
HAL Id: hal-02267697
https://hal.science/hal-02267697v1

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Taster, a Frama-C plug-in to enforce Coding Standards
David Delmas, Stéphane Duprat, Victoria Moya Lamiel, Julien Signoles

To cite this version:
David Delmas, Stéphane Duprat, Victoria Moya Lamiel, Julien Signoles. Taster, a Frama-C plug-in
to enforce Coding Standards. ERTS2 2010, Embedded Real Time Software & Systems, May 2010,
Toulouse, France. �hal-02267697�

https://hal.science/hal-02267697v1
https://hal.archives-ouvertes.fr


Taster, a Frama-C plug-in to enforce Coding Standards

David Delmas1, Stéphane Duprat2, Victoria Moya Lamiel2, and Julien Signoles3

1 Airbus Operations S.A.S., 316 route de Bayonne, 31060 Toulouse Cedex 9, France, Firstname.Lastname@airbus.com
2 Atos Origin, 6 Impasse Alice Guy, B.P. 43045, 31024 Toulouse Cedex 03, France, Firstname.Lastname@atosorigin.com

3 CEA LIST, Software Safety Labs, PC 94, 91191 Gif-Sur-Yvette Cedex, France, Firstname.Lastname@cea.fr

Résumé Enforcing Coding Standards is part
of the traditional concerns of industrial soft-
ware developments. In this paper, we present
a framework based on the open source Frama-
C platform for easily developing syntactic, typ-
ing (and even some semantic) analyses of C
source code, among which conformance to Cod-
ing Standards. We report on our successful
attempt to develop a Frama-C plug-in named
Taster, in order to replace a commercial, off-
the-shelf, legacy tool in the verification pro-
cess of several Airbus avionics software prod-
ucts. We therefore present the types of cod-
ing rules to be verified, the Frama-C platform
and the Taster plug-in. We also discuss on-
going industrial deployment and qualification
activities.

1 Introduction

In the avionics domain, it is a requirement of the appli-
cable DO-178B/ED-12B international standard to both
define the rules and constraints for the coding process,
and ensure that these standards were followed during
the development of the code. The scope of coding stan-
dards is described in section 11.8 of [1]. These standards
should include:

a. Programming language(s) to be used and/or defined
subset(s). [...]

b. Source Code presentation standards [...].
c. Naming conventions for components, subprograms,

variables, and constants.
d. Conditions and constraints imposed on permitted

coding conventions, such as the degree of coupling
between software components and the complexity of
logical or numerical expressions and rationale for
their use.

Then, section 6.3.4.d of [1] prescribes Reviews and Anal-
yses of the Source Code as a means to check Confor-
mance to standards, especially complexity restrictions
and code constraints that would be consistent with the
system safety objectives.

Section 2 of this paper gives an overview of the
Airbus context, regarding coding standards and veri-
fication of conformance. Next, section 3 presents the
Frama-C platform, and the support it provides for ex-
ternal plug-in development. Then, section 4 describes
the Taster plug-in itself, and how its implementation
makes use of Frama-C facilities. Finally, section 5 dis-
cusses results, prospects and operational deployment.

2 Airbus practice

2.1 C Coding Standards

The coding rules applicable on C avionics programs de-
veloped at Airbus may be classified into three main
categories: syntactic rules, typing rules and semantic
rules.

Syntactic rules address code readability and main-
tainability.

– Formating conventions prescribe the layout and struc-
ture of source and header files, and the naming of
identifiers.

– Langage restrictions limit the set of possible C con-
structs, by forbidding some operators and keywords.
For instance, the “,” operator is prohibited, and the
use of the static keyword is restricted - for testabil-
ity reasons.

– programming guidelines limit the size and complex-
ity of statements and expressions. For instance, the
number of nested control structures in a C function
may not exceed a given upper bound.

Typing rules address program portability and safety.
Such rules mainly define:

– the list of authorized conversions between expres-
sions with different types or type qualifiers. Indeed,
most implicit (and some explicit) conversions be-
tween incompatible types are prohibited. In par-
ticular, conversions between incompatible pointer
types are strictly forbidden. Conversions discard-
ing a const qualifier from a pointer target type are
not permitted either.

– the types or signedness of operands of specific C op-
erators. For instance, arithmetic operators may not
be used on operands of enumerated types, bitwise
shift operators may not be applied to signed quan-
tities, and equality testing between floating-point
numbers is tolerated only in special conditions.

Semantic rules address program safety and security.

– Dataflow-related rules forbid the use of local vari-
ables prior to initialisation, or the assignment of the
loop variable in the body of a for loop statement,
or a local variable to escape its scope through a



2

pointer, or expressions with undefined evaluation
order, and require that all output parameters of
functions (defined at design level and annotated in
prototypes) should be assigned whatever the calling
context.

– Run-time error avoidance-oriented rules provide pro-
gramming guidelines to avoid array access out of
bounds and invalid pointer dereference.

2.2 Verification of conformance

When we decided to start developing Taster, the cod-
ing standards verification process at Airbus could be
described as follows.

Conformance to most syntactic rules was checked
by an in-house scripting-based toolset. This tool is writ-
ten in the Python programming language, and uses gcc4

and GNU cflow5 as utilities.

Conformance to typing rules was checked by a
COTS6 tool. However, we were faced with an obso-
lescence issue. Indeed, this COTS tool only runs on
an obsolete platform, and no evolutive maintenance is
provided. Such a situation cannot be durable in the
avionics domain, where both products and development
workshops have to be maintained over decades, in a
continuous engineering approach allowing for continu-
ous process improvement.

Conformance to all remaining rules was verified
during manual code reviews. Note that the COTS tool
also implements bug-finding heuristics for some of the
dataflow and run-time error-related rules. These heuris-
tics are industrially useful in a code debugging phase;
however, they cannot be used for verification, as they
are unsound (cannot find all bugs). For all these remain-
ing rules, tool support is needed to reduce the cost of
the verification of conformance.

3 The Frama-C platform

3.1 Overview

Frama-C [3] is a framework that allows static analy-
sers, implemented as plug-ins developed in Objective
Caml [9] (OCaml for short), to collaborate towards the
study of a C program [7]. Although it is distributed
as Open Source, Frama-C is very much an industrial
project, both in the size it has already reached7 and in
its intended use for the certification, quality assurance,
and reverse-engineering of industrial code.
4 http://gcc.gnu.org/
5 http://www.gnu.org/software/cflow/
6 commercial, off-the-shelf
7 Between 100 to 300 thousands line of OCaml code, de-

pending on which plug-ins you are counting.

It is being actively co-developed by two French pub-
lic institutions:

– CEA LIST (Software Reliability Laboratory) ;
– INRIA Saclay-̂Ile de France (ProVal team, common

with LRI at Université Paris-Sud).

The developement started within collaborative re-
search projects8 in which Airbus participated. Although
coding standards enforcement is only a very small sub-
set of what may be performed with Frama-C, this is the
first large-scale industrial use implemented at Airbus.

3.2 Architecture

Frama-C is architectured in three different parts (see
Figure 1):

– Cil (C Intermediate Language) [11] extended with
an implementation of a specification language called
ACSL (ANSI/ISO C Specification Language) [2]. This
extended Cil is an intermediate language upon which
Frama-C is based (see Section 3.3).

– Kernel: it provides data structures and operations,
helping developers to deal with the Cil Abstract
Syntax Tree (AST), as well as general-purpose ser-
vices providing a uniform set of features to Frama-C
(see Section 3.4).

– Plug-ins: they perform several analyses or source-
to-source transformations by extending the Frama-
C kernel through several extension points. These
plug-ins can be used by other ones through their
API registered (statically or dynamically) in the
Frama-C kernel (see Section 3.5).

3.3 Extended Cil

Frama-C intends to handle any ANSI/ISO C programs.
For this purpose, it is fully based on Cil [11] which is an
OCaml library that provides a parser (which uses an ex-
ternal customizable C preprocessor) and an AST-level
linker for C code. Cil transforms the initial C files into a
single highly-structured AST featuring a reduced num-
ber of syntactic and conceptual C constructs. That eases
the implementation of C analysers without restricting
the target programs to a strict subset of C.

Cil also provides a toolbox that permits easy analy-
sis and source-to-source transformation of C programs.
For instance, it provides some simple but useful mis-
cellaneous datastructures and operations over the AST
as well as some syntactic analyses like a (syntactic)
call graph computation or generic forward/backward
datafow analysis, which can be used by Frama-C devel-
opers.
8 This work has been partly supported by the French ANR

(Agence Nationale de la Recherche) during the CAT (C
Analysis Toolbox) and U3CAT (Unification of Critical C
Code Analysis Techniques) projects.



3

Fig. 1. Architecture Design

Frama-C extends Cil with an implementation of the
specification language ACSL [2] in order to deal with
formally-specified C programs. Cil is also modified in
order to properly interact with other general services
prodived by Frama-C like the project system (several
analyses performed on several AST in the same ses-
sion) [12] or the uniform way to display messages to
end-users.

3.4 Frama-C Kernel

Frama-C provides several services to handle C programs.
Here we only focus on the two most important ones for
the Taster plug-in.

Typed and Untyped AST Two different trees are
available : the untyped AST and the typed AST.

The untyped AST is very close to the analysed C
code as it is the direct result of the parsing of the
source code. Nevertheless no information about C types
is available in this tree.

On the other side, the typed AST contains more
information about the constructs of the C code, above
all the C types. Such an AST is simpler to manage for

semantic analysers. But it is less close to C code, so
it is more difficult to understand for end-users and to
manage for purely syntactic analysers.

Visitors Frama-C provides inheritable visitor classes
in order to permit easy visiting of the (typed) AST.
It allows to traverse the AST by redefining the default
behaviour of each of its elements.

Although an original visitor was defined by the Cil
library, Frama-C extends it in order to perform copy-
ing or in-place modification of an AST. The Frama-C
visitor also inherits from the Cil one in order to consis-
tently update the internal state of Frama-C itself during
the visit, especially to correctly deal with the project
system.

There is also a visitor dedicated to the untyped
AST.

3.5 Plug-in Development

At the plug-in level, Frama-C is a big library which pro-
motes code reuse and plug-ins collaborations through a
plug-in API database in which each plug-in may invoke
a function of another one.

For this purpose, the platform offers several regis-
tration points to connect a plug-in, implemented in its
own directory, to the platform (see Figure 2 for the
most important ones). By this way, the Frama-C ker-
nel and other plug-ins may execute selected parts of a
plug-in when required. Frama-C provides detailled doc-
umentation on the way to develop a Frama-C plug-in
fully integrated within the platform [13].

Fig. 2. Plug-in Integration

3.6 Value Analysis Plug-in

The Frama-C value analysis plug-in [6] performs a cor-
rect over-approximation of the set of possible values
taken by a variable at a given program point. For this



4

purpose, it uses abstract interpretation techniques [4],
[5].

For a left value or an expression from a specific
statement, the result of the evaluation contains all the
values that this element may have during the execu-
tion any time the point just before (or just after) the
selected statement is reached.

The result of this evaluation can be requested di-
rectly by the user (through the GUI or in batch mode)
or accessed by a custom plug-in through the value anal-
ysis API.

Furthermore some additional functions of the value
analysis API provide to custom plugins information
about the representation of the possible values for a
given code element, so that a custom plug-in may rea-
son entirely in terms of abstract locations, and com-
pletely avoid dealing with the problems of pointers and
aliasing.

There are several types of warning displayed by the
value analysis:

– Division by zero;
– Unspecified logical shift;
– Floating-point alarms;
– Uninitialized variables and dangling pointers;
– Invalid memory accesses;
– Unspecified pointer comparison alarms;
– Conflicting side-effects.

In addition to those warnings, some messages may
warn that the analysis is making an operation likely to
cause a loss of precision, which are only informational
messages.

Several options are available, among them “-slevel”
which makes the analyzer unroll loops or propagate sep-
arately the states that come from the “then” and “else”
branches of a conditional statement. This option makes
the analysis more precise (at the cost of being slower)
for almost every program that can be analyzed.

4 The Taster plug-in

TASTER (Typed Abstract Syntax Tree ExamineR) is
a Frama-C plug-in which allows to verify C source code
complies with a set of given C coding rules. It performs
syntactic and semantic checks on the abstract syntax
tree (AST) and the control flow graph (CFG) provided
by the Cil [11] layer of Frama-C.

For each coding rule, one or several implementations
of the associated check have been fulfilled, depending
on the required verification level.

These checks may be classified into three main cate-
gories: syntactic and typing analyses, bug-finding heuris-
tics and semantic analyses.

4.1 Syntactic Typing analyses

The Taster plug-in defines OCaml classes inheriting from
Frama-C visitors and overloading methods in order to

scan the typed and untyped abstract syntax trees and
to verify coding rules presented in 2.1.

This overload allows the Taster plug-in to traverse
the corresponding AST and perform the required checks.

Most Taster checks are implemented on the typed
AST. However, some syntactic rules refer to the pre-
cise syntax of the original code. Such rules need to be
checked on the untyped AST, using the Cabs module
provided by Cil.

Like Cil and Frama-C, Taster is entirely implemented
in the OCaml programming language, it hence benefits
from OCaml powerful programming features (see Sec-
tion 5.3).

4.2 Bug-finding heuristics

Like typing analyses, these features use Frama-C and
Cil visitors to navigate through ASTs.

However, such features also need to build upon dataflow
information, especially reachability information between
statements. Therefore, Taster’s bug-finding heuristics
gather indirect information from the Cil generated CFG
of the analysed C code. As a matter of fact, most such
analyses boil down to forward and backward searches
through the CFG.

Their actual implementation in Taster consists in a
set of recursive OCaml methods, which make extensive
use of dedicated operations from Cil APIs, especially Cil
operations returning previous or next statements from
a node in the CFG, and operations computing direct
reachability information between distant nodes.

Likewise, Taster’s heuristics are able to hunt for
uninitialised variables or array accesses out of bounds
while walking Eulerian paths [8,10] in the CFG. Note
that part of these heuristics depend on normalised com-
ments in the source code of C function prototypes.

Such normalised source comments are included nei-
ther in the untyped, nor in the typed AST. Therefore,
Taster extracts comments from raw lexing data pro-
vided by the Cabs layer of Cil, which gathers all com-
ments from all source files into a single global array.

4.3 Semantic analyses

Taster implements experimental features of semantic
analyses based on the use of the value analysis plug-in
introduced Section 3.6.

First, the Taster plug-in asks the value plug-in to
perform value analyses from all library functions of the
source code to be analysed. Then, Taster retrieves in-
formation in two ways:

– The first approach is to gather alarms and warnings
emitted by the value analysis that match coding
rule violations;

– The second approach is to read the values computed
for all program variables, directly in the format pro-
vided by the value analysis plug-in.



5

Both ways allow in principle for the proof of ab-
sence of run-time errors, provided stubs or annotations
input enough correct context information. As the value
analysis implements (non relational) static analysis by
abstract interpretation false alarms may be raised.

So far, these functionalities are only used experi-
mentally within Taster for (incomplete) detection of
uninitialised variables, out of bounds array accesses,
and local variables escaping their scope through pointer
dereferences. The detection is said to be incomplete, as
the current version of the Taster plug-in does not re-
trieve all relevant context information.

4.4 Use of Frama-C APIs by Taster

The Cil API of Frama-C is not the only one used by
Taster. For instance, the Globals and Kernel function
modules provide both useful methods and data struc-
tures to handle global variables and function proto-
types.

Fig. 3. Taster’s options on the Frama-C GUI

Among modules used by Taster, one is to quote:

– the Cil utils library provides useful functions to
browse Cil representations of C data structures;

– the Cabs layer of Cil furnishes with structures and
operations to traverse the AST as well as to access
comments from the source;

– the Db and Dynamic databases contains all regis-
tered plug-ins – such as Taster, so that they can be
used by other plug-ins.

Fig. 4. Taster’s warnings in the Frama-C GUI

– the Plugin module allows to register each plug-in.
The plug-in registration allows batch mode users
to view specific plug-in help menus from the gen-
eral -help option of Frama-C, and GUI users to set
specific plug-in options (see Fig. 3) and visualize
Taster plug-in results directly on the Frama-C GUI
(see Fig. 4);

– the Alarms database defines types to represent alarms,
and functions to manipulate them;

– the experimental value analysis-based features make
use of the Location, Db.Value, Relations type
and Cvalue type modules.

5 Results and prospects

Fig. 5 gives information on the overall architecture of
the Taster plug-in, together with some figures on the
size of its components, to be compared with the size of
the Frama-C layers above which they are built9.

The current version implements a set of options
in the tasterParameters component, allowing for 27
distinct analyses:

– ast lint and bib ast lint implement 15 syntactic
and typing checks on the typed ASTs and 5 bug-
finding heuristics on the CFGs provided by the Frama-
C and Cil layers;

– untyped ast lint implements 3 syntactic checks
on the untyped ASTs;

– value ast lint implements 4 experimental seman-
tic analyses, processing outputs from the Frama-C
value analysis plug-in.

5.1 Industrial deployment

During the development of Taster, we have successfully:
9 In our context, we reckon we would have to write about

ten times more lines of code if we were to re-implement
the same features in C.



6

Fig. 5. Components of Taster, and relevant Frama-C layers

– re-implemented in the Taster plug-in all the neces-
sary functionalities of the obsolete COTS tool, as
explained in 2.2;

– implemented new analyses automating the verifica-
tion of conformance to part of the rules that had to
be verified during manual code reviews so far;

– experimented the replacement of the COTS tool
with Frama-C and Taster on two operational avion-
ics projects.

Following this successful experiment, it has been de-
cided that the workshops for conformance to coding
standards of most avionics programs should gradually
migrate from the COTS tool to Taster. This deploy-
ment has already started on some avionics projects.

Consequently, Taster needs to be qualified as a ver-
ification tool wrt. DO-178B. Qualification activities are
planned.

5.2 Industrial viewpoint

From an industrial perspective, the main reasons for the
success of the Taster plug-in are: adaptation to needs,
ease of use, cost-effectiveness, maintainability, evolutiv-
ity and qualifiability.

Adaptation to needs As explained above, Taster has
been tailored to meet Airbus needs exactly. Indeed, it
matches the Airbus internal coding standards precisely,
while focusing on rules for which automation is most
needed. For some rules, it provides several implementa-
tions of checks, allowing for several project-level inter-
pretations of the Airbus standards. For others, it im-
plements parametric analysis options enabling users to
define and enforce local policies tuning some general
Airbus rules.

Ease of use Taster may be run in batch mode, just
like a compiler, with one or several analysis options per



7

coding rule to be enforced. Its integration to Frama-C
makes it also possible to select options and visualise
results on the Frama-C GUI.

Cost-effectiveness Most of the complexity of the Taster
tool is in fact hidden in the open source Frama-C and
Cil layers, which come “for free”, so to speak. As a con-
sequence, the development of the Taster plug-in itself
was conducted within a few person-months.

Maintainability As opposed to the obsolete COTS
tool, we believe there is no risk regarding the maintain-
ability of Taster. Indeed, the open source Frama-C plat-
form is well documented, and developed by an active
community supported by durable prestigious national
research institutions (CEA and INRIA). Furthermore,
the underlying Objective Caml programming language is
efficiently supported by INRIA, and used quite widely
in France – but also abroad.

As for the Airbus proprietary plug-in Taster itself,
easy maintainability is ensured by its concise and modu-
lar implementation, together with its precise documen-
tation and thorough regression test suite.

Evolutivity The good properties of Taster’s design
and the complete control on the plug-in development
are strong guarantees for evolutivity. Checks are imple-
mented independently from one another, and the spe-
cific code for most of them seldom exceeds a few dozen
lines.

Qualifiability The same data will ease the qualifica-
tion of Taster as a verification tool wrt. DO-178B.

Note that qualifying this tool involves qualifying a
particular use of the Frama-C kernel. As the Frama-C
platforms includes other static analysers much more ad-
vanced than Taster, implementing formal verification
techniques which we are considering using industrially
in the near future, we hope to be able to simplify part
of the qualification activities for these new tools thanks
to the Taster service history.

Such a scheme should work for embedded software
with DAL10 C and below. However, it is not quite clear
so far whether this scheme will be applicable at all for
DAL A and B critical programs, as the future DO-
178C tends to enforce very stringent qualification re-
quirements for such formal tools to be used instead of
classical verification methods.

5.3 Developer viewpoint

Objective Caml Using the Objective Caml program-
ming language favors the development of the Taster
plug-in in many respects:

10 Development Assurance Level, as defined in [1]

– Object-orientation allows for visitor inheritance, which
permits visiting ASTs;

– Objective Caml is a strongly typed programming
language which provides legibility and conciseness.
These characteristics make it easier to develop safe
and robust programs in OCaml than in other lan-
guages like C;

– Objective Caml provides the pattern-matching fea-
ture. The combination of this feature with type con-
structors and variants is an efficient means to imple-
ment sophisticated syntactic checks in a complete,
simple and readable way. With this support, the
code of some checks fits into only five or six lines.

– Program implementation is close to functional fea-
tures, this point helps software proofreading and
maintenance;

– Frama-C and Taster benefit from the portability of
OCaml on various platforms, both in bytecode and
native mode;

– Owing to the native mode feature of OCaml, the
Taster plug-in runs much faster than if it were writ-
ten in an interpreted language like Java or Python.

All these advantages make OCaml a language suit-
able for an industrial purpose. That fully confirms the
conclusion already made in a previous experience re-
port [7] which did not take into account the point of
view of the external plug-in developers.

Frama-C We have encountered and resolved a few dif-
ficulties along the development of Taster:

– Cil data structures do not differentiate implicit type
conversions from explicit casts, so we have to use a
dedicated hook to identify implicit conversions;

– As explained in 4.2, we had to cope with the un-
availability of code comments in Cil and Frama-C
ASTs;

– the official release11 of Frama-C that we chose did
not preserve comments. To meet one of our needs,
we had to change a boolean constant in the source
code of the Cil layer.

– Code normalisation by Cil changes some arrays into
pointers, so we had to process a special “array size”
generated annotation in order to discriminate ar-
rays;

– Frama-C analyses pre-processed code, so we had to
cope with loss of information on the use of macro-
functions in the original source code.

Furthermore, handling with the Cil layer, the AST
structure and the use of the value plug-in has given us
a good knowledge of the overall platform.

5.4 Prospects

Extension plans for the Taster plug-in are geared to-
wards further reducing the amount of manual work in
11 named Beryllium 2



8

code reviews. This involves automating completely or
partly more and more verifications, among which con-
formance to semantic rules.

Further reductions in code reviews Although we
have already covered a little more than the scope of
the legacy COTS tool, more syntactic and typing rules
can be implemented rather easily into Taster, in order
to further minimize the set of rules to be checked via
manual code reviews. We are planning to add associated
checks to the tool in the near future.

Formal verification of conformance to some se-
mantic rules As explained in 2.2, little support is
available so far to ensure conformance to semantic rules:
only (unsound) bug-finding heuristics can be used in a
debugging phase, hence the need for sophisticated man-
ual code analyses.

Yet Frama-C includes semantic analysis plug-ins which
may be used to partly automate these tasks. As shown
in 4.3, we have started experimenting the use of such
features within Taster. We are willing to pursue this
work, in order to derive sound and “nearly automatic”
formal verifications for part of Airbus semantic rules.
First candidates could be dataflow-oriented rules, for
which imprecisions due to over-approximations performed
during (non relational) abstract interpretation based
static analyses should not be a big issue. Industrial uses
of such analyses will involve providing correct context
information by means of annotations or stubs, without
increasing the workload of developers. We believe this
should be feasible rather automatically in our context,
thanks to relevant information to be extracted from de-
sign models.

Besides, implementing such semantic analyses into
Taster and qualifying their industrial usage wrt. DO-
178B might provide a useful basis towards progressively
using more and more advanced features of Frama-C for
the verification of embedded avionics software.

Références

1. DO-178B, Software Considerations in Airborne Sys-
tems and Equipment Certification. RTCA, Inc., 1992.

2. Patrick Baudin, Jean-Christophe Filliâtre, Claude
Marché, Benjamin Monate, Yannick Moy, and Virgile
Prevosto. ACSL: ANSI/ISO C Specification Language
(preliminary design V1.4), preliminary edition, October
2008.

3. Löıc Correnson, Pascal Cuoq, Armand Puccetti, and
Julien Signoles. Frama-C User Manual, November
2009. http://frama-c.cea.fr/download/user-manual-
Beryllium-20090902.pdf.

4. Patrick Cousot and Radhia Cousot. Abstract interpre-
tation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints.
In Proceedings of the 4th Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles,
California, US, 1977. ACM Press.

5. Patrick Cousot and Radhia Cousot. Basic concepts of
abstract interpretation. In IFIP Congress Topical Ses-
sions, pages 359–366. Kluwer, 2004.

6. Pascal Cuoq and Virgile Prevosto. Frama-C’s
value analysis plug-in, October 2009. http://frama-
c.cea.fr/download/value-analysis-Beryllium-
20090902.pdf.

7. Pascal Cuoq, Julien Signoles, Patrick Baudin, Richard
Bonichon, Géraud Canet, Löıc Correnson, Benjamin
Monate, Virgile Prevosto, and Armand Puccetti. Ex-
perience report: Ocaml for an industrial-strength static
analysis framework. In ICFP ’09: Proceedings of the
14th ACM SIGPLAN international conference on Func-
tional programming, pages 281–286, New York, NY,
USA, 2009. ACM.

8. Leonhard Euler. Solutio problematis ad geometriam
situs pertinentis. In Commentarii Academiae Scien-
tiarum Imperialis Petropolitanae, pages 128–140, 1741.
Based on a talk presented to the Academy on 26 August
1735.

9. Xavier Leroy, Damien Doligez, Jacques Garrigue, Di-
dier Rémy, and Jérôme Vouillon. The Objective
Caml system. http://caml.inria.fr/pub/docs/manual-
ocaml/index.html.

10. Édouard Lucas. Récréations mathématiques. A. Blan-
chard (Paris), 1891.

11. George C. Necula, Scott McPeak, Shree Prakash Rahul,
and Westley Weimer. CIL: Intermediate Language and
Tools for Analysis and Transformation of C Programs.
In CC ’02: Proceedings of the 11th International Con-
ference on Compiler Construction, pages 213–228, Lon-
don, UK, 2002. Springer-Verlag.

12. Julien Signoles. Foncteurs impératifs et composés: la
notion de projet dans Frama-C. In Hermann, editor,
JFLA 09, Actes des vingtièmes Journées Francophones
des Langages Applicatifs, volume 7.2 of Studia Infor-
matica Universalis, pages 245–280, 2009. In French.

13. Julien Signoles, Löıc Correnson, and Virgile Pre-
vosto. Frama-C Plug-in Development Guide, Septem-
ber 2009. http://frama-c.cea.fr/download/plugin-
developer-Beryllium-20090902.pdf.


