
HAL Id: hal-02267682
https://hal.science/hal-02267682

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System Architecture Virtual Integration: A Case Study
P Feiler, L Wrage, J Hansson

To cite this version:
P Feiler, L Wrage, J Hansson. System Architecture Virtual Integration: A Case Study. ERTS2 2010,
Embedded Real Time Software & Systems, May 2010, Toulouse, France. �hal-02267682�

https://hal.science/hal-02267682
https://hal.archives-ouvertes.fr

System Architecture Virtual Integration: A Case Study

P. Feiler1, L. Wrage1, J. Hansson1,2

1: Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2: Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

Abstract: Aerospace industry is experiencing
exponential growth in the size and complexity of
onboard software. It is also seeing a significant
increase in errors and rework of that software. All of
those factors contribute to greater cost; the current
development process is reaching the limit of
affordability of building safe aircraft. An international
consortium of aerospace companies with
government participation has initiated the System
Architecture Virtual Integration (SAVI) program,
whose goal is to achieve an affordable solution
through a paradigm shift of―integrate then build. A
key concept of this paradigm shift is an architecture-
centric approach to analysis of virtually integrated
system models with respect to multiple operational
quality attributes such as performance, safety, and
reliability. By doing so early and throughout the life
cycle at different levels of fidelity, system-level faults
are discovered earlier in the life cycle—reducing risk,
cost, and development time. The first phase of this
program demonstrated the feasibility of this new
development process through a proof of concept
demonstration and a return on investment analysis,
which are the topics of this paper.

Keywords: virtual integration, embedded software
system, safety-critical, validation & verification

1. Introduction

Aerospace industry is experiencing exponential
growth in size, complexity, errors, rework and cost of
their onboard software. The current development
process is reaching the limit of affordability of
building safe aircraft. The size in terms of source
lines of code (SLOC) has doubled every four years.
The cost 27M SLOC of software is estimated to
exceed $10B (see Figure 1).
The Aerospace Vehicle Systems Institute (AVSI) has
launched an international, industry-wide multi-phase
program called System Architecture Virtual
Integration (SAVI), whose members are
acknowledged in Section 7. The objective of SAVI is
to reduce cost/cycle-time and risk by using early and
repeated “virtual” integration and analysis.
SAVI builds on model-based engineering as
practiced by the system and software engineering
communities, where models of different aspects of a
system are developed and analyzed (see Figure 2).
However, industrial practice has shown that such
independently developed models tend to result in

multiple versions of the “truth.” SAVI improves
current practice by ensuring that analytical models
are consistent with each other and the evolving
architecture throughout the lifecycle. To achieve
these goals, the SAVI paradigm necessitates

• an architecture-centric multi-aspect reference
model approach as the single source of “truth”,

• a component-based framework in support of
model-based and proof-based engineering,

• a model bus for consistent model interchange
between repositories and tools, and

• an architecture-centric acquisition and
development process throughout the system life
cycle that is supported by industrial standards and
tool infrastructure.

Figure 1: Estimated Onboard SLOC Growth and
associated Cost

Figure 2: Multiple Truths due to Inconsistent Models

2. Key Concepts of SAVI

SAVI is driven by three key concepts: a single
source architecture reference model, a model
repository and model bus, and a model-based
development process that encompasses both
system engineering and embedded software system
engineering.

2.1 Single Source Architecture Reference Model

A key concept of virtual integration is the use of an
annotated architecture model with well-defined
semantics as the single source for architecture
analysis, as illustrated in Figure 3. The annotations
provide relevant analysis-specific information (e.g.,
fault rates or security properties) that allow auto-
generation of an analytical models.

Any changes to the architecture throughout the life
cycle are reflected in this model and automatically
propagate to all dimensions of analysis. For
example, substitution of a faster processor to
accommodate a high workload is reflected in
schedulability analysis, impacts end-to-end response
time, and requires re-evaluation power consumption
against capacity as well as its impact on the mass of
the system.

2.2 Model Repository and Model Bus

A second key concept is the use of a model
repository and model bus, illustrated in Figure 4. The

model repository contains the annotated architecture
reference model, as well as detailed models that are
refinements of architecture components. For
example, details of physical system components can
be modeled with Modelica, control system
components with Simulink, and discrete application
behavior with UML statecharts. This architecture
reference model may reside in a single model
repository or it may be distributed across different
model repositories, e.g., those of different suppliers
and the system integrator.
The model bus is a data interchange mechanism a
mechanism that operates with a standardized model
representation. It supports interchange between
model repositories and translation into – as much as
possible standardized - representations acceptable
to different analysis and generation tools. For
example, it supports the interchange of annotated
architecture models in a standardized XML format.
Similarly, transformation specifications provide the
translation from an annotated architecture model to
specific analytical model formats, such as those for
timing models, fault trees, or security models.

2.3 Development Process

The SAVI development process must support
collaboration between

• system engineers—whose primary focus is the
architecture of the physical system

• embedded software system engineers—whose
focus is the interaction between the physical
system architecture, the computer platform
architecture, and the task and communication
architecture of the embedded application

• other engineers—whose focus is the architecture
and detailed design of physical components,
computer hardware components, and software
components.

Thus, the system is expressed in a combination of
modeling notations whose models are mapped into a
single underlying reference model in the model
repository with minimal redundancy of information

Figure 4: Model Repository and Model Bus

Figure 3: Single Source Annotated Architecture
Model

that must be maintained manually. Figure 5
illustrates the relationships between such models.
To support the development process, the repository
also includes requirements, test data, and analysis
results. Standardized interchange formats such as
the Requirements Interchange Format (RIF) and
AP233 for system engineering artifacts are
emerging. Therefore, SAVI will define the data
structures needed in the model repository for
information storage and analysis, and data
transformations needed for data interchange and to
leverage ongoing efforts in standard organizations.

Standardized interchange representations for these
analytical models facilitate tools chains (integration
of multiple tools) to enable new and more effective
integration checks and analyses by leveraging
existing tools and minimizing transformations into
tool-specific and proprietary representations.
Examples of such emerging interchange formats
include ISO/IEC 15909 for Petri nets to interface with
Petri net analysis tools [1], and FIACRE for state-
based behavior specification to interface with
different model checking tools [2].
SAVI virtual integration activities augment traditional
design reviews by a model-based approach.
Subsystem requirements are recorded in an initial
system model during request for proposals and
made available to suppliers. Suppliers respond to
the proposals by including subsystem models with
interface specifications that include non-functional
properties. This allows the system integrator

• to validate supplier model compatibility, interface
consistency, and initial resource allocations during
proposal evaluation,

• to assure compatibility of functionality with
interface specifications including non-functional
properties during preliminary design integration,
and

• to verify system-level non-functional properties
such as performance or safety during critical
design integration.

Early and continuous virtual model integration based
on standardized representations insures that

• errors are detected as early as possible with
minimal leakage to later phases,

• models with well-defined semantics facilitate auto-
analysis and generation to identify and eliminate
inconsistencies,

• automated compatibility analyses at the
architecture level scale easily,

• industrial investment in tools is leveraged through
well-defined interchange formats.

3. Proof-of-Concept Phase

To establish cost-effective management and limit
risks of the SAVI program, the Proof-Of-Concept
(POC) project has been executed as the first of
multiple phases with the following goals:

• Document the main differences between a
conventional acquisition process and the
projected SAVI acquisition process and identify
potential benefits of the SAVI acquisition process.

• Evaluate the feasibility and scalability of the multi-
aspect model repository and model bus concepts
central to the SAVI project.

• Assess the cost, risk, and benefits of the SAVI
approach through a return on investment (ROI)
study and development of a SAVI development
roadmap.

3.1 Proof of Concept Demonstration Requirements

The SAVI POC team established a prioritized set of
requirements, which are summarized in Table 1.
Note that emphasis was placed on validation early in
the development process.
Table 1: Prioritized POC Requirements
Requirement Category
1 Establish Model Bus infrastructure Process

2 Establish Model Repository

Infrastructure

Process

3 Inform return on investment (ROI)

estimates through POC performance &

results

Process

4 Analyses be conducted across the system Analysis

5 Two or more analyses must be

conducted

Analysis

6 Analyses be conducted at multiple levels

of abstraction

Analysis

7 Analyses must validate system model

consistency at multiple levels of

abstraction

Analysis

8 Analyses must be conducted at the

highest system level abstraction

Analysis

9 Model infrastructure must contain

multiple model representations

Model

10 Model infrastructure must contain

multiple communicating components

Model

Figure 5: Collaborative Engineering

 Page 4/10

3.2 The POC Aircraft Model

An aircraft system is modeled at three tiers:
Tier 1 the aircraft from a system engineering
perspective
Tier 2 the aircraft IMA system as an embedded
software system
Tier 3 and elements of the IMA at the
subsystem/LRU level
A set of analyses is defined for each of those tiers,
propagating and validating requirements and
constraints across model levels and across multiple
operational quality dimensions.
Architecture models were developed in AADL
because it specifically supports modeling safety-
critical, software-reliant systems and is extensible to
support analysis of operational quality attributes
along multiple dimensions [3].
Figure 6 shows a drawing of the aircraft system
provided to the POC team. It shows major physical
subsystems, some providing aircraft capability, such
as navigation or landing gear, and others providing
physical resources to the subsystems, such as the
electrical power, hydraulics, and fuel.

Figure 6: Aircraft System Drawing

Figure 7 shows a portion of the corresponding Tier 1
AADL model. In this model, we have represented the
physical subsystems as AADL systems that can later
be refined and the physical resources as AADL
buses. Each aircraft subsystem is represented by a
separate AADL system type, and each type of
resource by a bus type. Bus access connections
represent the physical connection between
subsystems and their resources. The model
elements include properties about physical
characteristics (e.g., mass) of the subsystem. In
addition, each bus type has a resource capacity
property, and the bus access features (connection
points) have resource supply or budget properties,
e.g., the engine contributing electrical power and the
cockpit drawing electrical power.

Figure 7: AADL Model of Aircraft System

We have elaborated the flight guidance system
(FGS) into a Tier 2 model representing the
distributed computer platform (physical view) and the
embedded application subsystems (logical view) of
the IMA subsystem. This elaboration is not a
separate model, but a refinement of the FGS system
component using the AADL extends mechanism.
Because of this refinement, we can now specify a
Tier 1 variant and a Tier 2 variant of the aircraft
model and instantiate both for analysis from a single
source.

Figure 8: IMA Computer Platform

Figure 8 shows a portion of the physical view—that
is, devices to represent sensors and actuators to the
physical system, buses to represent networks such
as ARINC429, and systems to represent processing
units and communication units. The symmetry

 Page 5/10

reflects the dual redundant nature of the IMA
platform.
Figure 9 shows a portion of the logical view as a
collection of embedded application subsystems. We
have used AADL port groups and connections to
model interaction between subsystems. Port groups
represent a collection of individual port connections,
which suppliers later elaborate through port group
types.

Figure 9: IMA Embedded Application Subsystems

We have also included two end-to-end flows in order
to analyze the stick–to-surface response time when
operating in direct mode (with a maximum allowed
latency of 150 milliseconds) and with flight guidance
and autopilot involved (with maximum allowed
latency of 25 milliseconds).
IMA computer resources (MIPS for processors,
memory size for RAM and ROM, and bandwidth for
networks), in addition to weight and electrical power
are specified as properties of processor and bus
components. Similarly, computer resource budgets
are assigned to the application subsystems and end-
to-end latency requirements to the flows.
In our demonstration, seven of the IMA subsystems
are contracted out to suppliers. The suppliers first
refine the subsystem specification with interface
details such as

• detailed communication properties,

• properties of communicated data, and

• mapping into protocols such as ARINC429.
Then they elaborate their subsystem into a Tier 3
model in terms of application tasks and
communication between them. The tasks (as AADL
threads) have periods, deadlines, and worst-case
execution times. For sampled processing, the
connections indicate whether mid-frame or phase-
delayed communication is desired to minimize
latency jitter.
At various times during this development process,
the airframer virtually integrates the model and
performs Tier 1, Tier 2, and Tier 3-level analysis. In
that context, the airframer evolves the IMA model
and aircraft model using AADL refinement

mechanisms (extends) to specify configurations that
include subsystems in their Tier 2 or Tier 3
elaboration and software to hardware deployment
bindings.

4. Proof of Concept Scenarios

The requirements for the POC demonstration include
several development use scenarios:

• Aircraft system modeling

• Modeling of the IMA system as embedded
software system

• Subcontracting support between airframer and
suppliers

• Subsystem development by supplier

• Virtual integration testing by airframer

4.1 Tier 1 Aircraft System Modeling Scenario

The first scenario illustrates analysis early in the life
cycle based on the Tier 1 model, whose results are
revalidated throughout the life cycle as the fidelity of
the model increases.
Analysis Reporting

Since AADL is a strongly typed language, valid
models guarantee a certain level of system
architecture consistency without specialized
analysis. For example, the landing gear system type
has been specified to require access to the power
system and the hydraulic system. The AADL
semantic checker ensures that the correct bus is
connected to the bus access feature and that all
features that require a connection are connected.
Physical characteristics relevant to system
engineers, such as mass and electrical power, are
represented by AADL properties.
Information regarding the mass of a system is
typically kept in a spreadsheet that must be manually
updated and analyzed from time to time. Instead, we
associate mass information with the AADL model
and drive the analysis from the model. By doing this,
we can analyze the mass of the aircraft for the Tier 1
model and then revisit the analysis with more details
about the mass at the Tier 2 level. The analysis
examines the net weight, gross weight, and weight
limit of the physical system components and
connections. In the case of the Tier 1 model, we can
run an analysis that adds up the gross values of the
Tier 1 elements and compares the total against the
limit for the aircraft.
We have implemented the analysis as a model bus
transformation that translates the relevant data into
the CSV (comma separated values) file format for
import into a spreadsheet.

 Page 6/10

Figure 10: Spreadsheet Based Mass Analysis

The electrical power information is recorded in the
AADL model as PowerCapacity, PowerSupply, and
PowerBudget properties. The analysis, in this case
implemented as an OSATE plug-in, compares the
power supplied to the power system (an instance of
bus type PowerSystem) from both the engine and
the auxiliary power unit against the power system
capacity as well as the power budgets of
components drawing power from the power system.
This analysis can be revisited when the Tier 2 model
of the IMA is available to look at the power
distribution of the IMA power subsystem to the
computer hardware components and compare the
demand against the power budget assigned in the
Tier 1 model.
Use Scenario

In our use scenario, the analysis reports that

1. The power supplied by the engine and the
auxiliary unit exceeds the capacity of the power
system.

2. The power budgets also exceed the capacity but
are less than the power supply.

As a remedy, we choose a higher capacity variant of
the power system (from the component specification
library, an AADL package) and rerun the electrical
power analysis. We must also rerun the mass
analysis from the same model to ensure that the
change in the power system has not exceeded any
weight limits.
The AADL model of the system drives various high-
level quantitative system analyses. From the same
model, we can perform analyses for hydraulic
pressure, fuel flow, and airflow once the component
specifications are annotated with the relevant
properties. The models can be made more realistic
by adding by refining the AADL component
specifications or by associating detailed physical
models using a specialized notation, e.g., Modelica,
with a component.

4.2 Tier 2 Embedded Software System Modeling
Scenario

The Tier 2 model refines the IMA part of the system
into a networked computing platform and an
interacting set of application subsystems and
blackbox subsystems, which will get subcontracted
to suppliers. However, before doing so, the airframer
will analyze the Tier 2 model to revalidate the mass
and electrical power results, by taking into account
the more detailed architecture specification, and to
validate properties specific to the elaborated IMA
subsystem (i.e., computer resource usage and end-
to-end flow response time). The analysis shows that
the IMA power subsystem draws less power from the
main power system and that the power consumption
by the computer platform is at 60% of the locally
available power. Therefore, we could consider
reversing the earlier main power system upgrade.
Analysis Reporting

The computer resource analysis comes in two
variants:

1. Budget totals against capacity totals

2. Budgets of deployed application components
against the target resource once deployment
decisions have been recorded

This computer resource analysis was demonstrated
with an OSATE plug-in and can also be supported
through a spreadsheet interface similar to the mass
analysis.
Use Scenario

In our use scenario, the analysis reports that the
MIPS budget totals exceed the total capacity of all
processors. It also indicates that only a subset of the
application components has a MIPS budget. The
memory budget totals reflect 70% of the components
with budgets and are well within memory capacity.
In our use scenario, we reduce the budgets and
expect suppliers to meet them with their Tier 3
models. Such a decision can be justified based on
historical data, if available.
At this point in the life cycle, or at a later stage, the
system architect may make a first attempt at an
allocation of major application subsystems to
hardware. A variant of the computer resource
analysis will consider the deployment in its results.
Sampling jitter and changes in latency due to
implementation decisions regarding the runtime
architecture can affect the stability of control systems
[4]. The end-to-end latency analysis [5] at the Tier 2
level takes into account

• processing latency in the stick and surface
(represented by a latency property on the flow
specification in the respective AADL device type)

• communication latency associated with the
connections involved in the flow

 Page 7/10

• processing and sampling latency of IMA
subsystems involved in one of the two end-to-end
flows

The latency analysis [6] calculates the minimum
worst-case latency for the two flows (a lower bound
that can only increase as the model is refined) and
reports that in direct mode the response time
requirement is met (121ms versus a 150ms
requirement), while the IMA-based response time is
almost twice the original requirement (46 ms versus
the required 25 ms). The main contributor to the
increased latency value is the sampling latency of
the partition. We could reduce the latency by not
sampling (moving to a data-driven architecture),
double the partition execution rate (doubling our
processor resource requirements), or renegotiate the
response time requirement as an inherent property
of the chosen runtime architecture. In our scenario,
we pursue the latter option.

4.3 Airframer-Supplier Subcontracting Scenario

In support of subcontracting, we have organized the
AADL model into a number of separate AADL
packages that are version controlled through a
model repository. For the demonstration, the AVSI
organization hosted this model repository on a
Subversion server with POC demo team members
playing the airframer and the supplier roles located
at two sites in the U. S. and two sites in Europe.
Repository Organization

The repository has different access-controllable
public and internal areas for the airframer and the
subcontractors, as shown in Figure 11. The
standardized AADL XMI representation [7] enables
inter-repository model interchange.

Figure 11: Distributed Model Repository

Use Scenario

In the scenario, as part of a request for proposals
(RFP), the airframer makes available the AADL
specification of the desired subsystems with a
possibly partial interface specification (system types)
including resource budget properties as well as
expected latency requirement on flow specifications
through the subsystem, and an interface control
document in the form of port group type

specifications. We have done so for seven
subsystems to be contracted out.
The suppliers respond, in this scenario, with a
completed subsystem specification including details
about the exchanged data and its mapping into the
ARINC429 protocol. The airframer verifies overall
consistency by virtually integrating the suppliers’
AADL subsystem specifications as a variant of the
Tier 2 model and performing functional integrity
checks. Figure 12 shows reported inconsistencies
that are traceable to the model.

Figure 12: Functional Integrity Checking

4.4 Tier 3 Supplier Subsystem Development
Scenario

The suppliers refine their subsystem AADL models
to model their architecture and reflect
implementation decisions. This example included
three suppliers expanding their subsystems. For the
air data computer, we have included UML diagrams,
Ada code, a test harness and automatic build scripts,
as shown in Figure 13.

Figure 13: Supplier Subsystem Model & Analysis

The supplier allocates threads of the application task
model to computer hardware and performs

 Page 8/10

scheduling analysis. The scheduling protocol
property of the processor determines which
scheduling analysis algorithm is used. Analysis
results indicate that the subsystem is schedulable on
its internal hardware with 45% utilization.
Scheduling analysis uses the worst-case execution
time of threads. This figure may be an estimate early
in the development that is scaled for processors of
different speed. Once the source code exists and
has been benchmarked on different processors the
benchmark figures replace the estimates in the
model resulting in higher fidelity results.

4.5 Virtual System Integration Testing Scenario

At various stages of the development, each supplier
delivers an AADL model of their subsystem
architecture to the airframer. These updated models
identify properties of the subsystems pertinent to
integration, but do not necessarily include detailed
design descriptions. The airframer virtually integrates
them into an aircraft model refined down to Tier 3,
while the supplier independently validates that the
model properties of the architectural components
reflect the detailed design.
Analysis Reporting

The models include properties which can be used for
traceability to requirements. The airframer queries
the model repository to determine which
subcontracted subsystems are involved in satisfying
certain requirements. This allows the airframer to
focus on virtually integrating and analyzing the
system with respect to requirements of greatest
concern.
Use Scenario

The airframer revisits the mass and power analysis
to include the Tier 3 details in the results. Similarly,
computer resource analysis aggregates periods and
execution times of the subsystem task models,
compares them against the assigned budgets and
rolls them up for a comparison against capacity. The
analysis results show that many subsystems stay
within the reduced budgets from the Tier 2 analysis.
As part of the scenario, the airframer revisits the
end-to-end latency analysis, now taking into account
any latency or latency jitter contributed by the
subsystem task models that exceed the expected
latency as recorded in the flow specification of the
subsystems in the Tier 2 model. When task models
are first delivered by the supplier, the airframer
reruns the end-to-end latency analysis, which now
takes the task model into account in its latency
calculation. The airframer discovers that the
minimum worst-case end-to-end latency for the IMA
mode has increased considerably to 185ms on a
synchronous hardware platform and to 196ms for
processors operating on independent clocks.
Examination of the detailed analysis report reveals a

low-rate thread in one of the subsystems contributing
a sampling latency of 100ms. Without virtual
integration, such a problem would only be
discovered during system integration test.
The airframer allocates the application tasks from
the different supplier task models to the various
processors and performs scheduling analysis. For a
given deployment configuration of a three-processor
system, the analysis reports that all deadlines are
met with processor utilizations of 54%, 55%, and
75%. The airframer can validate the analysis results
by applying a different scheduling analysis tool. In
both cases, a model transformation is performed to
generate a timing model in the representation
acceptable to the analysis tools from the AADL
model. A resource allocation tool [8] provides an
option to explore alternative deployment
configurations, showing that the system would be
schedulable with 97% utilization on two processors,
and suggesting a three processor allocation that
better balances the task load, and supporting a quick
what-if analysis of a four processor system to reduce
the average processor utilization to a target of 50%.
Finally, the airframer performs network bandwidth
analysis on the aircraft model with Tier 3 detail and a
specific deployment configuration. This analysis
identifies all application task connections that are
routed over a particular network and determines the
data volume from the size of the data communicated
through ports and their transfer rate. This data
volume is then compared against the bandwidth
budget assigned at the Tier 2 level and against the
capacity of each the network.

5. Return on Investment Analysis

In this section we summarize the result of an ROI
analysis [9] that focuses on cost avoidance due to
early detection of design defects through virtual
integration. Rework cost is dominantly driven by the
cost of managing defects injected in the
requirements and design phases but which are
detected late in the system development, most often
in the integration and test phases, where the cost to
repair the defect is one to two orders of magnitude
higher. Virtual integration reduces and prevents this
down-stream flow.
Current development processes allow 70% of faults
to be introduced early in the life cycle, while 80% of
them are not caught until integration test or later with
a repair cost of 16x or higher. Figure 14 shows
percentages for fault introduction, discovery, and
cost factor of repair [10, 11, 12]. If we can use the
SAVI approach of architecture-centric virtual
integration and analysis to discover a reasonable
percentage of system-level faults earlier in the
process, we can expect cost savings larger than the
additional investment in modeling and analysis.

 Page 9/10

Figure 14: Benefits of Early Fault Discovery

We estimate the size and complexity of an avionics
software system based on data from previously built
aircraft. We use two scenarios that reflect the current
aircraft software (27 and 30 MSLOC), and a
synthetic software system (60 MSLOC), which would
not be affordable using current methods. Cost was
estimated using the COCOMO II model [13].
Based on these “as-is” costs, we compute cost
reduction for the “to-be” scenario, i.e., after
introduction of the SAVI methodology. To estimate
avoided rework cost, we calculate an estimate for
the cost to manage defects in the various phases.
This is based on published empirical data from case
studies and on observations providing data on the
number of defects that would be introduced in a
system of a defined size and complexity, and the
nominal cost of removing defects. Table 2 shows the
resulting cost to remove a defect of a given type
relative to the total cost of defect removal. For
example, requirements defects account for 79% of
rework cost and 62% of rework cost occur during
integration.

Table 2: Relative Defect Removal Cost

 Phase in which defect is removed

Defect

Type

Require-

ments DesignCode Test Integration Sum

Require-

ments 0.03% 0.21% 1.87% 28.11% 48.73% 78.97%

Design 0.04% 0.37% 5.79% 9.75% 15.96%

Code 0.19% 1.28% 3.10% 4.57%

Test 0.17% 0.26% 0.43%

Integra-

tion 0.09% 0.09%

Sum 0.03% 0.26% 2.44% 35.36% 61.92% 100.00%

Increasing defect detection and removal efficiency
would positively influence rework cost. The cost
avoided is computed as

Two scenarios of rework cost were considered: 30%
and 50% of the total development cost. Similarly, we
considered two scenarios for defect removal
efficiency due to SAVI: 33% and 66% as applied to
requirement defects. This is based on using Hayes’
fault taxonomy [42] and estimating removal
efficiency for the per fault category.
Finally, ROI and NPV were calculated in light of an
estimated cost of $86M to implement SAVI.
In summary, the ROI analysis showed the following:
The nominal cost reduction for a 27MSLOC system
is $2,391M (out of an estimated $9,176M) occurring
at 70% reuse, 50% rework, and with a removal
efficiency of 66%. The arithmetic and logarithmic
ROIs are 26.8 and 3.33, with an NPV of $1,076M.
Studying the most conservative of the scenarios, the
smallest cost avoidance is $717M, occurring at 70%
reuse, 30% rework cost, with a removal efficiency of
33% for a 27MSLOC system. The arithmetic and
logarithmic ROIs are 7.3 and 2.12, with an NPV of
$263M.

6. Conclusion

In this paper, we have focused on reporting the
experiences derived from AVSI’s SAVI project,
utilizing an architectural reference model to achieve
virtual integration. Virtual integration demonstrated
early and repeated quantitative analysis at various
levels of fidelity, validation of architecture
consistency across subcontracted subsystem
interfaces and independent protocol mappings, and
discovery of intricate operational system-level faults
due to design problems in the runtime architecture.
The resulting early discovery of system-level faults
reduces risk, lowers system life cycle costs, and
improves quality.
The SAVI POC demonstrated how multi-tier
modeling and analysis across levels, coverage of
system engineering and embedded software system
analysis, propagation of changes across multiple
analysis dimensions, maintenance of multiple model
representations in a model repository, auto-
generation of analytical models via model bus,
interfacing of multiple tools to perform the same
analysis, as well as distributed team development
via repository to support airframe manufacturer and
supplier interaction are possible through the SAVI
concepts.
In addition, ROI analysis has shown that SAVI can
lead to significant cost savings by avoiding defects in
early development phases (requirements and
design), by reducing corresponding costly rework in
the later phases.

 Page 10/10

Several areas were not fully explored and will be
addressed by SAVI phase 2:

• support for multiple architecture modeling
notations (SAE AADL & OMG SysML), and
integration with mechanical system modeling
(e.g., Modelica) and control system modeling
(Simulink),

• validation focus on a system-level non-functional
property such as safety, reliability, or security,

• end-to-end validation of systems from
requirements to models and system
implementation,

• scalability of the model repository and commercial
tool support.

7. Acknowledgements

System Architecture Virtual Integration (SAVI) is an
industry initiative by a number of aerospace
companies and government organizations to
improve the engineering practice for software-reliant
aircraft systems under the umbrella of the Aerospace
Vehicle Systems Institute (AVSI). The proof-of-
concept phase of this initiative was carried out by
representatives of the following member companies
and organizations: AVSI, Boeing, Airbus, Lockheed
Martin, Rockwell Collins, BAE Systems, GE Aviation,
U.S. Army, and Federal Aviation Administration
(FAA). The Software Engineering Institute (SEI)
contributions were funded by SAVI members through
AVSI. In particular the authors would like to
acknowledge the contributions by the other members
of the proof-of-concept (POC) demonstration project,
which is the focus of this case study report, to the
definition of a to-be process and the development of
a return on investment (ROI) model. Keith Appleby
(BAE Systems), John Glenski (Rockwell Collins),
Jean-Jacques Toumazet (Airbus), Joe Shultz (GE
Research), and Dave Redman (AVSI) actively
participated in creating the aircraft model for the
demonstration and the Microsoft Excel spreadsheet
version of the mass analysis. We would also like to
thank the other members of the full SAVI team who
participated in shaping the requirements for the POC
demonstration and use cases.

8. References

[1] ISO, “Software and System Engineering – High-
level Petri nets – Part 2: Transfer Format“, ISO/IEC
15909-2:2009.

[2] B. Berthomieu, et al., “Fiacre: an Intermediate
Language for Model Verification in the TOPCASED
Environment”, Proceedings of 4th International
Congress on Embedded Real-Time Systems
(ERTS 2008).

 [3] SAE International. “Architecture Analysis & Design
Language (AADL): SAE International Standards
document AS5506A, Nov 2004, Revised Jan 2009.”

[4] A. Cervin, K.-E. Årzén, and D. Henriksson, “Control
Loop Timing Analysis Using TrueTime and
Jitterbug”, Proceedings of the 2006 IEEE
Conference on Computer Aided Control Systems
Design (CACSD), pp. 1194−1199.

[5] P. Feiler and J. Hansson, “Impact of Runtime
Architectures on Control System Stability”,
Proceedings of 4th International Congress on
Embedded Real-Time Systems (ERTS 2008).

[6] P. Feiler and J. Hansson, “Flow Latency Analysis
with the Architecture Analysis & Design Language
(AADL)”, Software Engineering Institute Technical
Note, CMU/SEI-2007-TN-010, Dec 2007.

[7] SAE International, “Architecture Analysis & Design
Language (AADL) Annex Volume 1: Annex C:
AADL Meta model & XML Interchange Format
Annex, SAE International Standards: AS5506/1”

[8] Dio Deniz, Peter Feiler, “On Resource Allocation in
Architectural Models”, Proceedings of the 11th
IEEE International Symposium on Object/service-
oriented Real-time distributed Computing, May
2008.

[9] Jörgen Hansson, Steve Helton, “ROI Analysis of
the System Architecture Virtual Integration
Initiative”, Software Engineering Institute, Technical
Report, SEI-2010-TR-001, 2010.

[10] RTI, “The Economic Impacts of Inadequate
Infrastructure for Software Testing”, National
Institute for Standards and Technology,
Washington, DC, NIST Planning report 02-3, 2002.

[11] D. Galin, “Software Quality Assurance: From
Theory to Implementation”, Boston:
Pearson/Addison-Wesley, 2004.

[12] B.W. Boehm, “Software Engineering Economics”,
Englewood Cliffs, NJ: Prentice Hall, 1981.

[13] “COCOMO II”, available from:
http://sunset.usc.edu/csse/research/COCOMOII/co
como_main.html [Accessed: March 20, 2010].

[14] J .H. Hayes, “Building a Requirement Fault
Taxonomy: Experiences from a NASA Verification
and Validation Research Project”, IEEE
International Symposium on Software Reliability
Engineering (ISSRE), Denver, CO, Nov 2003.

9. Glossary

AADL: Architecture Analysis & Design Language

ARINC: Aeronautical Radio Inc.

AVSI: Aerospace Vehicle Systems Institute

COCOMO: Constructive Cost Model

IMA: Integrated Modular Avionics

SAE: Society of Automotive Engineers

SAVI: System Architecture Virtual Integration

POC: Proof of Concept

ROI: Return on Investment

