
HAL Id: hal-02267655
https://hal.science/hal-02267655

Submitted on 19 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An automatic parametric approach for WCET analysis
of C programs

Djemaï Kebbal

To cite this version:
Djemaï Kebbal. An automatic parametric approach for WCET analysis of C programs. ERTS2 2010,
Embedded Real Time Software & Systems, May 2010, Toulouse, France. �hal-02267655�

https://hal.science/hal-02267655
https://hal.archives-ouvertes.fr

An automatic parametric approach

for WCET analysis of C programs

D. Kebbal

Institut de Recherche en Informatique de Toulouse
118 route de Narbonne - F-31062 Toulouse Cedex 9 France

Djemai.Kebbal@iut-tarbes.fr

Abstract: In this paper, we propose a static worst-

case execution time (WCET) analysis approach aimed

to automatically extract flow information related to pro-

gram semantics. This information is used to reduce

the overestimation of the calculated WCET. We focus

on flow information related to loop bounds and infea-

sible paths. The approach handles loops with multi-

ple exit conditions and non-rectangular loops in which

the number of iterations of an inner loop depends on

the current iteration of an outer loop. The WCET of

loops is analytically computed and expressed as sum-

mations function of the loop bounds. This avoids un-

folding loops while providing tight and safe WCET es-

timate. Furthermore, the provided WCET expressions

are expressed symbolically function of the program

input parameters. This allows to reduce the WCET

computing cost while providing tight WCET values. In-

deed the WCET of each piece of code is expressed as

symbolic expression which is instantiated each time

that piece is called in the program. The flow analy-

sis uses an enhanced symbolic execution approach

based on symbolic execution and an analytic method

in order to avoid unfolding loops performed by sym-

bolic execution-based approaches.

Keywords: automatic parametric flow analysis,

block-based symbolic execution, symbolic expression

simplification.

1 Introduction

Real-time systems validation requires the knowledge

of the execution time or bounds on the execution time

of programs. WCET analysis is a well used approach

in the validation of the temporal constraints of hard

real-time systems.

WCET analysis consists of computing an upper bound

on the execution time of a program rather than the ex-

act WCET values as this problem is undecidable in

the general case. However, it is imperative that WCET

analysis must guarantee the Safeness and the Tight-

ness of the provided WCET values in order to keep

real-time systems predictable and their cost financially

reasonable.

Static WCET analysis performs a high-level static

analysis of the program source or object code. This

avoids working on the program input data. For each

component of the program, an upper bound of the ex-

ecution time is estimated. Static WCET analysis tech-

niques proceed generally in three phases [3, 6]: flow

analysis, low-level analysis and WCET estimate com-

puting. Flow analysis characterizes the execution se-

quences of the program’s components, their execu-

tion frequency, etc. (execution paths). In this phase,

the execution costs of basic blocks are assumed to

be constant. Generally, two types of flow informa-

tion may be extracted. The first category is related to

the program structure and may be extracted automat-

ically. The second category is related to the program

functionality and semantics. This includes informa-

tion about loop bounds and feasible/infeasible paths

especially. Low-level analysis computes an execution

time estimate of each program component on the tar-

get hardware architecture. Finally in the calculation

phase, a WCET estimate of the whole program can

be computed based on the results of the two previous

steps.

The remainder of the paper is organized as follows:

in the next section we review the related work. Sec-

tion 3 describes and discusses the flow-analysis ap-

proach. In section 4, we address the algebraic evalu-

ation of iterative scopes issue. Section 5 presents and

discusses a formalism used to handle the generated

symbolic expressions and their simplification. Finally,

in section 6, we conclude the paper and present some

perspective issues.

2 Related work

One of the most popular methods for static WCET

analysis are based on path analysis, which proceed

by explicitly enumerating the set of the program exe-

cution paths [9, 1]. [8] describes a method based on

cycle-level symbolic execution to predict the WCET of

real-time programs on high performance processors.

The main drawbacks of those approaches lie in the im-

portant number of the generated paths which scales

exponentially with the program size. Another class

of approaches called IPET1 do not explicitly enumer-

ate all program paths. In this class of techniques, the

problem of the WCET estimation is converted to an

ILP2 problem [6, 10, 3].

However, all those approaches involve the program-

mer in the flow information determination process, es-

pecially the flow information related to program se-

mantics (feasible/infeasible paths, loop bounds, etc.).

Though the provided flow information may be highly

precise, this is an error-prone problem. Interval-based

abstract interpretation and symbolic execution meth-

ods [4, 2] allow to automatically extract flow infor-

mation related to program semantics. These meth-

ods proceed by rolling out the program (especially

loops) until it terminates, which is very costly in time

and memory. In [5], an approach for determining

loop bounds analytically without unfolding them is pre-

sented. They consider loops with multiple exit condi-

tions and non-rectangular loops, in which the number

of iterations of an inner loop depends on the current

iteration of an outer loop. However, they provide only

numerical WCET values which may lead to overesti-

mation in the case of multiple calls to the same sub-

program. [7] presents a parametric approach based

on abstract interpretation and a method for counting

integer points in polyhedra. The approach seems

complex in practice. [1] proposes a method to com-

pute symbolic WCET. However, they use an annota-

tion mechanism involving the programmer in the flow

analysis process.

We propose an automatic flow analysis approach

which allows to automatically compute WCET of each

piece of code (function, loop, etc.) as symbolic ex-

pression. This allows to obtain tighter but safe WCET

values as the computed symbolic expression can be

instantiated for each specific call to the subprogram

and nested loops leading to tighter WCET values with

a low cost. We use an enhanced symbolic execu-

tion method which avoids unfolding complex blocks by

evaluating each complex block analytically.

3 Flow analysis approach

In this section, we describe our approach aimed to au-

tomatically extract the flow information related to pro-

gram functionality (bounds on loop iterations, infeasi-

ble paths, etc.). We use a data flow analysis approach

based on symbolic execution in order to derive values

of variables at different points in the program.

3.1 Program representation

We use the control flow graph (CFG) formalism to ex-

press the control flow of the program to be analyzed.

The source code of the program is decomposed into

1Implicit Path Enumeration Techniques.
2Integer Linear Programming.

a set of basic blocks. Two fictitious blocks, label-ed

start and exit are added. We assume that all execu-

tions of the CFG start at the start block and end at the

exit block. Figure 2 illustrates an example of a control

flow graph of a program where the C source code is

shown in figure 1.

Formally, the program is represented by the graph

G = (B,E), where B, the set of the graph nodes,

represents the program basic blocks and the set of

edges (E) the precedence constraints between the

basic blocks.

void sort(unsigned int n) {

unsigned int i, j;

for (i=0; i<n-1; i++) {

for (j=i+1; j<n; j++) {

}

}

}

Figure 1: Example of a C program

Figure 2: CFG of the C example

3.2 Scopes and scope graphs

In addition, we use the notion of scope where a

set of scopes of level l are grouped into a scope

of level l − 1. Scopes correspond to complex pro-

gramming language features (loops, conditional state-

ments, functions, modules, etc.). The scope compo-

sition starts at the lowest level and may be recursively

carried out until the CFG level. Figure 3 illustrates the

Figure 3: The scope graphs of the example

scope graphs constructed for the C example of the fig-

ure 1. A scope S is composed of a set of sub-scopes

related by edges, a set of header blocks and one or

more exit edges. Each scope S of level l is defined by

a scope graph describing its structure (figure 3).

Formally, a scope S of level l is defined by the formula

1 and composed of: a number of sub-scopes (Ss); a

set of header blocks (Sh
s ⊆ S); a set Es of edges con-

necting the sub-scopes; and one or more exit edges

(Ee
s ⊆ Es).

S = {Ss, S
h
s , Es, E

e
s}. (1)

The S’s sub-scopes set Ss is composed of scopes of

higher levels (m > l). The set of edges Es is con-

structed as follows: each edge of the CFG connect-

ing two nodes belonging to two different sub-scopes

si and sj of Ss forms an edge of level l from si to

sj . Edges to scopes outside Ss produce edges of exit

type. Redundant edges are eliminated. In figure 3, in

the graph of scope S1
3 corresponding to the for i loop,

the edge e2 connecting the basic blocks BB2 and BB3

in the CFG yields the edge e2
1.

A header block is a basic block executed when the

execution flow reaches the scope for the first time. In-

formally, header blocks correspond to loop and selec-

tion condition test blocks. The set of headers of the

scope S is denoted by Sh
s . The set of header-blocks

of the scope S1
3 is {BB1} (figures 2 and 3). Notice that

a well-structured code yields scopes with one header

block. When the execution of the scope is terminated,

the control flow leaves the scope through an exit-edge.

The set of outgoing edges from a scope S is denoted

by Ee
s . The set of exit-edges of the scope S1

3 is {exit}

(figure 3). When the execution of a scope must be re-

peated, this is done by transferring the execution flow

to the header block through a back-edge. The set of

back-edges of a scope S is denoted by Eb
s. The set of

back-edges of the scope S1
3 is {e2

3} (figure 3).

3.3 Path condition and path action

Each elementary edge e in the CFG is associated a

path condition PC(e) which is a Boolean predicate

conditioning the execution of that edge with respect

to the program state s at the source node of the edge.

Likewise, each basic block bb applies a block action

BA(bb) which represents the effect of the execution of

the sequence of all statements of the block on the pro-

gram state s (symbolic execution rules). The path ac-

tion of a path p denoted PA(p) is the sequence of the

block action of all blocks constituting that path. Like-

wise the path condition of a path is the “logical and” of

the path condition of all edges forming that path.

In order to compute the path action of a path p, we

consider the set of program variables assigned in dif-

ferent blocks of the path Vp. Let BA(bb, v) be the func-

tion applied by the basic block bb on the variable v ∈
Vp which represents the effect of the execution of all

statements of the block on v. The action applied on v

by p (PA(p, v)) is the sequence of block action applied

by all blocks forming p in the order they appear in p.

PA(p, v) = (BA(bb0, v);BA(bb1, v); . . . ;BA(bbn−1, v))
may be represented by an expression of the form av+b

such that a and b are integer constants (a > 0). This

hypothesis implies that the loop induction variable (ex.

i) update statement is of the form i = a ∗ i + b.

4 Algebraic evaluation of iterative scopes

As we have seen, a key idea of our approach is the

way the iterative scopes are handled. Indeed, itera-

tive scopes are not folded, rather than they are ana-

lytically evaluated. To do, the number of iterations of

such iterative scope must be algebraically computed

and the WCET of that scope is estimated based on

the computed number of iterations. Furthermore, the

values of assigned variables inside the scope must be

computed. In the following, we address those issues

in more details.

4.1 Analytic evaluation of the number of iterations of

loops

In order to analytically compute an estimate of the

number of iterations of a loop path, we define the suite

(in) as follows:

{

i0 = N1 ∈ N

in+1 = ain + b ∀n ∈ N
(2)

This suite can be redefined as follows:
{

i0 = N1

in+1 = in + an(b + N1(a − 1)) ∀n ∈ N
(3)

The general term of this suite can be infered using the

following relation:

in = i0 +
n−1
∑

k=0

[ik+1 − ik] = N1 +
n−1
∑

k=0

[ik + ak(b + N1(a − 1))

− ik] = N1 +

n−1
∑

k=0

[ak(b + N1(a − 1))]

=

{

N1 + (b + N1(a − 1))an−1
a−1 when a > 1

N1 + nb when a = 1

(4)

The number of iterations I is defined by the relation

iI−1 ≤ N2 (the loop limit). That is:

{

N1 + (b + N1(a − 1))aI−1−1
a−1 ≤ N2 when a > 1

N1 + (I − 1)b ≤ N2 when a = 1

By knowing that the number of iterations I is a posi-

tive integer, we can deduce its value as the greatest

integer less than or equal to the right-hand side of the

inequality, which yields:

I =

{

⌊loga(1 + (N2−N1)(a−1)
b+(a−1)N1

)⌋ + 1 when a > 1

⌊N2−N1

b
⌋ + 1 when a = 1

(5)

For each elementary path condition expression e of

the form i op expr, the following parameters are eval-

uated:

• Interval type: the interval is qualified as raised if

op is “≤”, constant if op is “=” and undervalued if

op is “≥”. Expressions containing “<” and “>” op-

erators are converted to expressions containing

“≤” and “≥” operators exclusively.

• Direction: if the variable i in increased in the path

action (PA(p)), the direction is positive and neg-

ative if i is decreased in PA(p). If i is never up-

dated along with the path, the direction is con-

stant. The direction is determined by the expres-

sion a ∗ i + b and is positive when the expression

(a − 1)N1 + b is positive and negative when it is

negative and constant when it is 0.

The direction and the interval type are used to deter-

mine if a loop is empty before applying the formula 5.

Thus, in case when the interval is raising and the di-

rection is positive the number of iterations is given by

the formula 5 if N1 ≤ N2 and 0 otherwise. Likewise,

when the interval is undervalued the number of itera-

tions is ∞ when N1 ≥ N2 and 0 otherwise. For ex-

ample, in the ”for i” loop of the sort example (i = 0,

i < n − 1, i = i + 1), a = 1, b = 1, N1 = 0. The

expression (a − 1)N1 + b is evaluated to 1. The direc-

tion is then positive and the interval type is underval-

ued. Therefore the loop is not empty. The computed

number of iterations and the WCET are expressed as

symbolic expressions using the guarded expressions

mechanism presented in the next section. The pro-

vided symbolic guarded expressions will be instanti-

ated when numerical values are provided.

Complex path condition expressions are evaluated

by decomposing them recursively into elementary

Boolean expressions related by logical operators (e1∧
e2 or e1 ∨ e2). Each elementary conditional expres-

sion e is of the form i op expr, where op is a re-

lational operator and expr is an integer valued ex-

pression. Each expression is then analytically eval-

uated as described above. Then the number of iter-

ations Ie related to e and the resulting symbolic state

Se are calculated. The total number of iterations is

determined from the number of iterations of all sub-

expressions of e as follows: Ie1∨e2 = max(Ie1 , Ie2)
and Ie1∧e2 = min(Ie1 , Ie2).

4.2 Updating variables assigned inside iterative

scopes

In this subsection, we address the algebraic evalua-

tion of variables assigned inside the iterative scope

body. For this purpose, we assume a general form on

the assignment statements of variables inside iterative

scopes that can be updated analytically.

s = c ∗ s + d ∗ i + e;

i = a ∗ i + b;

p = k;

q = f(v1, v2, · · ·);

(6)

Such that: a, b, c, d, e, k are expressions which remain

constant within the iterative scope body. a, b ∈ N. f

is a function. v1, v2, · · · are variables which may be

assigned inside the loop scope and different from p.

In order to analytically compute the values of the vari-

ables at the end of iterative scope, we first consider

the following suite:

{

u0 ∈ R

un+1 = gun + rtn + s ∀n ∈ N
(7)

We can prove that the general term of this suite can

be expressed by the following:

un = gnu0 + r

n−1
∑

k=0

gktn−k−1 + s

n−1
∑

k=0

gk ∀n > 0

(8)

=

gnu0 + rtn−1 1−(g

t
)n

1− g

t

+ s gn−1
g−1

= gnu0 + r tn−gn

t−g
+ s gn−1

g−1 when p1

gnu0 + rngn−1 + s gn−1
g−1 when p2

u0 + r tn−1
t−1 + sn when p3

u0 + rn + sn when p4

gnu0 + s gn−1
g−1 when p5

s when p6

u0 + sn when p7

∀n > 0

(9)

with:

p1 = (t 6= 0 ∧ g 6= 1 ∧ g 6= t)

p2 = (g = t ∧ g 6= 0 ∧ g 6= 1)

p3 = (g = 1 ∧ t 6= 0 ∧ t 6= 1)

p4 = (g = t = 1)

p5 = (t = 0 ∧ g 6= 1 ∧ g 6= 0)

p6 = (g = t = 0)

p7 = (g = 1 ∧ t = 0)

The evaluation of the two variables s and i at the end

of the iterative scope, may be done by means of the

two suites (sn) and (in) defined as follows:

s0 ∈ R.

i0 ∈ Z.

sn+1 = csn + din + e

in+1 = ain + b

(10)

Using the formulas 7 and 9 (g = a, r = 0, s = b), we

can prove easily that the value of the variable i at the

iteration n may be given by the following expression:

in =

b when a = 0

i0 + nb when a = 1

ani0 + ban−1
a−1 when a > 1

(11)

The value of the variable s can be infered as follows:

sn+1 = cn+1s0 + di0An + Bn (12)

Such as:

A0 = 1

An+1 = cAn + an+1 = cAn + aan

And:

B0 = e

Bn+1 = cBn +

n
∑

k=0

dakb + e = cBn + db

n
∑

k=0

ak + e

= cBn + db
an+1 − 1

a − 1
+ e

Again using the formulas 7 and 9 (g = c, r = t = a,

s = 0), we can prove easily that the value of the vari-

able A at the iteration n may be given by the following

expressions:

An =

{

cn(n + 1) when c = a
an+1−cn+1

a−c
when c 6= a

Finally still using the formulas 7 and 9 (g = c, r = dba
a−1 ,

t = a, s = e− db
a−1), we can deduce the value of Bn as

follows:

Bn =

cne + dba
a−1

an−cn

a−c
+ (e − db

a−1) cn−1
c−1

when c 6= a ∧ c 6= 1 ∧ a 6= 1 ∧ a 6= 0

cne + dbncn

c−1 + (e − db
c−1) cn−1

c−1

when c = a ∧ c 6= 1 ∧ c 6= 0

e + dba(an−1)
(a−1)2 + (e − db

a−1)n

when c = 1 ∧ a 6= 1 ∧ a 6= 0

cne + (e + db) cn−1
c−1 when a = 0 ∧ c 6= 1 ∧ c 6= 0

e + db when c = a = 0

e + n(e + db) when c = 1 ∧ a = 0

∀n > 0

In case of a = 1, we have:

Bn+1 = cBn + db

n
∑

k=0

1k + e = cBn + (n + 1)db + e

B0 = e

Therefore, we can easily demonstrate3 that:

Bn = e

n
∑

k=0

ck + db

n−1
∑

k=0

(n − k)ck

=

cn+1

c−1 (e + db
c−1) − e

c−1 − db
c−1 (c

c−1 + n)

when a = 1 ∧ c 6= 1

e + n(e + n+1
2 db) when c = a = 1

∀n > 0

3Using for instance the recurrence proof.

We then simplify the formula which gives:

Bn =

cne + dba
a−1

an−cn

a−c
+ (e − db

a−1) cn−1
c−1

when c 6= a ∧ c 6= 1 ∧ a 6= 1 ∧ a 6= 0

cne + dbncn

c−1 + (e − db
c−1) cn−1

c−1

when c = a ∧ c 6= 1 ∧ c 6= 0

e + dba(an−1)
(a−1)2 + (e − db

a−1)n

when c = 1 ∧ a 6= 1 ∧ a 6= 0
cn+1

c−1 (e + db
c−1) − e

c−1 − db
c−1 (c

c−1 + n)

when a = 1 ∧ c 6= 1

e + n(e + n+1
2 db) when c = a = 1

∀n > 0

(13)

To summarize, variables assigned within iterative

scopes are evaluated in many manners following the

way they are assigned inside the scope i.e. the as-

signment statement type:

• Statements of type s in the formula 6. In this case,

the variable is evaluated using the formula 12.

• Statements of type i in the formula 6. In this case,

the variable is evaluated using the formula 11.

• Statements of type q in the formula 6. In this case,

the variable value is given by replacing in the ex-

pression of the function f the variables v1, v2, · · ·
by their final values.

• Statements of type p in the formula 6. The vari-

able remains unchanged (p = k).

4.3 Scope-based symbolic execution

Symbolic execution consists of using symbols instead

of numbers as input values for a program execution.

The program (especially loops) is then rolled out until

it terminates which represents a symbolic execution.

The values of program variables are represented with

symbolic expressions and the program output values

are expressed as function of the program input sym-

bols [2].

We use an enhanced symbolic execution approach

which avoids rolling out loops reducing thus the com-

plexity of the symbolic execution. In our approach,

a symbolic execution state is represented by a triple

< V,PC, SP >, where:

• V is the set of pairs < v, e >, which holds all com-

binations of variables values that are possible at

the control point. V = {< v1, e1 >,< v2, e2 >

, . . . , < vn, en >} denotes a symbolic state where

the variables v1, v2, . . . , vn have been assigned

the expressions e1, e2, . . . , en;

• PC is the path condition expressing the condi-

tions under which that path is taken;

• SP is the instruction pointer referring to the next

sub-scope in the scope graph to execute.

Initially, the input parameters and all the other vari-

ables are initialized using symbols. SP points to the

header block of the scope and PC is set to true. Sym-

bolic execution of a program takes a symbolic state

and a rule which corresponds to the block action of the

sub-scope referred to by SP and returns the symbolic

states resulting from the execution of the rule. When

SP points to the header block for the second time,

the defined loop path is analytically evaluated follow-

ing the process described in subsection 4.1, which re-

duces the complexity of the approach. Furthermore,

only a subset of the symbolic states set of the program

are computed. For this purpose, we associate to each

scope a set of control points which correspond to its

terminal symbolic states set. A control point state is

composed of the set of the scope variables with their

initial values Vin as well as the corresponding terminal

state. The evaluation of a scope yields the set of its

control points and a symbolic WCET expression as-

sociated to each exit control point. Figure 4 shows

the scope-based symbolic execution of the scope S2
2 .

A WCET value based on the number of iterations is

computed and associated to each symbolic state. The

number of iterations, WCET expressions and the vari-

able values are computed using the formulas 5, 11

and 12 discussed in the previous subsection.

? ?

?

?

V ={<j,α0>,<n,α1>}

PC=true

SP=S3
0 , wcet=0

V ={<j,α0>,<n,α1>}

PC=α0≤α1−1

SP=S3
1 , wcet=1

V ={<j,α0>,<n,α1>}

PC=α0≥α1

SP=S2
3 , wcet=1

V ={<j,α0>,<n,α1>}

PC=α0≤α1−1

SP=S3
0 , wcet=2

V ={<j,α1>,<n,α1>,

PC=α0≤α1−1

SP=S2
3 , wcet=2(α1−α0)+1

s0

s1 s2

s3

s4

Figure 4: Evaluation of the scope S2
2

In order to understand how the non rectangular loops

problem is handled by the block-based symbolic ex-

ecution, we consider the evaluation of the scope S1
3

(the ”for i” outer loop) shown on the figure 5. The

application of the scope S2
2 on the state s3 gener-

ates only one state (s4) because on the figure 4, ap-

plying the control point corresponding to the state s2

leads to a false path condition (a false path) since

α0 ≤ α2 − 2 ⇒ α0 ≥ α2 − 1 leads to a false value.

The WCET expression in the state s7 is computed as

follows:

wcet(s7) =

α2−α0−2
∑

x=0

(2α2 − 2α0 − 2x + 2) = (α2 − α0)
2

+ 3(α2 − α0) − 4

The final WCET of the scope S0
0 corresponding to the

”sort” function is given by n2 + 3n − 2 rather than

(n−1)(2n+1)+2) = 2n2−n−1 induced by the methods

that don’t handle rectangular loops, which reduces the

estimated WCET value by a factor of 2.

? ?

?

?

?

?

?

V ={<i,α0>,<j,α1>,<n,α2>}

PC=true

SP=S2
0 , wcet=0

V ={<i,α0>,<j,α1>,<n,α2>}

PC=α0≤α2−2

SP=S2
1 , wcet=1

V ={<i,α0>,<j,α1>,<n,α2>}

PC=α0≥α2−1

SP=S1
1 , wcet=1

V ={<i,α0>,<j,α0+1>,<n,α2>}

PC=α0≤α2−2

SP=S2
2 , wcet=2

V ={<i,α0>,<j,α2>,<n,α2>}

PC=α0≤α2−2

SP=S2
3 , wcet=2(α2−α0)+1

V ={<i,α0+1>,<j,α2>,<n,α2>}

PC=α0≤α2−2

SP=S2
0 , wcet=2(α2−α0)+2

V ={<i,α2−1>,<j,α2>,<n,α2>}

PC=α0≤α2−2, SP=S2
0

wcet=(α2−α0)
2+3(α2−α0)−4

V ={<i,α2−1>,<j,α2>,<n,α2>}

PC=α0≤α2−2, SP=S1
1

wcet=(α2−α0)
2+3(α2−α0)−3

s0

s1

s2

s3

s4

s5

s6

s7

Figure 5: Evaluation of the scope S1
3

5 Handling symbolic expressions

The block-based symbolic execution proceeds by

evaluating each scope independently and uses sym-

bols as input values for all unknown variable values.

Consider the evaluation of of the scope S2
2 presented

in the figure 4.

The direction value i.e. the expression (a − 1)N1 + b

in evaluating s3 is 1. If the direction is evaluated to

a symbolic expression, the number of iterations and

WCET expressions will be conditioned by the effec-

tive value of the direction parameter. For instance con-

sider that the assignment statement of j is j = 2∗j+1
in the loop body, (a = 2, b = 1, N1 = α0). Then the

direction evaluates to α0 + 1. Therefore, the num-

ber of iterations I in s4 is given by: ⌊α1−α0−1
2 ⌋ + 1

when the direction is positive i.e. α0 + 1 > 0 since

N1 ≤ N2 = α0 ≤ α1 − 1 is always true (implied by

the path condition of the state s3). Likewise when the

direction is negative i.e. α0 + 1 < 0, I evaluates to ∞
(since we always have N1 ≤ N2). And when the direc-

tion is constant i.e. α0 +1 = 0 the number of iterations

is ∞.

In order to express such conditional expressions when

computing the number of iterations and variable val-

ues expressions, we use the symbolic guarded ex-

pression mechanism [1]. Hence, the number of iter-

ations of the scope S2
2 can be expressed by the fol-

lowing guarded expression: [α0 > −1](⌊α1−α0−1
2 ⌋ +

1) + [α0 ≤ −1]∞

Guarded expressions constitute a powerful mecha-

nism which is used to evaluate symbolically the WCET

of a piece of code using conditional expressions. A

guarded expression denoted [c]e is evaluated as fol-

lows:

[c]e =

{

e if c

0 otherwise
(14)

However, handling symbolic guarded expressions im-

plies the use of simplification properties which may be

different from the standard algebra. Hence, in addi-

tion to standard properties (commutativity, associativ-

ity, distributivity, . . .), we adopt some other properties

to simplify arithmetic guarded expressions.

ge op [false]e = ge with op ∈ {+,×}

ge + [c]0 = ge

[c]e × [c]1 = [c]e

ge × [c]0 = [true]0

− [c]e = [c](−e)

[c]e1 + [c]e2 = [c](e1 + e2)

[c]e1 × [c]e2 = [c](e1 × e2)

[c]e2
∑

i=[c]e1

[c]e = [c]

e2
∑

i=e1

e

These properties can be easily demonstrated. The

last property is particularly used when evaluating an-

alytically nested loops and generating new symbolic

states as shown by the example presented at the end

of the previous subsection.

6 Conclusion

Real-time systems must be predictable in time and

memory in order avoid undesirable consequences

when the temporal constraints are not respected es-

pecially in critical environments. WCET analysis has

became an important research field in the area of em-

bedded systems in which the emphasis is on reducing

the gap between the theoretical worst case values and

the observed ones.

WCET analysis may be done statically on the pro-

gram source or object code which avoids dealing with

the program input data and target hardware platforms,

but results in overestimated values. Therefore, tech-

niques allowing to tighten the WCET estimates are re-

quired. However, these techniques are complex be-

cause they deal with program semantics.

We proposed a practical symbolic approach aimed to

automatically extract flow information related to pro-

gram semantics which will be used to tighten the

WCET estimates. The method presents a reduced

complexity, at least on the theoretical level, in terms

of time and memory by avoiding unfolding iterative

scopes. Moreover, the approach provides tight WCET

values since it provides WCET of the system compo-

nents (functions, etc.) as symbolic expressions func-

tion of the component input parameters, which allows

to instantiate them with numerical values for each call

of the component. Furthermore, the approach han-

dles non rectangular loops and loops with multiple

exit conditions and eliminates implicitly most of the in-

feasible paths. Indeed, non rectangular nested loops

and infeasible paths constitute an important source of

overestimation in WCET analysis.

We are implementing and evaluating a prototype of

the method. Furthermore, we plan to extend the ex-

pression used to evaluate loops to Presburger formu-

las and use the results obtained on those formulas.

References

[1] G. Bernat and A. Burns. An approach to symbolic

worst-case execution time analysis. In 25th IFAC

Workshop on Real-Time Programming, Palma, Spain,

May 2000.
[2] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzè.

Using symbolic execution for verifying safety-critical

systems. In 8th European software engineering con-

ference, pages 142–151, New York, USA, 2001. ACM

Press.
[3] A. Ermedahl. A modular Tool Architecture for Worst-

Case Execution Time Analysis. PhD thesis, Uppsala

University, 2003.
[4] J. Gustafsson and A. Ermedahl. Automatic deriva-

tion of path and loop annotations in object-oriented

real-time programs. Journal of Parallel and Distributed

Computing Practices, 1(2):61–74, 1998.
[5] C. Healy, M. Sjodin, V. Rustagi, D. Whalley, , and

R. van Engelen. Supporting timing analysis by auto-

matic bounding of loop iterations. Journal of Real-Time

Systems, 18(2-3):129–156, May 2000.
[6] Y.-T. S. Li and S. Malik. Performance analysis of em-

bedded software using implicit path enumeration. In

ACM SIGPLAN Workshop on Languages, Compilers

and Tools for Real-time Systems, La Jolla, California,

June 1995.

[7] B. Lisper. Fully automatic, parametric worst-case ex-

ecution time analysis. In 3rd International Workshop

on Worst-Case Execution Time Analysis, WCET 2003,

pages 99–102, Polytechnic Institute of Porto, Portugal,

2003.
[8] T. Lundqvist and P. Stenström. An integrated path

and timing analysis method based on cycle-level sym-

bolic execution. Real-Time Systems, 17(2-3):183–207,

1999.
[9] C. Y. Park and A. C. Shaw. Experiments with a pro-

gram timing tool based on source-level timing schema.

Journal of Real-Time Systems, 1(2):160–176, Septem-

ber 1989.
[10] P. Puschner and A. V. Schedl. Computing maximum

task execution- a graph-based approach. Real-Time

Systems, 13(1):67–91, July 1997.

