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ABSTRACT

The continental part of thewater cycle is commonly representedwith hydrologicalmodels. Yet, there are limits in

their capacity to accurately estimatewater storage anddynamics because of their coarse spatial resolution, simplified

physics, and an incomplete knowledge of atmospheric forcing and input parameters. These errors can be diminished

using data assimilation techniques. The model’s most sensitive parameters should be identified beforehand. The

objective of the present study is to highlight key parameters impacting the river-routing scheme Total Runoff

Integrating Pathways (TRIP)while simulating river water height and discharge as a function of time focusing on the

annual cycle. Thus, a sensitivity analysis based on the decomposition of model output variance (using a method

called ANOVA) is utilized and applied over the Amazon basin. Tested parameters are perturbed with correcting

factors. First, parameter-correcting coefficients are considered uniform over the entire basin. The results are specific

to the TRIP model and show that geomorphological parameters explain around 95% of the water height variance

with purely additive contributions, all year long, with a dominating impact of the river Manning coefficient (40%),

the riverbed slope (35%), and the river width (20%). The results also show that discharge is essentially sensitive to

the groundwater time constant thatmakes upmore than 90%of the variance. To a lesser extent, in rising/falling flow

period, the discharge is also sensitive to geomorphological parameters. Next, the Amazon basin is divided into nine

subregions and the sensitivity analysis is carried out for regionalized parameter-correcting coefficients. The results

show that local-region parameters impact water height, while upstream-region parameters affect discharge.

1. Introduction

The earth’s climate is undergoing changes in response

to natural variability and also increasing concentrations of

greenhouse gases (Stocker et al. 2013). The continental

part of the water cycle is an active component of this

system (Alkama et al. 2008). Global climate change will

affect the water cycle, likely creating perennial drought in

some areas and frequent flooding in others (Trenberth

2011). It is therefore of prime importance to study and

understand these changes to continental waters.

Continental water can be studied at the global scale

using land surface models (LSMs) coupled with a river-

routing model (RRM). LSMs provide lower boundary
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conditions to atmospheric general circulation models,

while RRMs compute river discharge, which can be po-

tentially used as boundary conditions to ocean general

circulation models.

Several RRMs have been developed at a global scale

(Vörösmarty et al. 1989; Coe 1998; Hagemann and

Dümenil 1997; Oki and Sud 1998; Arora et al. 1999;

Olivera et al. 2000; Ducharne et al. 2003; Ngo-Duc et al.

2007; Lucas-Picher et al. 2003; Yamazaki et al. 2011). In

those models, the hydrological network is generally

derived from a digital elevation model (DEM) at coarse

resolution (from 0.258 3 0.258 to 48 3 48). This network
is then used by the RRM to transfer water mass from

grid cell to grid cell until the river outlet at the

continent–ocean interface. Water mass transfer is based

on simple budget equations representing the temporal

variations of the water mass stored in each grid cell. The

currently available RRMs differ from each other in their

method of dealing with river flow velocity, surface pa-

rameterization, groundwater, and floodplains.

The description of river flow velocity is addressed in

several ways in the literature. For instance, Coe (1998) and

Oki and Sud (1998) considered a single surface reservoir

with a uniform and constant flow velocity. It is also possible

to use a time-constant but spatially distributed flowvelocity

based on topography and river channel characteristics

(Ducharne et al. 2003; Hagemann and Dümenil 1997;

Vörösmarty et al. 1989). In contrast, several works rely on a

time-varying and spatially distributed flow velocity esti-

mation based on theManning formula (Manning 1891), for

example, Arora et al. (1999), Decharme et al. (2012),

Lucas-Picher et al. (2003), and Ngo-Duc et al. (2007).

When a single surface reservoir is considered (Coe 1998;

Ngo-Duc et al. 2007; Oki and Sud 1998; Vörösmarty et al.

1989), input water mass to each gridcell reservoir corre-

sponds to surface runoff within the grid cell and river

outflow from upstream grid cells. The computed water

mass is then transferred to the downstream grid cell along

the river network. Several studies (Arora et al. 1999;

Decharme et al. 2008; Ducharne et al. 2003; Hagemann

and Dümenil 1997; Lucas-Picher et al. 2003) highlighted

the necessity of modeling groundwater inflow to the sur-

face reservoir in order to simulate the delayed contribution

of groundwater in the river discharge estimation. Inland

water bodies such as floodplains are rarely taken in con-

sideration. When it exists, a flooding scheme is triggered

when the water stage (Decharme et al. 2008, 2012) or the

river discharge (Vörösmarty et al. 1989) exceeds a given

threshold and the floodplain within a grid cell exchanges

water mass with the associated river reservoir.

Several input parameters are used by RRMs. The pa-

rameters can be topographical (such as riverbed slope)

and geomorphological (such as river width or roughness)

and can also be based on empirical relationships, in which

case other parameters are usually required. These re-

lationships correspond to multiplying and powering co-

efficients linking parameters between each other or with

themodel state (Leopold andMaddock 1953;Moody and

Troutman 2002; Gleason and Smith 2014). Parameters

can be either spatially or uniformly distributed over river

catchments according to assumptions and simplifications

adopted in each study.

It seems obvious that to better represent observations

in hydrological modeling, model complexity can be in-

creased (Grayson and Blöschl 2001). In this context,

Sieber and Uhlenbrook (2005) point out that sensitivity

analysis (SA) can be a powerful tool to both identify the

most sensitive (and therefore important) parameters

and to understand the hydrological model structure and

its response.

SA can be used for two purposes: either to explore

multidimensional parameter spaces and understand the

source of model uncertainties (Hornberger and Spear

1981) or to identify key parameters and their role in

the model response (Saltelli et al. 2008). The first option

has been widely investigated, most notably by using

the Generalized Likelihood Uncertainty Estimation

(GLUE) method (Beven and Binley 1992) both in catch-

ment modeling (Freer et al. 1996) and rainfall–runoff

modeling (Blazkova and Beven 2004). The GLUE

method assumes that, for a given catchment numerically

represented by a given model, several sets of this model’s

input parameters can be equally accepted as a simulator of

the catchment’s real response. By comparing an ensemble

of simulated responses with observations of the same

nature, a value of likelihood is assigned to each set of

parameters of this ensemble. All simulations giving an

acceptable—or behavioral—likelihood are resampled

to build a distribution function of the parameter sets.

The likelihood values are finally used to estimate the

uncertainty associated with the model predictions.

Other commonmethods are regional sensitivity analysis

(Wagener et al. 2003) for dynamic identifiability analysis

andBayesian total error analysis method (Kavetski et al.

2006) for calibration and uncertainty estimation. Al-

ternatively, to identify the key parameters, SA can be

seen as the study of how uncertainty in the model

output can be apportioned to different sources of

uncertainty in the model inputs (Saltelli et al. 2008).

Methods based on analysis of variance (ANOVA) are

particularly suited for this purpose (Francos et al. 2003;

Hall et al. 2005; van Griensven et al. 2006). Contrary

to GLUE, ANOVA does not require system observa-

tion. The model output variance is synthetically gener-

ated by considering uncertain parameters as random

variables. Using an ensemble of parameters sets, ANOVA
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determines the contribution of each parameter to the un-

conditional variance.

Several SAs have been carried out on various RRMs

(Apel et al. 2004; Aronica et al. 1998; Bates et al. 2004;

Pappenberger et al. 2004; Werner et al. 2005). These

studies, mainly based on the GLUEmethod, were usually

performed on short-time events (flood) at catchment scale.

To the authors’ knowledge, only Pappenberger et al.

(2010) have performed a global-scale SA of the river-

routing Total Runoff Integrating Pathways-2 (TRIP2)

model (Ngo-Duc et al. 2007), coupled with the Hydrology

Tiled ECMWF Scheme of Surface Exchanges over Land

(HTESSEL; Balsamo et al. 2009). The study is based on a

10-yr reanalysis run (1986–95) of ECMWF, which was

then compared with an ensemble of in situ discharges

from more than 400 worldwide river gauging stations

provided by the Global Runoff Data Centre (GRDC;

http://grdc.bafg.de) by means of a performance measure

(Pappenberger and Beven 2004). The ensemble of time-

averaged performanceswas then used to apply bothGLUE

and ANOVA methods. The sensitivity of crucial parame-

ters for the routing scheme such as slope, river length,

groundwater time delay constant, and Manning formula

parameters was studied. Results from both GLUE and

ANOVA revealed that the groundwater time constant—

which models the delayed contribution of drained water

into the river—is the most sensitive parameter.

The present study displays an SA using a global method

of the TRIP RRM version included in the land surface

modeling platform Surface Externalisée (SURFEX;

Masson et al. 2013) developed at the Centre National de

Recherches Météorologiques (CNRM). For hydrological

purposes, TRIP describes river discharge at catchment

scale and is coupled to the well-established Interactions

between Soil, Biosphere, and Atmosphere (ISBA; Boone

et al. 1999) LSM used to simulate thermal and hydro-

logical exchanges between the soil and the atmosphere.

In section 2, we present the ISBA–TRIP version used

in this paper along with the Amazon River basin de-

scription. Section 3 provides a basic background of

variance-based SA methods and details the present

ANOVA SA configuration. In sections 4 and 5 we

present results for two SA studies differing in terms of

number and spatial distribution of perturbed parame-

ters, which are referred to as AMA8 and AMA45. The

last section presents our conclusions and perspectives.

2. The hydrological model and study zone

a. The ISBA–TRIP model classical configuration

The ISBA model (Boone et al. 1999) is a relatively

standard LSM, including the force–restore method

(Blackadar 1976), which is adopted in the current study.

The model is globally defined over a regular mesh grid

at a 0.58 3 0.58 resolution. The model’s equations are

solved in each grid cell independently from the others.

All grid cells are only correlated through the spatial

patterns of vegetation cover, soil composition, and ex-

ternal forcing, that is, atmospheric (especially pre-

cipitation) and radiative inputs. By taking into account

heterogeneity in precipitation, topography, and vege-

tation within each grid cell (Decharme and Douville

2006), ISBA gives a diagnosis of the water and energy

budgets in each grid cell (Noilhan and Planton 1989).

The present study relies on the ISBA configuration used

inAlkamaet al. (2010) andDecharmeet al. (2012). The soil

is divided into three layers: the superficial layer, the root

zone, and the subroot zone (Boone et al. 1999). Pre-

cipitation can either fall directly on the soil surface or be

intercepted by the canopy. When the canopy is saturated,

water drips from the canopy to the soil and then either flows

on the surface or infiltrates. Hydraulic conductivity through

soil layers is determined following an exponential profile of

the saturated hydraulic conductivity (Decharme et al.

2006). The soilwater content varieswith surface infiltration,

soil evaporation, plant evapotranspiration, surface runoff,

and deep drainage [for more details, see Alkama et al.

(2010) and Decharme et al. (2012)]. ISBA then gives a di-

agnostic of each water budget component, in particular the

surface runoff Qs and gravitational drainage Qsub.

The TRIPRRM is also defined over a regular mesh grid.

The present study is at the same resolution of 0.58 3 0.58 as
ISBA. Because ISBA works for each grid cell separately,

TRIP is dedicated to the lateral transfer of water from one

cell to another up to the continent–ocean interface

following a river network. The original version of TRIPwas

developed by Oki and Sud (1998) and consisted of a single

linear surface reservoir. Surface runoff data from any LSM

were needed to force TRIP and were then converted into

river discharge under the assumption of a 0.5ms21 constant

flow velocity. Subsequent developments byDecharme et al.

(2010, 2012) first coupled TRIP with ISBA by taking ISBA

simulated surface runoff as input. Then, a groundwater and

floodplain reservoir was added and the constant flow ve-

locity was changed to a time- and space-dependent flow

velocity based on the following Manning formula:

y5

ffiffi
s

p
n
R2/3 , (1)

where s is the channel slope, n is the friction coefficient

at the bottom of the channel, and R is the hydraulic ra-

dius depending on the channel geometry. In the present

work, s, n, and the channel geometry parameters are

constant in time but spatially distributed. The actual
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TRIP model (Fig. 1), consists then in a system of three

reservoirs: the surface reservoir S modeling the river,

the groundwater reservoir G (Decharme et al. 2010),

and the floodplain reservoir F, solved using Eq. (2)

through the estimation of the water mass stored in each

reservoir (kg):

dS(t)

dt
5Q

s
(t)1QS

in,TRIP(t)1QG
out(t)1QF

out(t)2QF
in(t)2

y(t)

L
S(t) ,

dG(t)

dt
5Q

sub
(t)2QG

out(t), and

dF(t)

dt
5QF

in(t)2QF
out(t)1 [P

F
(t)2 I

F
(t)2E

F
(t)] . (2)

Only the surface reservoir sends water from cell to cell

based on the TRIP routing network. A cell can receive

water from several upstream cells but sends water

into a unique downstream cell. For any given cell,

TRIP inputs are the TRIP outflow from upstream

cellsQS
in,TRIP(t) (kg s

21) and the ISBA surface runoff for

that cell Qs (kg s
21). Moreover, S receives water from

groundwaterQG
out(t) (kg s

21) and can exchangewatermass

with the floodplain QF
out(t)2QF

in(t) (kg s
21; Fig. 1).

With the implementation of G in TRIP, ISBA

Qsub (kg s
21) now flows into the groundwater reservoir,

whose outflow goes to river reservoir. This simple

modeling assumption does not represent the real

groundwater dynamics, but only the delay of drainage

contribution to the river. The groundwater outflow

[i.e., QG
out(t)] (kg s

21) is then estimated by

QG
out(t)5

G(t)

t
G

, (3)

where tG (s) is the time delay factor.When introduced in

Decharme et al. (2010), tG was taken as a constant over

river catchment with values between 30 and 60 days.

The floodplain scheme activates when the water height

in the river hS (m) exceeds a given critical bankfull height

Hc (m). The terms PF, IF, and EF are the precipitation

intercepted by the floodplain, the reinfiltration, and the

direct free water surface evaporation over the floodplain,

respectively. A detailed description of the flood scheme is

given in Decharme et al. (2008, 2010, 2012).

b. TRIP specific parameters

Within a cell, S corresponds to an equivalent river that

may represent in reality several river branches. The river

section is rectangular and is characterized by a slope

s (unitless), width W (m), depth Hc (m), length L (m),

and a Manning coefficient n (unitless) that quantifies

friction as well as channel resistance at the bottom of the

river. A more extensive description of these TRIP spe-

cific parameters is given below.

The section length is the arc length between the cell

center and the direct downstream cell center multiplied

by a meandering factor m, equal to 1.4 in order to take

the river meanders into account.

The riverbed slope is deduced from the elevation

difference between cells (E 2 Enext) and based on the

Simulated Topological Network (STN-30p) DEM pro-

vided at 0.58 3 0.58 resolution by the International Sat-

ellite Land Surface Climatology Project, Initiative II

(ISLSCP II) database (http://daac.ornl.gov/ISLSCP_II/

islscpii.shtml) and the section length as follows:

s5min

�
1025,

E2E
next

L

�
. (4)

The river width is globally computed via an empirical

geomorphologic relationship between W and the mean

annual discharge Qyr (m3 s21; Moody and Troutman

2002):

W5max[20, b3 (Q
yr
)0:5], (5)

with b 5 32 (m21/2 s1/2) for an equatorial basin such as

the Amazon River (Decharme et al. 2012).

The river depth is computed from the river width us-

ing the following nonlinear function:

H
c
5W1/3 . (6)

The Manning coefficient can be defined as channel re-

sistance to the flow and is generally difficult to estimate. It

takes low values (0.025–0.03) for natural streamswith deep

pools and higher values for small, mountainous streams

and floodplains (0.75–0.1) (Maidment 1993). Previous

global studies used a global constant value taken equal to

0.035 (Arora et al. 1999). Still, it is commonly assumed that

the Manning coefficient should be spatially distributed

over an entire catchment. In TRIP, n is therefore spatially

distributed according to a simple relationship consider-

ing that upstream grid cells contain narrow rivers with

high Manning coefficients and that the Manning value
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decreases as the cells become closer to the river mouth.

Arbitrarily, n was chosen to vary between nmin 5 0.04 and

nmax 5 0.06 according to the following linear relation:

n5 n
min

1 (n
max

2 n
min

)
SO

max
2 SO

SO
max

2 SO
min

, (7)

with SO being a measure of the relative size of stream in

the current cell, SOmax being the same measure at the

river mouth, and SOmin (51) being the measure at

source cells.

All these parameters are critical to determine the flow

velocity with the Manning formula:

y(t)5
s1/2

n

�
Wh

S
(t)

W1 2h
S
(t)

�2/3
, (8)

where the river water height (m) is estimated from its

actual water mass S and river geometry as follows

h
S
(t)5

S(t)

r
W
3LW

, (9)

where rW (kgm23) is the water density.

The system in Eq. (2) is solved using the fourth-order

Runge–Kutta method. Once the water storage (kg) of

each reservoir is computed, TRIPdetermines in each cell a

diagnosis of the quantities of the river water height (m),

following Eq. (9), and the river discharge (m3 s21),

defined as follows:

QS
out(t)5

y(t)

L
S(t) . (10)

c. Description of the Amazon basin

In terms of average discharge (2 3 105m3 s21) and

drainage area (6.15 3 106 km2), the Amazon is the

world’s largest river. Its catchment area covers about

40% of South America, and the discharge at its mouth

represents 30% of total freshwater inflow to theAtlantic

Ocean (Wisser et al. 2010).

As shown in Fig. 2a, the river source is located in the

Peruvian Andes. The river flows through the Brazilian

tropical rain forest and receives water from several

important tributaries: the Japurá River, the Purus

River, and the Negro River (16% of the total dis-

charge) at Manaus. At this point, the river has reached

56% of its total discharge. From Manaus to its mouth,

it receives water from the Madeira River (17% of the

total discharge), the Tapajós River, and the Xingu

River (11% of the total discharge; Molinier et al. 1993).

From a geological perspective, the Amazon basin can

be divided in three major morphostructural units: the

FIG. 2. Maps of the Amazon basin. (a) The Amazon River and its main tributaries. (b) In situ stations along the

Amazon River and its main tributaries.

FIG. 1. The ISBA–TRIP system for a given grid cell. ISBA sur-

face runoff (i.e., Qs) flows into the river/surface reservoir (i.e., S)

and ISBA gravitational drainage (i.e., Qsub) feeds the groundwater

reservoir (i.e.,G). The surface water is transferred from one cell to

another following the TRIP river-routing network.
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shields at the eastern part of the basin (Guiana shield to

the north and Brazilian shield to the south), the central

Amazon trough, and the western Andean Cordillera. In

terms of vegetation, the basin is covered by tropical rain

forest (71%) and savannas (29%; Sioli 1984).

The whole Amazon basin is located in a humid trop-

ical climatic zone. The central basin is under an equa-

torial climate zone, implying high surface temperatures,

air humidity, and precipitation. Thus, a vast floodplain

along the mainstream is filled every year, leading to the

damping of discharge extremes. Northern and southern

parts of the basin are under a tropical climate with a dry

and a wet season. However, because of the seasonal shift

of the intertropical convergence zone, the maximum

rainfall season occurs at different periods during the

year (Meade et al. 1991). This implies that annual peak

discharge in southern tributaries occurs a few months

earlier than in northern tributaries.

3. SA with the ANOVA method

This section presents the SA method used in

this study.

a. SA generalities

Variance-based SAmethods aim to analyze themodel

output variance against an ensemble of simultaneously

modified parameters (Efron and Stein 1981; Sobol 1993)

and are efficient even for nonlinear and nonmonotonic

models (Saltelli and Bolado 1998). The goal is to

estimate a set of sensitivity indices (Si; one for each

parameter) that represent the contribution of the asso-

ciated parameter in the model output unconditional

variance. The two most usual measures of sensitivity are

the main effect and the total effect. The main effect is

used in factor privatization searching for the parameter

that controls the most model output uncertainty. The

total effect, on the contrary, is used in factor fixing

searching for irrelevant parameters that can be con-

strained to an arbitrary value (Saltelli et al. 2008).

There are several methodological variants to calculate

partial variances, for example, Sobol’s method (Sobol

1993) or the simple and extended Fourier amplitude

sensitivity test (FAST and EFAST; Cukier et al. 1973;

Fang et al. 2003). The main difference between FAST

and the Sobol method lies in the approach used to

calculate the variances multidimensional integrals.

Whereas Sobol’s method uses aMonte Carlo integration

procedure, FAST uses a pattern search based on sinu-

soidal functions. However, Reusser et al. (2011) tested

the three samplingmethods (FAST, EFAST, and Sobol)

and found comparable results between each method.

Even though these methods are quite popular, they still

have a high computational cost by requiring a large

number of model runs to estimate Si.

Currently, some studies focus on direct calculation of

the double-loop multidimensional integrals underlying Si
by trying to reduce computational cost (Jansen 1999;

Saltelli et al. 2010; Sobol 1993). Alternatives have been

found to overcome dependence on the problem of di-

mensionality (linked to the number of parameters) and

thereby reducing computational cost, in particular through

high-dimensional model representation (HDMR) and

metamodeling (Rabitz et al. 1999; Ratto et al. 2007).

In addition, Sieber and Uhlenbrook (2005) and

Reusser et al. (2011) introduced temporal dynamics of

parameter sensitivity (TEDPAS) and time series of

grouped error in order to perform temporal SA of any

model output variable such as river discharge. This kind

of analysis aims to identify dominant parameters during

a given hydrological process and highlight parameter

interactions. For example, Garambois et al. (2013)

performed a temporal Sobol’s sample ANOVA to

identify key parameters of the physically based and

spatially distributed Model of Anticipation of Runoff

and Inundations for ExtremeEvents (MARINE) during

flash flood events. Guse et al. (2014) used a temporal

FAST–ANOVA method on the Soil and Water As-

sessment Tool (SWAT) model to detect which param-

eter dominates in poor model performance cases.

In this study, the state-dependent parameter (SDP)

metamodeling approach developed by Ratto et al.

(2007) is used. Also, a temporal sensitivity analysis fol-

lowing Garambois et al. (2013) and the Reusser and

Zehe (2011) TEDPAS methodology is applied. The

ANOVA is based on Sobol’s sampling method as in

Ratto et al. (2007).

b. The ANOVA formulation

The formulation of the ANOVA decomposition is

based on Sobol (2001). The model output Y can be de-

fined as a function of k independent uncertain input

parameters p1, p2, . . . , pk:

Y5M(p
1
,p

2
, . . . , p

k
), (11)

where M is the model operator and the parameters

p1, p2, . . . , pk are defined overVk, the set of all possible

values. It is ensured that the range of variation of these

parameters corresponds to the assumed parameter un-

certainties and, in the following SA studies, leads to

realistic values for these parameters p1, p2, . . . , pk.

Now, let X5 (X1, X2, . . . , Xk) be a possible set of

normalized parameters (i.e., p1, p2, . . . , pk scaled be-

tween 0 and 1). The relationship that links the normal-

ized model parameters with Y is denoted by
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Y5 f (X)5 f (X
1
,X

2
, . . . ,X

k
), (12)

where f is also the model operator but taking the nor-

malized parameters X1, X2, . . . , Xk as inputs.

It is assumed that Y can be decomposed in a sum of

real functionals with increasing input dimensionality of

the following form:

Y5 f
0
1 �

k

i51

f
i
(X

i
)1 �

k

i51
�
k

j.i

f
i,j
(X

i
,X

j
)

1⋯1 f
1,2, ... ,k

(X
1
,X

2
, . . . , X

k
). (13)

Under the hypothesis that f is integrable over the unit

hypercube of size k, it is assumed that the following in-

tegral holds "1# s# k, "1# i1 # ⋯ #is # k,

ð
f
i1, ... ,is

(X
i1
, . . . , X

is
) dX

i1
. . . dX

is
5 0. (14)

The variable fi1, ... ,is(Xi1 , . . . , Xis) can take any real

values, so the above integral implies that the fi1, ... ,is
values have a zero mean. It follows from Eq. (14) that

the functionals are orthogonal and can be expressed as

an integral of f (X). Indeed,

ð
f (X) dX5 f

0
and (15)

ð
f (X) dX

;i
5 f

0
1 f

i
(X

i
) , (16)

where X;i signifies that the integration is performed

over all parameters but Xi. Successively,

ð
f (X) dX

;i,j
5 f

0
1 f

i
(X

i
)1 f

j
(X

j
)1 f

i,j
(X

i
,X

j
). (17)

Moreover, if f is also square integrable over the unit

hypercube of size k, so are the summands and

ð
f 2(X) dX2 f 20 5 �

k

i51
�
k

i1,⋯,is

ð
f 2i1,... ,is

dX
i1
. . . dX

is
. (18)

Now, X is considered as a random variable uniformly

distributed over the unit hypercube of size k, meaning

that each parameter Xi follows a continuous uniform

law between 0 and 1. The model output f (X) and all the

summands fi1, ... ,is, "1# s#k, and "1# i1 #⋯# is # k

are random variables as well. This implies that integrals

of f and fi1, ... ,is represent expectations and integrals of

the variances of f 2 and f 2i1, ... ,is .

For instance, the model output expectation is given by

E(Y)5

ð
f (X) dX5 f

0
(19)

and the model output conditional expectations given

first-order factors are defined as

E(Y jX
i
)5

ð
f (X) dX

;i
5 f

0
1 f

i
(X

i
) , (20)

meaning that the expectation of the model output Y

is computed over all possible values of X keeping

Xi fixed.

A similar definition holds for higher-order factors:

E(Y jX
i
,X

j
)5 f

0
1 f

i
(X

i
)1 f

j
(X

j
)1 f

i,j
(X

i
,X

j
). (21)

The total variance (Var) of the model output Y is then

formulated as follows:

Var(Y)5

ð
(0,1)k

f 2(X) dX2 f 20

5 �
k

i51
�
k

i1,⋯,is

ð
f 2i1,... ,is

dX
i1
. . . dX

is
. (22)

Rewriting Eq. (22) based on Eq. (13) using Eq. (14),

the total variance can be expressed as its so-called

ANOVA decomposition:

Var(Y)5 �
k

i51

V
i
1 �

k

i51
�
k

j.i

V
i,j
1 . . . V

1,2,...,k
, (23)

where

V
i
5Var( f

i
)5

ð1
0

f 2i (Xi
) dX

i
(24)

is called the main effect of parameter Xi on Y repre-

senting the expected reduction of total variance if Xi

could be fixed and where

V
i,j
5Var( f

i,j
)5

ð1
0

ð1
0

f 2i,j(Xi
,X

j
) dX

i
dX

j
(25)

is the covariance caused by combined effects of pa-

rameter Xi and Xj on Y. Two parameters are said to

interact when their effects on Y cannot be only ex-

plained by Vi and Vj, and so on for higher-order terms.

Sensitivity indices are finally estimated from the par-

tial variances introduced in Eqs. (24) and (25) by di-

viding them by the total variance, giving

S
i1,... ,is

5
V

i1,... ,is

Var(Y)
. (26)

They represent the part of a given single parameter (or a

given subset of parameters) variance in the uncondi-

tional variance. They could be seen as an estimate of the
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model sensitivity to this particular parameter. From Eq.

(23), it appears that

�
k

i51

S
i
1 �

k

i51
�
k

j.i

S
i,j
1⋯1 S

1,2,...,k
5 1. (27)

In practice, calculating the sensitivity indices requires

first the evaluation of the integrals in Eqs. (24) and (25)

along with the double-loop integral in Eq. (22). This

evaluation is achieved stochastically using an ensemble of

model output realizations. First, the ensemble of input

parameter sets Xe 5 [X(1), X(2), . . . , X(Ne)], with Ne the

size of the ensemble, are generated using a quasi-random

sequence generator. As each parameterXi is independent

from others and normalized, each parameter Xi follows a

continuous uniform law between 0 and 1. Then, themodel

output ensemble is established by running the model f

with each one of the Ne input parameter sets.

Second, the fi are calculated using the ‘‘SDP meta-

model’’ approach framed by Ratto et al. (2007). It is de-

signed to estimate fi functionals until second order, that is,

fi and fi,j in Eq. (13). This is done with the Smoothing

SplineANOVA(SS-ANOVA) routine (available at https://

ec.europa.eu/jrc/en/econometric-statistical-software#SS-

ANOVA-R). Once the terms fi(Xi) are estimated for the

entire ensemble, the associated Si are straightforwardly

estimated using the estimator suggested in Doksum and

Samarov (1995). The advantage of this method is its

adaptability to any sampling method of the input ensem-

ble, as it provides fast, accurate, and unbiased results. The

SS-ANOVA procedure provides (besides an estimation

of the fi coefficients) the standard errors of SDP and hence

the relative significance of estimated HDMR terms.

Finally, a last important routine output is the metamodel

correlation coefficient R2 measuring the likeness between

the original and emulated model. In the present study,

only first-order Si are estimated and studied.Model output

variance explained only with first-order Si characterizes a

purely additivemodel andwill be confirmedby anR2 close

to 1 and low interaction effects (quantified by 12�iSi).

Otherwise, it will indicate nonnegligible interaction ef-

fects. For more details, refer to Ratto et al. (2007).

To sum up, the ANOVA method produces a set of

sensitivity indices taking value between 0 and 1 and as-

sociated with a single or a subset of input parameters.

These indices represent a percentage of the total variance.

Two SAs with different choices of parameters (but all

with the same general configuration) have been carried out

in this study and are detailed in the following subsection.

c. Simulation description

In this study, the SA is based on a sampling of the

parameter space of size Ne 5 1024 drawings [this value

was chosen following Garambois et al. (2013) and has

reasonable computational costs]. To generate the initial

ensemble of normalized input parameter sets Xe, the

quasi-random sequence LPt proposed by Sobol (1967) is

used. These sequences use a base of two to successively

form finer partitions of the unit interval and then reorder

the coordinates in each dimension. They spawn the en-

tire unit hypercube for any dimension (the computa-

tional routine can generate until 230 2 1 points of

maximum dimension 52); and thereby the entire range

of definition for each input parameter is explored.

A model output ensemble element consists of daily

time series over the period 2008–10. The temporal SA is

conducted over the three years. The years 2006 and 2007

are used as spinup to avoid effects of the initial condition

and transitive states in themodel output variance, but no

SA is conducted over these two years. The year 2009

was a particularly wet year, as mid-June floods reached

their highest level for 50 years. Conversely, in 2010, the

Amazon River experienced an extreme drought and

reached its lowest level for half a century. The year 2008

is considered an average year. Therefore, studying the

model sensitivity for the full 3-yr period from 2008 to

2010 is relevant for all types of hydrological years.

ISBA–TRIP is run in offline mode and uses atmo-

spheric forcing from the Global Soil Wetness Project

phase 3 (GSWP3; http://hydro.iis.u-tokyo.ac.jp/GSWP3).

This project consists of three global-scale experimentswith

the objective of investigating long-term changes of the

energy–water–carbon cycle components and their inter-

actions. The 3-hourly resolution atmospheric boundary

conditions used in the present study were generated

by dynamically downscaling the global 28-resolution
Twentieth Century Reanalysis (Compo et al. 2011).

ISBA–TRIP estimates water levels and discharges at

each of the 2028 cells contained in the Amazon basin

mesh grid. For reasons of computational cost, the tem-

poral SA is detailed for a selection of cells correspond-

ing to known in situ stations (Fig. 2b). Table 1 briefly

describes these evaluation cells.

To carry out this temporal SA, two different sets of

parameters have been chosen and presented in the next

section.

d. Choice of parameters

1) GLOBAL SA OVER THE AMAZON BASIN

The first step is to analyze TRIPmodel sensitivity to all

parameters over the entire basin. All TRIP parameters

are considered: the river and floodplain Manning co-

efficient n (unitless) and nF (unitless), the groundwater

time constant tG (days), the riverbed slope s (unitless),

the river width W (m), the river bankfull depth Hc (m),
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and the river section length meandering coefficient m

(unitless). See Table 2 for an overview of these parame-

ters’ nominal range.

Apart from the groundwater time constant and the

meandering ratio, which are constant, all other pa-

rameters are spatially distributed over the entire ba-

sin. To avoid overparameterization, parameter fields

are perturbed by applying a constant multiplying

factor. Then, sensitivity to a given field is studied via

this multiplying factor. Moreover, particular attention

is paid to the perturbation of the riverbed slope field.

Indeed, following Pappenberger et al. (2010), the

riverbed slope is perturbed by first applying a pow-

ering constant spow and then a multiplying factor smult.

Multiplying and powering factors have a nominal

value of 1 and are defined in a6«% interval around it.

The « value is chosen so that the perturbation range is

representative of the parameter’s uncertainty (Gatelli

et al. 2009). Existing parameter value tables for

the Manning coefficient (Maidment 1993), previous

studies (Pappenberger et al. 2010; Decharme et al.

2010; Paris et al. 2016), and comparison to a remotely

sensed optical-image-based database for river width

(Yamazaki et al. 2014) were used to fix « for each

parameter, which led to the range of parameter listed

in Table 3.

This first SA study is denoted by AMA8—‘‘AMA’’

for Amazon (though it is planned to extend the

ANOVA method to other basins in future work) and

‘‘8’’ since eight perturbed parameters are considered.

Note that except for the riverbed slope (for which two

coefficients are used), the sensitivity to any of the other

parameters presented in Table 3 will be directly referred

to as the sensitivity to the corresponding TRIP param-

eter (see fifth column in Table 3); for example, sensi-

tivity to Wmult will be directly mentioned as the

sensitivity to W. When discussing slope sensitivity, the

use of smult and spow will be preserved.

2) REGIONAL SA OVER THE AMAZON BASIN

In the first SA study, a preliminary insight into TRIP

model sensitivities is drawn. Based on these results, a

second SA study, referred to as AMA45 in the follow-

ing, is carried out and aimed at regionalized sensitivities

(disregarded in the first SA, since parameter perturba-

tions are made at the entire basin scale for AMA8). A

subset of input parameters considered as the most crit-

ical ones for understanding TRIP model behavior is

then considered per geographical zone. For this

purpose, the Amazon basin is divided into nine hydro-

geomorphological zones. The interest of such a sub-

division is to study the separated impact of the parameters

of each zone. These zones were designed according to

1) hydrological arguments as the main course is sepa-

rated from the tributaries that have their own zones and

2) geological arguments as three major morphostruc-

tural units are distinguishable.

The nine zones (Fig. 3) are the following: 1) the

upstream Andean part of the basin until the city of

Iquitos, Peru; 2) the main stream from Iquitos to

Óbidos; 3) the main stream from Óbidos to the river

mouth; 4) left-bank tributaries from the Napo River to

the Japurá River, including the Japurá River; 5) left-

bank tributaries from the Japurá River to Óbidos,

including the Negro River and its drainage area; 6)

right-bank tributaries from Iquitos to the Purus River

confluence at Anamã; 7) right-bank tributaries from

Anamã to Óbidos, including the Madeira River; 8)

right-bank tributaries exiting in zone 3, including the

Tapajós River and the Xingu River; and 9) left-bank

tributaries exiting in zone 3.

The procedure of AMA45 is to select a reduced

number of important parameters from AMA8 results

and rerun the SA by considering each one of these pa-

rameters in any of the nine Amazon basin zones. The

overall SA configuration will remain identical to the first

SA in terms of number ofmembers within the ensembles

(Ne 5 1024), using atmospheric forcing (GSWP3) and

configuration of the ISBA–TRIP runs (three years from

2008 to 2010 with spinup from 2006 to 2007).

TABLE 2. Name and nominal range or value for each TRIP

parameter.

TRIP parameter Nominal range/value

tG 30 days

W 20–15 000m

Hc 3–17m

n 0.04–0.06

s From 2 3 1024 to 5 3 1022

m 1.4

nF 0.03–0.09

TABLE 1. Description of the in situ stations used for the study

(Fig. 2b).

Station Lat Lon River

Drained

area (km2)

1 Itapéua 5.958S 64.998W Solimões 1 780 000

2 Jatuarana 4.958S 60.378W Amazon 2 930 000

3 Óbidos 2.048S 56.508W Amazon 4 670 000

4 Acanaui 2.098S 67.408W Japurá 249 000

5 Canutama 7.478S 65.628W Purus 236 000

6 Caracarai 1.818N 62.898W Branco 126 000

7 Serrinha 1.548S 65.198W Negro 293 000

8 Manicoré 6.818S 62.708W Madeira 1 150 000

9 Itaituba 5.748S 56.048W Tapajós 458 000

10 Belo Monte 4.908S 52.248W Xingu 482 000
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4. Results and discussion for AMA8

a. Water level sensitivity

Figures 4–6 display the resulting first-order sensitivity

indices for TRIP water level [see Eq. (9)]. Table 4 shows

the time average over the 3-yr study period of the met-

amodel R2 and sum of all higher-order effects (i.e., the

interaction effects) for each cell. The R2 close to 1

indicates a good convergence of the method, and in-

teraction effects close to 0 indicate that the main effects

(first-order sensitivity indices) are sufficient to explain

the water height variance, characterizing purely additive

contribution of the parameters.

The simulated water height ensemble for each eval-

uation cell generally presents a large spread with am-

plitude up to 20m for some cells such as Jatuarana and

Óbidos (Fig. 4). The ensemble first and ninth deciles

(plotted in black solid and dashed lines, respectively) are

clearly distant all year long, even during low-flow season

(when the ensemble dispersion is at its lowest). It can be

already pointed out that water level presents an im-

portant sensitivity to TRIP parameters.

Overall, the sensitivity time series show no clear in-

terannual variations, and four parameters are system-

atically activated: first, the river Manning coefficient

(purple line), closely followed by the riverbed slope

powering coefficient (green line), then the riverbed

width (orange line), and the groundwater time constant

(blue line). In some cases, the river section length

meandering coefficient is slightly activated (red line in

Figs. 5b, 6). In most figures, Sn, Sspow, and SW explain

40%, 35%, and 20%, respectively, of the model output

variance; StG and Sm explain a small percentage of the

sensitivity also during low-flow period. To summarize

the sensitive parameters by order of importance are the

following:

n. s
pow

.W. t
G
� m . (28)

Three different behaviors are observed. First, evalu-

ation cells along the Amazon mainstream—Itapéua,
Jatuarana, and Óbidos (Fig. 4)—show very light inter-

seasonal variations, implying that only three parame-

ters’ Si are significant: Sn and Sspow are quasi-constant and

SW presents a smooth increase when the water level is at

its lowest. According to Eq. (9), hS depends on the actual

river reservoir storage and on the channel geometry (its

width and length). The dominating parameters n, spow,

and W are directly involved in the Manning formula

[Eqs. (1) and (8)] that estimates the flow velocity. The

flow velocity itself appears in Eq. (2) to determine the

river outflow, thereby impacting the surface water

storage. Therefore, these parameters represent the

contribution of the S to hS.

Second, the left-bank-tributary cells—Acanaui, Car-

acarai, and Serrinha (Fig. 5)—present a similar behav-

ior, but sensitivities to n, spow, and W are noisier, which

can be related to precipitation events. Indeed, left-bank

tributaries present smaller drainage areas and are

TABLE 3. Input parameter ranges used in the SA referred to as AMA8. The second column gives the nature of the parameter: direct

value of the TRIP parameter (dir), multiplying factor (mult), and powering factor (pow); the third column gives the nominal value of the

parameter. The sixth column represents the complete range of variation for physical input parameters in the SA study after perturbations

given in the fourth column.

SA parameter Nature Nominal value Perturbation 6«% TRIP parameter New range

tG Dir 30 days — tG 15–60 days

Wmult Mult 1 650% W 10–22 500

Hc,mult Mult 1 650% Hc 1.5–25.5

nmult Mult 1 675% n 0.01–0.105

smult Mult 1 620% s From 3 3 1025 to 7 3 1022

spow Pow 1 620% s Range above obtained by

applying both smult and spow
m Dir 1.4 630% L 1.0–1.8

nF,mult Mult 1 675% nF 0.007–0.15

FIG. 3. Hydro-geomorphological areas of the Amazon basin.
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therefore more sensitive to local events, namely pre-

cipitation. Besides, SW peaks are more numerous here,

but, as for the general result cells (Fig. 4), they appear

when the water level ensemble spread is very narrow and

suddenly increases. It is worth noting that for the stron-

gest peaks a smaller but synchronized Sm peak is ob-

served. This implies that during sudden regime changes,

the reservoir geometry controls the water level dynamics.

Third, the right-bank-tributary cells—Canutama,

Manicoré, Itaituba, and Belo Monte (Fig. 6)—present

parameter sensitivity with clear interseasonal patterns: Sn

and Sspow mainly dominate as observed in previous results

but decline slightly in low-flow season.During this period,

StG distinctly appears and even overpasses other Si.

Eventually, by the end of the low-flow season, SW and Sm

have peaks similar to those observed in Fig. 5, which

occur when the water level rises again. The StG activates

exclusively during low-flow season. This parameter

represents the water inflow from the groundwater reser-

voir into the river. It is a continuous source of water in the

river, but the ANOVAmethod, as used here, determines

sensitivities as a fraction of the overall variance. Then, the

groundwater storage contribution takes a higher pro-

portion during the low-water season when other contri-

butions (precipitation, surface runoff, etc.) impacting

the water level are lowered. This is undoubtedly due to

the very low water level during this season compared

to the rest of the year. This seasonal pattern in Si and the

high contribution of tG is more pronounced for right-

bank tributaries than left-bank tributaries and is ex-

plained by the large-amplitude difference between the

ensemble maximum and minimum values (almost 20m).

b. Discharge sensitivity

Figures 7–9 display first-order sensitivity for TRIP

discharges, and Table 5 presents the time average over

FIG. 4. Results for the AMA8 water level SA for cells along the Amazon mainstream:

(a) Itapéua, (b) Jatuarana, and (c)Óbidos. For each panel, the upper graph shows the ensemble

of simulated TRIP water heights (gray area) with the ensemble’s first (black line) and ninth

(black dashed line) deciles on the left y axis and daily precipitation (bar plot) at the observed

cell on the reverse right y axis. The lower graph shows first-order daily Si: StG (blue line), SW

(orange line), SHc
(yellow line), Sn (purple line), Ssmult

(light blue line), Sspow (green line), Sm

(dark red line), and SnF (gray line).
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the study period forR2 and sum of all interaction effects.

Themetamodel coefficients are slightly lower than those

obtained for water levels but generally remain above

0.85, showing again a good convergence of the method.

However, discharge interaction effects account for

10%–15%of the unconditional variance (e.g., first-order

effects explain 85%–90% of the variance).

Contrary to water level ensemble, the simulated dis-

charge ensembles (gray area) present a quite narrow

spread with tightened first and ninth deciles (plotted in

black solid and dashed lines, respectively) close to en-

semble extrema. The same ensemble of input parameter

sets Xe has been used to generate both the water height

ensemble and the discharge ensemble (see section 3d).

FIG. 5. As in Fig. 4, but for cells along left-bank tributaries: (a) Acanaui, (b) Caracarai, and

(c) Serrinha.

FIG. 6. As in Fig. 4, but for cells along right-bank tributaries: (a) Canutama, (b) Manicoré, (c) Itaituba, and
(d) Belo Monte.
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But, contrary to the quite large water height ensemble

dispersion, the discharge ensemble dispersion is nar-

rower. A first outcome is that discharge is much less

sensitive to TRIP parameters.

In similarity with water height results, the discharge

sensitivity displays no remarkable interannual sensitivity

patterns. The dominating parameters are the sameas those

for water height but with a different ordering, that is,

t
G
. n. s

pow
.m.W . (29)

Theparameter tG is themost dominatingparameter, and

StG may exceed 0.9 (e.g., Fig. 9) and has its highest values

during low- and high-flow seasons. Parameter tG is the

parameter for groundwater flow exfiltration to the drainage

network (Roux et al. 2011) and represents themass transfer

from the groundwater into the river. This high sensitivity is

in accordance with the rainfall–runoff modeling literature

andwith the conclusions of Pappenberger et al. (2010). In a

stable regime, the discharge is mainly driven by water mass

transfer from the upstream river and groundwater.

During the transition period between high- and low-flow

season, and also in response to precipitation events (Fig. 8

mostly), tG sensitivity drastically drops and other param-

eters are sensitive. Figures 7–9 display an evident anti-

correlation between StG and all other parameter Si. For

example, time- and station-averaged correlation is 20.89

and 20.87 between StG and Sn and between StG and Sm,

respectively. On the contrary, those other parameter sen-

sitivities are highly correlated, for example, 0.94 and 0.97

for the time- and station-averaged correlation between Sn

and Sspow and between Sm and SW , respectively.

Between high- and low-flow seasons, or during pre-

cipitation events, the discharge is driven by regime changes,

that is, by flow velocity changes. Thus, parameters involved

FIG. 7. As in Fig. 4, but for the AMA8 discharge SA.

TABLE 4. AMA8 water level sensitivity. Time-averaged meta-

model R2 and interaction effects for each result cell (see Fig. 2b).

Cell Time-averaged R2 12 �
i

Si

1 0.95 0.05

2 0.95 0.06

3 0.95 0.06

4 0.95 0.05

5 0.94 0.07

6 0.94 0.07

7 0.95 0.05

8 0.93 0.08

9 0.94 0.07

10 0.93 0.08
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in the Manning formula activate, respecting the ordering

observed in water level sensitivities, that is,

n. s
pow

.W . (30)

In addition, the river section length, represented by m,

is also quite an important parameter for the discharge

because 1) it is directly used to compile discharge

[Eq. (10)] and 2) it is an important river geometry pa-

rameter during regime changes.

c. Summary

From this first study, where the parameter sensitivities

are studied identically over the entire Amazon basin, five

parameters appear to be relevant in explaining TRIP sen-

sitivities: the groundwater time constant, the river Man-

ning coefficient, the riverbed slope powering coefficient,

the river width, and the river section length meandering

ratio. These parameters translate the predominant im-

pact of both the groundwater reservoir and the use of

the Manning formula for flow velocity estimation. Also,

it appears that water level is essentially sensitive to

parameters describing the geomorphology of the res-

ervoir, while discharge is more sensitive to mass trans-

fer. As discharge seems to be weakly sensitive to TRIP

parameters—deduced from the low dispersion of the

simulated ensemble—it is rational to assume that dis-

charge is sensitive to other parts of the ISBA–TRIP

system such as precipitation forcing, ISBA parameters,

and ISBA outputs.

It is of interest to conserve the five dominating pa-

rameters and to study the impact of regionalized pa-

rameters over TRIP water height and discharge. The

next SA keeps the same configuration, but a different set

of five parameters will be taken for each subbasin zone

introduced in section 3d (Fig. 3). Giving a total number

of 45 parameters (five parameters for nine zones), this

simulation will therefore be denoted as AMA45.

5. Results and discussion for AMA45

Concerning the AMA45 experiment, results are

shown in Figs. 10–13. The same color code as AMA8 is

used to plot parameter sensitivity time series (e.g., pur-

ple line for n and orange line forW) and to differentiate

two parameters of the same nature but from two dif-

ferent regions; different panels are used for each region.

Results are then discussed for a fewer number of cells

than AMA8: Caracarai, Belo Monte, Serrinha, Itaituba,

FIG. 8. As in Fig. 5, but for the AMA8 discharge SA.
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and Óbidos (stations 6, 10, 7, 9, and 3, respectively, in

Fig. 2b). These five locations are representative of the

results obtained for all cells in this experiment. For

Caracarai (in zone 5) and Belo Monte (in zone 8), the

pixels are situated in the same zone as their contributing

upstream pixels. Serrinha and Itaituba are located in

zone 2 and zone 3 (respectively) while their upstream

contributing pixels are only located in one different

zone–zone 5 and zone 8 (respectively). Finally, Óbidos’

cell is the first cell of zone 3 along the Amazon main-

stream and receives flows from zones 1, 2, 4, 5, 6, and 7.

a. Water level sensitivity

The results at Caracarai and Belo Monte (not shown

here) are similar to those in the AMA8 experiment

(Figs. 5, 6). This was expected as they are located in the

same zone as their drainage area and therefore have the

same configuration as AMA8.

Contributions from other zones are observed at Serrinha

and Itaituba (Fig. 10). At these cells, the activated pa-

rameters are the local (from the cell’s zone) geometrical

(W and m) and morphological (n and spow) parameters,

and the tG parameter from the upstream zone (5 for

Serrinha and 8 for Itaituba) is activated. The overall

tendencies are the same as in AMA8. Observations are

identical at Óbidos (Fig. 11), but with tG from all up-

stream zones being activated. Therefore, tG materializes

the water inflow in the cell.

With the new perspective of regionalized parameters, it

appears that the local reservoir geomorphology monitors

the riverwater level by controlling the amount ofmass that

leaves the cell. Meanwhile, during low-flow season, water

level is sensitive to watermass inflow fromupstream areas.

b. Discharge sensitivity

Similar to water level discussion, discharge sensitiv-

ities for AMA45 at Caracarai and Belo Monte (not

shown) are equivalent to those for AMA8 (section 4b;

Figs. 8, 9). Then, results at Serrinha and Itaituba

(Fig. 12) show the integrator behavior of discharge as

only upstream zones are activated. Similarly, at Óbidos

(Fig. 13), all upstream zones are activated.

However, a particular behavior is observed at Óbidos.

Water from the drainage area necessarily flows through

zone 2 before reaching Óbidos. Therefore, all farthest

upstream zones (1, 4, 5, 6, and 7) are activated through tG
while geomorphological parameters are activated in the

closest zone (zone 2). In zone 2, tG is slightly activated as

well, but because the drainage area of the zone is smaller

than others, its impact is less important. Focusing on tG,

two types of peaks are observed. These peaks correspond

to low-flow season for the highest peak (high-flow season

for smaller peaks), but with some delay due to the transfer

time between the actual high- and low-flow season and the

time when the water reaches the observed pixel.

In conclusion, concerning discharge sensitivity, tG
represents the continuous water inflow while the other

geomorphological parameters represent regime changes

(cf. AMA8 in section 4b).

6. Discussion

From the results above, it seems important to have a

better knowledge of geomorphological parameter values

FIG. 9. As in Fig. 6, but for the AMA8 discharge SA.

TABLE 5. AMA8 discharge sensitivity. Time-averaged metamodel

R2 and interaction effects for each result cell.

Cell Time-averaged R2 12 �
i

Si

1 0.869 0.131

2 0.862 0.135

3 0.887 0.110

4 0.863 0.138

5 0.918 0.082

6 0.865 0.137

7 0.906 0.094

8 0.858 0.146

9 0.912 0.086

10 0.899 0.102
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to improve water height and discharge diagnostics in

ISBA–TRIP. Currently, the river width is defined using

an empirical relationship, but it could be directly esti-

mated from existing recent databases such as North

American River Width Data Set (NARWidth; Allen and

Pavelsky 2015) or Global Width Database for Large

Rivers (GWD-LR; Yamazaki et al. 2014). Similarly,

other DEMs could replace the currently used DEM in

ISBA–TRIP (GTOPO30) to get a better estimate of the

riverbed slope, such as Shuttle Radar Topography Mis-

sion (SRTM) edited in Hydrological Data and Maps

Based on Shuttle Elevation Derivatives at Multiple

Scales (HydroSHEDS; Lehner and Grill 2013) for

latitudes under 608. Additionally, the upcoming Surface

Water and Ocean Topography (SWOT; Alsdorf et al.

2007; Fjortoft et al. 2014; Biancamaria et al. 2015) mission

will also provide such kinds of information on the river

width and the river surface slope, which could be used to

set TRIP parameters. Optical images could also be used to

spatialize the meandering ratio. A better definition of

those parameters would limit the model parameter un-

certainty. The most uncertain parameter would therefore

be the Manning coefficient and the groundwater time

constant, which still remain difficult to estimate.

These SAs are preliminary works in preparation for

model reanalysis and dynamic parameter estimation

FIG. 10. Results for the AMA45 water level SA at (a),(b) Serrinha and (c),(d) Itaituba. First-order daily Si for

each activated zone—StG (blue line), SW (orange line), Sn (purple line), Sspow (green line), and Sm (dark red

line)—with (reverse y axis) local precipitation in the result cell corresponding zone (bar plot). All curves in

(a) and (b) [(c) and (d)] correspond to Si at Serrinha (Itaituba): (a) [(c)] corresponds to the contribution of

parameters from the upstream zone of Serrinha (Itaituba) while (b) [(d)] corresponds to the contribution of

parameters from the local zone of Serrinha (Itaituba).

FIG. 11. Results for the AMA45 water level SA at Óbidos. First-order daily sensitivity indices in zone 3: StG (blue line), SW
(orange line), Sn (purple line), Sspow (green line), and Sm (dark red line), with (reverse y axis) local precipitation in the result cell

corresponding zone (bar plot). The sensitivity to parameters from other zones are all negligible, so the subplots for other zones are

not displayed.
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through data assimilation (Moradkhani 2008; Reichle

2008; Pedinotti et al. 2014) that use in situ or remotely

sensed water level and discharge data to correct model

parameters and/or state. Among them, the incoming

SWOT mission offers a valuable potential to improve

global-scale hydrological modeling. The idea is to use

SWOT satellite products in a parameter estimation

configuration to correct the main TRIP parameters

highlighted during the SAs.

Additionally, this study focused on the water height

exclusively, which is a physical variable of interest, for

example, for water depth data assimilation. However,

current satellites provide water elevation of top water

body distance to a reference geoid or ellipsoid. There-

fore, we quickly investigate the contribution of model

parameters with respect to water depth anomaly (i.e.,

obtained by subtracting the averaged water height over

the study time period to the water height). Sensitivities

were calculated as previously with the same perturba-

tion ranges. Preliminary results for anomalies are pre-

sented atÓbidos in Fig. 14 with the associated Si for the

time-averaged water height. While the overall behavior

is quite the same for the Manning coefficient, the riv-

erbed slope, and even the river width (anticorrelated

behavior with n and s), tG clearly activates for short

periods when the anomaly ensemble is near to zero. It

FIG. 12. As in Fig. 10, but for AMA45 discharge SA.

FIG. 13.As in Fig. 11, but forAMA45 discharge SA. First-order daily Si for each zonewith (reverse y axis) precipitation fromdrainage area

in per zone (bar plot).
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appears that the time-averaged water height (used to

calculate the anomalies) takes all variance from the

parameters n, s, andW, letting tG dominate when water

heights are close to the averaged water height (i.e., when

anomalies are close to zero). Those results will be fur-

ther developed and studied in future works.

The present study focused also only on river-routing

model parameters and was applied over a unique river

basin—theAmazon—but it offers numerous perspectives.

In a global perspective, as SWOT will observe all rivers

wider than 100m between 788S and 788N, the present

platform will be extended to other river basins situated in

other climatic zones, such as the Mississippi or the Niger.

In addition, it will be of great interest to study the impact

of the LSM (here the ISBA model), the atmospheric

forcing (more precisely precipitation), and even the initial

reservoir states on TRIP outputs to improve our un-

derstanding of the continental part of the water cycle.

One important final remark about this SA is that the

following results are quite dependent on the chosen

parameters along with their perturbation range, but also

on the chosen model itself. Indeed, the TRIP model

considers only the kinematic wave propagation equation

for the river reservoir. Other studies include diffusive

wave propagation equation (Yamazaki et al. 2011;

Winsemius et al. 2013) in their routing models along

with a finer description of the topography and the flood

dynamics. Even 2D-type finescale hydrodynamic model

has been applied at continental scale (Sampson et al.

2015). The ANOVA mathematical formalism can be

easily exported to these models and will probably give

different results because of the different model physics

(e.g., kinematic wave against diffusive wave) and may

lead to potentially different sensitivity patterns in space

and time.

7. Conclusions

This study aims to analyze the ISBA–TRIP large-

scale hydrological model sensitivity over the Amazon

River basin. An output model variance decomposition

method was used to identify key river-routing model

parameters during a 3-yr period (2008–10).

Two analyses were carried out to evaluate the sensi-

tivity of model parameters at different spatial scales. The

first study (AMA8) considered parameters whose un-

certainty was defined at the entire catchment scale. The

second study (AMA45) used the same parameters but

with regionalized uncertainty according to a geological

and hydrological division of theAmazonRiver basin. The

objective was to separate the local and upstream impacts

of the parameters on both water height and discharge.

For AMA8, the results showed no interannual sensi-

tivity. For both water height and discharge, the impor-

tance of river Manning coefficient and riverbed slope was

highlighted. These observations are consistent with the

use of the Manning formula to estimate the flow velocity.

Also, riverwidth and length had a nonnegligible influence.

Contrary to water height, the groundwater time constant

significantly dominated discharge sensitivity.

The second study used the same parameters but with

regionalized uncertainty according to a geological and

hydrological division of the Amazon River basin. The

aim was to separate contribution from local parameters

and upstream parameters.

Water level sensitivity is relatively constant through

time, with theManning coefficient multiplicative constant

and the riverbed slope powering coefficient explaining

40%and 35%, respectively, of the unconditional variance.

The river width is less present by taking only 20% of the

variance. However, when the water level is very low, a

nonnegligible impact of the groundwater time constant is

observed. Also, in response to sudden regime change and

precipitation events, the river width and length may be

important. Overall, water level is essentially sensitive to

geomorphological parameters. The second regionalized

SA indicates that the local geomorphology of the reservoir

drives thewater levelmost of the year. In a low-flowperiod,

the inflow from upstream zones is materialized by the ac-

tivated upstream tG and turns into an important contrib-

utor to water height as local phenomena (e.g., triggered by

precipitation events) are minimized.

FIG. 14. As in Fig. 4, but for the AMA8 anomaly SA at Óbidos.

3024 JOURNAL OF HYDROMETEOROLOGY VOLUME 17



Discharge sensitivity presents several temporal pat-

terns: seasonal patterns linked to the alternation of high-

and low-flow seasons and short-term patterns associated

with precipitation events in upstream regions. The

groundwater time constant dominates, sometimes at

over 90% of the variance. In a permanent regime, this

parameter represents the main water inflow into the

river. Geomorphological parameters activate during

transitional regimes. It is worth noting that, because of

the narrow dispersion of simulated discharge ensemble,

discharge is actually weakly sensitive to TRIP parame-

ters. A reasonable assumption would be to consider

precipitation and even the ISBA configuration (e.g., soil

conductivity distribution and vegetation cover) as the

main drivers of discharge. The second regionalized

study confirms that discharge is mainly driven by mass

transfers, in particular upstream mass transfers.

Ultimately, this SAmethod offers an extensive variety

of experiments. The SA results depend on both the

studies model and the parameters range. Therefore, the

same SA formalism applied with a different set of pa-

rameters or anothermodelmay give a different behavior

of the sensitivity indices. Keeping the ISBA–TRIP

model, one could study the impact of the precipitation

forcing or the ISBA parameters on TRIP outputs or

preserve the same formalism on other river basin. The

method could also be applied to other models with a

different physics and different parameters.
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