Automata are build with 2 main families of elements:

Page 2/6

States: they represents stable situation of the
Automaton. Macro states are used to factorise
output transitions of several states. The initial state –
only one for a given Automaton – defines as it is
clear from its name the initial state of the Automaton.

Transition: each transition, connecting 2 states, has
3 attributes:

 A boolean expression including input port; this
guard enunciates the firing condition. If the
condition is let empty, condition is fired anyway.

 A set of output ports that define precisely the
events emitted when the transition is fired.

 A priority represented by a natural value.
Priorities are required to select which transition
is to be fired when several are possible.

Figure 6 : Automaton diagram

4. Topcased SAM tools

4.1 Framework - EMP features

Before going further, it is essential to underline that
the entire Topcased platform closely depends on
most of the features provided by the Eclipse
Modeling Project2. EMP focuses on the evolution
and promotion of model based development
technologies within the Eclipse community. It
provides a unified set of modeling frameworks,
tooling, and standards implementations.

For instance, Topcased is built around Eclipse
Modeling Framework. EMF is a modeling framework
and code generation facility for building tools and
other applications based on a structured data model.
Numerous Eclipse modeling components are
chained within Topcased applications: MDT OCL for
static semantics checking, MDT UML for editing UML
models, M2M (ATL) for defining import/export
facilities, M2T (Acceleo, Jet, XPand) for generating
documentation, etc.

4.2 Graphical Editor

Partially generated few years ago thanks to the
Topcased editor generator, this graphical editor is
nowadays maintained manually when modifications
are required or when the SAM meta-model evolves.

Figure 7 : System diagram in SAM editor

As in the other Topcased graphical editors, we find
the following layout: a tools palette is located on the
left of the editor area – its content is updated in
accordance with the kind of diagram displayed. The
user may arrange views around the main edit area
according to its needs and work habits.

The Eclipse menu bar gives access to basic
graphical features such as show/hide grid, elements
alignment, snap to geometry, zoom, etc. but also t o
navigation (go to next, previous, parent diagram)
and model verification (EMF and OCL validations).

The SAM properties or the graphical properties of
any model elements can be edited thanks to
traditional views offered by Eclipse (as the Outline or
Property views) or specifically by Topcased. The
Documentation view for example allows
manipulating complex HTML bodies such as
comments or requirement description. It also
enables to associate URL links or external
documents.

Figure 8 : TOPCASED Docmentation View

4.3 Import Sildex legacy models

Of course, almost no tool is introduced into industrial
process without taking care of legacy data. SAM
tools are not an exception in that domain: porting the
existing models from Sildex to SAM was a real
concern.

Page 3/6

For this purpose, a model-to-model transformation
using ATL has been developed and integrated into
TOPCASED. And as history is prone to repetition, a
complete process has been implemented to ensure
the migration of SAM models from each meta-model
version (1.1, 1.1.1, 1.2 and 1.3) to its successor.
That is why today, we are still able to import a Sildex
model into a SAM model conform to the latest SAM
definition.

4.4 Requirements manager

In 2008, a new tool aiming to manage textual
requirements in SAM environment has been
introduced. The goals were to establish links
between textual requirements and model elements,
and to describe how the current requirements are
covering their upstream requirements.

4.4.1 Requirements concepts

Our approach is based on TRAMway. This
component, developed in TOPCASED by Geensys,
defines a meta-model that includes all the
requirements concepts that may be useful in a
modelling environment. TRAMway also provides a
simple traceability solution working on a documents
tree (specification, design, validation plan, test plan,
etc.). An Open Office document parser is provided
with this tool to import requirements, but they may
also be directly injected in a XMI format.

But the TRAMway meta-model was not rich enough
to fully describe the requirements used in avionics
software specification documents. It has to be
extended with new concepts such as requirement
allocation; untraced, problematic and unaffected
relationships requirements; and even requirement
project configuration. With these extensions, a
current requirement references two different
elements: one SAM element and one upstream
requirement.

TRAMway requirements importers are not yet
powerful enough to process complex documentation
formats. But hopefully, Reqtify is able to do it, and
directly generate TRAMway models.

4.4.2 Requirements workflow

So requirements are managed in 3 distinct steps:

 Generate a requirement model from a document
(odt, ods, etc.) or from a Reqtify export,

 Attach the requirement file to a SAM model and
creates requirement links between current
requirements and graphical model elements,
between current requirements and upstream
requirements,

 Export specification documents including
schemas and requirements.

4.4.3 GUI

The requirement manager proposes several tools:

 The upstream view: shows the upstream part
imported in read-only. This tree hierarchy is
structured in documents containing sections
where upstream requirements are stored. A
simple drag and drop operation, from one or a
group of upstream requirements to a graphical
SAM element, will create one or several current
requirements. Upstream requirements appear
with a bold italic font style as soon as they are
covered at least once by a current requirement.

Figure 9 : Upstream Requirement view

 The current view: presents a set of current
requirements and free texts in a tree reflecting
the SAM model itself. Requirements are
organized accordingly to their SAM model
container. For each container, it is possible to
alter the order of requirements and free texts.
The document generator will later respects this
order in each container section.

Figure 10 : Current Requirement view

 Preview: provides a real document generator
limited to raw text. This view allows the user to

Page 4/6

get on the fly a projection of what will be the final
document. The text of this view stays connected
to its predecessors and its content is linked to the
current selection. A double click on a line or a text
block leads to the requirement model element
(synchronized with current view).

Figure 11 : Preview, a step toward the final
document generation

It became clear quite soon that the requirement
manager was not at all specific to SAM. It led us to
study its generalization as a new component. Recent
experimentations done with UML/SysML proved the
interest of this solution. The developments done for
SAM are gradually adapted and migrated to this
generic requirement manager.

4.5 OCL tools

Another need is to verify the consistency of models
at any time during the modeling phase. The OCL
tools offer a transparent integration with all
TOPCASED modelers. Based on MDT OCL, this
component allows writing OCL rules, evaluating
them on models and visualizing the results in a
dedicated form.

About 80 OCL rules have been defined to verify the
static semantics of SAM models. They provide the
end user with information and relevant to help him
fixing his models. These OCL rules have been
integrated into SAM plug-in and are available when
users edit their model in the editor. Users must
nevertheless launch manually the verification thanks
to the corresponding tool bar action: this is not a live
validation but a static one.

The verification results of these rules are notified into
the Eclipse problem view. Corresponding decorators
are displayed on graphical elements to help with
identifying erroneous or incorrect elements. A double
click on a problem sets the selection to the
corresponding element in a diagram or in the Outline
view.

4.6 Team work support

In real life, models soon become so big that several
designers have to work concurrently on them.
Topcased includes a feature supporting such

approach. Once the main model has been initiated, it
is possible to lock and export sub-tree of it. Each
designer then works independently on its parts,
without even needing to access the main model.

Once a designer finished its set of modifications,
Topcased re-import them in the main model and
unlock the corresponding sub-tree. If the interfaces
between the main model and the sub-tree evolved
inconsistently, they are also reconciled semi-
automatically.

4.7 Airbus customisations

Of course, even if they have been designed with
Airbus needs in mind, local customisations are often
needed. To shorten the Time to Desktop of these
customisations, several features have been used:

 Javascript/Python scripting engines: by
providing a script-style API, these engines
allow to implement model to model
transformations (initialisation of the subset
definition from the split up model for
example), to build editing macros for specific
actions. The scripts are easy to deploy and
to launch from the Eclipse GUI.

 Acceleo model to text generators engine:
Acceleo has been used to build quickly data
extractors (flow dictionary preview, upstream
requirements covering status, etc.).

 Gendoc Document generator: with the now
classical template approach of Gendoc, it is
possible to adapt the output format to the
user’s needs with no or very few Java
developments.

Even with these frameworks, customisation remains
a time consuming operation: dozens of scripts and
templates have been developed to tune the
modelling environment for specific needs.

5. Deployment

Functional aspect is not the only important one for a
tool chain: its deployment may also be more or
complex, depending on the need, the platforms, etc.
At Airbus, Topcased components are not deployed in
the standard bundle provided on the web site. To
improve stability and functionalities, they are
packaged in a specific feature that excludes unused
and most experimental features – but a few ones
absolutely. This bundle also includes a few specific
plug-ins – generators, scripts, etc. – and some other
eclipse features useful to our developments – the C
and Java Development Toolkit, several VCS clients,
scripts editors, etc.

This installation is provided for Solaris 8 & 10, Linux
and Windows platforms. Due to the organization of
our department, several deployments are then
produced:

Page 5/6

 A centralized deployment: eclipse is installed
along with all the required features on a
network drive. This is the preferred
installation for internal users using Unix
stations. Of course, a decent network
bandwidth and latency is required to work
this way: a 100Mb/s ethernet LAN is
required.

 A full-featured eclipse archived in a zip file.
To install it, it is only needed to unpack it on
the local disk of the station. This is the
preferred installation for external users
(industrial partners) and windows platform.

Note that in an extended enterprise context, the fact
that this bundle is available under the Eclipse Public
License, an open source license, is a real
advantage. There is therefore no need for specific
licensing/lending/renting contracts.

On the performances side, our platforms are not
equal faced to eclipse and Topcased. Most people
would say that Windows would be the fastest one,
due to the efforts of optimisation that have been
done on the Java virtual machine and because
eclipse is mainly developed on it, but it is not. It
seems that our internal configuration slows down
eclipse a lot: in some situations, eclipse can take
several minutes to get launched! Moreover, some
problems of stability have not been resolved, leading
sometimes to crash completely the system. Solaris
and Linux appear far more robust. Solaris has
decent performances but it is Linux that offer the
best performances (probably due to the more
efficient underlying hardware, a more optimised JVM
and a better X11 server).

6. Conclusion

After a few months of work with this toolset in real
industrial conditions, we can conclude that:

 Topcased SAM now offers a functional tool
chain, covering most user needs for
software specification for models up to (at
least) a few thousands elements.

 The model editor is seen as quite user
friendly, even if for some activities (model
refactoring, HTML edition, etc.) it still can be
improved.

 The required support tools complete it
efficiently: requirements editors, static
semantics verification engine, text / model /
documents generators & scripting engines.

 Test plans and soon formal properties
generations improve greatly the productivity
when the behavior can be described as
Automata.

 The fact that the tools help is integrated is
also seen as a big advantage.

 The lock/unlock approach for teamwork is
still not robust enough and may be also
functionally improved (CDO for example
may be used to allow a finer and smoother
locking grain).

 There are still some performances issues
around large models and with our Windows
platform. These locks are currently
investigated and we hope to overcome them
soon (the latest Topcased releases already
include some related improvements).

In brief, the SAM toolset can now be considered as a
complete and customisable solution for small &
medium size projects. Its remaining flaws
nevertheless have to be fixed before to deploy it to a
larger scale.

8. References
[1] Topcased: http://www.topcased.org

[2] Eclipse Modeling Project:
http://www.eclipse.org/projects/project_summary.php?
projectid=modeling

9. Glossary

CDO : EMF project providing distributed shared model
edition capabilities

DSL: Domain Specific Language

EMF: Eclipse Modeling Framework

EMP: Eclipse Modeling Project

HTML: HyperText Markup Language

M2M: Model-To-Model

M2T: Model-To-text

MDE: Model Driven Engineering

OCL: Object Constraint Language

SAM: Structured Analysis Model

SART: Structured Analysis for Real Time

Topcased: Toolkit in OPen source for Critical Applications
and SystEm Development

UML: Unified Modeling Language

VF: Validation Framework

Page 6/6

http://www.eclipse.org/projects/project_summary.php?projectid=modeling
http://www.eclipse.org/projects/project_summary.php?projectid=modeling
http://www.topcased.org/

